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ABSTRACT

Retrieval augmented Question Answering (QA) enables QA models to overcome
knowledge gaps when answering questions at test time by taking as input the ques-
tion together with retrieved evidence, that is usually a set of passages. Previous
studies show that this approach has numerous benefits such as improving QA per-
formance and reducing hallucinations, without, however, qualifying whether the
retrieved passages are indeed useful at answering correctly. In this work, we eval-
uate existing uncertainty quantification methods and propose an approach that pre-
dicts answer correctness based on utility judgements on individual input passages.
We train a small neural model that predicts passage utility for a target QA model.
We find that simple information theoretic metrics can predict answer correctness
up to a certain extent, more expensive sampling based approaches perform bet-
ter, while our lightweight approach can efficiently approximate or improve upon
sampling-based approaches.

1 INTRODUCTION

Retrieval augmented Question Answering (QA) enables QA models to overcome knowledge gaps
when answering user questions at test time by giving them access to input evidence, i.e., a set of
passages, retrieved for the user questions (Lewis et al., 2020; Guu et al., 2020; Izacard et al., 2024).
Recent work exploits the language understanding and generation abilities of Large Language Models
(LLMs; (Brown et al., 2020; Ouyang et al., 2024)) and makes use of external retrievers to find the
input evidence (Chen et al., 2017; Izacard & Grave, 2021a). That is, the retrieved evidence is given
to the LLM-based QA model as input context in tandem with the question; the QA model will read
this evidence and formulate an answer. For instance, in Figure 1, for the user question Who sings
Does He Love Me with Reba?, the QA model is provided with a set of evidence passages together with
the question; and correctly formulates the answer Linda Davis.

Such retrieval augmented QA architectures have proven beneficial enabling access to external
knowledge (Izacard et al., 2024), increasing the performance on tail knowledge (Mallen et al., 2023),
reducing hallucinations in model answers, and even improving model calibration (Jiang et al., 2021).
However, there are various ways in which a retrieval augmented QA approach can go wrong at pro-
duction time. The set of passages obtained using retrieval methods is far from perfect (Sciavolino
et al., 2021; Yoran et al., 2024; Kasai et al., 2024) containing irrelevant or misleading evidence, the
model might be under-trained to read certain passages and reason over these and the question (Izac-
ard et al., 2024; Liu et al., 2024b), or the question can simply be ambiguous or unanswerable (Kasai
et al., 2024). In these cases where the QA system lacks the knowledge to formulate an answer (i.e.,
it is uncertain about what the answer is), we want it to refrain from answering rather than providing
an erroneous answer. Thus, predicting answer uncertainty is key.

Approaches to answer uncertainty prediction can be grouped in two main categories, sampling-
and LLM-based methods. Sampling-based methods to QA uncertainty detection rely on the output
discrepancies among multiple predictors on the same input (Gal & Ghahramani, 2016; Lakshmi-
narayanan et al., 2017); i.e., this variance in outputs indicates that the model is uncertain. Concretely,
these methods sample via temperature scaling (Guo et al., 2017) and then measure diversity on the
set of sampled answers (Kuhn et al., 2023; Chen & Mueller, 2024). These approaches are expensive
to run for in-production QA systems and the quality of the semantic similarity will degrade on long
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Who sings Does He Love Me 
with Reba?

Does He Love You. Does He Love You "Does He Love You" is a song 
written by Sandy Knox and Billy Stritch, and recorded as a duet by 

American country music artists Reba McEntire and Linda Davis. It was 
released in August 1993 as the first single from Reba's album "Greatest 

Hits Volume Two". It is one of country music's several songs [cont.]

Reba: Duets. The first collaborator on the album was LeAnn Rimes, who 
recorded the track, "When You Love Someone Like That" which also 

appeared on LeAnn Rimes's "Family" album that same year. Jurek called 
the duet between the pair "stellar," while "about.com" called the pairing 
"an undeniable outcome of perfection. Reba's strong country voice with 

LeAnn's young, soulful sound [cont.]

Reba: Duets. Artist, Trisha Yearwood on the song, "She Can't Save Him", 
which was formerly released as a single by Canadian country artist, Lisa 

Brokop. Tracks six and seven were collaborations with American pop 
artist, Carole King and country artist, Kenny Chesney, who both help in 

providing musical variations towards [cont.]

User Question

4.1

-3.94

-3.91

Linda Davis

QA Model Answer

1

2

3

Linda Davis

Reba McEntire and Brooks 
& Dunn's Ronnie Dunn

Trisha Yearwood

Retrieved Passages

Figure 1: Example of user question from the Natural Questions dataset with the set of three top
retrieved passages with Contriever (Izacard et al., 2022) (the other two passages below the rank are
less relevant and not shown in the figure); the gold answer is Linda Davis. The target QA model
GEMMA2-9B correctly answers the question when provided with the top five passages. Below
each passage, it is shown the answer generated by the QA model when only prompted with that
passage and the question. The QA model correctly answers when prompted with the first passage
and produces an incorrect answer when prompted with each of the other ones. The yellow triangles
on the top right of the passages are the predicted utility scores by our utility ranker. Higher values
indicate more useful passages and our model correctly identifies that the top passage is better.

answers (Zhang et al., 2024).1 LLM-based methods explore to what extent language models are
able to correctly express uncertainty about their own predictions (Kadavath et al., 2022; Lin et al.,
2022; Tian et al., 2023; Zhou et al., 2023). These look into whether the model’s confidence in its
outputs coincides with their correctness (i.e., calibration), methods to fix calibration, and ways to
elicit from the model a verbal expression of that confidence (i.e., linguistic calibration). Findings
about model calibration are diverse and model dependent, fixing relies on approximations for the
case of black-box models and fine-tuning what could be infeasible in practice given current LLMs’
sizes. None of these answer uncertainty detection approaches has been applied in the context of
retrieval augmented QA, most of them are applied on closed-book QA tasks where the answer is
predicted based on the question and the models’ encoded knowledge.

In this work, we propose a secondary model that makes predictions at individual retrieved pas-
sage level that are useful to estimate answer uncertainty of retrieval augmented QA models.
We hypothesize that the type of retrieved passages and questions, the relation between them and
their implicit interaction with the QA model’s own knowledge are indicators of answer correctness.
If the passages are informative and priming the QA model towards appropriate knowledge, we ex-
pect the QA model to produce a correct answer. In contrast, if the passages are not informative or
misleading and the posed question is out of the QA model’s knowledge, we expect it to generate an
erroneous answer (i.e., either factually incorrect or completely made up content). We operationalise
this as retrieved passage utility. Given a question, a passage is useful, if a QA model can correctly
answer the question based on it. We train a small neural model to predict passage utility which we
refer to as utility ranker. We train the utility ranker on utility judgements generated by the target
QA model. We borrow ideas from direct uncertainty quantification approaches (Van Amersfoort
et al., 2020; Lahlou et al., 2023) but we do not decompose uncertainty or outline shifts in the input
distribution.

