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Abstract

Accurate understanding of a concept includes represent-
ing the common attributes and affordances of that concept
across multiple modalities. We investigate the ability of pre-
trained vision models to represent the semantic attributes
of concrete object concepts, e.g. a ROSE is red, smells
sweet, and is a flower. More specifically, we use prob-
ing tasks to test which properties of objects these mod-
els are aware of. We evaluate image encoders trained on
image data alone, as well as multimodally-trained image
encoders and language-only models, on predicting an ex-
tended denser version of the classic McRae semantic at-
tribute norms, widely used in NLP, and the newer Binder
dataset of attribute ratings. We find that multimodal image
encoders slightly outperform language-only approaches,
and that image-only encoders perform comparably to lan-
guage models, even on non-visual attributes that are clas-
sified as “encyclopedic” or “function”. These results offer
new insights into what can be learned from pure unimodal
learning, and the complementarity of the modalities.1

1. Introduction
Multimodal models depend on vision encoders to provide
information about the objects that are depicted and their
properties, their spatial configuration, lighting, and scene
information. Recent work has highlighted a degree of lin-
ear alignment between neural network representations of
the vision and language modalities [20, 23, 29]. This im-
plies that the respective representation spaces have similar
configurations, in terms of the local organisation (nearest
neighbours) of concepts. However, there remains an open
the question of how the different modalities “understand”
or represent the concepts: which attributes are salient for a
particular concept? In other words, how similar, in terms

1Results, code, and data are available on the project webpage:
https://danoneata.github.io/seeing-what-tastes-good/

Figure 1. Given a dataset of concrete object concepts, depicted us-
ing either visual or linguistic data, we train linear probes on frozen
modality-specific representations of to understand how well con-
ceptual attributes can be extracted from models.

of underlying attributes, is a CHAIR as seen by a vision en-
coder to a CHAIR as encoded by a language model? This
question concerns the complementarity of vision and lan-
guage: are different modalities distinct, or in fact conver-
gent [20]? Early work on distributional representations, in
text-only [3, 25, 38] and multimodal [9, 10] models of static
word embeddings, studied this question extensively. Recent
advances in representation learning necessitates that we re-
visit this question to understand the relative representational
power of each modality in modern models.

In this paper, we investigate how vision, language,
and vision-and-language models represent concrete object
concepts in terms of their associated attributes (seman-
tic norms). We use a linear probing methodology to
test whether model representations make distinctions cor-
responding to attributes associated with concepts, depicted
visually or in text. Figure 1 presents an overview of our
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approach. The semantic norms cover many different types
of attributes, from visual-perceptual is green to functional
is eaten to encyclopedic grows on trees. Our first ques-
tion is whether different encoders, from different modali-
ties, capture particular attribute types more or less well.

Secondly, the models we evaluate correspond to a set
of hypotheses about the role of language and labelling in
conceptualization and category learning, a hotly debated
topic in cognitive and neuroscience [5, 22, 26, 44]. At
one extreme are pure vision encoders (ViT-MAE, DINOv2)
trained without any language or category label supervision.
At the other, models like CLIP and SigLIP learn to represent
the visual input by aligning it to text: a form of language-
steered world learning. We also evaluate text-only mod-
els that get categories for free (via word labels) but have to
infer perceptual and other attributes from distributional se-
mantics. Inasmuch language “carves up the world”, visual
encoders with more language input should be better aligned
with semantic norms for English concepts.

We test these hypotheses using two concept attribute
datasets. The first dataset links the semantic norms from
the McRae dataset [28] to the concepts of the THINGS
project [15], with an additional expansion step, to create the
new McRae×THINGS dataset. The second is a dataset of
neuro-cognitive attribute ratings from Binder et al. [7]. Our
results demonstrate strong conceptual awareness in multi-
modal visual encoders across all attribute types. Moreover,
while single-modality models behave most similarly (i.e. vi-
sion models and language models correlate most strongly
within-modality), all performant models are highly corre-
lated, indicating a degree of convergence, given exposure to
sufficient data of either modality.

2. Related Work
Understanding the lexical semantics learned by language
models is a long-standing concern in distributional seman-
tics. A popular method for evaluating vector representations
of lexemes is the correlation between the cosine similarity
of two words in model space compared to human ratings of
word similarity [9, 19]. Analogous work in the computer vi-
sion literature recently investigated the alignment between
vision model representation spaces and human visual simi-
larity judgements [27, 32, 40].

However, similarities alone cannot explain the dimen-
sions of meaning space, or how the space distinguishes be-
tween human-meaningful attributes. In contrast, concep-
tual attributes (e.g., in the form of McRae norms [28]) can
inform us about the organisation of a model’s representa-
tion space. This type of data has been used to assess the
complementarity of representations learned from language
and vision [9, 10, 12, 13, 39, 47]. While some of this prior
work shows that multimodal representations can improve
attribute prediction [12, 13, 39], others observe only slight

patterns of differences [9, 10, 47].
This latter finding (which we confirm for more recent

models) is in line with more recent work [20, 23, 29], which
posits a linear relationship between vision and language en-
codings. These works also compare across multiple vision
models trained with different levels of supervision, and find
that language supervision induces better downstream per-
formance [29] and alignment with language model repre-
sentations [20, 23] than no supervision.

