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ABSTRACT

To conduct local inference on edge devices, it is neceseatgploy compact ma-
chine learning models on such devices. When such a compad nsoapplied
to a new environment, its inference accuracy can be degrifdieed target data
from the new environment have a different distribution frthra source data used
for model training. To ensure high inference accuracy inrte environment, it
is indispensable to adapt the compact model to the target ¢dwever, to pro-
tect users’ privacy, the target data cannot be sent to aatizietl server for joint
training with the source data. Furthermore, utilizing theget data to directly
train the compact model cannot achieve sufficient inferetmiracy due to its
low model capacity. To this end, a scheme called sourcetargfied knowledge
distillation (STU-KD) is developed in this paper. It firstagats a large source
model to the target data on the edge device, and a large taggidl is obtained.
The knowledge of the large target model is then transfeoddd compact model
via knowledge distillation. Since training the large mol#zlds to large memory
consumption, a domain adaptation method called lite resiaypothesis transfer
is designed to achieve memory-efficient adaptation to tigetalata on the edge
device. Moreover, to prevent the compact model from fonggtthe knowledge
of the source data during knowledge distillation, a coltaltiwe knowledge dis-
tillation (Co-KD) method is developed to unify the sourceéadan the server and
the target data on the edge device to train the compact m&Jal-KD can be
easily integrated with secure aggregation so that the searmot obtain the true
model parameters of the compact model. Extensive expetinvemducted upon
several tasks of object recognition show that STU-KD canrowp the inference
accuracy by up ta4.7%, as compared to the state-of-the-art schemes. The results
also reveal that the inference accuracy of the compact msdwt impacted by
incorporating secure aggregation into STU-KD.

1 INTRODUCTION

Many computer vision (CV) applications, such as mobile tepeequire local inference on edge
devices because of the requirements on data privacy ancatewdy. To enable local inference on
edge devices, it is necessary to deploy compact machingnganodels on such devices. For exam-
ple, considering an edge computing device Jetson Nano WRIGFLOPS GPU and 4 GB memory
spach, which is commonly used for image recognition, a ResNet-b8eh(He et al), 2016) is pre-
ferred over a ResNet-50 model, as the inference time of timedibcaseZ6 ms) is much smaller than
the latter one4 ms) (Yang et all, 2020). Such compact machine learning rsazel be obtained
by manual design based on experts’ experience (Sandler|20&B; Howard et al., 2019; Lin etlal.,
2020) or by some automated machine learning (AutoML) tesplnes, e.g., network compression
(Ning et al., 2020; Li et all, 2020b) and neural architecsearchi(He et al., 2018; Liu et/al., 2019).

When an edge device with a compact model works in a new envieatrthe unlabeled target da-
ta collected from the new environment can have a differesitridution from the labeled source
data that are used to train the compact model, i.e., doméin(&netton et al., 2009) occurs. Con-

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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Figure 1: lllustration of source-target unified knowledggtitlation.

sequently, the compact model suffers low inference acygupacthe target data. To ensure high
inference accuracy in the new environment, it is necessaaglapt the compact model to the target
data. A typical approach is to send the target data to a clengswhere the model is trained via
unsupervised domain adaptation (UDA) (e.g., the methodsimg et al.|(2019); Tang & Jia (2020);
Xu et al. (2020)) and then deployed back to the device. Howetvieads to loss of data privacy.
To avoid this issue, another type of approach is to train tirapact model locally over the target
data via UDA methods. It is doable on an edge device. For ekarrpining ResNet-18 with batch
size48 consumes nearly72 GFLOPs and .1 GB memory space per batch, which is affordable for
Jetson Nano. However, this type of approach cannot achigbeifiference accuracy on the target
data due to limited model capacity of the compact model.

To this end, a scheme called source-target unified knowlddgi#lation (STU-KD) is developed in
this paper. The key idea is to utilize a large model with sigfitmodel capacity to learn fine-grained
representations of the target data, and then transfer diwlkdge to the compact model. As shown
in step 1 in Figuréll, a large source model is loaded on the delgee and is then adapted to the
target data to obtain a large target model. The challengdso$tep are two-fold. First, the target
data are unlabeled, so the fine-grained representationstha learned via supervised learning. As
a result, unsupervised domain adaptation (UDA) is needstejm 1. Second, the edge device does
not have the source data, since the volume of the sourcealatzedoo large to be stored on the edge
device, or the source data cannot be exposed to the edge diddo confidentiality of these data.
Without the source data, many UDA methods (Kang et al., 20489 & Jia, 2020; Xu et al., 2020)
are not applicable for the adaptation of the large sourceemnothus, source-free UDA methods
(Lietall,[2020a; Liang et al., 2020; Liu etlal., 2021) mustebeployed. However, existing source-
free UDA methods, e.g., source hypothesis transfer (SHO®@&h( et al.| 2020), require retraining
of the large source model, which leads to large memory coptiamon the edge device. For ex-
ample, if ResNet-50 is retrained with batch si&on Jetson Nano, the computational cost is nearly
364 GFLOPSs, which is affordable for Jetson Nano. However, thenorg consumption per batch
is nearly5 GB, exceeding thd GB memory space limit of Jetson Nano. To tackle the challenge
in step 1 of STU-KD, a memory-efficient UDA method called liessidual hypothesis transfer (L-
RHT) is designed by enhancing the architecture of a souseYDA method such as SHOT. More
specifically, the same loss function as that of SHOT is adbpe unsupervised learning can be
conducted with unlabeled target data. However, the feadtgactor in SHOT must be replaced
with a new architecture that can be trained in a memory-efitainanner. Thus, the new architecture
is designed by adding lite residual (LR) modules (Cai e24120) to the feature extractor such that
its outputs can be fine-tuned by training the LR modules ortjlerkeeping the parameters of the
feature extractor fixed. As a result, in LRHT the traininggass of the large source model involves
neither the feature extractor nor the classifier. Sincaimgithe LR modules generates a much s-
maller volume of activations and demands much lower memooypfint, the training process of
the large target model is highly memory-efficient. In oth@res, by using LRHT the large source
model can be adapted to the target data to obtain a large tacgkel in a memory-efficient manner.

