
Under review as a conference paper at ICLR 2022

SOURCE-TARGET UNIFIED KNOWLEDGE DISTILLA -
TION FOR MEMORY-EFFICIENT FEDERATED DOMAIN

ADAPTATION ON EDGE DEVICES

Anonymous authors
Paper under double-blind review

ABSTRACT

To conduct local inference on edge devices, it is necessary to deploy compact ma-
chine learning models on such devices. When such a compact model is applied
to a new environment, its inference accuracy can be degradedif the target data
from the new environment have a different distribution fromthe source data used
for model training. To ensure high inference accuracy in thenew environment, it
is indispensable to adapt the compact model to the target data. However, to pro-
tect users’ privacy, the target data cannot be sent to a centralized server for joint
training with the source data. Furthermore, utilizing the target data to directly
train the compact model cannot achieve sufficient inferenceaccuracy due to its
low model capacity. To this end, a scheme called source-target unified knowledge
distillation (STU-KD) is developed in this paper. It first adapts a large source
model to the target data on the edge device, and a large targetmodel is obtained.
The knowledge of the large target model is then transferred to the compact model
via knowledge distillation. Since training the large modelleads to large memory
consumption, a domain adaptation method called lite residual hypothesis transfer
is designed to achieve memory-efficient adaptation to the target data on the edge
device. Moreover, to prevent the compact model from forgetting the knowledge
of the source data during knowledge distillation, a collaborative knowledge dis-
tillation (Co-KD) method is developed to unify the source data on the server and
the target data on the edge device to train the compact model.STU-KD can be
easily integrated with secure aggregation so that the server cannot obtain the true
model parameters of the compact model. Extensive experiments conducted upon
several tasks of object recognition show that STU-KD can improve the inference
accuracy by up to14.7%, as compared to the state-of-the-art schemes. The results
also reveal that the inference accuracy of the compact modelis not impacted by
incorporating secure aggregation into STU-KD.

1 INTRODUCTION

Many computer vision (CV) applications, such as mobile robots, require local inference on edge
devices because of the requirements on data privacy and low latency. To enable local inference on
edge devices, it is necessary to deploy compact machine learning models on such devices. For exam-
ple, considering an edge computing device Jetson Nano with 472 GFLOPS GPU and 4 GB memory
space1, which is commonly used for image recognition, a ResNet-18 model (He et al., 2016) is pre-
ferred over a ResNet-50 model, as the inference time of the former case (26 ms) is much smaller than
the latter one (64 ms) (Yang et al., 2020). Such compact machine learning models can be obtained
by manual design based on experts’ experience (Sandler et al., 2018; Howard et al., 2019; Lin et al.,
2020) or by some automated machine learning (AutoML) techniques, e.g., network compression
(Ning et al., 2020; Li et al., 2020b) and neural architecturesearch (He et al., 2018; Liu et al., 2019).

When an edge device with a compact model works in a new environment, the unlabeled target da-
ta collected from the new environment can have a different distribution from the labeled source
data that are used to train the compact model, i.e., domain shift (Gretton et al., 2009) occurs. Con-

1https://developer.nvidia.com/embedded/jetson-nano-developer-kit

1

Under review as a conference paper at ICLR 2022

Target data Source data

Lite residual

hypothesis transfer

Edge device

Target data

Edge device Centralized server

Step 1: domain adaptation

for the large source model

Step 2: source-target unified training

for the compact model

Large source

model

Large target

model
Compact

model

Data

input

Collaborative

knowledge

distillation

Knowledge

distillation
Supervised

learning

Model parameter

input

Figure 1: Illustration of source-target unified knowledge distillation.

sequently, the compact model suffers low inference accuracy on the target data. To ensure high
inference accuracy in the new environment, it is necessary to adapt the compact model to the target
data. A typical approach is to send the target data to a cloud server where the model is trained via
unsupervised domain adaptation (UDA) (e.g., the methods inKang et al. (2019); Tang & Jia (2020);
Xu et al. (2020)) and then deployed back to the device. However, it leads to loss of data privacy.
To avoid this issue, another type of approach is to train the compact model locally over the target
data via UDA methods. It is doable on an edge device. For example, training ResNet-18 with batch
size48 consumes nearly172 GFLOPs and1.1 GB memory space per batch, which is affordable for
Jetson Nano. However, this type of approach cannot achieve high inference accuracy on the target
data due to limited model capacity of the compact model.

To this end, a scheme called source-target unified knowledgedistillation (STU-KD) is developed in
this paper. The key idea is to utilize a large model with sufficient model capacity to learn fine-grained
representations of the target data, and then transfer its knowledge to the compact model. As shown
in step 1 in Figure 1, a large source model is loaded on the edgedevice and is then adapted to the
target data to obtain a large target model. The challenges ofthis step are two-fold. First, the target
data are unlabeled, so the fine-grained representations cannot be learned via supervised learning. As
a result, unsupervised domain adaptation (UDA) is needed instep 1. Second, the edge device does
not have the source data, since the volume of the source data can be too large to be stored on the edge
device, or the source data cannot be exposed to the edge device due to confidentiality of these data.
Without the source data, many UDA methods (Kang et al., 2019;Tang & Jia, 2020; Xu et al., 2020)
are not applicable for the adaptation of the large source model. Thus, source-free UDA methods
(Li et al., 2020a; Liang et al., 2020; Liu et al., 2021) must beemployed. However, existing source-
free UDA methods, e.g., source hypothesis transfer (SHOT) (Liang et al., 2020), require retraining
of the large source model, which leads to large memory consumption on the edge device. For ex-
ample, if ResNet-50 is retrained with batch size48 on Jetson Nano, the computational cost is nearly
364 GFLOPs, which is affordable for Jetson Nano. However, the memory consumption per batch
is nearly5 GB, exceeding the4 GB memory space limit of Jetson Nano. To tackle the challenges
in step 1 of STU-KD, a memory-efficient UDA method called literesidual hypothesis transfer (L-
RHT) is designed by enhancing the architecture of a source-free UDA method such as SHOT. More
specifically, the same loss function as that of SHOT is adopted, so unsupervised learning can be
conducted with unlabeled target data. However, the featureextractor in SHOT must be replaced
with a new architecture that can be trained in a memory-efficient manner. Thus, the new architecture
is designed by adding lite residual (LR) modules (Cai et al.,2020) to the feature extractor such that
its outputs can be fine-tuned by training the LR modules only while keeping the parameters of the
feature extractor fixed. As a result, in LRHT the training process of the large source model involves
neither the feature extractor nor the classifier. Since training the LR modules generates a much s-
maller volume of activations and demands much lower memory footprint, the training process of
the large target model is highly memory-efficient. In other words, by using LRHT the large source
model can be adapted to the target data to obtain a large target model in a memory-efficient manner.

In step 2 of STU-KD (in Figure 1), the large target model is utilized to generate soft labels for the
target data. The knowledge of the target data is then transferred to the compact model by train-
ing it over the target data and the soft labels via knowledge distillation (KD) (Hinton et al., 2015).
However, no source data are involved in the KD process, leading to the compact model gradually
forgetting the the knowledge of the source data, i.e., catastrophic forgetting (McCloskey & Cohen,

2

Under review as a conference paper at ICLR 2022

1989) occurs. As a result, when the edge device encounters data from the source domain after the
KD process, the compact model can suffer low inference accuracy. For example, consider a mobile
robot whose compact model is trained via the above KD process. When it moves to an environment
similar to that of the source domain, its compact model cannot recognize the objects in that envi-
ronment with a high accuracy. To avoid catastrophic forgetting, it is necessary to train the compact
model considering both the target data and the source data. Thus, a collaborative knowledge dis-
tillation (Co-KD) method is designed as follows. On the edgedevice, a compact model is trained
over the target data and the soft labels via KD. On the server,another compact model is trained
over the source data via supervised learning. The challengehere is how to consolidate these two
compact models into a global compact model. The setting of this challenging problem is similar to
that of federated learning (FL) (McMahan et al., 2017). However, there exists one major difference.
FL requires that different nodes have the same type of loss functions,while Co-KD has to use the
cross-entropy loss on the server and the loss function of KD (i.e., Kullback–Leibler (KL) divergence
in the state-of-the-art methods) on the edge device. Due to such a difference, existing FL algorithms
(e.g., McMahan et al. (2017); Karimireddy et al. (2020)) arenot effective for consolidating the com-
pact models in Co-KD. To this end, an alternating direction method of multipliers (ADMM) based
learning algorithm is designed for Co-KD to consolidate thecompact model on the edge device and
that on the server, as shown in step 2 in Figure 1. More specifically, the training process of the
global compact model is formulated into a consensus problemover the edge device and the server.
The consensus problem is then divided into two subproblems by ADMM. The edge device trains its
compact model by iteratively solving the subproblem related to the target data, and the server trains
its compact model by iteratively solving the subproblem related to the source data.