We show that individual passage utilities are good predictors of retrieval augmented QA ac-
curacy. This means that it is possible to train an answer uncertainty predictor independently
from the choice of number of retrieved passages used to prompt the target QA model. Because
retrieved passages are scored individually, our approach is independent of the number of retrieved
passages chosen for the target QA model. We evaluate our approach on short-form question answer-
ing tasks. Figure 1 shows an example of input question, set of retrieved passages, and correct answer

1By expensive we mean both latency as well as cost as a long prompts might need to be processed and QA
systems may rely on paid proprietary language models.
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from the Natural Questions dataset (Kwiatkowski et al., 2019). Results on six QA datasets show that
our approach performs on par with existing sampling-based uncertainty quantification approaches
while being more efficient at test time. It requires a small model pass over the set of input passages
and the question (see inference cost comparison in Appendix C.1). Surprisingly, in more complex
reasoning questions (SQuAD) and adversarial QA settings (e.g., rare entities or unanswerable ques-
tions) our approach surpasses existing uncertainty quantification methods. Moreover, we show that
the utility scores predicted by the Utility Ranker can be used to re-rank retrieved passages obtained
via the external retrieval system to improve QA accuracy (Liu et al., 2024b).

2 RELATED WORK

Uncertainty Quantification for Question Answering Several methods have been proposed to
predict answer uncertainty in QA; however, none of them has analysed uncertainty in retrieval aug-
mented QA models. Many existing approaches rely on capturing output variation as the expression
of model uncertainty (Kuhn et al., 2023; Farquhar et al., 2024; Chen & Mueller, 2024). On a sam-
ple of model outputs, Kuhn et al. (2023) propose to first cluster answers with similar meaning via
natural language inference before computing entropy. Chen & Mueller (2024) propose an approach
for black-box models, they also compute similarities in the set of answers but associate them with
a model self-judgement of confidence. These approaches are expensive to run at inference time
for a production QA system, they require several inference steps plus the similarity computations.
In addition, as the length of the answers increases, measuring similarity becomes more complex
(Zhang et al., 2024). Hou et al. (2024) propose a decomposition of predictive uncertainty and focus
on quantifying aleatoric uncertainty (i.e., uncertainty in the data) caused by ambiguous questions.
This approach is orthogonal to ours.

Judging the Utility of Retrieved Passages Previous work has analysed the set of retrieved pas-
sages (Yu et al., 2023; Asai et al., 2024; Wang et al., 2024; Xu et al., 2024; Yoran et al., 2024)
following the observation that passages can be irrelevant or misleading making the QA model prone
to producing incorrect answers. Asai et al. (2024) make use of an external critic model to judge
whether a question requires retrieval (or not), whether the retrieved passages are relevant to formu-
late the answer, and whether the final response elaborated by the QA model is useful. While they
analyse retrieved passage relevance, this decision is taken by an external extreme-scale critic (e.g.,
GPT-4) and used to fine-tune the QA model. In contrast, we do not fine-tune the target QA model
but rather we elicit utility judgements from it to train a secondary model to predict passage utility.
Other work creates auxiliary tasks around retrieved passages enforcing the QA model to reason on
them; e.g., by taking notes about each passage (Yu et al., 2023) or generating passage summaries
(Xu et al., 2024). These methods also use extreme-scale LLMs to generate training data to fine-
tune the retrieval augmented QA model. Park et al. (2024) select specific in-context examples to
improve the LLM’s reasoning on the input passages, their focus is on detecting input passages with
conflicting content (e.g., different dates for a given event). These approaches aim at improving QA
performance while our primary goal is modelling QA uncertainty.

Improving Retriever via Reader Performance Previous work with pre-trained language models
has focused on jointly training the retriever and reader modules end-to-end (Lee et al., 2019; Lewis
et al., 2020; Izacard & Grave, 2021b). That is, the performance of the question answering model
is propagated also to the retriever. This joint training scheme can be very expensive for current
(extreme-scale) LLMs. Our approach can be seen as an intermediate module between the QA model
(reader) and the external retriever. It would be interesting to explore our utility ranker to provide
feedback (e.g., to label data) to fine-tuning the retriever. In recent work, Salemi & Zamani (2024)
evaluate the performance of information retrieval systems via retrieval augmented QA performance.
Interestingly, they show that external judgements (e.g., query-document relevance labels) of passage
utility correlate poorly with retrieval augmented QA performance.

Learning to Predict Confidence Some approaches train a specific model to predict a confidence
score (Dong et al., 2018; Kamath et al., 2020; Mielke et al., 2022). For semantic parsing, Dong et al.
(2018) train a confidence predictor based on a set of uncertainty features from the input and the
model. Mielke et al. (2022) also train a calibrator that, given the user question and model generated
answer, predicts a confidence score. In our approach, we simple aggregate predicted individual
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passage utilities but it would also be possible to train a confidence module that takes utilities with
other features into account (e.g., output sequence probability), and predicts a confidence score.

3 MODELLING ANSWER UNCERTAINTY

Formally, we define retrieval augmented QA as follows. Given question x and set of
retrieved passages R = {p1, p2, · · · , p|R|} obtained with retriever R, a LLM-based QA
model M is prompted to generate answer yM to question x token-by-token as yM =

argmaxyM

∏|yM|
t=1 pM(yt|y1..t−1, x,R). We want to estimate the uncertainty or error of M on

generating yM given x and R; i.e., we want an estimator {x,R} 7→ uM({x,R}) of M’s answer
uncertainty. In our approach, the answer uncertainty predictor uM is based on individual passage
utilities. Our hypothesis is that individual passage utilities of retrieved passages in R are indicators
of the QA model uncertainty when generating yM when prompted with R. For instance, in Fig-
ure 1, given that the first passage in the set has a high utility score, this indicates that the QA model
is likely to be confident when providing the answer Linda Davis. Thus, we want a passage utility
estimator {x, p} 7→ υM({x, p}) of every p ∈ R. In what follows, we define passage utility and how
to estimate and predict it. Next, we discuss a simple answer uncertainty estimator uM based on υM.

