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Figure 1: Can we forecast our gaze beyond the frame? We aim to predict a person’s future visual
focus in 3D surrounding environment by lifting egocentric 2D gaze history to 3D regions and
forecasting future 3D visual spans from previous observations.

Abstract

People continuously perceive and interact with their surroundings based on un-
derlying intentions that drive their exploration and behaviors. While research in
egocentric user and scene understanding has focused primarily on motion and
contact-based interaction, forecasting human visual perception itself remains less
explored despite its fundamental role in guiding human actions and its implications
for AR/VR and assistive technologies. We address the challenge of egocentric 3D
visual span forecasting, predicting where a person’s visual perception will focus
next within their three-dimensional environment. To this end, we propose EgoSpan-
Lift, a novel method that transforms egocentric visual span forecasting from 2D
image planes to 3D scenes. EgoSpanLift converts SLAM-derived keypoints into
gaze-compatible geometry and extracts volumetric visual span regions. We further
combine EgoSpanLift with 3D U-Net and unidirectional transformers, enabling
spatio-temporal fusion to efficiently predict future visual span in the 3D grid. In
addition, we curate a comprehensive benchmark from raw egocentric multisensory
data, creating a testbed with 364.6K samples for 3D visual span forecasting. Our
approach outperforms competitive baselines for egocentric 2D gaze anticipation
and 3D localization while achieving comparable results even when projected back
onto 2D image planes without additional 2D-specific training.

1 Introduction

People continuously perceive and interact with their surrounding environments in everyday life.
Underlying these interactions are their intentions, which drive them to actively explore their surround-
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ings and engage in various behaviors. Understanding how individuals will perceive contexts and take
actions in advance becomes a crucial element in comprehending their overall behavior patterns. The
ability to accurately anticipate behavior not only reduces latency in real-time egocentric applications
but also serves as a foundation for proactively delivering information and services in our daily lives,
e.g., immersive VR/AR, ambient computing, and assisting individuals with impairments.

To better understand a person’s intentions, research in egocentric user and scene understanding has
been widely explored, primarily involving action and contact-based interaction. For instance, when
given egocentric visual or multimodal context, studies have focused on predicting subsequent human
actions [1, 2, 3] or localizing regions in 2D images where interaction will occur [4]. Recent studies
have actively investigated human pose or motion forecasting in 3D space [5, 6, 7], as well as contact
location prediction during object interactions [8, 9]. However, attempts to forecast human visual
perception itself remain less explored. Studies in vision science and cognitive psychology suggest
that perceptual exploration significantly influences human motion [10, 11, 12, 13], and intuitively,
most of our daily interactions follow perception, i.e., we look before we leap. Therefore, forecasting
visual perception is essential for proactively understanding and anticipating human behavior.

In this work, we address the novel challenge of egocentric 3D visual span forecasting–forecasting
where a person’s visual perception will be focused in the surrounding environment. We draw
inspiration from the vision science literature regarding text reading [14, 15] and object/scene per-
ception [16, 17, 18], where the visual span often refers to the fixated region of human vision from
peripheral awareness to precise foveal gaze fixations. In our context, we adopt this term as 3D Visual
Span to refer to egocentric visual focus in 3D surroundings for addressing daily and casual behaviors
and interactions. While previous research has shown impressive results in predicting egocentric future
gaze fixations on 2D image frames [19, 20], forecasting gaze for dynamic scenarios in 2D remains
unclear. Gaze anticipation requires jointly modeling the user’s self-motion and attention–both of
which are naturally directed toward specific locations in 3D space rather than arbitrary regions in 2D
projections. That is, modeling visual span as 3D regions offers a more accurate and consistent repre-
sentation of perceptual focus even beyond our current observations, unlocking promising egocentric
applications that call for robust and proactive content rendering [21, 22].

Our main contribution comprises three key components: (i) a method for bridging egocentric visual
spans and 3D scenes, (ii) a framework for forecasting future spans, and (iii) a newly curated benchmark
from raw egocentric multisensory data. First, we propose EgoSpanLift, a novel method that lifts
visual spans in 2D image frames into structured 3D volumetric regions, as illustrated in Fig. 1. Unlike
existing 3D egocentric localization approaches on motion trajectories or object interactions, our
method uniquely transforms SLAM-derived keypoints into gaze-compatible geometry to precisely
extract volumetric regions corresponding to 3D visual span. EgoSpanLift encodes multi-level span
information grounded in vision science [15]–ranging from wide head-orientation-based regions to
fine-grained foveal fixations–enabling a semantically rich understanding of where and how people
look in space. Building on this, we introduce an autoregressive forecasting framework that combines
EgoSpanLift with a 3D U-Net for spatial representation using a unidirectional transformer for temporal
modeling, effectively capturing the evolving dynamics of egocentric visual attention.