In the second step of STU-KD, the edge device needs to upload the parameters of the compact
model to the server. It is possible for the server to recover some information of the target data
from these parameters (Zhu et al., 2019). To ensure privacy of the target data, secure aggregation
(Bonawitz et al., 2017) is adopted in STU-KD so that the server cannot obtain the true parameters
of the compact model.

Extensive experiments are conducted to evaluate the performance of STU-KD. The results show that
STU-KD increases the compact model’s inference accuracy onthe target data by up to14.7% while
maintaining high inference accuracy on the source data, as compared to the state-of-art methods.
Moreover, after employing secure aggregation, the performance of STU-KD is not affected.

2 RELATED WORK

Cross Domain Model Compression.Many schemes (Yu et al., 2019; Chen et al., 2019; Feng et al.,
2020; Dillard et al., 2020; Nguyen-Meidine et al., 2020) combine network compression with unsu-
pervised domain adaptation (UDA) to obtain a compact model that performs well on the target data.
These schemes adopt traditional UDA methods that assume thetarget data and the source data are
stored in one place, which are not applicable when the targetdata and the source data are isolated.
Moreover, these schemes need to train a large source model via UDA. The large memory footprint
of training the large source model hinders the application of these schemes on edge devices.

On-device Adaptation. Recently, some schemes are developed to adapt an on-device model to
the target data. TinyTL (Cai et al., 2020) assumes that the on-device model has sufficient model
capacity, and adapts this model to the labeled target data with low memory footprint. However,
TinyTL is not applicable to the scenario with unlabeled target data. MobileDA (Yang et al., 2020)
directly trains a compact model via a UDA method called deep CORAL (Sun & Saenko, 2016).
It employs a teacher model to boost the inference accuracy ofthe compact model. However, due
to its low model capacity, directly training the compact model cannot achieves sufficient inference
accuracy on the target data. Although a teacher model is employed, it is only trained over the source
data, so the teacher model can only achieve limited improvement of the inference accuracy.

Domain Adaptation Under Data Isolation. Some schemes are designed to conduct UDA in a
scenario where the source data and the target data are held bydifferent data owners. In federated
domain adaptation (FDA), e.g., federated adversarial domain adaptation (Peng et al., 2020), the data
owners can collaboratively train a globally shared model. In the training process, each data owner
only shares its local updates rather than the target or source data. Schemes like source-free domain
adaptation (SFDA) can accomplish UDA in the absence of the source data. In Li et al. (2020a), the

3

Under review as a conference paper at ICLR 2022

Building

Block i

LR

Building

Block i+1

LR

aiai-1

Feature extractor with LR modules ClassifierTarget data

Loss JS

Frozen

parameters

Trainable

parameters

Figure 2: The pipeline of lite residual hypothesis transfer.

source model is trained over some generated target-style samples. In Liang et al. (2020), the source
model is trained through information maximization loss over the target data and self-supervised
pseudo-labeling. The SFDA schemes in (Kurmi et al., 2021; Liu et al., 2021) leverage generative
models to generate fake source samples for UDA. However, to obtain a model with sufficient ac-
curacy, both FDA and SFDA schemes require the source model tohave sufficient model capacity.
However, such a requirement cannot be satisfied by a compact model with low model capacity.

3 METHODOLOGY

One centralized server andM edge devices (M ≥ 1) are considered in this paper. The labeled
source data in the server are denoted as{xs, ys} wherexs represents the feature vector of a source
sample andys the ground-truth label of the source sample. The source dataare sampled from the
source domain denoted asPs. The unlabeled target data on the edge devices are denoted as{xt}
wherext represents the feature vector of a target sample. The targetdata are sampled from the
target domain denoted asPt. Each edge device needs to accomplish a classification task with K
classes using a compact model. The compact model on the edge devicem ∈ {1, ...,M} is defined
as a functionfm, and its model parameters are denoted aswm. Given the above setup, source-target
unified knowledge distillation (STU-KD) is developed to adapt the compact model to the target data.

3.1 LITE RESIDUAL HYPOTHESISTRANSFER

To boost the inference accuracy of the compact model, a largesource model with sufficient model
capacity, defined as a functionfT , is adopted in STU-KD. It can learn more fine-grained represen-
tations of the target data compared with the compact model. Before being deployed to theM edge
devices, the large source modelfT is pretrained over the source data by minimizing an objective
functionJT (wT) = E(xs,ys)[L(fT (xs;wT), ys)], wherewT denotes the parameters of the large
source model, andL(·, ·) is the standard cross-entropy loss. On edge devicem ∈ {1, ...,M}, the
large source model is then adapted to the target data. The challenges of the adaptation are two-
fold. First, the target data are unlabeled so that fine-grained representations of the target data cannot
be learned via supervised learning. As a result, unsupervised domain adaptation (UDA) is need-
ed. Second, edge devicem does not have the source data, so many UDA methods (Kang et al.,
2019; Tang & Jia, 2020; Xu et al., 2020) are not feasible for the adaptation. Thus, source-free UDA
methods (Li et al., 2020a; Liang et al., 2020; Liu et al., 2021) must be employed. However, exist-
ing source-free UDA methods, e.g., source hypothesis transfer (SHOT) (Liang et al., 2020), require
retraining of the large source model, which leads to large memory consumption on the edge device.

To tackle the above challenges of the adaptation, a memory-efficient UDA method called lite residual
hypothesis transfer (LRHT) is designed by enhancing the architecture of a source-free UDA method
such as SHOT. LRHT adopts the same loss function as that of SHOT (denoted asJS in Figure 2),
so unsupervised learning can be conducted over the unlabeled target data. The details of the loss
function of SHOT are provided in Appendix A. However, the feature extractor in SHOT must be
replaced with a new architecture that can be trained in a memory-efficient manner. As shown in
Figure 2, the new architecture is designed by adding lite residual (LR) modules (Cai et al., 2020) to
the feature extractor such that its outputs can be fine-tunedby the LR modules. The LR modules
fine-tune the outputs of the feature extractor by changing the intermediate activations of the feature
extractor. Define thei-th building block of the feature extractor as a functiongi and the LR module
added to the it as a functionri. Given the activationsai−1 of the (i − 1)-th building block, LR

4

Under review as a conference paper at ICLR 2022

moduleri changes the activations of thei-th building block asai = gi(ai−1) + ri(ai−1), where
gi(ai−1) denotes the original activations of thei-th building block, andri(ai−1) denotes the residual
activations of LR moduleri. During the adaptation, the parameters of the feature extractor and that
of the classifier are fixed, and only the LR modules are trainedto fine-tune the outputs of the feature
extractor. Compared to the case of directly training the feature extractor (like SHOT), training the
LR modules generates a much smaller volume of activations and demands much lower memory
footprint. Thus, by using LRHT the large source model can be adapted to the target data to obtain a
large target model in a memory-efficient manner.

3.2 COLLABORATIVE KNOWLEDGE DISTILLATION

The next step is to transfer the knowledge of the large targetmodel to the compact model.

3.2.1 CASE I: SINGLE EDGE DEVICE

Consider the case of a single device that contain a compact modelf1 with the model parametersw1.
On the edge device, the large target model is leveraged to generate the soft labels of the target data.
The knowledge of the target data is then transferred to the compact model via knowledge distillation
(KD) (Hinton et al., 2015). More specifically, the compact model is trained over the target data and
the soft labels via minimizing the loss function of KD. However, no source data are involved in the
KD process, which leads to the compact model gradually forgetting the knowledge of the source
data. That is, catastrophic forgetting (McCloskey & Cohen,1989) occurs.