In step 2 of STU-KD (in Figurgll), the large target model idizetd to generate soft labels for the
target data. The knowledge of the target data is then traesféo the compact model by train-
ing it over the target data and the soft labels via knowledgglldtion (KD) (Hinton et al.} 2015).
However, no source data are involved in the KD process, hegidi the compact model gradually
forgetting the the knowledge of the source data, i.e., trafaisic forgetting|(McCloskey & Cohen,
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1989) occurs. As a result, when the edge device encountesrdan the source domain after the
KD process, the compact model can suffer low inference acyuiFor example, consider a mobile
robot whose compact model is trained via the above KD prod¥b&n it moves to an environment
similar to that of the source domain, its compact model canexognize the objects in that envi-
ronment with a high accuracy. To avoid catastrophic foiggttit is necessary to train the compact
model considering both the target data and the source détas, & collaborative knowledge dis-
tillation (Co-KD) method is designed as follows. On the edgeice, a compact model is trained
over the target data and the soft labels via KD. On the searather compact model is trained
over the source data via supervised learning. The challeegeis how to consolidate these two
compact models into a global compact model. The settingisfctiallenging problem is similar to
that of federated learning (FL) (McMahan et al., 2017). Hesvethere exists one major difference.
FL requires that different nodes have the same type of lasstifins,while Co-KD has to use the
cross-entropy loss on the server and the loss function ofik) Kullback—Leibler (KL) divergence
in the state-of-the-art methods) on the edge device. Duedto 3 difference, existing FL algorithms
(e.g..McMabhan et al. (2017); Karimireddy et al. (2020)) mokeffective for consolidating the com-
pact models in Co-KD. To this end, an alternating directicathnod of multipliers (ADMM) based
learning algorithm is designed for Co-KD to consolidate¢bepact model on the edge device and
that on the server, as shown in step 2 in Figure 1. More spaltjfiche training process of the
global compact model is formulated into a consensus probiegn the edge device and the server.
The consensus problem is then divided into two subproblgn®IMM. The edge device trains its
compact model by iteratively solving the subproblem reldtethe target data, and the server trains
its compact model by iteratively solving the subproblenated to the source data.

In the second step of STU-KD, the edge device needs to uplmmagdrameters of the compact
model to the server. It is possible for the server to recowanesinformation of the target data

from these parameters (Zhu et al., 2019). To ensure privhtlyeatarget data, secure aggregation
(Bonawitz et al.| 2017) is adopted in STU-KD so that the secamnot obtain the true parameters
of the compact model.

Extensive experiments are conducted to evaluate the peaifaze of STU-KD. The results show that
STU-KD increases the compact model’s inference accuradiietarget data by up tbt.7% while
maintaining high inference accuracy on the source datapempared to the state-of-art methods.
Moreover, after employing secure aggregation, the peidoia of STU-KD is not affected.

2 RELATED WORK

Cross Domain Model CompressionMany schemes (Yu et al., 2019; Chen etlal., 2019; Fengd et al.,
2020; Dillard et al., 2020; Nguyen-Meidine ef al., 2020) done network compression with unsu-
pervised domain adaptation (UDA) to obtain a compact mduslperforms well on the target data.
These schemes adopt traditional UDA methods that assuntartiet data and the source data are
stored in one place, which are not applicable when the talagat and the source data are isolated.
Moreover, these schemes need to train a large source madeDA. The large memory footprint

of training the large source model hinders the applicatfath@se schemes on edge devices.

On-device Adaptation. Recently, some schemes are developed to adapt an on-dewite o
the target data. TinyTL (Cai etlal., 2020) assumes that thdesice model has sufficient model
capacity, and adapts this model to the labeled target datalew memory footprint. However,
TinyTL is not applicable to the scenario with unlabeled ¢rgata. MobileDA|(Yang et al., 2020)
directly trains a compact model via a UDA method called de€RBL (Sun & Saenko, 2016).
It employs a teacher model to boost the inference accuratiyeofompact model. However, due
to its low model capacity, directly training the compact rabdannot achieves sufficient inference
accuracy on the target data. Although a teacher model isaym) it is only trained over the source
data, so the teacher model can only achieve limited imprew¢f the inference accuracy.

Domain Adaptation Under Data Isolation. Some schemes are designed to conduct UDA in a
scenario where the source data and the target data are hdiffdrgnt data owners. In federated
domain adaptation (FDA), e.g., federated adversarial doadaptation (Peng etlal., 2020), the data
owners can collaboratively train a globally shared modelthk training process, each data owner
only shares its local updates rather than the target or ealata. Schemes like source-free domain
adaptation (SFDA) can accomplish UDA in the absence of thecgeodata. Iin Li et all (2020a), the
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Figure 2: The pipeline of lite residual hypothesis transfer

source model is trained over some generated target-stylplesa. In Liang et all (2020), the source
model is trained through information maximization loss rothee target data and self-supervised
pseudo-labeling. The SFDA schemeslin (Kurmi etlal., 202;dtial., 2021) leverage generative
models to generate fake source samples for UDA. Howeverbtairoa model with sufficient ac-
curacy, both FDA and SFDA schemes require the source modelve sufficient model capacity.
However, such a requirement cannot be satisfied by a compatelwith low model capacity.

3 METHODOLOGY

One centralized server and edge devicesN/ > 1) are considered in this paper. The labeled
source data in the server are denoted®as v, } wherex represents the feature vector of a source
sample and;, the ground-truth label of the source sample. The sourceatataampled from the
source domain denoted &%5. The unlabeled target data on the edge devices are denofed jas
wherex; represents the feature vector of a target sample. The tdegatare sampled from the
target domain denoted d%. Each edge device needs to accomplish a classification telskiov
classes using a compact model. The compact model on the ediged € {1,..., M} is defined

as a functiory,,,, and its model parameters are denotethgs Given the above setup, source-target
unified knowledge distillation (STU-KD) is developed to ptithe compact model to the target data.

3.1 LITE RESIDUAL HYPOTHESISTRANSFER

To boost the inference accuracy of the compact model, a Eygece model with sufficient model
capacity, defined as a functigh, is adopted in STU-KD. It can learn more fine-grained represe
tations of the target data compared with the compact modsforB being deployed to th&/ edge
devices, the large source mod#@l is pretrained over the source data by minimizing an objectiv
function Jr(wr) = Ep, ) [L(fr(xs; wr),ys)], wherewr denotes the parameters of the large
source model, and (-, -) is the standard cross-entropy loss. On edge device {1, ..., M}, the
large source model is then adapted to the target data. THierpes of the adaptation are two-
fold. First, the target data are unlabeled so that fine-gthiepresentations of the target data cannot
be learned via supervised learning. As a result, unsugshdemain adaptation (UDA) is need-
ed. Second, edge deviee does not have the source data, so many UDA methods (Kang et al.
2019; Tang & Jid, 2020; Xu et al., 2020) are not feasible fergtaptation. Thus, source-free UDA
methodsl|(Li et al., 2020a; Liang et al., 2020; Liu etlal., 20@lLst be employed. However, exist-
ing source-free UDA methods, e.g., source hypothesisfea(SHOT) (Liang et al., 2020), require
retraining of the large source model, which leads to largmorg consumption on the edge device.