To establish a testbed at scale, we rigorously curate raw egocentric multisensory data streams [23, 24]
for benchmarking 3D visual span forecasting under daily and skilled activity scenarios, namely
FoVS-Aria and FoVS-EgoExo, covering a total of 364.6K samples. Our framework outperforms
several competitive baselines, including frameworks for 3D egocentric localization and 2D gaze
prediction models equipped with our EgoSpanLift. We conduct extensive analysis across varying
spatio-temporal windows and activity categories. Notably, when our 3D visual span predictions are
back-projected onto 2D image planes, they achieve accuracy on par with 2D-specific models even
without 2D-specific training, demonstrating the versatility and robustness of modeling gaze in 3D.

2 Related Work

Egocentric Anticipation of User Behavior. Predicting user behavior from egocentric observations
represents one of the core challenges in egocentric user and scene understanding. The EPIC-Kitchens
dataset [1] introduced the challenge of predicting future action classes within procedural kitchen
activities. Various approaches have been proposed to address this problem, including dual LSTM
architectures for past and future modeling [2], and contrastive learning with RNNs for future visual
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feature learning [3]. Beyond semantic action classification, studies have also proposed methods for
predicting locomotion trajectories from current user observations [4, 25, 26]. For more detailed user
posture prediction beyond trajectories [27], recent work has utilized reinforcement learning-based
recurrent control [5], MLP-based residual modeling [6], and video-pose bimodal transformers [7].

Egocentric Gaze Prediction Understanding and predicting human gaze behavior is crucial for
modeling various aspects of perception and interaction. Many studies primarily aim to estimate gaze
direction from facial/head images [28, 29, 30], predict the object of visual attention [31, 32, 33, 34, 35],
focus on VR/mobile scenarios [36, 37, 38, 39, 40], and model the interplay with language [41, 42].
Estimating and predicting gaze from egocentric perspectives pose additional challenges due to
complex egocentric scenes and a combination of dynamic gaze shifts with frequent head and body
movements, i.e., self-motion. Egocentric gaze estimation often involves bottom-up saliency [43],
joint gaze-action prediction [44], and global-local correlation [45].

On the other hand, the frontier of gaze anticipation remains relatively unexplored due to insufficient
input context for predicting future frames. Zhang et al. [19] employ a GAN to synthesize future
frames and forecast gaze locations, while Lai et al. [20] also introduce a multimodal anticipation
model that uses contrastive spatial/temporal separable fusion to capture audio-visual correlations and
improve future gaze prediction. However, predicting gaze in 2D images is often ill-posed in dynamic
scenarios, as it requires jointly modeling the user’s self-motion and attention, which are inherently
directed toward specific locations in 3D rather than arbitrary regions in 2D frames. In this work, we
address these issues by directly predicting the user’s gaze and visual focus in 3D scenes through
spatio-temporal fusion of volumetric representations.

Egocentric 3D Interaction. Research on egocentric interaction has evolved from 2D to 3D under-
standing and from contact-based to intention-based analysis. Earlier work on 2D image interaction
analysis primarily addresses hand detection, segmentation, and pose estimation [46, 47, 48, 49, 50].
Moving beyond 2D approaches, 3D-based frameworks leverage hand poses and object interactions
involving physical contacts from RGB(-D) inputs [51, 52, 53, 54, 55, 56, 57], allowing for precise
prediction of hand trajectories and action targets [58, 59, 60]. Recent line of work interprets potential
3D interaction regions as spatial affordances, learned from either synthesized geometry and motion [9]
or intentional cues in 2D interaction images [8].

Concurrent research with ours, FICTION [61], focuses on 4D human-object interaction. FICTION
jointly predicts the 3D bounding box of objects involved in physical interactions along with the user’s
spatial location and body poses where contact occurs at future time steps. A key distinction of our
work is that it address the forecasting problem for 3D regions where the user’s visual perception
is focused and precedes these everyday actions and interactions. Our predictions take the form
of multi-level 3D volumetric regions of the visual span, enabling more fine-grained forecasting of
potential interaction hotspots than bounding boxes.

3 EgoSpanLift: Lifting Egocentric Gaze Prediction from 2D to 3D

3.1 Preliminary: Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) refers to the problem of jointly estimating an
agent’s position and reconstructing the surrounding 3D environment from sequential observa-
tions. It is often formulated as a probabilistic framework that maximizes the posterior distribution
P (xt,m | c1..t−1,o1..t−1), where xt denotes the pose at time t, m is the 3D mapping information,
and c1..t−1,o1..t−1 are the control and observation history [62]. SLAM algorithms have been devel-
oped across sensing modalities, including LiDAR and RGB-D, with visual SLAM offering solutions
based on feature matching [63], direct photometric tracking [64, 65], and visual-inertial fusion [66].
With growing efficiency and robustness, these methods output semidense 3D keypoints and time-
aligned camera poses, providing structurally faithful and computationally efficient information about
3D scenes that users perceive and interact with from an egocentric perspective.