To prevent catastrophic forgetting, the target data and thesource data need to be unified to train the
compact model in above process of knowledge transfer. Thus,a collaborative knowledge distillation
method (Co-KD) is designed as follows. On the edge device, a compact model is trained over the
target data and the soft labels via KD. The loss function of KD, denoted asJK , is written as

JK(w1) = Ext
[DKL(p(zT , τ)‖p(zc, τ))],

wherezc = f1(xt;w1) is the logit of the compact model,zT = fT (xt;w
′

T) is the logit of the large
target model with parametersw′

T (i.e., the soft label), andp(z, τ) denotes the soften probability
vector with a temperatureτ of a logit z. On the server, another compact model is trained over the
source data via a cross-entropy loss denoted asJC . The expression ofJC is

JC(w1) = E(xs,ys)[L(f1(xs;w1), ys)].

The challenge here is how to consolidate the two compact models into a global compact model. The
setting of this challenging problem is similar to that of federated learning (FL) (McMahan et al.,
2017). However, there exists one major difference. FL requires that different nodes have the same
type of loss functions, while Co-KD has to use the cross-entropy loss on the server and the loss func-
tion of KD (i.e., Kullback–Leibler (KL) divergence in the state-of-the-art methods) on the edge de-
vice. Due to the difference, existing FL algorithms (e.g., McMahan et al. (2017); Karimireddy et al.
(2020); He et al. (2020a)) are not effective for consolidating the compact models in Co-KD.

To this end, an alternating direction method of multipliers(ADMM) (Boyd et al., 2011) based learn-
ing algorithm is developed for Co-KD to consolidate the compact models. The training process of
the global compact model is formulated into a consensus problemΩ over the edge device and the
server:

min
w0,w1

αJK(w1) + (1− α)JC(w0)

s.t.w1 = w0,
(1)

whereα is a balancing hyperparameter, andw0 denotes the parameters of the compact model trained
on the server. For problemΩ that has a consensus constraint, ADMM is utilized to divide problem
Ω into two subproblemsΩ0 andΩ1, i.e.,

Ω0 : min
w0

L0(w0,w1,λ1) := (1− α)JC(w0) + 〈λ1,w1 −w0〉+
ρ

2
||w1 −w0||

2,and

Ω1 : min
w1

L1(w0,w1,λ1) := αJK(w1) + 〈λ1,w1 −w0〉+
ρ

2
||w1 −w0||

2,

whereλ1 denotes a Lagrange vector, andρ is a penalty hyperparameter. SubproblemΩ0 and sub-
problemΩ1 are then iteratively solved on the server and on the edge device, respectively. More

5

Under review as a conference paper at ICLR 2022

specifically, in thet-th iteration of Co-KD, thet-th iterate ofw1, denoted asw1(t), is determined on
the edge device byw1(t) := argmin

w1
L1(w0(t− 1),w1,λ1(t− 1)), wherew0(t − 1) denotes

the (t − 1)-th iteration ofw0, andλ1(t − 1) denotes the(t − 1)-th iteration ofλ1. Afterwards,
the edge device uploads its Lagrange vectorλ1(t − 1) andw1(t) to the server, and then the serv-
er determinesw0(t) := argmin

w0
L0(w0,w1(t),λ1(t− 1)). Afterwards, the server sendsw0(t)

to the edge device, and the edge device determinesλ1(t) := λ1(t − 1) + ρ(w1(t) − w0(t)). S-
ince bothw0(t) andw1(t) do not have closed-form solutions, stochastic gradient descent (SGD)
is utilized to numerically determinew0(t) andw1(t). As a convergence criterion is reached, e.g.,
||w0(t) −w0(t − 1)|| ≤ ǫ0 whereǫ0 is a predefined threshold, Co-KD stops.w0(t) is regarded as
the parameters of the global compact model that is then deployed to the edge device.

Since a solution obtained by ADMM satisfies Karush–Kuhn–Tucker (KKT) conditions,w0(t) can
converge to a local optimum of ProblemΩ. Moreover, the compact model is pretrained over the
source data. It can avoid bad local optimum of poor generalization during training ofw0, because
pretraining over the source data can be regarded as a regularization on the parameterw0, as studied
in (Erhan et al., 2010). As a result, the global model obtained by Co-KD can always converge
to a local optimum with sufficient generalization performance, i.e., it can achieve high inference
accuracy over both the target data and the source data.

3.2.2 CASE II: MULTIPLE EDGE DEVICES

When a single edge device only has a limited number of target data, it is hard to learn the fine-
grained representations of the target data even by the largemodel. As a result, the compact model
trained by Co-KD still suffers low inference accuracy on thetarget data. To tackle this challenging,
Co-KD can be extended to unify the target data of the multipleedge devices for training a global
compact model. Due to page limit, the details of Co-KD for multiple edge devices are provided in
Appendix B, and only the main idea is provided below.

The training process of the global compact model is first formulated into a consensus problemΩ′

over theM edge device and the server. ProblemΩ′ is then divided into(M + 1) subproblems by
following ADMM, and each edge device as well as the server iteratively solves one subproblem. In
the t-th iteration, edge devicem determineswm(t) and then sendswm(t) andλm(t − 1) to the
server. Afterwards, the server determinesw0(t) and then broadcastsw0(t) to all the edge devices.
Edge devicem then computesλm(t). As the convergence criterion is reached, the compact model
with parametersw0(t) is broadcast to all the edge devices as the new compact model.

3.3 DISCUSSION ONPRIVACY PRESERVATION

In STU-KD, the edge device does not upload the target data to the centralized server, providing
a basic level of privacy preservation. However, recent studies (Melis et al., 2019; Zhu et al., 2019;
Zhao et al., 2020) show that it is possible for the server to recover some information of the target data
from the uploaded parameters. This indicates that STU-KD isvulnerable to such recovery attacks.

One advantage of STU-KD is that it can be easily integrated with secure aggregation
(Bonawitz et al., 2017) to resist the recovery attacks. In the case of multiple devices, the server
only requires

∑M

m=1 w
′

m(t) to updatew0(t − 1) (see equation (5) in Appendix B), wherew′

m(t)
denotes the parameters uploaded by edge devicem. To prevent the server from obtainingw′

m(t)
without affecting the update process ofw0(t − 1), theM edge devices can add noise to their pa-
rameters before uploading, based on the following rule. Forany two edge devicesi andj (i < j)
from theM edge devices, edge devicei adds a random vectorni,j tow′

i(t), and edge devicej sub-
tractsni,j from w′

j(t) (how to generateni,j can refer to Appendix C). By adding and subtracting
these random vectors, the disturbed parametersŵm(t) = w′

m(t) +
∑

m<j nm,j −
∑

i<m ni,m are
obtained on edge devicem. ŵm(t) is then uploaded to the server. The server cannot recoverw′

m(t)

from ŵm(t), but it can compute
∑M

m=1 w
′

m(t) =
∑M

m=1 ŵm(t), and then updatesw0(t− 1).

In the case of a single edge device, the edge device can be regarded as two virtual devices by
dividing the target data into two parts. Each virtual deviceuses one part to train a compact model.
Afterwards, the above secure aggregation mechanism for multiple devices can be applied directly.

6

Under review as a conference paper at ICLR 2022

Table 1: Inference accuracy (%) onOffice-31dataset (target data and source data)

Method A→D A→W D→A D→W W→A W→D Avg.

ResNet-18 (He et al., 2016)70.7± 0.0 66.4± 0.0 40.4± 0.0 84.0± 0.0 46.4± 0.0 91.6± 0.0 66.6
SHOT (Liang et al., 2020) 81.9± 2.5 82.1± 0.5 64.5± 0.8 92.7± 1.0 63.9± 0.8 95.5± 0.5 80.1
TO-KD 94.2± 0.3 88.9± 0.0 73.6± 0.0 97.2± 0.1 74.1± 0.1 98.9± 0.1 87.8
STU-KD 94.0± 0.2 88.8± 0.1 72.3± 0.3 97.5± 0.1 74.6± 0.1 99.1± 0.1 87.7

ResNet-18 (He et al., 2016) 85.1± 0.0 85.1± 0.0 94.0± 0.0 94.0± 0.0 97.5± 0.0 97.5± 0.0 92.2
SHOT (Liang et al., 2020) 74.1± 0.9 73.4± 2.0 74.7± 1.1 94.7± 1.1 70.4± 1.8 90.4± 0.7 79.6
TO-KD 62.2± 3.6 67.1± 1.6 76.7± 1.1 98.0± 0.0 72.9± 2.4 93.3± 1.3 78.4
STU-KD 81.1± 0.8 83.5± 0.8 97.3± 1.1 100.0± 0.0 94.2± 1.8 98.8± 0.0 92.5

Table 2: Inference accuracy (%) onImageCLEF-DA dataset (target data and source data)

Method I→C I→P C→I C→P P→I P→C Avg.