To tackle the above challenges of the adaptation, a menfiicjeat UDA method called lite residual
hypothesis transfer (LRHT) is designed by enhancing thiei@ecture of a source-free UDA method
such as SHOT. LRHT adopts the same loss function as that offSdénoted as/s in Figure[2),
so unsupervised learning can be conducted over the unthlzeiget data. The details of the loss
function of SHOT are provided in AppendiX A. However, thetfga extractor in SHOT must be
replaced with a new architecture that can be trained in a meefficient manner. As shown in
Figure[2, the new architecture is designed by adding liielvas (LR) modules (Cai et al., 2020) to
the feature extractor such that its outputs can be fine-tbygatie LR modules. The LR modules
fine-tune the outputs of the feature extractor by changiegritermediate activations of the feature
extractor. Define théth building block of the feature extractor as a functigrand the LR module
added to the it as a function. Given the activations,;_; of the (¢ — 1)-th building block, LR
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moduler; changes the activations of theh building block asa; = g¢;(a;-1) + r:(a;—1), where
gi(a;_1) denotes the original activations of th¢h building block, and;(a;_1) denotes the residual
activations of LR module;. During the adaptation, the parameters of the feature@wirand that
of the classifier are fixed, and only the LR modules are traiodithe-tune the outputs of the feature
extractor. Compared to the case of directly training théuieaextractor (like SHOT), training the
LR modules generates a much smaller volume of activatiodsdamands much lower memory
footprint. Thus, by using LRHT the large source model candspted to the target data to obtain a
large target model in a memory-efficient manner.

3.2 COLLABORATIVE KNOWLEDGE DISTILLATION

The next step is to transfer the knowledge of the large tangetel to the compact model.

3.2.1 (ASEIl: SINGLE EDGE DEVICE

Consider the case of a single device that contain a compatInfiowith the model parametets; .

On the edge device, the large target model is leveraged &rgkernthe soft labels of the target data.
The knowledge of the target data is then transferred to thgeaot model via knowledge distillation
(KD) (Hinton et al.| 2015). More specifically, the compactdgbis trained over the target data and
the soft labels via minimizing the loss function of KD. Hoveevno source data are involved in the
KD process, which leads to the compact model gradually fargethe knowledge of the source
data. That is, catastrophic forgetting (McCloskey & Colfe389) occurs.

To prevent catastrophic forgetting, the target data anddlece data need to be unified to train the
compact model in above process of knowledge transfer. EhewmlJaborative knowledge distillation
method (Co-KD) is designed as follows. On the edge devicenapact model is trained over the
target data and the soft labels via KD. The loss function of B&noted ady, is written as

JK(wl) = Emt [DKL(p(ZT’ T)Hp(zc, T))]a

wherez. = fi(x,; w1) is the logit of the compact modedy = fr(x; w?) is the logit of the large
target model with parametets’. (i.e., the soft label), angh(z, 7) denotes the soften probability
vector with a temperature of a logit z. On the server, another compact model is trained over the
source data via a cross-entropy loss denotefl-asThe expression of - is

JC('wl) = E(ws,ys)[L(fl(ws? wl)7?/8)]-

The challenge here is how to consolidate the two compact lsdte a global compact model. The
setting of this challenging problem is similar to that of éeated learning (FL)_(McMahan etlal.,
2017). However, there exists one major difference. FL meguihat different nodes have the same
type of loss functions, while Co-KD has to use the crossegytioss on the server and the loss func-
tion of KD (i.e., Kullback—Leibler (KL) divergence in theage-of-the-art methods) on the edge de-
vice. Due to the difference, existing FL algorithms (e.gcNahan et al. (201 7); Karimireddy etlal.
(2020); He et al.[(2020a)) are not effective for consolitgthe compact models in Co-KD.

To this end, an alternating direction method of multipli@®MM) (Boyd et al.,(2011) based learn-
ing algorithm is developed for Co-KD to consolidate the cactpmodels. The training process of
the global compact model is formulated into a consensusigmof? over the edge device and the
server:
min aJg (wi) + (1 — a)Je(wo)
o (1)
s.t.w; = wo,

wherex is a balancing hyperparameter, angldenotes the parameters of the compact model trained
on the server. For problef that has a consensus constraint, ADMM is utilized to dividebfem
Q into two subproblem$§), andQ2, i.e.,

Qo 1131515()(w(]7w17>\1) = (1 - a)Jo(wo) + (A1, w1 — wo) + g”wl — wol|?, and
93] :r{luilnﬁl(wo,wh)\l) = aJK(wl) + <A1,w1 — ’IUQ> + g||w1 — ’UJ()H27

where\; denotes a Lagrange vector, anis a penalty hyperparameter. Subprobl@mand sub-
problem(2; are then iteratively solved on the server and on the edgeeleréspectively. More
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specifically, in the-th iteration of Co-KD, the-th iterate ofw,, denoted asv, (¢), is determined on
the edge device bw, (t) := argmin,, Li(wo(t —1),w1, A:(t — 1)), wherewy(t — 1) denotes
the (¢t — 1)-th iteration ofwg, and\; (t — 1) denotes th€t — 1)-th iteration of A;. Afterwards,
the edge device uploads its Lagrange vedtpft — 1) andws (t) to the server, and then the serv-
er determinesuv(t) := argmin,, Lo(wo,w:(t),A;(t —1)). Afterwards, the server senas(t)

to the edge device, and the edge device determdaés := A (t — 1) + p(w1(t) — wo(t)). S-
ince bothwy(t) andw (t) do not have closed-form solutions, stochastic gradientetesSGD)

is utilized to numerically determina,(t) andw; (t). As a convergence criterion is reached, e.g.,
[|lwo(t) — wo(t — 1)|| < ¢ Wheree is a predefined threshold, Co-KD stopsg(t) is regarded as
the parameters of the global compact model that is then degltm the edge device.

Since a solution obtained by ADMM satisfies Karush—-KuhnKeu¢KKT) conditions,wg(t) can
converge to a local optimum of Problefh Moreover, the compact model is pretrained over the
source data. It can avoid bad local optimum of poor genextidim during training ofw,, because
pretraining over the source data can be regarded as a riegtitam on the parameteo,, as studied

in (Erhan etal.| 2010). As a result, the global model obthihg Co-KD can always converge
to a local optimum with sufficient generalization perforroani.e., it can achieve high inference
accuracy over both the target data and the source data.

3.2.2 (QSsEIll: MULTIPLE EDGE DEVICES

When a single edge device only has a limited number of target, dais hard to learn the fine-

grained representations of the target data even by the faogiel. As a result, the compact model
trained by Co-KD still suffers low inference accuracy on takget data. To tackle this challenging,
Co-KD can be extended to unify the target data of the multulge devices for training a global
compact model. Due to page limit, the details of Co-KD for tipld edge devices are provided in
AppendiXB, and only the main idea is provided below.

The training process of the global compact model is first fdated into a consensus probleh

over theM edge device and the server. Probleis then divided inta M + 1) subproblems by
following ADMM, and each edge device as well as the serveaiiecly solves one subproblem. In
the ¢-th iteration, edge device: determinesw,, (t) and then sendw,,(t) andA,,(t — 1) to the
server. Afterwards, the server determineg(t) and then broadcasts, () to all the edge devices.
Edge devicen then computes\,,, (¢). As the convergence criterion is reached, the compact model
with parametersuv,(t) is broadcast to all the edge devices as the new compact model.