3.1 PASSAGE UTILITY RANKING

Passage Utility Intuitively, a passage p retrieved for question x is useful for a QA model M, if M
can correctly answer x when prompted with p. In addition, M’s reliance on passage p to formulate
the answer may vary. That is, the QA model may formulate a correct answer even though p does
not provide the answer itself; instead, p positively primes M to use its memorised knowledge. The
utility of the first passage, in Figure 1, is high as the QA model generates a correct answer when
prompted with it and the fact that Linda Davis sings together with Reba McEntire can be derived from
it. The second and third passages, although related to the topic of the question, are not useful. The
QA model is potentially uncertain about how to answer the question and the passages do not help;
the model incorrectly answers when prompted with each of them. Thus, the utility of the second and
third passages is low.

Concretely, we estimate the utility of passage p for QA model M to answer question x by combining
two measures. These are accuracy, denoted as a(yM), whether the generated answer yM is correct,
and entailment, denoted as e(yM), how much does passage p supports the generated answer yM.
Accuracy is computed by a critic model A and entailment by a Natural Language Inference (NLI)
classifier model E . We define the combined passage utility as υM = (a(yM) + e(yM))/2 that
takes values in the closed interval [0, 1] given that a takes values in the set {0, 1} and e in the closed
interval [0, 1].

Utility Ranker We train a small neural model to predict passage utility scores, {x, p} 7→
υM({x, p}). We use observed answer accuracy and entailment by QA model M on a training
set D = {(x, p)} to train the utility predictor. That is, we run the QA model M on examples from
D and compute passage utilities to form a training set for our utility predictor DM = {(x, p, υM)}.

For recall purposes, retrieval augmented QA generally retrieves more than one input passage for
each question x, i.e., |R| > 1. To generate training data for the passage utility predictor, we retrieve
|R| passages per question in order for to cover passages with different usefulness. From the set of
passages R for question x, we derive training instances {(x, pi, υMi) | pi ∈ R}. We exploit this
to train the passage utility predictor with a contrastive learning scheme. That is, if pi and pj are
passages in R and pi is more useful than passage pj to answer question x, the predicted utility score
υMi should be higher by a margin m than the predicted score υMj for pj (i.e., pi should be ranked
higher than pj). We train the utility predictor with the following pair-wise ranking objective:

Lrank =
∑

((x,pi),(x,pj))∈R×R,i ̸=j

max(0,−z(υMi − υMj) +m)), (1)

where z controls the gold order between pi and pj (e.g., if z = 1, pi has higher utility, conversely
z = −1 indicates the opposite ordering) and m is a hyper-parameter. The passage utility predictor
is trained with a Siamese neural network. Its architecture is constituted by a BERT (Devlin et al.,
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2019) based encoder followed by a pooling and two MLP layers stacked on top of BERT outputs
(Fang et al., 2024). The output layer computes the utility score as υMi = Woh

L + bo where hL is
the vector representation for (x, pi) from the last hidden layer (the L-th layer) of the network. At
inference time, we compute a single utility score for each passage. We provide implementation and
training details in Section 4.

To enforce the signal on accuracy prediction and to regularise the range of utility values learned
by the ranking scheme, we combine the ranking objective in Equation 1 with the following Binary
Cross Entropy (BCE) objective (Sculley, 2010):

LBCE =
∑

(x,p)∈{(x,pi),(x,pj)}

aM × (log(p(x, p)) + (1− aM)× log(1− p(x, p)), (2)

where p(x, p) = sigmoid(υM) and aM is the target accuracy label taking values in the set {0, 1}.
We train the utility predictor with the following combined objective:

L = Lrank + λLBCE , (3)
where λ is a hyper-parameter. Both the ranking and BCE objectives are compatible with gold anno-
tations that could be obtained via human intervention in an interactive and active learning learning
setting. That is, it would be feasible to elicit from human judges (e.g., moderators of the QA system)
answer accuracy labels (e.g., correct/incorrect) and level of passage support for the generated answer
(e.g., best or worse) (Simpson et al., 2020; Fang et al., 2024). Note that the Utility Ranker could also
be trained with different variants of this objective that also exhibit competitive performance. We
report in Appendix D.1 a study on the ablation of the different components of the training objective.

The passage utility predictor is related to the direct error prediction approach in (Lahlou et al., 2023).
Lahlou et al. (2023) train a secondary model to estimate target model loss; instead, we train the
passage utility predictor with sequence level metrics, i.e., accuracy and entailment, which indirectly
measure error. This choice is best suited for our task for various reasons. First, in the context
of text generation and its possibly diverse (e.g., paraphrases) but correct set of possible generated
answers (Kuhn et al., 2023), predicting loss against a unique single paraphrase would result in a
too narrow estimation. Our choice is also adequate for proprietary LLMs where it is not possible to
create training data with model losses. Finally, our approach is suited for collecting data from user
feedback for active model adaptation (Simpson et al., 2020; Fang et al., 2024). In the image domain,
van Amersfoort et al. (2020) map inputs to feature representations and take the distance between new
inputs and their closest cluster centroids as a measure of uncertainty. In retrieval augmented QA with
LLMs, text passages, and questions, it is less clear what the boundary between seen and unseen texts
or topics is. Because our Utility Ranker is trained on a target dataset it could be exploited to detect
out-of-domain instances for a target application. It would be interesting to pursue future work on
using our Utility Ranker as a content controller for the target LLM-based QA model.

Some approaches to answer uncertainty prediction that train a secondary model are in (Kamath
et al., 2020; Zhang et al., 2021). However, none of them is applied to retrieval augmented QA; but
instead to Reading Comprehension (RC), i.e., the task of generating an answer based on a single
positive (i.e., supposed to contain the answer) context document. There are two major differences
with our work. One is that in their scenario, all input documents are useful while in ours the utility
of retrieved passages is varied. The second one is that we show that individual passage utilities are
good predictors of retrieval augmented QA with a set of retrieved passages.

3.2 ANSWER UNCERTAINTY ESTIMATION FOR RETRIEVAL AUGMENTED QA

For retrieval augmented QA, we want an estimator {x,R} 7→ uM({x,R}) of the answer uncertainty
of a target QA model M when generating answer yM from a prompt with set of passages R and
question x. We propose the direct estimation of uM from individual passage utilities predicted for
passages in R. The intuition is that, the highest the utility in one (or more) passages in R the less
uncertain M will be when generating answer yM. Concretely, we take the maximum utility score
that is given to passages in R as an estimate of answer uncertainty uM, i.e.,

uM({x,R}) = max(υM({x, p}) | p ∈ R). (4)

Note that other more complex estimators {x,R} 7→ uM({x,R}) could be learned by training, for
instance, a regression model on individual passage utilities in addition to other features of the target
model M such as probability of the generated answer yM (Dong et al., 2018).
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4 EXPERIMENTAL SETUP