ResNet-18 (He et al., 2016)88.8± 0.0 73.5± 0.0 75.7± 0.0 62.8± 0.0 80.3± 0.0 81.7± 0.0 77.1
SHOT (Liang et al., 2020) 95.6± 0.6 74.5± 0.4 87.3± 0.7 73.3± 0.9 88.9± 0.8 94.7± 0.5 85.7
TO-KD 96.3± 0.1 78.3± 0.2 92.3± 0.2 78.6± 0.1 92.8± 0.1 95.3± 0.1 88.9
STU-KD 96.1± 0.1 78.4± 0.1 92.4± 0.1 79.1± 0.1 92.8± 0.1 95.0± 0.0 89.0

ResNet-18 (He et al., 2016)96.7± 0.0 96.7± 0.0 95.0± 0.0 95.0± 0.0 76.7± 0.0 76.7± 0.0 89.4
SHOT (Liang et al., 2020) 95.0± 2.7 92.8± 0.9 96.7± 0.0 96.1± 2.4 68.9± 2.4 70.0± 1.5 86.6
TO-KD 89.2± 1.0 95.4± 1.4 98.5± 0.9 96.7± 1.2 69.6± 0.8 68.5± 1.5 86.3
STU-KD 97.1± 0.8 95.0± 1.0 99.8± 0.4 98.1± 1.1 72.1± 1.6 75.8± 0.8 89.7

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Three public datasets for domain adaptation are used to evaluate STU-KD.Office-31(Saenko et al.,
2010) has three domains: Amazon (A), DSLR (D), and Webcam (W). ImageCLEF-DA has three
domains: ImageNet ILSVRC 2012 (I), Caltech-256 (C), and Pascal VOC 2012 (P).Office-Home
(Venkateswara et al., 2017) has four domains: Artistic images (Ar), Clip Art (Cl), Product images
(Pr), and Real-World images (Rw).

The following schemes are compared with STU-KD: the compactmodel without domain adapta-
tion, source hypothesis transfer (SHOT) (Liang et al., 2020), and target-only knowledge distillation
(TO-KD). Here TO-KD is constructed by replacing collaborative knowledge distillation (Co-KD)
in STU-KD with knowledge distillation (Hinton et al., 2015). In addition, four variants of STU-
KD are also evaluated. The first three variants are constructed by replacing the ADMM based
learning algorithm in STU-KD with federated average (McMahan et al., 2017) (denoted as STU-
KD-AVG), distributed SGD (Zinkevich et al., 2010) (denotedas STU-KD-SGD), and SCAFFOLD
(Karimireddy et al., 2020) (denoted as STU-KD-SCAFFOLD). The forth variant is formed by in-
tegrating STU-KD with secure aggregation (Bonawitz et al.,2017) (denoted as STU-KD-SA). For
SHOT, its compact model is directly trained over the target data. For STU-KD and its variants, a
large target model is obtained by adapting a large source model to the target data, and the large target
model is used to generate soft labels for the target data. Thedifference is that the compact model of
TO-KD is only trained over the target data and the soft labels, while the compact models of the rest
schemes are trained over the target data, the soft labels, and the source data.

For each transfer task,90% of the source data are used for training; the rest10% of the source data
are used as the test data. The inference accuracy on the source data is determined by testing each
scheme on the test data. All the target data are used for training and test, as is done in (Long et al.,
2017; 2018; Liang et al., 2020). The inference accuracy on the target data is determined by testing
each scheme on all the target data. In all the experiments, ResNet-18 (He et al., 2016) is selected as
the the compact model. ResNet-50 is selected as the large source model for STU-KD. The compact
model and the large source model are trained through backpropagation and mini-batch SGD with
momentum0.9 and weight decay1e−3 is adopted as the optimizer. The learning rate is set to
η0 = 0.001. The batch size on the edge device is set to8, and the batch size in the server is set
to 32. Moreover, for all the experiments, the balancing hyperparameterα is set to0.8; the penalty
hyperparametersρ is set to0.3. STU-KD is implemented based on a library called FedML (He etal.,

7

Under review as a conference paper at ICLR 2022

Table 3: Inference accuracy (%) onOffice-Homedataset (target data and source data)

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→ Ar Re→Cl Re→Pr Avg.

ResNet-18 (He et al., 2016)31.4 44.7 55.2 39.3 49.3 52.7 38.9 32.7 62.5 56.7 39.0 70.8 47.8
SHOT (Liang et al., 2020) 36.0 58.6 64.5 49.2 64.8 63.8 49.0 37.5 70.3 58.6 45.5 76.0 56.1
TO-KD 54.1 78.0 80.1 66.8 77.3 78.6 66.2 52.0 81.4 71.7 58.0 84.1 70.7
STU-KD 53.4 78.3 80.3 67.0 77.4 78.6 66.4 52.3 82.0 72.1 58.1 84.3 70.8

ResNet-18 (He et al., 2016)56.8 56.8 56.8 72.1 72.1 72.1 90.3 90.3 90.3 80.3 80.3 80.3 74.9
SHOT (Liang et al., 2020) 42.0 46.8 60.5 47.2 49.7 52.1 69.5 61.0 76.4 68.0 56.7 71.0 58.4
TO-KD 45.5 49.1 60.1 47.6 45.5 50.3 60.4 60.2 78.3 67.2 57.0 72.8 57.8
STU-KD 64.5 66.0 69.0 71.8 76.0 74.4 87.7 90.4 91.0 69.6 69.4 72.0 75.2

2020b) in PyTorch (Paszke et al., 2019). Each experiment is executed for three times, and the mean
of the inference accuracy is reported. All the experiments are executed on a server with one i9-
10900k CPU, one GeForce RTX 3090 GPU, and 64 GB RAM. More details of the experimental
setup are given in Appendix D.

4.2 EXPERIMENTAL RESULT

The main results of a single edge device are shown in this subsection. Due to page limit, the results
of different hyperparameter settings, different network architectures, and the visualization results are
provided in Appendix E.1, Appendix E.2, and Appendix E.3, respectively. The results of multiple
edge devices are provided in Appendix E.4. The results on Office-31 dataset, ImageCLEF-DA
dataset, and Office-Home dataset are reported in Table 1, Table 2, and Table 3, respectively. In each
table, the upper half records the inference accuracy of eachscheme on the all the target data; the
bottom half records the inference accuracy of each scheme ontest data. The method ResNet-18
represents the compact model without domain adaptation. Firstly, the inference accuracy on the
target data is evaluated. TO-KD and STU-KD (our schemes) outperform all the existing schemes on
all the transfer tasks. Compared with the state-of-the-artscheme SHOT, our schemes improve the
inference accuracy on the target data by7.7%, 3.3%, and14.7% on Office-31 dataset, ImageCLEF
dataset, and Office-Home dataset, respectively. The gain ofour schemes can be explained as follows.
The large target model used in STU-KD can learn more fine-grained representations of the target
data than the compact model. Thus, the compact model that inherits the knowledge from the large
target model can achieve higher inference accuracy on the target data, compared with the compact
model that are directly trained using the target data. Sinceboth STU-KD and TO-KD utilize the
large target model, their performance is comparable. When considering the inference accuracy
on the source data, the performance of SHOT and TO-KD degradedue to catastrophic forgetting,
compared with the compact model without adaptation. For STU-KD, its performance is much closer
to that of the compact model without adaptation, indicatingthat STU-KD indeed alleviates or even
prevents catastrophic forgetting catastrophic forgetting. Note that in some cases (e.g., D→A, C→I,
and Ar→Cl), STU-KD achieves higher inference accuracy on the source data than the compact
model without adaptation. The reason can be that by trainingthe compact model over both the
target data and the source data, the compact model learns more general representations of the source
data, which boosts its inference accuracy on the source data.