3.3 DiscuUssION ONPRIVACY PRESERVATION

In STU-KD, the edge device does not upload the target dathaaentralized server, providing
a basic level of privacy preservation. However, recentistiMelis et al., 2019; Zhu etlal., 2019;
Zhao et al., 2020) show that it is possible for the serverd¢over some information of the target data
from the uploaded parameters. This indicates that STU-Kliserable to such recovery attacks.

One advantage of STU-KD is that it can be easily integrateth veecure aggregation
(Bonawitz et al.| 2017) to resist the recovery attacks. Bdhse of multiple devices, the server
only requiresZﬁf:1 w!, (t) to updatew(t — 1) (see equatior{5) in Appendix B), whete,, (¢)
denotes the parameters uploaded by edge dexic&o prevent the server from obtaining,, (t)
without affecting the update processf(t — 1), the M edge devices can add noise to their pa-
rameters before uploading, based on the following rule. ahgrtwo edge devicesandj (i < j)
from the M edge devices, edge devitadds a random vecter; ; to w}(t), and edge devicg sub-
tractsn; ; from w;- (t) (how to generater; ; can refer to AppendikIC). By adding and subtracting
these random vectors, the disturbed parameter$t) = wy,, (t) + 3, Pm,j — Dy, Tim are

obtained on edge deviee. w,, (t) is then uploaded to the server. The server cannot reaoygt)
M

from ,,, (), but it can computgf\fz1 w;, (t) = > _ wn,(t), and then updates,(t — 1).

In the case of a single edge device, the edge device can beleegas two virtual devices by
dividing the target data into two parts. Each virtual devises one part to train a compact model.
Afterwards, the above secure aggregation mechanism fdipteuievices can be applied directly.
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Table 1: Inference accuracy (%) @ffice-31dataset (target data and source data)

Method A—D A—W D—A D—W W—A W—D Avg.

ResNet-18 (He et al., 2016)70.7+£ 0.0 66.4+0.0 404+0.0 84.0+0.0 464+00 91.6+0.0 66.6
SHOT (Liang et al., 2020) 81.9+2.5 821+0.5 64.5+08 92.7+1.0 63.9+08 95.5+05 80.1
TO-KD 942+0.3 889+00 73.6+00 972+01 7414+0.1 98.9+0.1 87.8
STU-KD 94.04+0.2 888+0.1 723+03 975+£0.1 74.6+0.1 99.1+0.1 87.7

ResNet-18 (He et al., 2016)85.1+ 0.0 85.1+0.0 94.0+0.0 94.0+£0.0 97.5£00 97.5+0.0 92.2
SHOT (Liang et al., 2020) 74.1+0.9 734+20 74.7+1.1 947+11 704+18 90.4+07 79.6
TO-KD 622+£36 671+16 76711 98.0+£0.0 729+24 933+13 784
STU-KD 81.1+0.8 83.5+0.8 97.3+1.1 100.0+0.0 942+1.8 98.8+0.0 925

Table 2: Inference accuracy (%) tmageCLEF-DA dataset (target data and source data)

Method =C =P C—l C—P Pl P—C Avg.

ResNet-18 (He et al., 2016)88.8 £ 0.0 73.54+0.0 75.7+0.0 62.8+0.0 80.3+0.0 81.7+0.0 77.1
SHOT (Liang et al., 2020) 95.6+£0.6 745+04 87.3+0.7 733+09 889+08 947+05 857
TO-KD 96.3+0.1 783+£02 923+£02 786+0.1 928+0.1 953+0.1 88.9
STU-KD 96.1+0.1 78.4+0.1 924+0.1 79.1+£0.1 928+0.1 95.0+£0.0 89.0

ResNet-18 (He et al., 2016)96.7 £ 0.0 96.7+0.0 95.0+0.0 95.0+0.0 76.7£0.0 76.7£0.0 894
SHOT (Liang et al., 2020) 95.0+2.7 928+09 96.7+0.0 961+24 689+24 700+15 86.6
TO-KD 89.2+1.0 954+14 985+09 96.7+12 69.6+08 685+£15 86.3
STU-KD 97.1+0.8 95.0£1.0 99.8+04 98.1+1.1 721+16 75.8+0.8 89.7

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Three public datasets for domain adaptation are used toaeebTU-KD Office-31(Saenko et al.,
2010) has three domains: Amazok)({ DSLR (D), and WebcamW). ImageCLEF-DA has three
domains: ImageNet ILSVRC 2012)( Caltech-256 €), and Pascal VOC 2012 (Ppffice-Home
(Venkateswara et al., 2017) has four domains: Artistic iesa@r), Clip Art (Cl), Product images
(Pr), and Real-World imagef{w).

The following schemes are compared with STU-KD: the compaadel without domain adapta-
tion, source hypothesis transfer (SHOT) (Liang et al., 2020d target-only knowledge distillation
(TO-KD). Here TO-KD is constructed by replacing collaboratknowledge distillation (Co-KD)
in STU-KD with knowledge distillation| (Hinton et al., 2015)n addition, four variants of STU-
KD are also evaluated. The first three variants are constuly replacing the ADMM based
learning algorithm in STU-KD with federated average (McMalet al., 2017) (denoted as STU-
KD-AVG), distributed SGDI(Zinkevich et al., 2010) (denotasl STU-KD-SGD), and SCAFFOLD
(Karimireddy et al., 2020) (denoted as STU-KD-SCAFFOLD)eTforth variant is formed by in-
tegrating STU-KD with secure aggregation (Bonawitz et2017) (denoted as STU-KD-SA). For
SHOT, its compact model is directly trained over the targegad For STU-KD and its variants, a
large target model is obtained by adapting a large sourcehtothe target data, and the large target
model is used to generate soft labels for the target datadifieeence is that the compact model of
TO-KD is only trained over the target data and the soft Igheldle the compact models of the rest
schemes are trained over the target data, the soft labelsharsource data.

For each transfer taskp% of the source data are used for training; the €St of the source data
are used as the test data. The inference accuracy on theestatecis determined by testing each
scheme on the test data. All the target data are used foirgaémd test, as is done in_(Long et al.,
2017;2018; Liang et al., 2020). The inference accuracy ertdlget data is determined by testing
each scheme on all the target data. In all the experimensh&€el8|(He et all, 2016) is selected as
the the compact model. ResNet-50 is selected as the largeesmwodel for STU-KD. The compact
model and the large source model are trained through bagagation and mini-batch SGD with
momentum0.9 and weight decayie 3 is adopted as the optimizer. The learning rate is set to
1o = 0.001. The batch size on the edge device is sef,tand the batch size in the server is set
to 32. Moreover, for all the experiments, the balancing hypepeatera is set t00.8; the penalty
hyperparametersis set to0.3. STU-KD is implemented based on a library called FedML (Halgt
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Table 3: Inference accuracy (%) @ffice-Homedataset (target data and source data)

Method Ar—Cl Ar—Pr Ar—Re Cl-Ar Cl—Pr Cl-»Re Pr—Ar Pr—Cl Pr--Re Re» Ar Re—Cl Re—Pr Avg.