3.2 Keypoint Selection and Classification

Observation-based Keypoint Selection. An overview of EgoSpanLift is illustrated in Fig. 2. Our
method initiates with a set of 3D semidense keypoints P and localization information E , typically
obtained through visual SLAM [67]. Specifically, each pi ∈ P consists of (pi, σi, ti), where pi ∈ R3
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Figure 2: Overview of EgoSpanLift. Using 3D semidense keypoints from egocentric observations,
e.g., SLAM, we filter observed keypoints at a given time window and leverage multi-level human
visual span to compute volumetric regions in 3D scenes.

is the 3D keypoint in global coordinates, σi represents the confidence of estimation in the form of the
variance of inverse distance, and ti denotes the time at which the point was observed. Additionally,
Et ∈ E represents an SE(3) element that transforms from the local egocentric frame (i.e., central

pupil frame) at time t to the global coordinate system, i.e., Et =

(
Rt tt
0T 1

)
, where the z-axis in the

local coordinates denotes forward. From this, we obtain the set of keypoints observed at time t:

Pt = {pi ∈ P | ti = t, ∥pi − tt∥1 < D/2, If (pi;Pt) = 1}, (1)

where the first term serves as a filter that preserves visually observed keypoints at the given time,
and the second term acts as a spatial filter that retains only points within a cubic boundary of
length D around the user. The last term, If (pi;P), is an indicator function returning the result of
neighbor-based statistical outlier filtering f , where 1 indicates validity and 0 indicates invalidity.

We can establish the rationale for each filtering term as follows. For temporal filtering, we consider
only a limited context within a temporal window spanning a few seconds before the current time
rather than all keypoints observed from beginning to end. This enables operation without requiring
an offline algorithm and prevents the inclusion of points that were visible from different viewpoints
but are currently occluded (e.g., items inside the fridge). For spatial filtering, we restrict the area to
prevent gaze from erroneously overshooting to distant locations and to focus on regions within the
user’s vicinity that will be effectively perceived and interacted with. In most experiments, we used
D = 3.2m, though we discuss experiments extending beyond 6m in Sec. 5.2. For outlier removal, we
use neighbor-based statistical filtering instead of confidence-based filtering, i.e., σi, which is typically
used when extracting static 3D scenes from SLAM outputs. This approach can retain important
dynamic elements in egocentric scenes, such as moving people, the user’s hands, and other dynamic
objects in the space, while effectively removing invalid points.

Gaze-based Keypoint Classification. Using keypoints from Pt, we classify points that fall within
a visual span defined around the user’s gaze direction after transforming each point to the local
coordinates as E−1

t pi. To determine whether points are included in the visual span, we utilize a
3D gaze representation defined as a cone extending from the user. While some previous works
have employed egocentric 3D representations in the form of directions or cones, e.g., intersection
between gaze vectors and triangulated meshes of static objects [68] or overlap of multiple users’ gaze
cones [69], our approach features a key distinction as it covers more general use cases by addressing
which local regions of a 3D scene capture an individual user’s visual attention during daily activities
without discriminating between dynamic and static components.

When the aforementioned gaze cone and keypoints at the local coordinates are projected onto the
z = 1 plane, they are represented as green ellipses and black dots in the lower left of Fig. 2-(b). We
select the dots that fall within these ellipses using the angular distance threshold θ (i.e., eccentricity):

Qθ,gt

t =

{
pi ∈ Pt

∣∣∣∣∣ < E−1
t pi,gt >

∥E−1
t pi∥∥gt∥

> cos θ

}
, (2)
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where < ·, · > denotes inner product, and gt denotes the gaze direction in a local frame at time t.
Through this, we can classify a set of points that correspond to the egocentric 3D visual span.

While employing SLAM for visual spans may pose challenges in modeling regions between semidense
keypoints, our approach remains effective for two main reasons. First, human visual span or peripheral
vision is known to be significantly influenced by contrast as well as eccentricity from the gaze
direction [70, 71]. Since people overwhelmingly interact with visually salient objects rather than
empty white walls, this approach is highly compatible with keypoints obtained through SLAM.
Indeed, >99% of the 3D visual spans in our curated data samples from raw egocentric multisensory
observations overlapped with SLAM keypoints. Furthermore, rather than relying on keypoints as
inputs or outputs, we represent visual spans as volumetric regions derived from them, e.g., Eq. 3, which
provides good coverage of the given 3D scene and helps mitigate the aforementioned challenges.

3.3 Multi-level Volumetric Region Localization

Using classified keypoints Qθ,gt
t in a cube of length D, we obtain regions corresponding to visual

spans by computing their occupancy in a 3D Cartesian grid with resolution R and duration [tb, te]:

V θ,gt

[tb,te]
(i, j, k) = I(

∣∣{pi ∈ ∪t∈[tb,te]Q
θ,gt

t |0 ≤ (pi−ttb+D/2)×R/D−(i, j, k) ≤ 1}
∣∣ > 0), (3)

where I is an indicator function and |·| represents the cardinality of a set. This approach indirectly
covers the regions not captured by semidense keypoints while maintaining constant space complexity
regardless of the increasing number of points with longer durations. Also, since V is represented as a
binary occupancy grid, computing the similarity between overlapped visual spans can be trivial.