The peak memory footprint of each scheme is shown in Figure 3,where SHOT (ResNet-50) repre-
sents training the ResNet-50 model on the edge device via SHOT. The memory footprint is deter-
mined when the batch size is set to8. For both TO-KD and STU-KD, their peak memory footprints
are caused by training the large model via lite residual hypothesis transfer (LRHT). Compared to
the case of directly training the large source model on the edge device, STU-KD reduces the mem-
ory footprint by nearly67%, indicating that LRHT indeed saves the memory space and enables the
adaptation of the large model on the edge device.

Three variants of STU-KD (STU-KD-AVG, STU-KD-SGD, and STU-KD-SCAFFOLD) are evalu-
ated on Office-31 dataset, and the results are shown in Table 4. Although STU-KD-AVG is compa-
rable to STU-KD in terms of inference accuracy on the target data, it suffers poor inference accuracy
on the source data. As shown in Figure 4, STU-KD-AVG only converges to a point with a low infer-
ence accuracy on the source data. STU-KD-SCAFFOLD employs an advanced FL algorithm (i.e.,
SCAFFOLD (Karimireddy et al., 2020)), so it achieves higherinference accuracy on the source data
compared to STU-KD-AVG. However, such a inference accuracyis still lower than that of STU-KD,

8

Under review as a conference paper at ICLR 2022

Table 4: Inference accuracy (%) onOffice-31dataset for the variants of STU-KD (target data and
source data)

Method A→D A→W D→A D→W W→A W→D Avg.

STU-KD-AVG 93.6± 0.5 89.1± 0.2 73.5± 0.1 97.3± 0.1 74.2± 0.3 98.7± 0.3 87.7
STU-KD-SGD 94.0± 0.1 88.9± 0.1 67.6± 8.3 97.7± 0.2 73.8± 0.3 99.1± 0.1 86.8
STU-KD-SCAFFOLD 93.8± 0.6 89.1± 0.2 73.8± 0.1 97.4± 0.3 74.3± 0.1 98.5± 0.2 87.8
STU-KD 94.0± 0.2 88.8± 0.1 72.3± 0.3 97.5± 0.1 74.6± 0.1 99.1± 0.1 87.7
STU-KD-SA 94.2± 0.2 88.8± 0.4 72.2± 0.5 97.4± 0.5 74.6± 0.2 99.0± 0.2 87.7

STU-KD-AVG 41.0± 0.4 50.8± 0.9 67.3± 2.1 100.0± 0.0 56.7± 0.7 86.7± 6.4 67.1
STU-KD-SGD 68.4± 8.1 83.1± 0.9 92.7± 1.1 100.0± 0.0 92.5± 2.0 97.5± 1.2 89.0
STU-KD-SCAFFOLD 62.9± 8.3 81.8± 1.4 88.0± 4.0 100.0± 0.0 82.5± 8.0 92.1± 7.7 84.6
STU-KD 81.1± 0.8 83.5± 0.8 97.3± 1.1 100.0± 0.0 94.2± 1.8 98.8± 0.0 92.5
STU-KD-SA 84.3± 0.2 83.7± 0.3 97.3± 1.1 100.0± 0.0 92.1± 0.7 98.8± 0.0 92.7

Figure 3: The peak memory
footprint of STU-KD and the
comparison methods.

Figure 4: The inference accu-
racy curves of STU-KD and
its variants onW → A task.

Figure 5: The communication
cost of STU-KD and its vari-
ants onW → A task.

and the gap is nearly8.1% in average. Moreover, the communication cost of STU-KD-SCAFFOLD
is twice that of STU-KD, since SCAFFOLD requires uploading both local model updates and a set
of control parameters. The comparison on these FL based variants verify that FL is not effective in
STU-KD to consolidate the compact models from the edge device and the server. As for STU-KD-
SGD, its performance is the closest to that of STU-KD among these three variants. However, its
communication cost is too large. As shown in Figure 5, the communication cost of STU-KD-SGD
is nearly100 times that of STU-KD. The reason is that the edge device needsto frequently sends its
local gradients to the server to compute the gradients of theobjective function, which leads to the
large communication cost. The results of STU-KD-SA is also reported in Table 4. Compared with
STU-KD, STU-KD-SA achieves the comparable inference accuracy on both the source data and the
target data, verifying that secure aggregation does not affect the performance of STU-KD. Note that
the slightly better performance of STU-KD-SA than STU-KD isdue to the random seeds used in
the experiments, and it can disappear when more experimentsare conducted.

5 CONCLUSION

In this paper, a source-target unified knowledge distillation (STU-KD) scheme was developed to
adapt the compact model on the edge device to the target data while protecting users’ privacy. In
the scheme, a large source model was first loaded and adapted to the target data on the edge device,
and a large target model was obtained. Such an adaptation wasenabled by a memory efficient lite
residual hypothesis transfer algorithm. A collaborative knowledge distillation method that unifies
the target data and the source data for training the compact model was developed to transfer the
knowledge of the large target model to the compact model while preventing catastrophic forgetting.
Secure aggregation was also employed in STU-KD to enhance privacy preservation. Extensive
experiments showed that STU-KD can achieve the highest inference accuracy over the target data
while maintaining the original high inference accuracy over the source data, compared with state-
of-the-art schemes. STU-KD is now evaluated on public datasets. How to incorporate STU-KD into
a real-world application can be an interesting topic for future work.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practicalsecure aggregation for privacy-
preserving machine learning. InACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 1175–1191, 2017.

Stephen Boyd, Neal Parikh, and Eric Chu.Distributed optimization and statistical learning via the
alternating direction method of multipliers. Now Publishers Inc, 2011.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware.International Conference on Learning Representations (ICLR), 2019.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. TinyTL: Reducememory, not parameters for
efficient on-device learning. InAdvances in Neural Information Processing Systems (Neurips),
volume 33, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. InEuropean Conference on Computer Vision (ECCV),
September 2018.

Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. Cooperativepruning in cross-domain deep
neural network compression. InInternational Joint Conference on Artificial Intelligence(IJCAI),
pp. 2102–2108, 2019.

Laurent Dillard, Yosuke Shinya, and Taiji Suzuki. Domain adaptation regularization for spectral
pruning. 2020.

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised pre-
training help deep learning? InInternational Conference on Artificial Intelligence and Statistics,
pp. 201–208, 2010.

Xiaoyu Feng, Zhuqing Yuan, Guijin Wang, and Yongpan Liu. Admp: An adversarial double
masks based pruning framework for unsupervised cross-domain compression. arXiv preprint
arXiv:2006.04127, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International Conference on Machine Learning (ICML), pp. 1180–1189, 2015.

A. Gretton, AJ. Smola, J. Huang, M. Schmittfull, KM. Borgwardt, and B. Scḧolkopf. Covariate
shift and local learning by distribution matching, pp. 131–160. 2009.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federat-
ed learning of large cnns at the edge. InAdvances in Neural Information Processing Systems
(Neurips), pp. 14068–14080, 2020a.

Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Pra-
neeth Vepakomma, Abhishek Singh, Hang Qiu, et al. Fedml: A research library and benchmark
for federated machine learning.arXiv preprint arXiv:2007.13518, 2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 770–778,
2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. InEuropean Conference on Computer Vision
(ECCV), pp. 784–800, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.arXiv
preprint arXiv:1503.02531, 2015.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. InIEEE
International Conference on Computer Vision (ICCV), pp. 1314–1324, 2019.

10

Under review as a conference paper at ICLR 2022

Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama. Learning
discrete representations via information maximizing self-augmented training. InInternational
Conference on Machine Learning (ICML), pp. 1558–1567, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. InInternational Conference on Machine Learning (ICML), pp.
448–456, 2015.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann.Contrastive adaptation network
for unsupervised domain adaptation. InIEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4893–4902, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Anan-
da Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. InInterna-
tional Conference on Machine Learning (ICML), pp. 5132–5143, 2020.