ResNet-18 (He et al., 201631.4  44.7 55.2 39.3 493 52.7 389 327 625 56.7 39.0 70.8 47.8
SHOT (Liang et al., 2020) 36.0 58.6 645 49.2 648 63.8 49.0 375 703 586 455 76.0 56.1
TO-KD 541 780 80.1 66.8 77.3 786 662 520 814 717 580 84.1 70.7
STU-KD 534 783 803 670 774 786 664 523 820 721 581 843 708

ResNet-18 (He et al., 2016)56.8 56.8 56.8 721 721 721 90.3 90.3 90.3 80.3 80.3 80.374.9
SHOT (Liang et al., 2020) 42.0 46.8 60.5 47.2 49.7 521 69.5 61.0 764 68.0 56.7 71.0 584
TO-KD 455 491 60.1 476 455 503 604 602 783 672 57.0 728 578
STU-KD 645 66.0 69.0 71.8 76.0 744 877 904 910 696 694 720 752

2020b) in PyTorch (Paszke et al., 2019). Each experimeneisuted for three times, and the mean
of the inference accuracy is reported. All the experimenésexecuted on a server with one i9-
10900k CPU, one GeForce RTX 3090 GPU, and 64 GB RAM. More dethithe experimental
setup are given in Appendix|D.

4.2 EXPERIMENTAL RESULT

The main results of a single edge device are shown in thiestibs. Due to page limit, the results
of different hyperparameter settings, different netwadbéectures, and the visualization results are
provided in Appendix EJ1, Appendix B.2, and Appendix]E.3pectively. The results of multiple
edge devices are provided in Appendix]E.4. The results orc®8il dataset, ImageCLEF-DA
dataset, and Office-Home dataset are reported in Table [g[Fabnd TablEI3, respectively. In each
table, the upper half records the inference accuracy of selabme on the all the target data; the
bottom half records the inference accuracy of each schentestrdata. The method ResNet-18
represents the compact model without domain adaptatiorstlysithe inference accuracy on the
target data is evaluated. TO-KD and STU-KD (our schemegestdrm all the existing schemes on
all the transfer tasks. Compared with the state-of-thes@reme SHOT, our schemes improve the
inference accuracy on the target datartdy, 3.3%, and14.7% on Office-31 dataset, ImageCLEF
dataset, and Office-Home dataset, respectively. The gaiarafichemes can be explained as follows.
The large target model used in STU-KD can learn more fineagrthrepresentations of the target
data than the compact model. Thus, the compact model thatiislthe knowledge from the large
target model can achieve higher inference accuracy on tfettdata, compared with the compact
model that are directly trained using the target data. Sbhute STU-KD and TO-KD utilize the
large target model, their performance is comparable. Whesidering the inference accuracy
on the source data, the performance of SHOT and TO-KD degladdo catastrophic forgetting,
compared with the compact model without adaptation. For-&D)its performance is much closer
to that of the compact model without adaptation, indicathmf STU-KD indeed alleviates or even
prevents catastrophic forgetting catastrophic forggttdote that in some cases (e.g+3, C—l,
and Ar—Cl), STU-KD achieves higher inference accuracy on the sodata than the compact
model without adaptation. The reason can be that by traitiiegcompact model over both the
target data and the source data, the compact model learesy®oeral representations of the source
data, which boosts its inference accuracy on the source data

The peak memory footprint of each scheme is shown in Figuveh@re SHOT (ResNet-50) repre-
sents training the ResNet-50 model on the edge device viaTSH@ memory footprint is deter-
mined when the batch size is set®oFor both TO-KD and STU-KD, their peak memory footprints
are caused by training the large model via lite residual thygsis transfer (LRHT). Compared to
the case of directly training the large source model on tlyeefbvice, STU-KD reduces the mem-
ory footprint by nearly67%, indicating that LRHT indeed saves the memory space andesdie
adaptation of the large model on the edge device.

Three variants of STU-KD (STU-KD-AVG, STU-KD-SGD, and STKB-SCAFFOLD) are evalu-
ated on Office-31 dataset, and the results are shown in Ta#lkhbugh STU-KD-AVG is compa-
rable to STU-KD in terms of inference accuracy on the targéa dt suffers poor inference accuracy
on the source data. As shown in Figlle 4, STU-KD-AVG only @ges to a point with a low infer-
ence accuracy on the source data. STU-KD-SCAFFOLD employsiganced FL algorithm (i.e.,
SCAFFOLD (Karimireddy et al., 2020)), so it achieves higinéerence accuracy on the source data
compared to STU-KD-AVG. However, such a inference accuisstill lower than that of STU-KD,
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Table 4: Inference accuracy (%) @ffice-31 dataset for the variants of STU-KD (target data and

source data)

Method A—D A—-W D—A D—-W W—A W—D Avg.
STU-KD-AVG 93.6+0.5 89.1+0.2 735+0.1 97.3+0.1 742+03 98.7+0.3 87.7
STU-KD-SGD 94.0+0.1 88.94+0.1 676483 97.7+0.2 73.8+0.3 99.1+0.1 86.8
STU-KD-SCAFFOLD 93.84+0.6 89.1+0.2 73.8+0.1 974+03 743+0.1 985+0.2 87.8
STU-KD 94.0+0.2 88.8+0.1 7234+03 975+0.1 746+0.1 99.1+0.1 87.7
STU-KD-SA 94.240.2 88.84+0.4 722405 97.4+£05 74.64+0.2 99.04+0.2 87.7
STU-KD-AVG 41.0+£0.4 50.84+£09 67.34+£21 100.0£0.0 56.7+£0.7 86.7+6.4 67.1
STU-KD-SGD 68.44+81 83.1+£09 92.7+1.1 100.0£0.0 925+2.0 97.5+1.2 89.0
STU-KD-SCAFFOLD 62.9+83 81.8+14 88.0+£4.0 100.0+0.0 825+80 921+7.7 846
STU-KD 81.1+£0.8 8354+£0.8 97.34+1.1 100.0£0.0 94.24+1.8 98.84+0.0 925
STU-KD-SA 84.3+0.2 83.7+0.3 97.3+1.1 100.0+0.0 92.14+0.7 98.8+0.0 92.7
2 800 1.0 = -
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Z 700| = TO-KD 208 W Van ot z s STU-KD-SCAFFOLD
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Figure 3: The peak memoryFigure 4: The inference accu+igure 5: The communication
footprint of STU-KD and the racy curves of STU-KD and cost of STU-KD and its vari-
comparison methods. its variants onV — A task.  ants onw — A task.