Inspired by taxonomy defined in vision science literature [15], we categorize 3D volumetric regions
of vision spans into four levels, as illustrated in Fig. 2. First, foveal localization V θf ,gt corresponds
to the conventional 2D gaze localization area, covering a highly localized region with an eccentricity
of θf = 2◦. While foveal span exists in most regions, i.e., around 80% in our curated dataset, there
may be instances where it is absent due to our use of semidense keypoints. To address this limitation,
we utilize spans corresponding to wider eccentricities: the central span V θc,gt with θc = 8◦ and
the near peripheral span V θp,gt with θp = 30◦. Finally, regions observed in spans defined beyond
these are significantly influenced by head orientation as much as the gaze, with a complex interplay
between the two [72, 73]. Therefore, we employ the most broadly defined span as the region within
the field-of-view centered on head orientation, i.e., V θo,z, which is analogous to the view frustum
capturing visual input in 2D setups (e.g., θo = 55◦ in our experiments). Note that while continuous
distributions such as Gaussian could be used, we analyze through the lens of this well-established
taxonomy for intuitive evaluation and level-by-level integration across multiple timesteps.

As a result, for a given temporal window, we obtain multi-level volumetric regions that represent
varying degrees of user visual attention focus in the surrounding environment. Since EgoSpanLift
does not rely on time-consuming algorithms, when combined with existing platforms capable of
real-time SLAM and gaze processing [74, 75, 76], it enables the acquisition of 3D information about
human visual attention with trivial latency. Additionally, its representation as points or volumetric
regions in a 3D Cartesian grid facilitates adaptation to existing 3D frameworks.

4 Forecasting Network

One of the most representative problems when considering a user’s visual span in 3D involves
predicting future visual attention based on past contextual focus patterns. To this end, we introduce
a straightforward framework to forecast 3D visual spans for future Tf frames, given the history of
observations from past Tp frames, as illustrated in Fig. 3-(a). Note that our primary interest lies not
in precisely matching what was seen in each respective frame but rather in understanding the trends
and coverage areas of the user’s attention over a given period. To perform precise evaluation while
minimizing the effects of exploration order of gaze, we use the union of visual spans over Tf frames
as our prediction target.

Autoregressive Encoder. Given localization information Eprev and observed semidense keypoints
Pprev for the past Tp seconds, we obtain multi-level volumetric regions representing previous visual
spans through EgoSpanLift as described in Sec. 3. Specifically, we utilize a grid of size Tp × (4 +
1)×R×R×R as input, where 4 represents visual spans ranging from orientation to foveal span,
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Figure 3: (a) Illustration of our framework and (b-d) diverse scenario examples in our curated dataset.

and 1 represents the complete scene in the given space regardless of span inclusion. To extract spatial
features from this input grid, we initially compress them using the encoder of a 3D U-Net [77]. By
reducing the spatial dimension by a factor of R through pooling, we obtain encoded features of size
Tp × C, where C is the feature dimension. Note that performing spatial reduction by a factor smaller
than R showed negligible impact on performance.

While using Tp embeddings encodes how visual span has evolved over time, we separately incorporate
a global embedding to serve as a prediction head. Thus, we utilize an embedding that encodes all visual
spans within the duration as a global embedding, serving as our prediction head. By appending this
embedding after the other embeddings, we obtain features of size (Tp +1)×C, i.e., v1, ..., vTp

, vhead.
To learn temporal dependencies among these features and increase the model’s expressiveness, we
employ a transformer with a unidirectional attention mask [78, 79], ensuring that information about
temporal dynamics is integrated toward the final global embedding.

Decoder. Using the output embedding ṽhead that corresponds to vhead from the transformer, we
perform upsampling via a U-Net decoder. During this process, we utilize intermediary features from
the U-Net encoder through residual connections. By applying sigmoid, we ultimately obtain an
output Ỹijk of size 4 × R × R × R representing a 0-1 soft occupancy, which corresponds to our
aggregated forecast of the user’s visual span over the future Tf frames.

Learning Objective. Since visual spans occupy only a very narrow region of the space surrounding
the user, learning meaningful signals through conventional cross-entropy losses could be challenging.
For instance, in the case of foveal span, almost all samples occupy less than 1% of the entire grid
region. Therefore, we train our model using the dice loss with the ground truth forecast Yijk, where
⊙ is elementwise product:

L = 1− 2×
∑

Ỹijk ⊙ Yijk∑
Ỹijk +

∑
Yijk + 1

. (4)

Table 1: Latency analysis of our framework.