Andreas Krause, Pietro Perona, and Ryan Gomes. Discriminative clustering by regularized informa-
tion maximization.Advances in Neural Information Processing Systems (Neurips), pp. 775–783,
2010.

Vinod K Kurmi, Venkatesh K Subramanian, and Vinay P Namboodiri. Domain impression: A source
data free domain adaptation method. InIEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 615–625, 2021.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsupervised
domain adaptation without source data. InIEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9641–9650, 2020a.

Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. DHP: Differentiable meta
pruning via hypernetworks. InEuropean Conference on Computer Vision (ECCV)), pp. 608–624,
2020b.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning (ICML), pp. 6028–6039, July 13–18 2020.

Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al.Mcunet: Tiny deep learning on iot
devices.Advances in Neural Information Processing Systems (Neurips), pp. 11711–11722, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2019.

Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain adaptation for semantic segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1215–1224, 2021.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan.Deep transfer learning with joint
adaptation networks. InInternational Conference on Machine Learning (ICML), pp. 2208–2217,
2017.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. InAdvances in Neural Information Processing Systems (Neurips), pp. 1647–
1657, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. InPsychology of Learning and Motivation, volume 24, pp. 109–165.
1989.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. InInternational
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282, 2017.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. InIEEE Symposium on Security and Privacy (SP), pp.
691–706, 2019.

11

Under review as a conference paper at ICLR 2022

L. T. Nguyen-Meidine, E. Granger, M. Kiran, J. Dolz, and L. A.Blais-Morin. Joint progressive
knowledge distillation and unsupervised domain adaptation. In International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, 2020.

Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, and Huazhong Yang. DSA: More
efficient budgeted pruning via differentiable sparsity allocation. InEuropean Conference on Com-
puter Vision (ECCV), pp. 592–607, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library.Advances in Neural Information Processing Systems
(Neurips), 32:8026–8037, 2019.

Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial domain adapta-
tion. In International Conference on Learning Representations (ICLR), 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,et al. Imagenet large scale visu-
al recognition challenge.International Journal of Computer Vision, 115(3):211–252, 2015.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. InEuropean Conference on Computer Vision (ECCV), pp. 213–226, 2010.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks.Advances in Neural Information Processing Systems (Neurips),
pp. 901–909, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. InIEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4510–4520, 2018.

Baochen Sun and Kate Saenko. Deep CORAL: Correlation alignment for deep domain adaptation.
In European Conference on Computer Vision (ECCV), pp. 443–450, 2016.

Hui Tang and Kui Jia. Discriminative adversarial domain adaptation. InProceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 5940–5947, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.Journal of Machine
Learning Research, 9(11), 2008.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. InIEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5018–5027, 2017.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang,Qi Tian, and Wenjun Zhang.
Adversarial domain adaptation with domain mixup. InAAAI Conference on Artificial Intelligence
(AAAI), volume 34, pp. 6502–6509, 2020.

Jianfei Yang, Han Zou, Shuxin Cao, Zhenghua Chen, and Lihua Xie. MobileDA: Toward edge-
domain adaptation.IEEE Internet of Things Journal, 7(8):6909–6918, 2020.

Chaohui Yu, Jindong Wang, Yiqiang Chen, and Zijing Wu. Accelerating deep unsupervised domain
adaptation with transfer channel pruning. InInternational Joint Conference on Neural Networks
(IJCNN), pp. 1–8, 2019.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improveddeep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in Neural Infor-
mation Processing Systems (Neurips), pp. 14774–14784, 2019.

Martin A Zinkevich, Markus Weimer, Alex Smola, and Lihong Li. Parallelized stochastic gradient
descent. InAdvances in Neural Information Processing Systems (Neurips), pp. 2595–2603, 2010.

12

Under review as a conference paper at ICLR 2022

A L OSS FUNCTION OFSHOT

Define the parameters of the feature extractor aswe and the loss function of SHOT asJS . JS consists
of two terms: an information maximization (IM) loss (Krauseet al., 2010; Hu et al., 2017) denoted
asJI and a cross-entropy (CE) loss of self-supervised learning denoted asJp. The expression ofJS
can be written as

JS(we) = JI(we) + βJp(we), (2)

whereβ is a balancing hyperparameter. Define the target output of a target samplext asfT (xt).
IM lossJI captures the uncertainty of the target outputs of the targetdata and the diversity of those
target outputs by

JI(we) = −Ext
[

K∑

k=1

δk(fT (xt)) log δk(fT (xt))] +

K∑

k=1

p̂k log p̂k,

whereK is the number of classes in the classification task,δk(a) =
exp(ak)∑
i
exp(ai)

is thek-th element
in the softmax output of a vectora, and p̂k is the k-th element in the mean output embedding
p̂ = Ext

[δ(fT (xt))] of the target data. CE lossJp is written as

Jp(we) = Ext
[L(fT (xt), ŷt)],

whereŷt is a pseudo-label generated by a clustering based pseudo-labeling mechanism (Caron et al.,
2018; Liang et al., 2020) forxt.

B CO-KD FOR MULTIPLE EDGE DEVICES

When a single edge device only has limited number of target data, it is hard to learn the fine-grained
representations of the target data even for the large model.As a result, the compact model trained
by Co-KD still suffers low inference accuracy on the target data. To tackle this challenging, Co-KD
can be extended to unify the target data of the multiple edge devices for training a global compact
model. TheM edge devices collaborate with the cloud server to train a global compact model by
solving

min
w

1

M

M∑

m=1

αJ
(m)
K (w) + (1− α)JC(w), (3)

wherew denotes the parameters of the global compact model. The training process of the global
compact model is formulated into a consensus problemΩ′ over theM edge device and the server.

min
w0,w1,...,wM

1

M

M∑

m=1

αJ
(m)
K (wm) + (1− α)JC(w0)

s.t.wm = w0, m = 1, ...,M,

(4)

whereJ (m)
K is the local loss function of KD on edge devicem, wm is the compact model on edge

devicem, andw0 is the compact model updated in the centralized server. Co-KD is then extended to
iteratively solve problem (4) as follows. In thet-the iteration of Co-KD, edge devicem determines
wm(t) by

wm(t) = argmin
wm

α

M
J
(m)
K (wm) + 〈λm(t− 1),wm −w0(t− 1)〉+

ρ

2
||wm −w0(t− 1)||2,

and sends its Lagrange vectorλm(t− 1) andwm(t) to the cloud server. Next, the server updates its
compact model by

w0(t) = argmin
w0

(1− α)JC(w0) +

M∑

m=1

〈λm(t− 1),wm(t)−w0〉+
ρ

2
||wm(t)−w0||

2.

The updated compact model is then sent to theM edge devices. Afterwards, edge devicem updates
λm(t− 1) via

λm(t) := λm(t− 1) + ρ(wm(t)−w0(t))

13

Under review as a conference paper at ICLR 2022

× 6

...

× 4

...

× 3

...

× 3

..... . ..

L
R

L
R

L
R

L
R

..

Figure 6: Source

As the convergence criterion is reached. Co-KD stops. The compact model withw0(t) is then
broadcast to theM edge devices as their new compact models.

Similarly to the case of single edge device, SGD is utilized to determinewm(t) on edge devicem
and to determinew0(t) on the server. More specifically, the gradientgm(wm(t−1)) used to update
wm(t− 1) is computed by

gm(wm(t− 1)) =
α

M
∇wm

J
(m)
K (wm(t− 1)) + λm(t− 1) + ρ(wm(t− 1)−w0(t− 1)).

Letw′

m(t) = λm(t−1)+ρwm(t) denote the parameters uploaded by edge devicem. The gradient
g0(wm(t− 1)) used to updatew0(t− 1) can then be represented as

g0(w0(t− 1)) = ∇w0
JC(w0(t− 1))−

M∑

m=1

(λm(t− 1) + ρ(wm(t)−w0(t− 1)))

= ∇w0
JC(w0(t− 1)) +Mρw0(t− 1)−

M∑

m=1

w′

m(t).

(5)

C ADDITIONAL INFORMATION ABOUT SECUREAGGREGATION

To generate the same random vector on edge devicei and edge devicej, the same random seed
is used in the random number generator on each edge device. Such a random seed can be shared
among the two users using Diffie–Hellman key exchange while keep the server unknown to the
random seed.