Accuracy Evaluation A precise metric for measuring accuracy is key when evaluating the quality
of uncertainty estimation. Token overlap metrics are far from being precise and can over- or under-
estimate accuracy, e.g., Acc yields a higher score for the pair of gold and generated answers (a
politician, not a politician) than for the pair (a politician, a congressperson). Thus, our main metric to
evaluate QA model performance and as the accuracy evaluator A to create data to train the passage
utility predictor, is based on a LLM judgement of accuracy proposed by Sun et al. (2024) (AccLM).
A critic LLM is prompted with the gold and generated answer and asked to judge whether they
are the equivalent. In a sample of 840 generated answers human and LLM-based judgment of
correctness agreed 98% of the time (Sun et al., 2024). We use the prompt as proposed in (Sun et al.,
2024), we include it in Appendix B for completeness. We use Qwen2-72B-Instruct (Yang et al.,
2024) to obtain accuracy judgments. For compatibility with previous work and as a lower bound,
in Appendix D.2, we report QA model performance with token overlap accuracy (Acc) defined as
whether the gold answer is contained in the generated answer (Mallen et al., 2023; Asai et al., 2024).

Utility Ranker Implementation Details To create the training set DM to train the Utility Ranker,
we consider the first top five retrieved passages for each question, i.e., |R| = 5. Note that this is
a hyper-parameter and other values would also be possible, e.g., with larger sizes of |R| further
training data would be available. We use the target QA model M to generate answers yM for each
of the five passages p in R (i.e., M is prompted with passage p and question x). We then ge utility
scores using the LLM-based accuracy judge A as described above and an ALBERT-xlarge Lan et al.
(2020) model optimized on MNLI (Williams et al., 2018) and VitaminC (Schuster et al., 2021) as
our entailment judge E .

Comparison Approaches and Baselines We choose the stronger methods from previous work
(Fadeeva et al., 2023) to compare our approach with.

Information Based. We compare against the stronger information based uncertainty quantification
approaches reported in previous work Fadeeva et al. (2023). These are based on predictive proba-
bilities; recall that the predictive distribution under QA model M prompted with question x and set
of passages R is P (yM|x,R,M) =

∏|yM|
t=1 pM(yt|y1..t−1, x,R) for a target QA model M.

Maximum Sequence Probability (MSP) based uncertainty estimation is based on the probability
of the most likely answer and computed as MSP(yM |x,R,M) = 1 − P (yM|x,R,M). The
other uncertainty estimation approach is the negative mean Point-wise Mutual Information (PMI)
Takayama & Arase (2019); i.e., it compares the probability of generating answer yM given the
prompt with question x and passages R w.r.t the probability given by M to yM without con-
text. Intuitively, the higher the PMI the more certain on generating yM. PMI is computed as

PMI(yM, x,R;M) 1
|yM|

∑|yM|
t=1 log

pM(yt|y1..t−1)

pM(yt|y1..t−1, x,R)
. The other two methods are based on

entropy. We compare with Regular Entropy (RE), i.e., the entropy on the predictive distribu-
tion computed at sequence level E[−logP (yM|x,R,M)] with E computed on sequences yM
sampled from P (yM |x,R,M). In practice, this is approximated via Monte-Carlo integration,
i.e., sampling N random answers from P (yM |x,R,M). Thus, Regular Entropy is computed
as − 1

N

∑N
n=1 log P̃ (y

(n)
M |x,R,M), where P̃ (y

(n)
M |x,R,M) is the length normalised version of

P (y
(n)
M |x,R,M).

Answer Variation. Kuhn et al. (2023) propose a variant of regular entropy, named Semantic En-
tropy (SE), that accounts for uncertainty in the surface form of the generated answers rather than
on meaning. Concretely, Semantic Entropy clusters the set of N samples into M , M ≤ N ,
clusters with the same meaning via bidirectional entailment. Then computes the average an-
swers’ probability within each cluster, SE(x,M) = −

∑M
m=1 P̂m(x,M) log P̂m(x,M) where

P̂m(x,M) =
∑

yM∈Cm
P (yM | x,R,M)∑M

m=1

∑
yM∈Cm

P (yM | x,R,M)
.

Reflexive. We compare with p(true) proposed by Kadavath et al. (2022). This approach uses the same
target QA model (LLM) evaluate whether the answers it produces are correct. It is prompted with the
question and a set of candidate answers, i.e., the most likely answer plus a sample of size N answers,
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and instructed to respond whether the most likely answer is true or false (i.e., correct/incorrect). The
score produced by this approach is the probability of the model M generating the token True. p(true)
needs several in-context examples to work well, so we fit as many examples as can be in the context.

Baselines. The sets of passages in R are originally ranked by the IR system, so each passage in R
has a retriever score which can be seen as baseline passage utility. We thus take the Retriever Score
as a baseline. Despite the QA models are instructed to produce a short answer, these often generate
longer answers. The length of the answer could be a feature indicating that the model is uncertain
about the answer. Thus, we estimate answer uncertainty from the Answer Length (Ans.Len) as the
number of words in the answer.

Following previous work (Farquhar et al., 2024), we take N = 10 samples and use multinomial
sampling to generate samples. That is, we set the sampling temperature to 1, with nucleus sampling
(P = 0.9) (Holtzman et al., 2020) and top−K sampling (K = 50) (Fan et al., 2018), and use a
different random seed to draw each sample. Most likely answers are generated with greedy sampling
at temperature equal to 0. We use the implementation provided by Farquhar et al. (2024) to compute
RE, SE, CA, and p(true). We report inference cost of each approach in Appendix C.1.

QA Models Our target retrieval augmented QA models M are based on the following instruction
fine-tuned LLMs. To assess the performance of the Utility Ranker for QA models that potentially
exhibit different answer uncertainty, we consider different families of similar size. These are Llama-
3.1-8B-Instruct (AI@Meta, 2024), Mistral-7B-Instruct-v0.3 Jiang et al. (2023), and Gemma2-9B-it
Riviere et al. (2024). For all QA models, we use a simple prompt including the retrieved passages
and the question in the context, the prompt is shown in Table 6 of the Appendix. We use vLLM
for inference (Kwon et al., 2023). Following previous work on retrieval augmented QA, we use
Contriever Izacard et al. (2022) as our external retriever (Asai et al., 2024) and the target QA models
are prompted with |R| = 5 passages Yu et al. (2023); Asai et al. (2024); Xu et al. (2024).

Datasets We evaluate our answering uncertainty prediction approach on short-form answer gen-
eration tasks. Concretely, we evaluate on the Natural Questions Kwiatkowski et al. (2019), Trivi-
aQA Joshi et al. (2017), WebQuestions Berant et al. (2013), and SQuAD (Rajpurkar et al., 2016)
datasets. We follow the training/validation/test splits in prior work Lee et al. (2019); Min et al.
(2019); Karpukhin et al. (2020). To test the generalisation robustness of our approach we carry out
additional experiments on PopQA Mallen et al. (2023), a dataset with questions about rare entities,
and RefuNQ Liu et al. (2024a), a dataset with unanswerable questions about non-existing entities.
Statistics about our datasets are given in the Appendix in Table 5.