3. Concept Attributes: Datasets
Understanding concepts via a core set of distinctive at-
tributes is a long-standing quest in cognitive science [2, 14,
33, 37]. One method of discovering which attributes are
important for human categorisation is semantic norm elic-
itation: participants are asked to write down the “charac-
teristics and attributes” [37] or “properties” [28] they asso-
ciate with a particular concept. Pooled over many partici-
pants, semantic norms thus represent a concept as a set of
frequently mentioned salient attributes. While commonly
used, semantic norm data have two important weaknesses.
Firstly, they are biased towards attributes that are easily lex-
icalised. Secondly, they are not complete: less-salient, but
present, attributes are often missing (e.g. TIGER but not CAT
has teeth). To remedy this second issue, we synthetically
“complete” the attribute values from McRae [28] across a
large set of concepts. In addition, we also explore a recent
dataset of ratings across a fixed set of attributes related to
sensory and neurological dimensions not based on elicited
lexicalised norms [7]. Since we are exploring visual and
linguistic representations, the concepts we consider are con-
crete objects, corresponding to English nouns. We use the
set of object concepts from THINGS [17], which also in-
cludes a set of quality-controlled images for each concept.

McRae×THINGS norms. The classic McRae semantic
norms dataset [28] contains 541 concepts and 2 524 unique
attributes. The attributes are classified into different types,
such as “taxonomic”, “functional”, “visual-color”, corre-
sponding to associated brain regions [11]. We use only the
attributes appearing with more than 5 concepts; we also
group redundant attributes (e.g., used by the military,
used by soldiers, used by the army) using semantic simi-
larity,2 resulting in a final set of 278 attributes. We then find
the corresponding norm/attribute values for all 1 854 con-
cepts in THINGS. To obtain a complete mapping between
concepts and attributes, we ask GPT-4o to annotate whether
or not each attribute is a common trait of each concept (see
Appendix A); each concept is briefly disambiguated and de-
scribed using a definition extracted from the THINGS meta-
data. As a sanity check we verify that the norms (concept–
attribute pairs) produced by our method include the norms

2Attributes whose cosine similarity is greater than 0.9 are merged, us-
ing the sentence embedding model all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


in the original McRae set. As desired, the number of con-
cepts positively associated with a given attribute increases.
For example, the number of positive concepts for tastes
good increases from 28 to 335; for lays eggs from 39 to 83;
for is dangerous from 121 to 299. We note that Hansen
and Hebart [15] also used an LLM-based process to col-
lect norms for THINGS, but their process was designed to
elicit more (potentially unique) norms for these concepts,
whereas ours has the goal of comprehensive attribute anno-
tation to avoid false negatives (missing positive values).

Binder ratings. Binder et al. [7] collected dense ratings
for 65 “experiential attributes” of 534 concepts, of which
we use the 155 concepts also found in THINGS. The ex-
periential attributes correspond to lower-level conceptual
dimensions such as visual brightness, somatic pain, or
motor movements in the upper/lower body, and are or-
ganized into 14 different fine-grained domains (vision, so-
matic, etc.), collapsed to 7 coarser domains (sensory, mo-
tor, etc.). Participants used a 7-level rating scale,3 which we
binarize using the median value for each attribute.

4. Models
We study the performance of image-only, language-only,
and multimodally-trained models on concept-attribute pre-
diction. See Appendix C for further model details.

4.1. Vision-only Models
ViT-MAE [16] is a self-supervised visual encoder pre-
trained to reconstruct masked image patches at the pixel
level using a deep Transformer encoder and decoder. DI-
NOv2 [34] is also a self-supervised visual encoder pre-
trained using a combination of image-level and patch-level
objectives using a student and a teacher network [31]. This
model is trained on a very large diverse dataset (142M im-
ages) without labels. Swin-V2 [24] is a self-supervised
visual encoder pretrained on ImageNet-21K to reconstruct
masked image patches using a single linear layer [45]. Max
ViT [42] is a Vision Transformer with Transformer blocks
that combine convolution, block attention, and grid-based
attention. This model is directly trained with a multi-class
classification objective on ImageNet (IN-1K or IN-21K).

4.2. Multimodal Models
CLIP [36] has separate visual and textual encoders that
are jointly optimized to maximize the similarity of image–
sentence pairs. SigLIP [46] also has separate encoders that
are trained to maximize a compute-efficient contrastive sig-
moid loss. PaliGemma [6] is a generative vision-language
model initialized from the SigLIP visual encoder and the
Gemma language model [41], and is then further trained

3Participants answered the question “To what degree do you think of
CONCEPT as having/being associated with ATTRIBUTE?”

on a multimodal conditional language modelling task. We
evaluate the visual encoder at the end of this multi-stage
multimodal pretraining.