D MORE DETAILS OF EXPERIMENTAL SETUP

Three public datasets for domain adaptation are used to evaluate STU-KD.Office-31(Saenko et al.,
2010) is a widely used dataset for domain adaptation. It has4, 652 images and31 classes collect-
ed from three domains: Amazon (A), DSLR (D), and Webcam (W). ImageCLEF-DA has three
domains: ImageNet ILSVRC 2012 (I), Caltech-256 (C), and Pascal VOC 2012 (P). For each do-
main, there are12 classes and50 images in each class.Office-Home (Venkateswara et al., 2017)
has15, 500 images and65 classes from four distinct domains: Artistic images (Ar), Clip Art (Cl),
Product images (Pr), and Real-World images (Rw).

For STU-KD, a variant of ResNet-50 (He et al., 2016) is selected as the large model. Concretely,
a standard ResNet-50 model pretrained over ImageNet (Russakovsky et al., 2015) is employed as
the base module. Its original fully connected (FC) layer is then replaced with a bottleneck lay-
er and a task-specific FC layer. Moreover, a batch normalization (BN) layer (Ioffe & Szegedy,
2015) is put after the FC layer in the bottleneck layer, and a weight normalization (WN) layer
(Salimans & Kingma, 2016) is put after the task-specific FC layer (Liang et al., 2020). Following
the same procedure, a variant of ResNet-18 is constructed and is selected as the compact model
for all the schemes. Moreover, four lite residual modules are added to the ResNet-50 model for
lite residual hypothesis transfer. The architecture of theResNet-50 model with four lite residual
modules is shown in Figure 6.

14

Under review as a conference paper at ICLR 2022

Table 5: Inference accuracy (%) onOffice-31dataset with different hyperparameter settings (target
data and source data)

Setting A→D A→W D→A D→W W→A W→D Avg.

α = 0.5, ρ = 0.3 94.2± 0.2 88.7± 0.2 71.4± 0.3 97.9± 0.1 74.6± 0.3 99.1± 0.1 87.7
α = 0.6, ρ = 0.3 94.2± 0.3 88.7± 0.2 71.4± 0.2 97.9± 0.1 74.7± 0.1 99.2± 0.0 87.7
α = 0.7, ρ = 0.3 94.2± 0.3 88.7± 0.1 71.9± 0.1 97.7± 0.0 74.6± 0.2 99.2± 0.0 87.7
α = 0.8, ρ = 0.3 94.0± 0.2 88.8± 0.1 72.3± 0.3 97.5± 0.1 74.6± 0.1 99.1± 0.1 87.7
α = 0.8, ρ = 0.5 94.0± 0.2 88.8± 0.1 72.1± 0.4 97.5± 0.1 74.6± 0.3 99.2± 0.0 87.7
α = 0.8, ρ = 0.7 94.1± 0.3 88.8± 0.1 71.8± 0.2 97.7± 0.2 74.5± 0.2 99.2± 0.0 87.7

α = 0.5, ρ = 0.3 86.1± 0.7 86.4± 0.8 98.0± 0.0 100.0± 0.0 96.7± 0.7 99.2± 0.7 94.4
α = 0.6, ρ = 0.3 83.9± 0.5 85.1± 0.3 98.0± 0.0 100.0± 0.0 95.8± 0.7 98.8± 0.0 93.6
α = 0.7, ρ = 0.3 82.4± 1.0 84.8± 0.3 98.0± 0.0 100.0± 0.0 96.2± 0.0 98.8± 0.0 93.4
α = 0.8, ρ = 0.3 81.1± 0.8 83.5± 0.8 97.3± 1.1 100.0± 0.0 94.2± 1.8 98.8± 0.0 92.5
α = 0.8, ρ = 0.5 80.1± 1.2 83.9± 0.7 98.0± 0.0 100.0± 0.0 96.2± 0.0 99.2± 0.7 92.9
α = 0.8, ρ = 0.7 81.2± 1.2 84.2± 0.2 98.0± 0.0 100.0± 0.0 95.8± 0.7 98.8± 0.0 93.0

The compact model and the large source model are trained through backpropagation, and mini-
batch SGD with momentum0.9 and weight decay1e−3 is adopted as the optimizer. The learning
rate is set toη0 = 0.001 for the lite residual modules in the large model and the feature extractor in
the compact model. A widely used learning rate scheduler (Ganin & Lempitsky, 2015; Long et al.,
2017; 2018) is also adopted, i.e.,η = η0(1 + 10p)−0.75, wherep is the training progress changing
from 0 to 1.

E MORE EXPERIMENTAL RESULTS

E.1 HYPERPARAMETERANALYSIS

To analyze the effects of hyperparameters on STU-KD, the experiment of STU-KD on Office-31
(Table 1) data is repeated with different settings of the hyperparametersα andρ. The results are
shown in Table 5. In terms of the inference accuracy on the target data, the overall performance
of STU-KD with different settings are comparable, indicating that the inference accuracy on the
target data is not much sensitive to the settings of the hyperparameters. Now consider the inference
accuracy on the source data. It is obvious that smallerα leads to higher inference accuracy on the
source data. The reason is as follows. The smaller is the value ofα, the larger is the weight of the
CE loss in equation (1). As a result, the global compact modelneeds to achieve a smaller error over
the source data after the adaptation, which can lead to higher inference accuracy on the source data.
As for ρ, the results show that the larger is the value ofρ, the large is the inference accuracy on the
source data, though the effect ofρ is not as strong as that ofα. The above results indicate that the
inference accuracy on the source data is more sensitive to the setting of the hyperparameters than
the inference accuracy on the target data. Properly reducing the value ofα or increasing the value
of ρ can achieve better inference accuracy on the source data.

E.2 DIFFERENTNETWORK ARCHITECTURES

To show that STU-KD is applicable to different network architectures, two additional experiments
are conducted. In the first experiment, Proxyless-Mobile (Cai et al., 2019) is selected as the compact
model, and ResNet-50 (He et al., 2016) is selected as the large source model. The results are shown
in Table 6. In the second group, ResNet-34 is selected as the compact model, and the ResNet-101 is
selected as the large source model. The results are shown in Table 7.

According to Table 6 and Table 7, TO-KD and STU-KD (our schemes) outperforms other schemes
in terms of the inference accuracy on the target data, and these two schemes achieve comparable
inference accuracy on the target data. Moreover, STU-KD outperforms TO-KD in terms of the
inference accuracy on the source data. Such results are consistent with that of Table 1, Table 2,
and Table 3, indicating that STU-KD is applicable to different network architectures for both the
compact model and the large source model.

15

Under review as a conference paper at ICLR 2022

Table 6: Inference accuracy (%) onOffice-31dataset with Proxyless-Mobile as the compact model
and ResNet-50 as the large source model (target data and source data)

Method A→D A→W D→A D→W W→A W→D Avg.

Proxyless-Mobile (Cai et al., 2019)73.7± 0.0 61.9± 0.0 56.3± 0.0 95.6± 0.0 56.2± 0.0 99.2± 0.0 73.8
SHOT (Liang et al., 2020) 87.4± 0.9 85.5± 0.4 66.8± 0.8 97.9± 0.1 66.9± 1.0 98.6± 0.6 83.9
TO-KD 94.4± 0.4 88.9± 0.1 73.6± 0.1 97.3± 0.1 73.9± 0.1 98.8± 0.2 87.8
STU-KD 94.1± 0.3 89.2± 0.2 73.6± 0.1 97.6± 0.2 73.8± 0.1 99.2± 0.0 87.9

Proxyless-Mobile (Cai et al., 2019) 89.7± 0.0 89.7± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 96.6
SHOT (Liang et al., 2020) 81.4± 0.5 78.6± 0.2 92.0± 3.7 100.0± 0.0 85.4± 2.9 98.8± 1.2 89.4
TO-KD 63.0± 2.5 68.7± 0.5 78.0± 1.8 100.0± 0.0 76.2± 3.1 98.8± 0.0 80.8
STU-KD 84.5± 0.5 84.2± 0.7 100.0± 0.0 100.0± 0.0 98.8± 0.0 100.0± 0.0 94.6

Table 7: Inference accuracy (%) onOffice-31 dataset with ResNet-34 as the compact model and
ResNet-101 as the large source model (target data and sourcedata)

Method A→D A→W D→A D→W W→A W→D Avg.