and the gap is nearB.1% in average. Moreover, the communication cost of STU-KD-EEALD

is twice that of STU-KD, since SCAFFOLD requires uploadirmgtblocal model updates and a set
of control parameters. The comparison on these FL baseahtanerify that FL is not effective in
STU-KD to consolidate the compact models from the edge demil the server. As for STU-KD-
SGD, its performance is the closest to that of STU-KD amomgéhthree variants. However, its
communication cost is too large. As shown in Figure 5, theroomication cost of STU-KD-SGD
is nearly100 times that of STU-KD. The reason is that the edge device niedfusquently sends its
local gradients to the server to compute the gradients oblfective function, which leads to the
large communication cost. The results of STU-KD-SA is akgported in Tablgl4. Compared with
STU-KD, STU-KD-SA achieves the comparable inference amcyion both the source data and the
target data, verifying that secure aggregation does netttie performance of STU-KD. Note that
the slightly better performance of STU-KD-SA than STU-KDdige to the random seeds used in
the experiments, and it can disappear when more experiraentonducted.

5 CONCLUSION

In this paper, a source-target unified knowledge distdlatiSTU-KD) scheme was developed to
adapt the compact model on the edge device to the target ddle pvotecting users’ privacy. In
the scheme, a large source model was first loaded and adapitezitarget data on the edge device,
and a large target model was obtained. Such an adaptatioenadéed by a memory efficient lite
residual hypothesis transfer algorithm. A collaboratim@wledge distillation method that unifies
the target data and the source data for training the compadeihwas developed to transfer the
knowledge of the large target model to the compact modelengriéventing catastrophic forgetting.
Secure aggregation was also employed in STU-KD to enharicacgrpreservation. Extensive
experiments showed that STU-KD can achieve the highesteinée accuracy over the target data
while maintaining the original high inference accuracyrobee source data, compared with state-
of-the-art schemes. STU-KD is now evaluated on public dasasiow to incorporate STU-KD into
a real-world application can be an interesting topic foufatwork.
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A LOSS FUNCTION OFSHOT

Define the parameters of the feature extractavaand the loss function of SHOT d&g. Jg consists
of two terms: an information maximization (IM) loss (Krawseal., 2010; Hu et al., 2017) denoted
asJ; and a cross-entropy (CE) loss of self-supervised learnémptd as/,. The expression ofg
can be written as

JS(we) = Jl(we)"_ﬂjp(we)v (2)
wheref is a balancing hyperparameter. Define the target output afgeet samplec; as fr(x;).
IM loss J; captures the uncertainty of the target outputs of the tatget and the diversity of those
target outputs by

K K

Jr(we) = ~Ea, Y 0k (fr(a:))log Sk (fr(m:))] + > P log b,
k=1 k=1
where K is the number of classes in the classification tégka) = % is thek-th element

in the softmax output of a vectat, andp, is the k-th element in the mean output embedding
p = Eg,[0(fr(x))] of the target data. CE los, is written as

Jp(we) = Ewt [L(fT(wt)v gt)]v

whereg; is a pseudo-label generated by a clustering based psebelingamechanism (Caron et al.,
2018 Liang et &l., 2020) far,.

B Co-KD FORMULTIPLE EDGE DEVICES

When a single edge device only has limited number of target, itas hard to learn the fine-grained
representations of the target data even for the large médeh result, the compact model trained
by Co-KD still suffers low inference accuracy on the targatied To tackle this challenging, Co-KD
can be extended to unify the target data of the multiple edgéds for training a global compact
model. TheM edge devices collaborate with the cloud server to train badloompact model by
solving
LS~ om
%nM;aJK (w) + (1 — a)Jo(w), (3)

wherew denotes the parameters of the global compact model. Thengaprocess of the global
compact model is formulated into a consensus prol§i¥mver theM edge device and the server.

M
. 1 (m)
wo,wnll,l.I.RwMM Z aJy (W) + (1 — a)Jo(w) @)

m=1
stw,, =wy, m=1,.... M,
WhereJI((m) is the local loss function of KD on edge devige w,, is the compact model on edge
devicem, andwy is the compact model updated in the centralized server. Biskhen extended to
iteratively solve probleni{4) as follows. In thehe iteration of Co-KD, edge deviee determines
wy,(t) by

Wy (t) = arg min =T (i) + A (t = 1), w0y = wolt = 1) + £l —wolt = 1)1,

and sends its Lagrange vectoy, (¢t — 1) andw,,, (¢) to the cloud server. Next, the server updates its
compact model by

M
wo(t) = argmin (1 — a)Jo(wo) + > (An(t — 1), wi(t) — wo) + g||wm(t) — woll2.

w
0 m=1

The updated compact model is then sent tothedge devices. Afterwards, edge devicaipdates
Am(t —1) via
>‘7n(t) = )"m (t - 1) + p(wm (t) — Wo (t))
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Figure 6: Source

As the convergence criterion is reached. Co-KD stops. Tmepeat model withw(t) is then
broadcast to thd/ edge devices as their new compact models.

Similarly to the case of single edge device, SGD is utilizzdeterminew,, (t) on edge devicen
and to determinev, (¢) on the server. More specifically, the gradigpi(w,, (¢t — 1)) used to update
w,, (t — 1) is computed by

Q m
G (win(t = 1)) = 37V, T (Wit = 1))+ X (£ = 1)+ plawya (£ — 1) — ot — 1)).
Letw),(t) = A (t— 1) + pwy, (t) denote the parameters uploaded by edge dewicEhe gradient

go(w,, (t — 1)) used to updatev, (¢t — 1) can then be represented as

M
go(wo(t — 1)) = Vs, Je(wo(t = 1)) = 3 (At — 1) + plw,n (£) — wo(t — 1)))

m=

[

v ©)
= Va, Jo(wo(t — 1)) + Mpwo(t — 1) = Y w), (t).

m=1
C ADDITIONAL INFORMATION ABOUT SECUREAGGREGATION

To generate the same random vector on edge devacel edge devicg, the same random seed
is used in the random number generator on each edge devich. aandom seed can be shared
among the two users using Diffie—Hellman key exchange whelepkthe server unknown to the
random seed.

D MOREDETAILS OF EXPERIMENTAL SETUP

Three public datasets for domain adaptation are used toaeaSTU-KD Office-31 (Saenko et al.,
[2010) is a widely used dataset for domain adaptation. hés2 images and1 classes collect-
ed from three domains: AmazoA), DSLR D), and Webcam\W/). ImageCLEF-DA has three
domains: ImageNet ILSVRC 2012)( Caltech-256 C), and Pascal VOC 2012 (P). For each do-
main, there ard2 classes and0 images in each clas©ffice-Home (Venkateswara et al., 2017)
has15, 500 images and5 classes from four distinct domains: Artistic imagés ), Clip Art (Cl),
Product imagesRr), and Real-World imagefR{w).