4.3. Language-only Models
FastText [30] creates static word embeddings by combin-
ing character n-grams embeddings within a white space-
delimited word. GLoVe [35] also creates static embed-
dings based on aggregated global word-word co-occurrence
statistics. For both FastText and GLoVe we use 300D
embeddings trained on Common Crawl (840B tokens).
Gemma [41] is a 2B parameter causal language model
trained on 3T tokens. DeBERTa-V3 is an language encoder
trained on Wikipedia and the Books Corpus (3.1B words) to
detect replaced tokens in sentences. CLIP [36] also has a
language encoder; we use the 151M parameter model that
was trained with the visual encoder.

5. Methodology
Each concept is represented as the average-pool of instance
representations extracted from a frozen encoder (see Ap-
pendix B for details). We use trained linear probes [1, 4,
21] to measure the extent to which conceptual attributes
(McRae feature norms or Binder attribute ratings) are ev-
ident in image and text representations. This evaluation re-
quires generalizing attributes to unseen concepts, based on
a small set of positive example concepts.

Each attribute is learned with a separate probe. The
probes aim to separate the concepts that are positive
for a given attribute (norm, rating) from the negative
(McRae×THINGS), or low-rated (Binder), concepts. For
each attribute, we train a linear classifier that maps a con-
cept representation to a binary label, using a simple logis-
tic regression.4 We generate 10 train–test splits for each
attribute using 5-fold stratified cross-validation repeated
twice, and report the average performance.

Our main evaluation metric is F1 score. Following [18],
we calculate the F1 selectivity of each probe as the differ-
ence between the F1 score on the correct labelling minus
the expected random performance (i.e. the expected perfor-
mance of a probe that learned a frequency bias). F1 selectiv-
ity results are thus already with regard to a random baseline.

6. Results
The main linear probe accuracy results are shown in Ta-
ble 1. Further results, including qualitative examples and
the breakdown by attribute-type for the Binder dataset, can
be found in Appendices D and E.

4We use sklearn’s default implementation without regularization and
increase the maximum number of iterations to 1 000). We cannot train
more elaborate (MLP) probes since our training datasets are very small,
with few positive examples.
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Figure 2. Performance per attribute type on the McRae×THINGS data with 95% confidence intervals using bootstrapping. Numbers below
each type are the number of attributes per type. Vision models are in reddish colors; language models are in greenish colors.

Model McRae×THINGS Binder

Vision models
Random SigLIP 15.4 9.3
ViT-MAE 35.6 18.8
Max ViT (IN-1K) 29.0 10.4
Max ViT (IN-21K) 43.3 21.5
DINOv2 44.5 22.7
Swin-V2 47.0 23.9

Multimodal vision models
CLIP (image) 48.4 25.5
PaliGemma 49.9 25.0
SigLIP 50.1 25.2

Language models
GloVe 840B 39.1 23.3
FastText 40.2 22.9
CLIP (text) 43.0 21.9
DeBERTa v3 45.5 25.3
Gemma 49.8 25.7

Table 1. Average F1 selectivity of linear probes for semantic
norms on the McRae×THINGS data and concept attribute ratings
on the Binder data, corrected (per-probe) for random performance.

The impact of modality. Across the two datasets,
the multimodal vision encoders are consistently amongst
the highest performing models. However, the text-only
Gemma-2B LLM also ranks highly. The self-supervised
models Swin-V2 is the best vision model, but is outper-
formed by the multimodal vision encoders and Gemma.

Attribute type results. Are vision encoders better at
visual-perceptual features? Do language models encode
more functional-encyclopedic features? Figure 2 shows
the results aggregated per the attribute types given in the
McRae×THINGS dataset. We see that taxonomic, visual-
motion, and taste attributes are the easiest to predict. The
vision models, especially the multimodal models, generally
outperform the language models, apart from Gemma. This

makes sense for visual attributes like colour, but, surpris-
ingly, this is the case even for encyclopedic and functional
attributes, which could be easier to learn from textual in-
puts. Appendix F explores the effect of confounds. Overall,
we see large variation between individual attributes within
the same type. The Binder dataset shows similar patterns
of variance and slightly less differentiation across model
modalities (see Appendix Figures 5 and 6).

Effect of naming. Intriguingly, simple label-supervision
in vision encoders seems to be harmful for learning human-
aligned attributes, considering the relatively worse perfor-
mance of Max ViT compared to Swin-V2. Richer text in-
puts, as seen by CLIP, SigLIP and PaliGemma, are neces-
sary for multimodal complementarity.