ResNet-34 (He et al., 2016)73.1± 0.0 70.8± 0.0 48.3± 0.0 90.3± 0.0 53.1± 0.0 97.4± 0.0 72.2
SHOT (Liang et al., 2020) 84.3± 0.8 86.0± 0.6 60.5± 0.6 94.5± 1.0 66.6± 0.3 98.0± 0.6 81.6
TO-KD 96.3± 0.1 90.8± 0.3 77.0± 0.1 96.5± 0.2 77.4± 0.1 99.6± 0.0 89.6
STU-KD 96.3± 0.1 93.0± 0.1 76.5± 0.1 97.9± 0.1 77.7± 0.2 99.6± 0.0 90.2

ResNet-34 (He et al., 2016) 88.7± 0.0 88.7± 0.0 96.0± 0.0 96.0± 0.0 98.8± 0.0 98.8± 0.0 94.5
SHOT (Liang et al., 2020) 77.3± 1.4 77.5± 1.1 68.7± 2.8 97.3± 2.8 77.1± 2.7 91.2± 0.0 81.5
TO-KD 64.9± 0.6 40.3± 8.3 78.0± 1.8 99.3± 1.1 76.7± 1.8 94.2± 1.3 75.6
STU-KD 83.3± 1.2 85.9± 0.2 97.3± 1.1 100.0± 0.0 97.9± 0.7 98.8± 0.0 93.9

E.3 VISUALIZATION

In the case of a single device, the representations learn by ResNet-18, SHOT, TO-KD, and STU-
KD are visualized by t-SNE (Van der Maaten & Hinton, 2008), asshown in Figure 7. As expected,
the representations learned by STU-KD are the most discriminative for both target domain and the
source domain. Although TO-KD achieves comparable inference accuracy on the target data to that
achieved by STU-KD, the target representations learned by TO-KD is less discriminative than that
of STU-KD. In terms of the source representations, SHOT outperforms TO-KD, which verifies the
results in Table 1. Such a result also indicates that directly using KD can lead severe catastrophic
forgetting.

E.4 RESULTS OFMULTIPLE EDGE DEVICES

Two group of experiments are conducted in the case of multiple edge devices. First, the target data on
the multiple edge devices come from the same target domain. Second, the target data on the multiple
edge devices come from different target domains. More specifically, in the second experiments, the

Table 8: Inference accuracies (%) on the data fromA → W task (target data and source data)

Method Device1 Device2 Device3 Device4 Device5 Avg.

SHOT (Liang et al., 2020) 76.35 77.99 75.85 73.84 76.35 76.08
TO-KD 79.54 81.84 83.02 81.01 83.86 81.85
STU-KD 88.43 88.43 88.43 88.43 88.43 88.43
STU-KD-SA 88.43 88.43 88.43 88.43 88.43 88.43

SHOT (Liang et al., 2020) 77.66 76.24 77.30 78.37 75.53 77.02
TO-KD 77.78 77.66 77.78 77.54 76.95 77.54
STU-KD 87.12 87.12 87.12 87.12 87.12 87.12
STU-KD-SA 87.70 87.70 87.70 87.70 87.70 87.70

16

Under review as a conference paper at ICLR 2022

(a) ResNet-18 (b) SHOT

(c) TO-KD (d) STU-KD

Figure 7: Visualization results of (a) ResNet-18, (b) SHOT,(c) TO-KD, and (d) STU-KD onA →
D task.

Table 9: Inference accuracies (%) on the data fromA → D task (target data and source data)

Method Device1 Device2 Device3 Device4 Device5 Avg.

SHOT (Liang et al., 2020) 74.50 71.29 75.50 77.71 75.30 74.86
TO-KD 80.32 76.64 78.11 79.99 81.86 79.38
STU-KD 85.81 85.81 85.81 85.81 85.81 85.81
STU-KD-SA 85.68 85.68 85.68 85.68 85.68 85.68

SHOT (Liang et al., 2020) 78.72 78.37 74.82 75.53 78.37 77.16
TO-KD 76.71 76.24 73.29 75.41 76.60 75.65
STU-KD 86.76 86.76 86.76 86.76 86.76 86.76
STU-KD-SA 86.17 86.17 86.17 86.17 86.17 86.17

17

Under review as a conference paper at ICLR 2022

Table 10: Inference accuracies (%) on the data fromA → DW task (target data and source data)

Method Device1 Device2 Device3 Device4 Device5 Device6

STU-KD (separated) 90.36 90.36 90.36 88.59 88.59 88.59
STU-KD (joint) 89.62 89.62 89.62 90.19 90.19 90.19

STU-KD (separated) 86.99 86.99 86.99 87.58 87.58 87.58
STU-KD (joint) 87.11 87.11 87.11 87.11 87.11 87.11

Table 11: Inference accuracies (%) on the data fromI → CP task (target data and source data)

Method Device1 Device2 Device3 Device4 Device5 Device6

STU-KD (separated) 95.22 95.22 95.22 77.38 77.38 77.38
STU-KD (joint) 95.30 95.30 95.30 77.55 77.55 77.55

STU-KD (separated) 96.11 96.11 96.11 98.33 98.33 98.33
STU-KD (joint) 96.11 96.11 96.11 96.11 96.11 96.11

edge devices are divided into two groups. The devices from the same group have the target data
from the same domain, while the target domains of the two groups are different.

In the first group of experiments,M is set to5, and the target data are randomly partitioned into5
parts each of which is held by one edge device. Three schemes are evaluated on Office-31 dataset:
SHOT (Liang et al., 2020), TO-KD, and STU-KD. For SHOT and TO-KD, each edge device trains
its local compact model independently, without interactions with the centralized server. For STU-
KD, five edge devices and the server collaboratively train a global compact model. The experimental
results onA → W task and that onA → D are reported in Table 8 and Table 9, respectively.

As shown in Table 8 and Table 9, TO-KD outperforms SHOT in terms of the inference accuracy
on the target data. The gain comes from the large model capacity of large model. By unifying
the target data from all the edge devices, STU-KD further improves the average inference accuracy
on the target data by6.58% on A → W task, and by6.43% on A → D task. Besides, STU-KD
leverages the source data to train the global compact model,and thus achieves the highest inference
accuracy on the source data. After employing secure aggregation, STU-KD-SA achieves comparable
performance to that of STU-KD, indicating that secure aggregation does not affect the performance
of STU-KD.

In the second group of experiments, two transfer tasks are conducted: 1)A from Office-31 dataset
is selected as the source domain, andD andW from Office-31 are selected as the target domains,
denoted asA → DW; 2) I from ImageCLEF-DA dataset is selected as the source domain,andC and
P from ImageCLEF-DA are selected as the target domains, denoted asI → CP. In taskA → DW,
the two target domains are similar; while in taskI → CP, the two target domain are much different
from each other. The number of edge deviceM is set to6. For each transfer task, the first three edge
devices come from the one target domain, and the rest three edge devices come from another target
domain. Two schemes are used to trained the compact models onthe edge devices. First, STU-KD
is only applied to the edge devices from the same target domain, denoted as STU-KD (separated).
Second, STU-KD is applied to all thee six edge devices to learn a global compact model, denoted as
STU-KD (joint). The results of taskA → DW and taskI → CP are shown in Table 10 and Table 11,
respectively.

Comparing the performance of these two schemes, it is indicated that applying STU-KD to the case
of different target domains does not highly degrade the performance of the obtained compact model.
That is, STU-KD is applicable to the case of different targetdomains, though STU-KD does not
provide extra performance gain for the compact model by involving more data into the training
process.

18

	Introduction
	Related Work
	Methodology
	Lite Residual Hypothesis Transfer
	Collaborative Knowledge Distillation
	Case I: single edge device
	Case II: multiple edge devices

	Discussion on Privacy Preservation

	Experiment
	Experimental Setup
	Experimental Result

	Conclusion
	Loss function of SHOT
	Co-KD for Multiple Edge Devices
	Additional Information about Secure Aggregation
	More Details of Experimental Setup
	More Experimental Results
	Hyperparameter Analysis
	Different Network Architectures
	Visualization
	Results of Multiple Edge Devices