For STU-KD, a variant of ResNet-50 (He ef al., 2016) is seléas the large model. Concretely,
a standard ResNet-50 model pretrained over ImageNet (Russky et al. 5) is employed as
the base module. Its original fully connected (FC) layerhisrt replaced with a bottleneck lay-
er and a task-specific FC layer. Moreover, a batch normaizaBN) layer (loffe & Szegedy,
[2015) is put after the FC layer in the bottleneck layer, andeight normalization (WN) layer
(Salimans & Kingmal, 2016) is put after the task-specific F@tgLiang et al., 2020). Following
the same procedure, a variant of ResNet-18 is constructgdsaselected as the compact model
for all the schemes. Moreover, four lite residual modules aaded to the ResNet-50 model for
lite residual hypothesis transfer. The architecture ofResNet-50 model with four lite residual
modules is shown in Figufg 6.
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Table 5: Inference accuracy (%) @ffice-31dataset with different hyperparameter settings (target
data and source data)

Setting A—D A—-W D—A D—-W W—A W—D Avg.

a=05,p=03 9424+£02 837+£02 71.4+£03 979+01 746+03 99101 877
a=06,p=03 9424+03 887+x£02 71.4+02 979+01 747+01 99200 87.7
a=07p=03 942403 887+£01 71.94+01 97.7+£0.0 74.6+0.2 99.2+00 87.7
a=08,p=03 940+£02 888+£01 723+03 97.5+01 746+01 99101 877
a=08,p=05 940+£02 888+£01 721+04 975+01 746+03 99.2x00 87.7
a=08,=07 9414+03 888+£0.1 71.8+0.2 97.7+0.2 7454+02 992+00 87.7

a=05p=03 861+£07 864+£08 98.0£00 100.0£0.0 96.7+0.7 99.2+0.7 944
a=06,p=03 8.9+05 85.1+£03 98.0+£0.0 100.0£0.0 95.8+0.7 98.8+00 93.6
a=07p=03 824+£10 848+£03 98.0£00 100.0£0.0 96.2+£0.0 98.8+£0.0 934
a=08,p=03 81.1+08 83.5+£08 97.3+1.1 100.0£0.0 942+1.8 988=+0.0 925
a=08,p=05 801+£12 839+£0.7 98.0£0.0 100.0£0.0 96.2+0.0 99.2+0.7 929
a=08,p=07 81.2+12 842+£02 98.0£0.0 100.0£0.0 95.8+0.7 988=+00 93.0

The compact model and the large source model are trainedghrbackpropagation, and mini-
batch SGD with momentur®.9 and weight decaye~? is adopted as the optimizer. The learning
rate is set ta), = 0.001 for the lite residual modules in the large model and the feagutractor in
the compact model. A widely used learning rate scheduleniftz& Lempitsky, 2015; Long et al.,
2017;2018) is also adopted, i.8.= 1 (1 + 10p)~%7, wherep is the training progress changing
from0to 1.

E MOREEXPERIMENTAL RESULTS

E.1 HYPERPARAMETERANALYSIS

To analyze the effects of hyperparameters on STU-KD, therxgnt of STU-KD on Office-31
(Table[1) data is repeated with different settings of theengprameters: andp. The results are
shown in Tabléb. In terms of the inference accuracy on ttgetatata, the overall performance
of STU-KD with different settings are comparable, indiogtithat the inference accuracy on the
target data is not much sensitive to the settings of the Ipgsameters. Now consider the inference
accuracy on the source data. It is obvious that smallerads to higher inference accuracy on the
source data. The reason is as follows. The smaller is the\dla, the larger is the weight of the
CE loss in equatiori{1). As a result, the global compact moédetls to achieve a smaller error over
the source data after the adaptation, which can lead to higtegence accuracy on the source data.
As for p, the results show that the larger is the valugahe large is the inference accuracy on the
source data, though the effect ofs not as strong as that ef The above results indicate that the
inference accuracy on the source data is more sensitiveetsetting of the hyperparameters than
the inference accuracy on the target data. Properly redubmvalue ofx or increasing the value
of p can achieve better inference accuracy on the source data.

E.2 DIFFERENTNETWORKARCHITECTURES

To show that STU-KD is applicable to different network atebtures, two additional experiments
are conducted. In the first experiment, Proxyless-Moobikd €E al.| 2019) is selected as the compact
model, and ResNet-50 (He et al., 2016) is selected as the $angrce model. The results are shown
in Table[6. In the second group, ResNet-34 is selected amthpact model, and the ResNet-101 is
selected as the large source model. The results are shovelie[T.

According to Tablé and Tablé 7, TO-KD and STU-KD (our scheymitperforms other schemes
in terms of the inference accuracy on the target data, arskttveo schemes achieve comparable
inference accuracy on the target data. Moreover, STU-Kpariirms TO-KD in terms of the
inference accuracy on the source data. Such results aréstEoiavith that of Tabl€]l, Tabld 2,
and Tabld B, indicating that STU-KD is applicable to difier@etwork architectures for both the
compact model and the large source model.
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Table 6: Inference accuracy (%) @ffice-31dataset with Proxyless-Mobile as the compact model
and ResNet-50 as the large source model (target data ancbsiata)

Method A-D A—-W D—A D—-W W—A W—D Avg.
Proxyless-Mobile (Cai et al., 2019)73.7 0.0 61.9+0.0 56.3+£00 956+0.0 56.2+00 99.2+00 738
SHOT (Liang et al., 2020) 87.4+09 85.5+04 66.8+08 97.9+£0.1 669+1.0 98.6+0.6 839
TO-KD 944404 889+01 736=£01 97.3+£0.1 73.9+0.1 98.8+0.2 878
STU-KD 94.1+0.3 89.2+0.2 73.6+01 97.6+02 73.8+01 99.2+0.0 87.9
Proxyless-Mobile (Cai et al., 2019)89.7+ 0.0 89.7+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 96.6
SHOT (Liang et al., 2020) 81.4+05 786+02 920437 100.0+00 854+£29 988+12 894
TO-KD 63.0+£25 68.7+05 78.0+£18 1000+00 762+31 98.8+0.0 808
STU-KD 84.5+£0.5 84.2£0.7 100.0£0.0 100.0£0.0 98.8+£0.0 100.0+£0.0 94.6

Table 7: Inference accuracy (%) @ffice-31 dataset with ResNet-34 as the compact model and
ResNet-101 as the large source model (target data and statege

Method A—D A—W D—A D—W W—A W—D Avg.