7. Conclusion
Our linear probing analysis on two datasets shows that
multimodally-trained vision encoders represent conceptual
attributes better than single-modality encoders. How-
ever, single-modality encoders still perform well. Self-
supervised models such as Swin-V2 have learned a size-
able amount of conceptual attribute knowledge, despite not
having been trained to distinguish between concepts (rather
than instances). For the language models, we find that sim-
ple static embeddings perform well at this concept-level
task, especially compared with the effort required to get
concept representations from Gemma-2B (Appendix G).

There is a long-held belief that multimodally-grounded
representations are needed to overcome the limitations of
learning from only linguistic or visual data. Our results
suggest that Vision and Language encoders encode some-
what complementary views of concepts, inasmuch same-
modality models correlate better than different-modality
models (Appendix Figure 7). However, overall correla-
tions are high, indicating a level of convergence. Pre-
vious claims of modality convergence have used nearest-
neighbours measures [20, 23]; we show similar conver-
gence results using a different linear probing methodology.
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[31] Théo Moutakanni, Maxime Oquab, Marc Szafraniec, Maria
Vakalopoulou, and Piotr Bojanowski. You don’t need
domain-specific data augmentations when scaling self-
supervised learning. In Proc. NeurIPS, 2024. 3

[32] Lukas Muttenthaler, Jonas Dippel, Lorenz Linhardt,
Robert A. Vandermeulen, and Simon Kornblith. Human
alignment of neural network representations. In Proc. ICLR,
2023. 2

[33] Robert M. Nosofsky, Craig A. Sanders, Brian J. Meagher,
and Bruce J. Douglas. Toward the development of a feature-
space representation for a complex natural category domain.
Behavior Research Methods, 50(2):530–556, 2018. 2

[34] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V
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A. Data Collection

Concept–attribute norm annotations. To obtain a com-
plete representation of the THINGS concepts in terms of
the (most frequent) attributes appearing in the McRae
norms, we asked GPT-4o (gpt-4o-2024-08-06) whether
each norm is a valid trait of each concept; Figure 3 shows
the exact prompts. Given 1854 concepts and 278 attributes,
this yields over 515k queries. We used the OpenAI Batch
API for a the total cost of $127.64.

Annotation validation. When extracting the annotations
from the GPT-4o output, we observed that the format was
not always consistent: e.g., the valid field was usually ei-
ther true or false, but sometimes also True, TRUE, yes,
Yes, sometimes, False, no, No (sometimes rendered as a
string, sometimes as a literal); sometimes the valid field
also included explanations for the chosen answer or the con-
cept definition; sometimes the produced JSON used single
quotes, sometimes double quotes. In retrospect, many of
these exceptions may have been prevented by a more pre-
cise prompting, but they were not apparent when testing
at smaller scale. To account for all these exceptions, we
defined a custom parser that managed to extract a boolean
value for each of the outputs. The resulting data is available
on the project’s webpage.

Textual contexts. The best performance for contextual-
ized language models depends on having a collection of
sentences in which the concepts appear. In the absence of a
large and naturally occurring dataset of such sentences, we
prompted the GPT-4o API (gpt-4o-2024-08-06) to collect
the data. We also collected sentences with the addition con-
straint to avoid mentioning any of the positively-labelled at-
tributes for a given concept. (This was in order to reduce the
chance that the resulting embedding literally included fea-
tures for the attributes.) Figure 4 shows the prompts used.
The total cost of collecting the sentences was $26.24.



SYSTEM: “You are asked to decide whether an attribute is a common trait of a concept (to follow). Please answer
the request in JSON format with the following structure: {‘concept’: CONCEPT, ‘attribute’: ATTRIBUTE, ‘valid’:
ANSWER}”

USER: ”Is {attribute} a common trait of {concept}, in the sense of {concept definition}?”

Figure 3. The prompt used to collect the McRae×THINGS dataset.

SYSTEM: “You are asked to write {num} short sentences about a word (to follow). Answer the request by returning
a list of numbered sentences, 1–{num}.”

USER: “Write {num} short sentences about {concept}. You must use {concept} as a noun in each sentence.”

SYSTEM: “You are asked to write {num} short sentences about a word (to follow). Answer the request by returning
a list of numbered sentences, 1–{num}.”

USER: “Write {num} short sentences about {concept}. You must use {concept} as a noun in each sentence. Try to
avoid using the following phrases in any of the sentences: {positive attributes}”

Figure 4. The prompts used to collect sentence contexts for each concept in the THINGS dataset. Top: Unconstrained prompt; Bottom:
Constrained prompt. The constraint tried to prevent GPT4o from mentioning the attributes already associated with a concept.

B. Feature Extraction Details

Visual concept representations. In the visual modality, a
concept is represented by all images from its THINGS con-
cept class. The visual concept is computed by averaging the
embeddings extracted from the last layer of a given vision
encoder. Since many of the vision models produce a dense
grid of embeddings, we obtain a single vector by average
pooling the embeddings spatially.