Evaluation of the Quality of Uncertainty Estimation To assess the quality of answer uncer-
tainty prediction, we follow Farquhar et al. (2024) and report the Area Under the Receiver Operator
Curve on detecting answer uncertainty, i.e., incorrect answers, (AUROC) and the area under the
rejection accuracy curve (AURAC). AURAC summarises the accuracy of QA models when answer
uncertainty is used to refuse to answer questions. It summarises accuracy at different percentages of
rejection. Instruction fine-tuned models are known to refuse to answer questions, i.e., they produce
answers such as This information is not available in the text. In some cases, the refusal response
will be adequate (e.g., no input passage contains the information to answer) but in many cases QA
models may refuse when they should have provided an answer Adlakha et al. (2024); Liu et al.
(2024a). Thus, to simplify the assessment of answer correctness, we did not explicitly instruct the
QA models to abstain and treat occurring refusal answers as cases of uncertainty where the QA
model is expressing the uncertainty in the answer (Farquhar et al., 2024). We report the percentage
of refusal answers for each QA model and QA task on development sets in Appendix D.2.

5 RESULTS

5.1 UNCERTAINTY QUANTIFICATION

Answer uncertainty estimation results for the three QA models (GEMMA2-9B, LLAMA-3.1-8B,
and MISTRAL-7B-V0.3) are shown in Table 1 (results on the development set are included in Ap-
pendix D). In terms of predicting answer uncertainty (i.e., model incorrect answers), column AU-
ROC in Table 1, simple metrics based on models’ probabilities such as MSP perform better for some
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Table 1: Answer uncertainty estimation for QA models GEMMA2-9B, LLAMA-3.1-8B, and
MISTRAL-7B-V0.3 on NaturalQuestions, TriviaQA, WebQuestions, and SQuAD (evaluation with
in-distribution test data for the Utility Ranker). We report AUROC and AURAC.

NaturalQuestions TriviaQA WebQuestions SQuAD
AUROC AURAC AUROC AURAC AUROC AURAC AUROC AURAC

GEMMA2-9B
MSP 0.69 0.67 0.68 0.83 0.63 0.66 0.65 0.63
PMI 0.51 0.58 0.53 0.78 0.45 0.58 0.50 0.55
p(true) 0.72 0.70 0.78 0.86 0.74 0.74 0.67 0.66
Regular Entropy 0.69 0.68 0.65 0.82 0.63 0.67 0.65 0.62
Cluster Assignment 0.67 0.66 0.69 0.83 0.60 0.65 0.66 0.63
Semantic Entropy 0.68 0.67 0.68 0.83 0.60 0.65 0.66 0.63
Ans.Len 0.65 0.65 0.59 0.80 0.62 0.66 0.61 0.60
Retriever Score 0.60 0.65 0.68 0.84 0.53 0.62 0.61 0.62
Utility Ranker 0.76 0.72 0.81 0.88 0.72 0.71 0.81 0.74

LLAMA-3.1-8B
MSP 0.71 0.69 0.83 0.88 0.71 0.74 0.77 0.69
PMI 0.56 0.60 0.57 0.78 0.51 0.65 0.61 0.59
p(true) 0.79 0.74 0.84 0.87 0.76 0.76 0.65 0.61
Regular Entropy 0.72 0.69 0.83 0.88 0.72 0.74 0.78 0.69
Semantic Entropy 0.69 0.67 0.81 0.86 0.68 0.73 0.75 0.68
Ans.Len 0.59 0.61 0.60 0.78 0.61 0.68 0.57 0.55
Retriever Score 0.58 0.62 0.64 0.81 0.50 0.63 0.65 0.61
Utility Ranker 0.73 0.70 0.78 0.86 0.76 0.78 0.84 0.73

MISTRAL-7B-V0.3
MSP 0.68 0.63 0.73 0.87 0.65 0.68 0.71 0.65
PMI 0.53 0.59 0.55 0.79 0.50 0.62 0.58 0.60
p(true) 0.72 0.67 0.84 0.88 0.72 0.70 0.69 0.63
Regular Entropy 0.60 0.60 0.71 0.85 0.61 0.68 0.66 0.62
Semantic Entropy 0.67 0.63 0.78 0.88 0.69 0.68 0.71 0.66
Ans.Len 0.68 0.63 0.67 0.84 0.64 0.69 0.66 0.63
Retriever Score 0.59 0.60 0.67 0.82 0.53 0.65 0.64 0.62
Utility Ranker 0.76 0.68 0.79 0.86 0.76 0.71 0.80 0.68

models. It exhibits high performance for LLAMA-3.1-8B while lower performance for GEMMA2-
9B and MISTRAL-7B-V0.3. Sampling-based approaches (meaning diversity and reflexive), can
better identify model uncertainty but at the cost of running inference several times to have a good
size sample for the estimation. Our Utility Ranker has similar or better performance with a single
inference step on each input passage. We speculate that clustering approaches can suffer in phrase
or sentence level correct answers where these contain different levels of details Zhang et al. (2024);
thus, not being clustered together wrongly suggesting variation.

On improving question-answering accuracy, AURAC column in Table 1, with the exception of Triv-
iaQA, all uncertainty prediction approaches outperform the information theoretic approaches (i.e.,
MSP, PMI). The Utility Ranker performs on par or better than the more expensive sampling based
approaches. To have a clearer picture of baseline retrieval augmented QA accuracy w.r.t. accuracy
when the uncertainty estimation is used to decide whether to abstain nor not, we show in Figure 2 the
accuracy of the model at different thresholds for answer rejection. That is, we report when the QA
model chooses to answer only the 80% or 90% of the most confident cases as well as when always
answers. Retrieval augmented QA accuracy per model and dataset on the full test and development
sets is included in Appendix D. Across all datasets, the Utility Ranker performs on par with of better
than more expensive uncertainty estimation approaches. The easiest QA task is TriviaQA where
QA models show very good performance and information theoretic methods work on par with more
complex ones. On the most difficult task, SQuAD, the utility ranker outperforms all other methods
both at 20% and 10% of rejected answers.

5.2 ROBUSTNESS AND GENERALISATION OF UNCERTAINTY ESTIMATION

We assess the robustness and generalisation of our Utility Ranker on test cases that are different from
those examples seen during training, i.e., Out-Of-Distribution (OOD). These examples encompass
real cases that a QA model will face at test time such as different type of questions, e.g., longer and
more complex. We also study extreme adversarial cases such as questions about tail knowledge for
both retrievers and LLMs (PopQA) and unanswerable questions (RefuNQ).