Operation Latency

Point preprocessing 4.541±1.999ms
3D visual span localization 1.811±0.824ms

Voxelization 45.406±26.223ms
Model inference 19.483±8.234ms

Average latency 71.241ms

Latency Analysis. Our framework has two primary
sources of latency: (i) extracting the relevant set of
points from gaze and SLAM keypoints (performed
every 100ms), and (ii) performing model inference
every second on a set of points spanning two seconds.
Since the point extraction can be pre-computed and
stored at 10 fps for continuous use, we only need
to consider the computation time for processing the
final observation when calculating inference latency.
We measured this in a resource-constrained environ-
ment compared to our training setup, using 8 CPU cores and a GPU with 12GB VRAM.

The results are summarized in Table 1. The first stage, which handles outlier removal, axis-aligned
bounding box cropping for keypoints, and selection of points within a certain degree of eccentricity
from the gaze, can be processed within 10ms. In the second stage, we identified that the primary
bottleneck lies in voxelization rather than in the model itself. This occurs because the large number of
keypoints from the previous stage should be voxelized, whereas the model operates efficiently once it
receives the 3D voxelized representation. Consequently, the average inference latency is 71.241ms,
yielding a real-time factor of 0.036, confirming our claim on fast processing capability. However,
actual AR/VR environments typically operate with even fewer computational resources, and thus
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Table 2: Comparison of forecasting accuracy on the FoVS-Aria test split. Higher the better.

Methods Orientation Peripheral30◦ Central8◦ Foveal2◦

IoU F1 IoU F1 IoU F1 IoU F1

2D Center Prior + EgoSpanLift + [80] - - 0.4061 0.5583 0.1621 0.2497 0.0685 0.1049
GLC [45] + EgoSpanLift + [80] - - 0.4553 0.6064 0.2227 0.3267 0.1321 0.1873
CSTS [20] + EgoSpanLift + [80] - - 0.4567 0.6076 0.2342 0.3423 0.1388 0.1948

OccFormer [81] 0.1395 0.2352 0.1106 0.1846 0.0429 0.0632 0.0158 0.0289
VoxFormer [82] 0.2192 0.3093 0.1847 0.2580 0.0915 0.1279 0.0453 0.0704
IAG [8] 0.3250 0.3669 0.2154 0.2542 0.1250 0.1851 0.0747 0.1050
EgoChoir [9] 0.4959 0.6579 0.4302 0.5581 0.2612 0.3608 0.1987 0.2311

Global Prior 0.1359 0.2314 0.1048 0.1825 0.0331 0.0618 0.0146 0.0280
Ours (w/o previous span) 0.3424 0.4906 0.2616 0.3928 0.1071 0.1739 0.0594 0.0828
Ours (LBCE) 0.5730 0.7134 0.4594 0.6017 0.2836 0.3879 0.2059 0.2609
Ours (Gaze-only + [80]) - - 0.4723 0.6214 0.2666 0.3791 0.2494 0.3193
Ours (Single-task) 0.5832 0.7238 0.4721 0.6154 0.3351 0.4485 0.2494 0.3193
Ours (w/o global embedding) 0.5602 0.7042 0.4647 0.6128 0.3241 0.4476 0.2624 0.3487
Ours (full) 0.5838 0.7247 0.4886 0.6350 0.3513 0.4762 0.2836 0.3709

additional optimization techniques such as model quantization or more efficient voxelization could
be considered for further performance improvements.

5 Benchmarking Egocentric 3D Visual Span Forecasting

5.1 Forecasting Egocentric Daily Activities

Curation of FoVS-Aria. Due to the lack of an existing testbed for egocentric 3D visual span
forecasting, we curate a dataset by processing the raw data streams from an existing egocentric
multisensory dataset. Aria Everyday Activities dataset [23] encompasses diverse scenarios of people
engaging in daily activities across different environments and interacting with others, comprising
143 recordings with a total duration of 7.3 hours. Initially, we inspect the SLAM keypoints and gaze
scenarios of all recordings, manually filtering out cases with insufficient keypoints or those limited
to stationary viewing of phones/TVs. Following recent research in 2D gaze anticipation [20], we
define a sample as a 2-second prediction task based on a 2-second previous observation with a sliding
window of 1 second. For spatial parameters, we use resolution R = 16 and cube length D = 3.2m,
indicating that accurately matching a cell corresponds to precision within a D/R = 20cm error
margin. We construct the test split using all recordings from location 4 to enable the evaluation
of unseen locations and the validation split by randomly stratifying the rest. Consequently, our
constructed FoVS(Forecasting 3D Visual Span)-Aria consists of 23.2k samples in total, with 19.3k,
1.9k, and 2.1k samples for train, validation, and test splits, respectively.