Textual concept embeddings. In the language modality,
a concept is represented by the English noun label given by
McRae. Static word embedding models (GloVe, FastText)
return an embedding directly, using only the surface form of
the word. The static embeddings for multi-word concepts
are averaged; homophones are not distinguished. Contex-
tual language models (Gemma, DeBERTa v3, and CLIP)
require words to be embedded in context to extract mean-
ingful vector representations. In our experiments, a word’s
conceptual representation is the average over 10 sentences
of the word in context (collected from the GPT4o API, see
Appendix A), following [8, 43]. We find that each model
requires a different extraction technique in order to achieve
reasonable performance (see Appendix G). The best rep-
resentations are found by mean-pooling over multiple lay-
ers [43]. For Gemma, we obtain much better performance
using only the last token of the target concept word, while
for the masked language model (DeBERTa v3) we use the
mean over all concept tokens.

ViT-MAE facebook/vit-mae-large
DINOv2 facebook/dinov2-large
Swin-V2 swinv2 large window12 192.ms in22k
Max ViT-1K maxvit large tf 384.in1k
CLIP openai/clip-vit-large-patch14
SigLIP google/siglip-so400m-patch14-224
PaliGemma google/paligemma-3b-mix-224
GLoVe glove-840b-300d
Gemma-2B google/gemma-2b
DeBERTa-v3 deberta-v3

Table 2. Models used in this paper.

C. Model Details
Table 2 shows the exact model versions used in the exper-
iments and Table 3 provides an overview of the models in
terms of their training data, objective function, type of su-
pervision, and performance on the ImageNet-1K dataset.

D. Further Results
Detailed results. Table 4 presents the results in terms of
precision, recall, raw F1, and F1 selectivity scores for both
the McRae×THINGS and Binder datasets. The model rank-
ings are similar across all metrics.

Per-attribute results on Binder. Figure 5 presents the
detailed results on each of the 67 attributes from the Binder



Model Params. Dataset Size Objective Labels IN-1K

FastText – CommonCrawl 840B NLL – –
GLoVe – CommonCrawl 840B NLL – –
DeBERTa-V3 86M Wiki+Books 3.1B RTD – –
Gemma-2B 2B Private 6T NLL – –

ViT-MAE 304M ImageNet-1K 1.3M MSE N/A 85.9
Max ViT† 212M ImageNet-1K/-21K 1.3M/14M Classification Object classes 85.2/88.3
Swin-V2† 197M ImageNet-21K 14M SimMIM N/A 87.7
DINOv2 304M LVD 142M DINO + iBOT N/A 86.3

CLIP 304M Private 400M Contrastive Sentences 83.9
SigLIP 400M Private 4B Sigmoid Contr. Sentences 83.2
PaliGemma 400M Private 1B NLL Sentences N/A

Table 3. Overview of the models studied in this paper. The number of parameters in the encoder, the type and size of the pretraining data,
the pretraining objective, and, where applicable, the reported ImageNet1K classification accuracy at 224px × 224px, except where noted
otherwise. †: 384px × 384px

dataset. Figure 6 shows the results aggregated per attribute
type (7 types). Results by attribute are somewhat unin-
tuitive: visual attributes like “vision”, “shape”, “texture’
have low scores, compared to some “social”, “emotion”, or
“drive” attributes. This can be explained by observing that
high values of these attributes are for concepts that (for ex-
ample) “are associated with having a texture”, rather than a
specific texture: this may be something that vision models,
that are trained to distinguish specific kinds of texture, have
trouble with. We see that all models pattern quite similarly,
though the stronger language models (Gemma, DeBERTa
v3) are slightly better for “drive”, “emotion”, and “motor”
domains.

Correlation between model predictions. Figure 7 shows
the Pearson correlation of probe accuracy for all pairs of
models. For the McRae×THINGS dataset, and to a lesser
extent on Binder, we see modality clusters, where vision
encoders (with the exception of Max ViT IN-1K) are corre-
lated with each other, and likewise the language encoders.
Correlations are quite high overall, however, indicating that
all encoders across modalities are rather similar. Figure 8
visualizes norm prediction performance of specific pairs
of models: vision-only Swin-V2 vs text-only Gemma, and
CLIP image vs CLIP text.

E. Qualitative Results
In Figure 9 we show examples of predictions for four at-
tributes (has 4 legs, made of wood, is dangerous, tastes
sweet); for each we show five randomly sampled con-
cepts. We show the best vision-only model (Swin-V2),
the best language-only model (Gemma), and the language-
and-vision models (CLIP image and CLIP text). For the
attribute has 4 legs we see that the vision-based models

(Swin-V2 and CLIP-image) label TABLECLOTH as positive,
likely due to visual co-occurrence with TABLE. All models
struggle with the difficult cases of KANGAROO, predicted
as having 4 legs, and SKI, predicted as not made of wood.
Some concept–attribute pairs are arguably ambiguous—is a
CORKSCREW dangerous? is a TOMATO SAUCE sweet?—
resulting in disagreements between models.