ResNet-34 (He etal., 2016)73.1 £ 0.0 70.8+0.0 483+0.0 90.3+0.0 53.1+0.0 974+0.0 72.2
SHOT (Liang et al., 2020) 84.3+0.8 86.0+0.6 60.5+06 945+1.0 66.6+03 98.0+06 81.6
TO-KD 96.3+0.1 90.8+0.3 77.0+0.1 965+02 77.4+£01 99.6+0.0 89.6
STU-KD 96.3+£0.1 93.0+0.1 76.5+0.1 979+0.1 77.7+£0.2 99.6+0.0 90.2

ResNet-34 (He et al., 2016)88.7+ 0.0 88.7+0.0 96.0+0.0 96.0+0.0 98.8+0.0 98.8+0.0 94.5
SHOT (Liang et al., 2020) 77.3+14 775+11 687+28 973+28 771+£27 91.2+00 815
TO-KD 649+06 403+83 780+18 993+1.1 76718 942+£13 756
STU-KD 83.3+1.2 859+0.2 97.3+1.1 100.0+£0.0 97.9+£0.7 98.8+0.0 93.9

E.3 VISUALIZATION

In the case of a single device, the representations learnesN&-18, SHOT, TO-KD, and STU-
KD are visualized by t-SNE_(Van der Maaten & Hinton, 2008)shewn in Figurél7. As expected,
the representations learned by STU-KD are the most discaitive for both target domain and the
source domain. Although TO-KD achieves comparable infegeatcuracy on the target data to that
achieved by STU-KD, the target representations learned@®¥D is less discriminative than that
of STU-KD. In terms of the source representations, SHOT erfitgpms TO-KD, which verifies the
results in Tabl&]1l. Such a result also indicates that direrting KD can lead severe catastrophic
forgetting.

E.4 RESULTS OFMULTIPLE EDGE DEVICES
Two group of experiments are conducted in the case of melégye devices. First, the target data on

the multiple edge devices come from the same target domagurfsl, the target data on the multiple
edge devices come from different target domains. More fipafty, in the second experiments, the

Table 8: Inference accuracies (%) on the data flom W task (target data and source data)

Method Devicel Device2 Device3 Deviced Device5 Avg.

SHOT (Liang et al., 2020) 76.35 77.99 75.85 73.84 76.35  76.08
TO-KD 79.54 81.84 83.02 81.01 83.86  81.85
STU-KD 88.43 88.43 88.43 88.43 88.43  88.43
STU-KD-SA 88.43 88.43 88.43 88.43 88.43  88.43
SHOT (Liang et al., 2020) 77.66 76.24 77.30 78.37 75.53  77.02
TO-KD 77.78 77.66 77.78 77.54 76.95  77.54
STU-KD 87.12 87.12 87.12 87.12 87.12 87.12
STU-KD-SA 87.70 87.70 87.70 87.70 87.70  87.70
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Figure 7: Visualization results of (a) ResNet-18, (b) SH@J,TO-KD, and (d) STU-KD oA —

D task.

Table 9: Inference accuracies (%) on the data flom> D task (target data and source data)

Method Devicel Device2 Device3 Deviced Device5 Avg.

SHOT (Liang et al., 2020) 74.50 71.29 75.50 77.71 75.30  74.86
TO-KD 80.32 76.64 78.11 79.99 81.86  79.38
STU-KD 85.81 85.81 85.81 85.81 85.81  85.81
STU-KD-SA 85.68 85.68 85.68 85.68 85.68  85.68
SHOT (Liang et al., 2020) 78.72 78.37 74.82 75.53 78.37  77.16
TO-KD 76.71 76.24 73.29 75.41 76.60  75.65
STU-KD 86.76 86.76 86.76 86.76 86.76  86.76
STU-KD-SA 86.17 86.17 86.17 86.17 86.17  86.17
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Table 10: Inference accuracies (%) on the data ffom» DW task (target data and source data)

Method Devicel Device2 Device3 Device4 Device5 Device6
STU-KD (separated) 90.36 90.36 90.36 88.59 88.59 88.59
STU-KD (joint) 89.62 89.62 89.62 90.19 90.19 90.19
STU-KD (separated) 86.99 86.99 86.99 87.58 87.58 87.58
STU-KD (joint) 87.11 87.11 87.11 87.11 87.11 87.11

Table 11: Inference accuracies (%) on the data ffom CP task (target data and source data)

Method Devicel Device2 Device3 Device4 Device5 Device6
STU-KD (separated) 95.22 95.22 95.22 77.38 77.38 77.38
STU-KD (joint) 95.30 95.30 95.30 77.55 77.55 77.55
STU-KD (separated) 96.11 96.11 96.11 98.33 98.33 98.33
STU-KD (joint) 96.11 96.11 96.11 96.11 96.11 96.11

edge devices are divided into two groups. The devices frarsttme group have the target data
from the same domain, while the target domains of the twogs@ue different.

In the first group of experimentd/ is set to5, and the target data are randomly partitioned mto
parts each of which is held by one edge device. Three schemevaluated on Office-31 dataset:
SHOT (Liang et al., 2020), TO-KD, and STU-KD. For SHOT and KOs each edge device trains
its local compact model independently, without interactiovith the centralized server. For STU-
KD, five edge devices and the server collaboratively trailoba compact model. The experimental
results onA — W task and that o’ — D are reported in Tablg 8 and Table 9, respectively.

As shown in Tabl€I8 and Tablé 9, TO-KD outperforms SHOT in ®ohthe inference accuracy
on the target data. The gain comes from the large model dgpafciarge model. By unifying
the target data from all the edge devices, STU-KD furtherrougs the average inference accuracy
on the target data b§.58% on A — W task, and by6.43% on A — D task. Besides, STU-KD
leverages the source data to train the global compact maiélthus achieves the highest inference
accuracy on the source data. After employing secure agipag&TU-KD-SA achieves comparable
performance to that of STU-KD, indicating that secure aggtien does not affect the performance
of STU-KD.

In the second group of experiments, two transfer tasks ardumted: 1)A from Office-31 dataset

is selected as the source domain, &ndndW from Office-31 are selected as the target domains,
denoted ag& — DW; 2) | from ImageCLEF-DA dataset is selected as the source doruadt€; and

P from ImageCLEF-DA are selected as the target domains, ddragl — CP. In taskA — DW,

the two target domains are similar; while in tdsk> CP, the two target domain are much different
from each other. The number of edge devidds set to6. For each transfer task, the first three edge
devices come from the one target domain, and the rest thoggedabices come from another target
domain. Two schemes are used to trained the compact modéte @udge devices. First, STU-KD
is only applied to the edge devices from the same target dgrdanoted as STU-KD (separated).
Second, STU-KD is applied to all thee six edge devices tmlaaiobal compact model, denoted as
STU-KD (joint). The results of task — DW and task — CP are shown in Table 10 and Talplgl 11,
respectively.

Comparing the performance of these two schemes, it is itetidhat applying STU-KD to the case
of different target domains does not highly degrade theoperéince of the obtained compact model.
That is, STU-KD is applicable to the case of different tardeinains, though STU-KD does not
provide extra performance gain for the compact model byliiwg more data into the training
process.
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