Distribution Shift Table 2 shows the performance of the Utility Ranker when evaluated in OOD
data. The first column indicates the training data and the first row the evaluation data. Results in the
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Figure 2: Average QA model performance on test sets with |R| = 5. We show model based accuracy
(AccLM) at different percentages of rejecting to answer (i.e., when choosing to respond on 80%,
90%, and all the cases) given uncertainty estimations by the different approaches.

Table 2: Performance of GEMMA2-9B’s Utility Ranker on distribution shift. That is, trained on one
dataset and evaluated zero-hot on another one. We report all combinations of train and test data. The
first column indicates train data while the first row test data.

NaturalQuestions TriviaQA WebQuestions SQuAD
AUROC AURAC AUROC AURAC AUROC AURAC AUROC AURAC

NaturalQuestions 0.76 0.72 0.72 0.86 0.65 0.67 0.72 0.68
TriviaQA 0.64 0.67 0.81 0.88 0.63 0.68 0.71 0.68

WebQuestions 0.60 0.64 0.72 0.86 0.72 0.71 0.58 0.59
SQuAD 0.65 0.67 0.77 0.87 0.61 0.65 0.81 0.74

diagonal correspond to the Utility Ranker trained and evaluated in the same data distribution; the off-
diagonal cells to the Utility Ranker evaluated zero-shot in a different dataset. As expected, the Utility
Ranker variants evaluated on a different dataset show a decrease in performance. However, for some
training data the decrease is small providing a competitive prediction. That is, NaturalQuestions
and SQuAD provide the best training data, what agrees with previous experiments in reading com-
prehension settings (Chen et al. (2021) choose NaturalQuestions to train the base model, Kamath
et al. (2020); Zhang et al. (2021) SQuAD). The Utility Ranker variants trained on WebQuestions
(smallest training set) and TriviaQA (the easiest task) have the worst generalisation performance.
Note that we focus on zero-shot to assess bare transfer performance; however, it would make sense
to train the model with few examples of the OOD data (Kamath et al., 2020; Zhang et al., 2021).

Adversarial Questions Table 3 reports results for GEMMA2-9B’s Utility Ranker trained on Natu-
ralQuestions and evaluated zero-shot to predict answer uncertainty for retrieval augmented QA with
|R| = 5 on PopQA and RefuNQ. These datasets are made of adversarial cases so we report AU-
ROC (predicting incorrect answers) and AURAC (summary of different rejection thresholds). For
RefuNQ as questions have (un)answerable gold annotations, we further report AUROC scores for
the Unanswerable questions (51% of the tested cases) and all incorrect answers together (67%) of
the test cases. The Utility Ranker (NQ) outperforms other methods to detect answer uncertainty
across datasets and improve QA accuracy by refusing to answer questions across the board. We
attribute this to the fact that, either due to knowledge about tail entities (PopQA) or unanswerable
questions about nonexistent concepts (RefuNQ), the quality of the retrieved passages suffers. Thus,
our approach will assign lower utility to these and thus successfully predict answer uncertainty. This
is confirmed by the surprisingly high AUROC score achieved by the Retriever Score baseline on Re-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Answer uncertainty estimation for GEMMA2-9B on adversarial QA tasks (PopQA and
RefuNQ). Its Utility Ranker is trained on Natural Questions.

PopQA RefuNQ
AUROC AURAC AUROC AURAC

All Unanswerable
MSP 0.66 0.58 0.66 0.63 0.39
PMI 0.51 0.50 0.54 0.53 0.35

p(true) 0.71 0.62 0.73 0.65 0.45
Regular Entropy 0.66 0.58 0.66 0.61 0.39

Semantic Entropy 0.69 0.59 0.68 0.60 0.41
Ans.Len 0.62 0.55 0.65 0.66 0.38

Retriever Score 0.63 0.58 0.76 0.80 0.47
Utility Ranker (NQ) 0.72 0.62 0.82 0.71 0.51

Table 4: Retrieval augmented QA performance with three passages |R| = 3 is the version with the
top three retrieved passages from Contriever and |RUR| = 3 is the version with top three re-ranked
passages out of ten originally retrieved. We report model based (AccLM) accuracy.

NaturalQuestions TriviaQA WebQuestions SQuAD
|R| = top 3 ranked by external retriever 0.58 0.77 0.63 0.53
|R| = top 3 re-ranked by Utility Ranker 0.62 0.79 0.65 0.60

|R| = all 10 passages 0.64 0.80 0.66 0.62

fuNQ’s Unanswarable questions. In this particular type of questions, the retrieval system indeed
struggles to retrieve relevant passages. Note that Retriever Score behaves otherwise in the rest of the
QA tasks where it shows lower performance. Interestingly, information based methods, MSP and
PPL, perform worse in these adversarial QA tasks than in the in-distribution test cases (Section 5.1).
This shows that in these cases QA models produce incorrect answers with high confidence.

5.3 IMPROVING QA PERFORMANCE

We also assess the quality of the passage utility scores to identify informative passages via end task
QA performance. We compare the original ranking by the external retrieval system with the ranking
established by the utility scores by taking the top 3 passages out of 10 passages ordered by the
external retriever and re-ranked by the Utility Ranker. We then run the QA models with a budget of
|R| = 3 input passages. We also run the QA model with the all the 10 passages, i.e., with |R| = 10.
Results for GEMMA2-9B QA model are shown in Table 4. The QA model with the top 3 passages
re-ranked by the Utility Ranker improves 4 points on NaturalQuestions and 7 points on SQuAD over
the QA model variant that takes the top 3 ranked by the external retriever. This suggest that passages
considered relevant for user questions by the external retriever do not coincide with what is useful
for the target QA model. The QA model variant with the top 3 passages re-ranked by the Utility
Ranker performs very close, i.e., difference of 1 or 2 points across all datasets, to the QA model
variant with the 10 passages given as context. The utility scores effectivelly identify informative
passages and the QA model achieves comparable performance with a much shorter prompt.

6 CONCLUSIONS

In this work we present an approach to answer uncertainty prediction for retrieval augmented QA
models. Importantly, this approach relies on single passage utilities. This approach is based on a
small neural model that is trained on a target QA model judgements of retrieved passage usefulness.
We show that this approach is competitive or better than existing strong error prediction approaches
while being light-weight. Our experiments also show that our approach is particularly better in
cases of extreme QA model answer uncertainty like rare entities and unanswerable questions. Future
work would explore the approach in the context of log-form generation tasks, e.g., query focused-
generation. It would also be interesting to explore to what extent the Utility Ranker model could be
used in active learning scenarios.