F. Possible Confounds between Attributes
Since linear probes are learned using attribute extensions
(the set of positive examples of an attribute), we can’t be
sure they actually learn the attribute characteristics, and not
some closely correlated, but more visually/textually avail-
able, attribute. For example, the two taste attributes (tastes
good and tastes sweet) have extensions that are subsets
of the food supercategory, which is learnable from visual
features alone (e.g. as demonstrated by high performance
on the taxonomic is food norm for all models, including
DINOv2). Likewise, many of the motion attributes cap-
ture subsets of animals (eats grass). As a initial analysis,
we check whether models are better at learning attributes
that coincide with taxonomic supercategories, as provided
by the THINGS dataset. The resulting correlations (Table 5)
are highest for CLIP-image (0.594), FastText (0.578), and
GloVe 840B (0.564), a heterogenous set of models in terms
of modality and their linear probing accuracy.

G. Failures in Extracting Contextualized Tex-
tual Representations

Concept representations can, in principle, be extracted from
any language model using just the surface-form of the con-
cept label token(s). Here, we report a collection of negative
results for this seemingly simple task using contextual lan-



McRae×THINGS Binder

Model P R F1 F1 sel P R F1 F1 sel

Vision models
Random SigLIP 26.2 28.0 26.8 15.4 60.6 60.3 59.8 9.3
ViT-MAE 49.6 46.1 47.0 35.6 70.0 70.0 69.4 18.8
Max ViT (IN-1K) 38.7 44.1 40.4 29.0 62.2 61.0 61.0 10.4
Max ViT (IN-21K) 63.5 50.3 54.7 43.3 71.6 73.6 72.0 21.5
DINOv2 59.8 54.0 55.9 44.5 73.8 73.7 73.2 22.7
Swin-V2 67.3 53.8 58.4 47.0 74.8 75.2 74.5 23.9

Multimodal vision models
CLIP (image) 63.5 58.1 59.8 48.4 77.0 76.2 76.1 25.5
PaliGemma 67.3 58.2 61.3 49.9 76.0 76.1 75.5 25.0
SigLIP 67.5 58.4 61.5 50.1 76.8 76.0 75.8 25.2

Language models
GloVe 840B 51.9 51.1 50.5 39.1 74.6 74.1 73.9 23.3
FastText 55.1 50.7 51.6 40.2 74.0 74.1 73.5 22.9
CLIP (text) 60.2 51.7 54.4 43.0 73.2 72.7 72.5 21.9
DeBERTa v3 64.2 53.2 56.9 45.5 76.9 76.1 75.9 25.3
Gemma 68.7 57.2 61.2 49.8 77.1 76.5 76.3 25.7

Table 4. Detailed results, in terms of precision (P), recall (R), F1 score (F1) and F1 selectivity (F1 sel) score, of concept attribute linear
probes on the McRae×THINGS and Binder data.

Model Correlation

Random SigLIP 0.339
Max ViT (IN-1K) 0.413
ViT-MAE 0.495
DeBERTa v3 0.536
Max ViT (IN-21K) 0.542
Gemma 0.543
Swin-V2 0.545
CLIP (text) 0.550
DINOv2 0.552
PaliGemma 0.554
SigLIP 0.561
GloVe 840B 0.564
FastText 0.578
CLIP (image) 0.594

Table 5. McRae×THINGS dataset: Correlation between per-
attribute probing performance, as measured by F1-selectivity, and
the proportion of the attribute’s extension belonging to a single su-
percategory (i.e. the extent to which predicting the supercategory
would lead to high precision).

guage models. Table 6 presents the complete results of our
endeavours. Initial experiments with the Gemma-2B lan-
guage model focused on using only the static embedding
layer, which resulted in complete failure to train meaning-

ful probes (A). Closer inspection revealed that the Gemma-
2B tokenizer tokenizes single word inputs differently from
words appearing in a sentence (i.e., words preceded by a
space): <bos>aardvark→{aard, vark} instead of { aard,
vark}. Using the within-sentence (space-prepended) tok-
enization, performance improved but was still lower than
expected (B). Following Bommasani et al. [8], we decided
to collect contextualized sentence representations over a
set of textual contexts for each concept. We collected 50
sentences from the GPT-4o API for each context (see Ap-
pendix A for details). These per sentence embeddings are
averaged over multiple sentences, analogous to averaging
the embeddings over multiple image instances. This greatly
improved performance compared to using the embedding
layer (C), and extracting the representation from the last
later further improved performance (D). Another improve-
ment was obtained by extracting the representation from the
final subword token of a concept, i.e. vark in the tokeniza-
tion of aardvark (E), and the final improvement involved
extracting the representation as an average over multiple
Transformer layers (I). The representations obtained from
50 sentences did not improve performance (J). Performance
was slightly reduced using the contexts generated with the
semantic norm constraints (K), indicating the model could
use information from context sentences for this task. With
this methodology fixed, we quickly found better representa-
tions for the DeBERTa v3 language encoder (N), and con-
firmed that this would also result in marginal improvements
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Figure 5. F1 selectivity for the Binder attribute ratings. Note that raw F1 score is much higher: the random baseline (against which F1

selectivity is calculated) is 50% for evenly-distributed data.

for BERT (Q). We also report results for BERT base (un-
cased) and GPT-2 for completeness. We find that BERT
base (uncased) performs much worse than DeBERTa v3 in
similar conditions (N vs Q), and that GPT-2 also performs
much worse than Gemma (O vs D). Given these findings,
we do not include BERT or GPT-2 in our main results.