Evaluation Protocol. For multi-level 3D visual span, we evaluate each level separately. We primarily
utilize 3D IoU as a primary metric since our main concern is the overlap of volumetric regions.
Additionally, we report F1 scores, commonly used in 2D gaze evaluation [45, 20], while precision
and recall are reported in the Appendix. Finally, since the foveal span is defined within a highly
narrow region, overlap-based metrics cannot fully capture its distribution. Therefore, we also examine
the distribution of the (metric) distance between the ground truth region and the predicted region.
Analysis on saliency-based metrics is deferred to Appendix.

Regarding baselines, due to lack of well-established frameworks for our task configuration, we
construct applicable models from various domains. First, we adapt 3D localization methods like
OccFormer [81] and VoxFormer [82] to predict visual span, which are known for effectively inferring
semantic labels for voxels in outdoor driving scenarios. We also employ IAG [8] and EgoChoir [9],
models designed to predict affordances or interaction hotspots in 3D from an egocentric user-object
interaction perspective. Another framework includes state-of-the-art methods for 2D gaze anticipation,
such as GLC [45] and CSTS [20]. Thanks to our EgoSpanLift, we can project these models’ 2D
inference results to 3D, extrapolating head pose information from past context using a multi-task
Gaussian process model [80].
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Table 3: Distribution of metric errors in
3D foveal span localization.

Distance (cm) min. avg. max.

GLC [45] 59.65 73.47 87.20
CSTS [20] 59.71 73.79 87.68

w/o prev. span 66.94 83.07 98.98
Single-task 36.54 52.90 69.18
Ours 19.04 34.85 51.23

Comparison with Prior Arts. Table 2 presents compar-
ative results among various methods. Overall, there is
a substantial performance gap between existing methods
and our approach, with the disparity becoming more pro-
nounced when predicting more localized regions in 3D
(e.g., foveal span), where our method outperforms oth-
ers by more than 50%. EgoChoir [9] displays the most
promising performance among baselines, due to its capa-
bility of predicting 3D interaction hotspots that could be
in line with user intentions. Compared to the other 3D
localization methods, frameworks that consider the gaze
dynamics show improved performance, despite falling significantly short on foveal span forecasting.
This performance gap is further evidenced in Table 3, where baseline frameworks produce errors
approximately twice as high as our approach on average.

Ablation Studies. The last six rows in Table 2 display the results of ablation studies on our methodol-
ogy. The global prior—predicting answers based on the forecast distribution of the train split—yields
considerably low numbers, implying that our FoVS-Aria encompasses diverse visual spans driven
by various user intentions. Additionally, our model’s performance significantly deteriorates when
attempting prediction without previous span information; this indicates that knowledge of where
the user previously focused is crucial for accurate forecasting, as visual span can vary substantially
according to intention. Using binary cross-entropy (BCE) as a loss function results in marginal
performance degradation up to the central span level, but shows marked decline in foveal span
performance. Similarly, jointly solving multi-level spans consistently outperforms the single-task
approach, particularly benefiting foveal span improvement.

Multi-level interpretation carries significant implications due to uncertainties in self-motion fore-
casting and geometric correspondence between 2D and 3D spaces, as exemplified in suboptimal
performance of predicting only gaze in 2D or 3D and applying postprocessing [80]. Two key con-
ceptual differences between our framework and the postprocessing variant are (i) learning from
multi-level representation and (ii) mitigating uncertainties in self-motion anticipation through end-to-
end prediction. Leveraging the interconnection between gaze and periphery [15] allows us to capture
cues about future gaze from previous periphery and forecast future periphery in light of previous
gaze, which can be observed in several qualitative examples. Moreover, given the nature of the
viewing frustum, extending 3D gaze predictions to broader spans necessitates the forecasting of ego-
centric 6DoF pose trajectories with a separate postprocessing stage, which propagates uncertainties
in self-motion forecasting and geometric correspondence between 2D and 3D spaces. In contrast, our
end-to-end framework does not assume a specific forecast trajectory and predicts plausible 3D spans
within the scene while implicitly learning to mitigate such uncertainties.

5.2 Forecasting Skilled Activites at Scale

Curation of FoVS-EgoExo. To analyze the effectiveness of visual span forecasting in skilled
activities at a larger scale, we utilize Ego-Exo4D [24] as our source data, comprising hundreds of
hours of observations. Ego-Exo4D consists of eight activity categories, from which we excluded
soccer, basketball, and dance, as these activities involve overly large or dynamic scenes where clear
fixations in visual spans are unidentifiable in the majority of cases. Instead, we focus on five categories:
cooking, music, health, repair, and bouldering. After collecting only the footage corresponding to
actual task execution, we refine the data and calculate volumetric regions following the same procedure
used for FoVS-Aria. Considering the increased scale and the focus on specific tasks, we establish a
4-second prediction as the default setting. Thus, we collect a total of 341.4k samples, divided into
274.7k, 29.6k, and 37.0k samples for train, validation, and test splits, respectively.