6.1 ETHICS STATEMENT

Our work does not involve human subjects. We use QA datasets that are publicly available and
widely used by the research community.
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6.2 REPRODUCIBILITY STATEMENT

We build up on existing base code Farquhar et al. (2024); Fang et al. (2024) and we will make
available all code and data together with the docker images for reproducibility.
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Dataset Train Dev Test
Natural Questions 79,168 8,757 3,610
TriviaQA 78,785 8,837 11,313
WebQuestions 2,474 361 2,032
SQuAD 78,713 8,886 10,570
PopQA 11267 - 3000
RefuNQ - - 4439

Table 5: Dataset statistics, number of instances per train/dev/test sets. Note that we sample a smaller
test set for PopQA in our experiments.

Knowledge:

[1] [passage]
[2] [passage]
...
[N] [passage]

Answer the following question with a very
short phrase.

Question: [question]

Table 6: Minimal prompt selected as user turn for the QA models.
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v1/2021.findings-acl.172. URL https://aclanthology.org/2021.findings-acl.
172.

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto. Navigating the grey area: How expressions
of uncertainty and overconfidence affect language models. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 5506–5524, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.335. URL https://aclanthology.org/2023.
emnlp-main.335.

A DATASETS

Table 5 shows statistics about the QA datasets we use in our experiments.

B MODEL PROMPTS

The prompt we use for our QA models is shown in Table 6. Table 7 illustrate the prompts used for
our LLM based accuracy and p(true) baseline.

C COMPARISON AND BASELINE UNCERTAINTY ESTIMATION METHODS

C.1 TEST TIME COST OF UNCERTAINTY ESTIMATION METHODS

Table 8 shows the cost of executing uncertainty estimation for a user question x in terms of model
inference calls required. Simple information theoretic methods require a single call (PPL, MSP)
or two (PMI) calls to the QA model with the full prompt (N retrieved passages and user question
x); similarly the Ans.Len baseline. However, approaches that estimate uncertainty based on diver-
sity (Regular Entropy, Cluster Assignment, Semantic Entropy, and p(true)) require generating N
answers, i.e., N inference calls with the full prompt. In addition, Cluster Assignment and Semantic
Entropy require the computation of the answers clusters, so additional calls to an entailment model

18

https://aclanthology.org/2021.findings-acl.172
https://aclanthology.org/2021.findings-acl.172
https://aclanthology.org/2023.emnlp-main.335
https://aclanthology.org/2023.emnlp-main.335


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

are required to compare the set of sampled answers. p(true) requires one additional LLM call to
elicit a True/False answer but with a very long prompt including in-context examples and candidate
answers. In contrast, our approach requires |R| utility predictions with a BERT-size model.

D ADDITIONAL RESULTS

D.1 DIFFERENT COMPONENTS OF THE TRAINING OBJECTIVE

Table 9 shows results on the ablation of the Utility Ranker training objective (Section 3.1, Equa-
tion 3). When trained only with the ranking loss (Lrank), in average it achieves better performance
when the training signal combines accuracy (a) with entailment (e), i.e., the training ranking is given
by (e+a)/2. When trained in combination with the full objective (Lrank + LBCE) the ranker shows
an increase of 10 AUROC points. Highlighting the benefit of training the Utility Ranker to predict-
ing QA accuracy for input passages. Interestingly, when we drop the ranking loss (i.e., last line of
Table 9) there is a drop in performance. On one hand, the ranking loss enables the comparison of
pairs of passages and thus the number of training instances is higher. On the other hand, the en-
tailment -based ranking signal might help the final model to learn features useful for more accurate
passage utility prediction.

D.2 UNCERTAINTY ESTIMATION RESULTS

Table 10 and 11 shows retrieval augmented QA performance on the development set for the target
QA models. Table 12 shows performance of uncertainty quantification approaches. We report AU-
RAC and AUROC as well as the percentage out of incorrect cases where the QA models produce an
answer acknowledging the lack of knowledge to answer.

We report the following additional uncertainty estimation methods. Perplexity (PPL) computed as
PPL(yM, x,R;M) = exp {− 1

|yM|
∑|yM|

t=1 PM(yt|y1..t−1, x,R)}, i.e., based on the average neg-
ative log-likelihood of the generated tokens. Cluster Assignment (CA) is the variant of SE without
answers’ probabilities where P̂m(x,M) is approximated from the number of answers in the cluster.
CA values are very close to SE values.
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You need to check whether the prediction of a question-
answering system to a question is correct. You should make
the judgment based on a list of ground truth answers provided
to you. Your response should be ”correct” if the prediction is
correct or ”incorrect” if the prediction is wrong.

Question: Who authored The Taming of the Shrew (published in
2002)?
Ground truth: [”William Shakespeare”, ”Roma Gill”]
Prediction: W Shakespeare
Correctness: correct

Question: Who authored The Taming of the Shrew (published in
2002)?
Ground truth: [”William Shakespeare”, ”Roma Gill”]
Prediction: Roma Gill and W Shakespeare
Correctness: correct

Question: Who authored The Taming of the Shrew (published in
2002)?
Ground truth: [”William Shakespeare”, ”Roma Gill”]”
Prediction: Roma Shakespeare
Correctness: incorrect

Question: What country is Maharashtra Metro Rail Corporation
Limited located in?
Ground truth: [”India”]
Prediction: Maharashtra
Correctness: incorrect

Question: What’s the job of Song Kang-ho in Parasite (2019)?
Ground truth: [”actor”]
Prediction: He plays the role of Kim Ki-taek, the patriarch of the
Kim family.
Correctness: correct

Question: Which era did Michael Oakeshott belong to?
Ground truth: [”20th-century philosophy”]
Prediction: 20th century.”
Correctness: correct

Question: Edward Tise (known for Full Metal Jacket (1987)) is
in what department?
Ground truth: [”sound department”]
Prediction: 2nd Infantry Division, United States Army
Correctness: incorrect

Question: What wine region is Finger Lakes AVA a part of?
Ground truth: [”New York wine”]
Prediction: Finger Lakes AVA
Correctness: incorrect

Question: [question]
Ground truth: [answers]
Prediction: [output]
Correctness:

Table 7: Prompt for accuracy evaluation.
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Nb./Type of Inference Call at Test Time
PPL 1LLM-G
MSP 1LLM-G
PMI 2LLM-G
p(true) (N + 1)LLM-G + 1LLM-E
Regular Entropy (N + 1)LLM-G
Cluster Assignment (N + 1)LLM-G +N(N − 1)/2LLM-E
Semantic Entropy (N + 1)LLM-G +N(N − 1)/2LLM-E
Ans.Len 1LLM-G
Retriever Score 0LLM-G
Utility Ranker |R|Bert-F

Table 8: Number and type of inference call required to estimate answer uncertainty for a given user
question x. LLM-G means inference with the retrieval augmented QA model, i.e., a forward pass
with the prompt including the set of R retrieved passages and the question to generate an answer.
LLM-E is inference with an evaluation model, e.g., a forward pass to ask a LLM for correctness in
p(true) or a forward pass with an entailment model in the Semantic Entropy method. Bert-F is an
inference call to predict passage utility for a passage p in R and user question x.