Sensory
(29)

Motor
(4)

Space
(7)

Time
(6)

Social
(5)

Emotion
(10)

Drive
(4)

0

20

40

F1
 s

el
ec

tiv
ity

ViT-MAE
Max ViT (IN-21K)

DINOv2
Swin-V2

CLIP (image)
PaliGemma

SigLIP
GloVe 840B

FastText
CLIP (text)

DeBERTa v3
Gemma

Figure 6. Results (F1-sel) per attribute domain on the Binder data. The number below each domain indicates the number of attributes
belonging to that domain. The error bars denote 95% confidence intervals using bootstrapping. Vision models are in reddish colors, while
language models are in greenish colors.

R
an

do
m

 S
ig

LI
P

Vi
T-

M
AE

M
ax

 V
iT

 (I
N

-1
K)

M
ax

 V
iT

 (I
N

-2
1K

)

D
IN

O
v2

Sw
in

-V
2

C
LI

P 
(im

ag
e)

Pa
liG

em
m

a

Si
gL

IP

G
lo

Ve
 8

40
B

Fa
st

Te
xt

C
LI

P 
(te

xt
)

D
eB

ER
Ta

 v
3

G
em

m
a

Random SigLIP

ViT-MAE

Max ViT (IN-1K)

Max ViT (IN-21K)

DINOv2

Swin-V2

CLIP (image)

PaliGemma

SigLIP

GloVe 840B

FastText

CLIP (text)

DeBERTa v3

Gemma

1.0 .83 .80 .73 .72 .73 .70 .72 .71 .75 .74 .76 .71 .73

.83 1.0 .80 .89 .94 .92 .89 .91 .89 .85 .84 .90 .85 .86

.80 .80 1.0 .82 .80 .81 .77 .80 .79 .77 .76 .77 .72 .74

.73 .89 .82 1.0 .92 .96 .92 .93 .92 .85 .85 .89 .87 .88

.72 .94 .80 .92 1.0 .95 .94 .96 .94 .87 .86 .91 .86 .88

.73 .92 .81 .96 .95 1.0 .94 .96 .95 .86 .86 .90 .88 .91

.70 .89 .77 .92 .94 .94 1.0 .96 .96 .89 .89 .91 .90 .92

.72 .91 .80 .93 .96 .96 .96 1.0 .98 .87 .88 .92 .89 .91

.71 .89 .79 .92 .94 .95 .96 .98 1.0 .90 .90 .91 .90 .93

.75 .85 .77 .85 .87 .86 .89 .87 .90 1.0 .97 .91 .93 .92

.74 .84 .76 .85 .86 .86 .89 .88 .90 .97 1.0 .91 .92 .93

.76 .90 .77 .89 .91 .90 .91 .92 .91 .91 .91 1.0 .90 .92

.71 .85 .72 .87 .86 .88 .90 .89 .90 .93 .92 .90 1.0 .95

.73 .86 .74 .88 .88 .91 .92 .91 .93 .92 .93 .92 .95 1.0

McRae×THINGS

R
an

do
m

 S
ig

LI
P

Vi
T-

M
AE

M
ax

 V
iT

 (I
N

-1
K)

M
ax

 V
iT

 (I
N

-2
1K

)

D
IN

O
v2

Sw
in

-V
2

C
LI

P 
(im

ag
e)

Pa
liG

em
m

a

Si
gL

IP

G
lo

Ve
 8

40
B

Fa
st

Te
xt

C
LI

P 
(te

xt
)