Performance Analysis. Table 4 compares baseline model performance on FoVS-EgoExo. While
our approach shows substantial performance gains over FoVS-Aria, presumably due to the nature
of skilled activities and an order of magnitude larger sample size, the corresponding improvements
in baseline methods are relatively modest. Unlike FoVS-Aria, the change of numbers regarding the
orientation span likely stems from the inherent characteristics of skilled activities in FoVS-EgoExo,
where participants tend to maintain more sustained focus on specific tasks rather than engaging in
frequent, diverse head movements. Given that visual span forecasting prioritizes accurate prediction

8



Table 4: Comparison of forecasting accuracy on the FoVS-EgoExo test split. Higher the better.

Methods Orientation Peripheral30◦ Central8◦ Foveal2◦

IoU F1 IoU F1 IoU F1 IoU F1

CSTS [20] + EgoSpanLift + [80] - - 0.4978 0.6398 0.2867 0.4010 0.1556 0.2107
OccFormer [81] 0.1287 0.2280 0.0920 0.1685 0.0251 0.0490 0.0084 0.0167
VoxFormer [82] 0.1896 0.3188 0.1475 0.2571 0.0620 0.1168 0.0179 0.0350
EgoChoir [9] 0.3287 0.4948 0.2851 0.4437 0.1976 0.3300 0.1266 0.2247

Global Prior 0.2329 0.3621 0.2478 0.3776 0.1245 0.2119 0.0658 0.1188
Ours (w/o prev. span) 0.4091 0.5665 0.3876 0.5296 0.2855 0.4107 0.2255 0.3152
Ours (LBCE) 0.5112 0.6621 0.4905 0.6338 0.3722 0.4867 0.2870 0.3578
Ours (w/o global embedding) 0.4998 0.6542 0.4892 0.6381 0.3954 0.5294 0.3475 0.4500
Ours (full) 0.5230 0.6743 0.5108 0.6569 0.4212 0.5541 0.3692 0.4702

D = 3.2, R = 32 (10cm) 0.4443 0.6040 0.4362 0.5893 0.3319 0.4656 0.2493 0.3497
D = 6.4, R = 32 (20cm) 0.4920 0.6462 0.4902 0.6394 0.4121 0.5464 0.3640 0.4689
D = 3.2, R = 16 (20cm) 0.5230 0.6743 0.5108 0.6569 0.4212 0.5541 0.3692 0.4702

(a) Cross-category transfer of peripheral/foveal forecast (IoU) (b) Influence of temporal window length
1s 2s 3s 4s

IoU

0.50

0.45

0.40

0.35

0.30
1s 2s 3s 4s

F1

0.65

0.60

0.55

0.50

0.45

■ Orientation ■ Peripheral ■ Foveal■ Central

A C R M H B

A 0.511 0.489 0.450 0.459 0.449 0.420

C 0.521 0.522 0.471 0.476 0.461 0.407

R 0.471 0.441 0.476 0.413 0.387 0.407

M0.556 0.534 0.464 0.555 0.524 0.425

H 0.558 0.541 0.479 0.533 0.553 0.496

B 0.386 0.223 0.237 0.211 0.222 0.386

All  |  Cooking  |  Repair  |  Music  |  Health  |  Bouldering

A C R M H B

A 0.369 0.365 0.331 0.331 0.331 0.320

C 0.391 0.396 0.343 0.348 0.348 0.337

R 0.287 0.261 0.291 0.237 0.226 0.227

M 0.424 0.419 0.366 0.409 0.379 0.330

H 0.486 0.469 0.457 0.466 0.489 0.451

B 0.084 0.067 0.045 0.039 0.045 0.097

Figure 4: Analysis of our proposed framework on the FoVS-EgoExo test split.

of narrower regions, it is particularly noteworthy that substantial performance gaps exist between
our method and baselines for Central and Foveal areas. These results indicate that skilled activity
forecasting in FoVS-EgoExo is not inherently easier than daily activity forecasting in FoVS-Aria,
while demonstrating that our model achieves robust performance across multiple scales and domains
compared to prior arts.

We further analyze the impact of scale, category-specific training, and spatio-temporal granularity.
According to experiments conducted with varying spatial configurations in Table 4, the impact on
performance is marginal if the grid range is proportionally increased to maintain the same precision
of 20cm despite an increased resolution of R = 32. However, for our model trained at 10cm precision
with R = 32, performance decreases to levels similar to those observed in FoVS-Aria. Similarly, as
demonstrated in Fig. 4-(b), performance tends to decline as we attempt to cover visual span further
into the future, which is particularly significant when predicting foveal span.

Finally, cross-category transfer results are summarized in Fig. 4-(a). Despite significant variations
in patterns across task categories, training an integrated model at sufficient scale achieves virtually
identical performance to maintaining separate models for each category. Transfer among static tasks
(e.g., cooking, music, and health) is relatively effective, but less so for more dynamic tasks such as
repair or bouldering. Additionally, peripheral span, which covers wider areas or visual exploration,
preserves performance better in cross-category scenarios compared to foveal span, which targets
more localized regions. Qualitative examples can be found in Fig. 5-(b) and the Appendix.