Table 9: Uncertainty Estimation by the Utility Ranker trained with variants of the training objective.
We report AUROC and AURAC for the Utility Ranker for the three target QA models (GEMMA2-
9B, LLAMA3.1-8B, and MISTRAL-7B-V0.3) on Natural Questions development data.

GEMMA2-9B LLAMA3.1-8B MISTRAL-7B-V0.3
AUROC AURAC AUROC AURAC AUROC AURAC

Lrank, (e+ a)/2 + LBCE 0.77 0.76 0.77 0.76 0.79 0.76
Lrank, (e+ a)/2 0.67 0.70 0.66 0.70 0.69 0.70
Lrank, (a) 0.62 0.67 0.64 0.68 0.67 0.69
Lrank, (e) 0.67 0.70 0.64 0.68 0.64 0.67
LBCE 0.76 0.74 0.75 0.74 0.77 0.74

Table 10: Target QA models performance on test sets with |R| = 5. Model based accuracy AccLM
(column header ALM) is accuracy computed by Qwen2-72B-Instruct.

NaturalQuestions TriviaQA WebQuestions SQuAD PopQA RefuNQ
Acc ALM Acc ALM Acc ALM Acc ALM Acc ALM Acc ALM

GEMMA2.9B 0.46 0.61 0.73 0.78 0.40 0.64 0.41 0.58 0.49 0.51 0.26 0.35
LLAMA-3.1-8B 0.47 0.60 0.71 0.77 0.44 0.66 0.41 0.56 0.48 0.49 0.27 0.37

MISTRAL-7B-V0.3 0.47 0.58 0.71 0.75 0.47 0.66 0.40 0.57 0.52 0.49 0.27 0.35

Table 11: Target QA models performance on the development sets with |R| = 5. (Acc) is rule based
accuracy as used in previous work, (AccLM) is accuracy computed by Qwen2-72B-Instruct.

Natural Questions TriviaQA WebQuestions SQuAD
Acc AccLM Acc AccLM Acc AccLM Acc AccLM

GEMMA2.9B 0.45 0.62 0.73 0.79 0.45 0.67 0.37 0.58
LLAMA-3.1-8B 0.46 0.60 0.71 0.77 0.52 0.68 0.38 0.58

MISTRAL-7B-V0.3 0.46 0.60 0.71 0.76 0.53 0.69 0.36 0.57
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Table 12: Answer uncertainty estimation for QA models GEMMA2-9B, LLAMA-3.1-8B, and
MISTRAL-7B-V0.3 on NaturalQuestions, TriviaQA, WebQuestions, and SQuAD development sets.
We report AUROC and AURAC. Refusal % is the percentage out of the total incorrect answers where
the model acknowledges uncertainty by expressing its lack of knowledge in the generated answer.

Natural Questions TriviaQA WebQuestions SQuAD
AUROC AURAC AUROC AURAC AUROC AURAC AUROC AURAC

GEMMA2-9B
PPL 0.67 0.69 0.61 0.80 0.63 0.70 0.65 0.66
MSP 0.69 0.70 0.66 0.81 0.64 0.70 0.66 0.66
PMI 0.49 0.59 0.42 0.71 0.49 0.63 0.46 0.55

p(true) 0.73 0.73 0.76 0.85 0.73 0.75 0.70 0.69
Regular Entropy 0.70 0.69 0.66 0.81 0.65 0.70 0.68 0.68

Cluster Assignment 0.70 0.70 0.67 0.81 0.65 0.70 0.65 0.66
Semantic Entropy 0.71 0.71 0.65 0.80 0.65 0.71 0.65 0.66

Ans.Len 0.63 0.66 0.62 0.79 0.61 0.69 0.60 0.64
Retriever Score 0.59 0.65 0.62 0.80 0.50 0.62 0.67 0.68
Utility Ranker 0.75 0.74 0.79 0.86 0.74 0.77 0.82 0.77

Refusal % 5% 5% 0.7% 3%
LLAMA3.1-8B

PPL 0.75 0.75 0.80 0.85 0.68 0.73 0.71 0.70
MSP 0.79 0.77 0.83 0.86 0.69 0.73 0.72 0.70
PMI 0.61 0.68 0.56 0.75 0.55 0.67 0.55 0.60

p(true) 0.79 0.77 0.89 0.88 0.72 0.75 0.69 0.69
Regular Entropy 0.81 0.78 0.82 0.86 0.69 0.74 0.75 0.72

Cluster Assignment 0.77 0.75 0.82 0.85 0.72 0.75 0.75 0.72
Semantic Entropy 0.76 0.75 0.84 0.86 0.71 0.75 0.76 0.73

Ans.Len 0.63 0.67 0.66 0.79 0.61 0.69 0.56 0.60
Retriever Score 0.57 0.65 0.62 0.78 0.49 0.64 0.67 0.67
Utility Ranker 0.79 0.77 0.81 0.85 0.77 0.79 0.83 0.76

Refusal % 2% 1% 0.7% 2%
MISTRAL-7B-V0.3

PPL 0.65 0.69 0.65 0.80 0.62 0.70 0.66 0.65
MSP 0.70 0.71 0.74 0.82 0.67 0.73 0.72 0.68
PMI 0.49 0.60 0.57 0.76 0.56 0.68 0.54 0.58

p(true) 0.73 0.71 0.80 0.85 0.69 0.75 0.70 0.67
Regular Entropy 0.65 0.69 0.66 0.80 0.63 0.71 0.70 0.68

Cluster Assignment 0.71 0.72 0.76 0.82 0.71 0.75 0.75 0.69
Semantic Entropy 0.72 0.72 0.77 0.83 0.71 0.74 0.75 0.70

Ans.Len 0.65 0.68 0.69 0.80 0.64 0.72 0.66 0.64
Retriever Score 0.59 0.65 0.61 0.77 0.58 0.69 0.64 0.63
Utility Ranker 0.76 0.74 0.77 0.84 0.73 0.77 0.80 0.72

Refusal % 1% 0.25% 3% 0.5%
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