D
eB

ER
Ta

 v
3

G
em

m
a

1.0 .68 .36 .56 .70 .70 .66 .69 .63 .64 .62 .72 .62 .64

.68 1.0 .49 .76 .89 .86 .83 .89 .84 .81 .82 .82 .79 .81

.36 .49 1.0 .38 .51 .47 .55 .49 .46 .30 .34 .40 .33 .36

.56 .76 .38 1.0 .82 .87 .84 .87 .88 .81 .83 .80 .83 .81

.70 .89 .51 .82 1.0 .90 .91 .94 .90 .85 .88 .85 .83 .84

.70 .86 .47 .87 .90 1.0 .90 .92 .89 .85 .88 .87 .85 .88

.66 .83 .55 .84 .91 .90 1.0 .94 .93 .82 .86 .85 .85 .85

.69 .89 .49 .87 .94 .92 .94 1.0 .96 .87 .90 .90 .89 .88

.63 .84 .46 .88 .90 .89 .93 .96 1.0 .86 .90 .86 .90 .87

.64 .81 .30 .81 .85 .85 .82 .87 .86 1.0 .95 .87 .91 .91

.62 .82 .34 .83 .88 .88 .86 .90 .90 .95 1.0 .89 .91 .91

.72 .82 .40 .80 .85 .87 .85 .90 .86 .87 .89 1.0 .85 .88

.62 .79 .33 .83 .83 .85 .85 .89 .90 .91 .91 .85 1.0 .91

.64 .81 .36 .81 .84 .88 .85 .88 .87 .91 .91 .88 .91 1.0

Binder

Figure 7. Pearson correlation between models based on attribute performance on the McRae×THINGS and Binder datasets.
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Figure 8. Per attribute comparison between pairs of models in terms of the F1 selectivity score. Left: Swin-v2 vs Gemma. Right: CLIP
(image) vs CLIP (text).

Model F1 sel. Five random samples per feature norm and their predictions

has 4 legs (visual: form & surface)
DOG + STOOL + TABLECLOTH – ALTAR – KANGAROO –

Swin-V2 78.5 ✓ ✓ ✓ • ✓
Gemma 75.7 ✓ • • ✓ ✓
CLIP (image) 76.6 ✓ ✓ ✓ ✓ ✓
CLIP (text) 71.6 ✓ ✓ ✓ ✓ ✓

made of wood (visual: form & surface)
AXE + SKI + BOW3 – PUPPET – CARDBOARD –

Swin-V2 46.1 ✓ • • • ✓
Gemma 49.7 ✓ • • ✓ ✓
CLIP (image) 47.8 ✓ • • • •
CLIP (text) 43.8 ✓ • ✓ ✓ ✓

is dangerous (encyclopaedic)
DYNAMITE + BISON + RAZOR + CORKSCREW – TATTOO –

Swin-V2 38.7 ✓ ✓ • ✓ •
Gemma 51.0 ✓ • ✓ • ✓
CLIP (image) 44.8 ✓ ✓ • • •
CLIP (text) 38.9 ✓ ✓ ✓ • •

tastes sweet (taste)
PLUM + RAISIN + CAKE MIX + TOMATO SAUCE – CRYSTAL1 –

Swin-V2 72.9 ✓ ✓ • • ✓
Gemma 71.8 ✓ • ✓ ✓ •
CLIP (image) 72.9 ✓ ✓ • • •
CLIP (text) 59.8 ✓ ✓ ✓ • •

Figure 9. Five random predictions of linear probes trained on four attributes. Positive concepts are indicated by +, negative concepts by –.
The linear probes are trained on embeddings from one of the four models: Swin-V2, Gemma, CLIP image and text encoders. If a model
predicts a concept as having the attribute, we indicate this by ✓; otherwise we use •. The correctness of the prediction is color-coded:
green for a correct prediction, red for an incorrect one. In the second column, we show the F1 selectivity (%) for the each of the models
and attributes.



McRae×THINGS

Model Input Seq. Layer P R F1 F1 sel

A Gemma word mean 0 (emb) 43.2 25.3 30.3 18.8
B Gemma word (space) mean 0 (emb) 58.3 37.9 44.2 32.8
C Gemma sentences (10) mean 1 61.2 41.8 47.9 36.5
D Gemma sentences (10) mean 18 (last) 63.8 52.4 56.3 44.9
E Gemma sentences (10) last 18 (last) 66.5 56.8 60.2 48.8
F Gemma sentences (10) mean 0–6 62.2 46.3 51.5 40.1
G Gemma sentences (10) mean 0–9 62.3 48.7 53.2 41.8
H Gemma sentences (10) mean 9–18 65.9 53.9 58.0 46.6
I Gemma sentences (10) last 9–18 68.7 57.2 61.2 49.8
J Gemma sentences (50) mean 18 (last) 62.7 52.1 55.8 44.4
K Gemma sentences (50, constr.) mean 18 (last) 62.1 51.6 55.2 43.8

L DeBERTa v3 sentences (10) mean 12 (last) 43.9 42.9 42.8 31.4
M DeBERTa v3 sentences (10) mean 0–4 62.9 51.6 55.3 43.9
N DeBERTa v3 sentences (10) mean 0–6 64.2 53.2 56.9 45.5

O GPT2 sentences (10) mean 12 (last) 45.4 41.1 42.4 31.0

P BERT base uncased sentences (10) mean 0–4 48.9 41.1 43.5 32.0
Q BERT base uncased sentences (10) mean 0–6 50.9 42.7 45.2 33.8

Table 6. The effects of input (isolated concept word or contextual sentences), sequence pooling (mean or last token), and layer (individual
layer or averaged over a range of layers) for the contextualised language models.
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