5.3 Extension to 2D Gaze Anticipation

For completeness in our experimental analysis, we explore whether the reverse direction—from
3D to 2D—is also possible using our framework, given that we successfully extended egocentric
visual span from 2D to 3D. To this end, we utilize samples from FoVS-Aria to compare 2D gaze
anticipation performance. While our previous experiments in Table 2 required separate procedures
like EgoSpanLift to bring 2D gaze models into 3D, deflating our model’s inference results to 2D
can be accomplished trivially. We select the cell with maximum logit value from our model’s foveal
span prediction and project it onto the 2D image plane using the user’s current head pose. Through
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Figure 5: Qualitative examples. Our framework effectively forecasts various scenarios, such as (a)
closing the fridge and turning around or (b) deciding which rocks to grab and navigate.

interpolation between the user’s current and projected gaze, we can easily obtain gaze anticipation
results for the future two seconds.

Table 5: Comparison of egocentric
2D gaze anticipation.

F1 Pr Re

GLC [45] 0.505 0.453 0.571
CSTS [20] 0.515 0.497 0.535
Ours (Single) 0.505 0.432 0.608
Ours 0.515 0.440 0.619

The performance comparison results can be found in Ta-
ble 5. Interestingly, while 2D methodologies struggled to
accurately predict foveal span when transferred to 3D, our
approach achieves on-par performance to models trained
specifically for 2D despite not conducting any 2D-specific
training. The baseline performance we obtained is slightly
lower than that in the referenced paper [20], which we at-
tribute to our exclusion of trivial recordings from FoVS-Aria
like watching TV or smartphones.

6 Conclusion

We addressed the challenge of egocentric 3D visual span forecasting by designing a method that
lifts multi-level visual span from 2D to 3D semidense keypoints and introducing an end-to-end
framework for forecasting volumetric regions corresponding to each visual span. Furthermore, we
curated a testbed for this problem by processing two datasets with raw multisensory observations,
where we consistently outperformed a wide range of prior arts across all metrics. We anticipate that
this framework will play a crucial role in proactively understanding human intent captured through
perception that precedes interaction, enabling preemptive delivery of various latency-sensitive services.
Future extensions of this work could incorporate forecasting problems for non-visual perception,
such as auditory or proprioceptive inputs, or focus on forecasting highly precise attention tracking on
dense scenes, which would represent particularly intriguing directions for further research.
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• You should answer [Yes] , [No] , or [NA] .
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"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
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IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state the scope and contributions of our work in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of our work in the Appendix under ‘Limitations and
broader impacts’ section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In addition to the core information presented in Sections 3-5, we provide all
necessary details for reproducing our experimental results and dataset curation process in
the Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide necessary details for reproducing experiments as well as source
code as supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details for data preparation and hyperparameters for training in
Section 5 and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We briefly discuss the statistical significance of our results in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the computer resources we used for all experiments in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our work complies with the NeurIPS Code of Ethics in every
aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts of our work in the Appendix under
‘Limitations and broader impacts’ section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]
Justification: Our work does not involve assets that have a high risk for misuse, such as
pretrained LLMs, image generators, or scraped datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We enumerate all assets we used for our work with their licenses in the
Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details regarding our data curation and model implementation are discussed in
our main paper as well as the Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing / research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing / research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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FoVS-Aria &

FoVS-EgoExo

Figure 6: More examples from our curated FoVS-Aria and FoVS-EgoExo. Blue denotes previous
observations and green denotes forecast targets.

A Experimental Details1

A.1 Dataset Curation Details2

The detailed preprocessing procedures for FoVS-Aria and FoVS-EgoExo are as follows. We first3

temporally synchronize the raw streams present in each source dataset, namely gaze, RGB, audio,4

IMU-based trajectory, and SLAM observations. Since gaze data has the lowest sampling rate of5

10Hz, we use it as the temporal anchor to synchronize other sensory streams and group them into6

1-second units. Using a 1-second sliding window, we apply EgoSpanLift to obtain volumetric grids7

corresponding to multi-level visual spans. Given the substantial volume of raw data (e.g., Ego-Exo4D8

exceeding 10TB), we store the processed data as bitpacked arrays to enable efficient storage and9

retrieval during training.10

We perform manual validation for both datasets regarding gaze distribution and 3D point cloud11

integrity. For each recording, we visualize gaze distribution across 2D frames throughout the entire12

recording, excluding samples with extremely low variance as these indicated miscalibration. We also13

manually remove cases where SLAM capture quality is poor and visual spans with gaze fixations are14

trivial, such as instances of lying down while reading books or using mobile phones. Additionally, we15

exclude samples where keypoints of interest fall below two standard deviations from the dataset-wide16

22



Table 5: Comparison of forecasting accuracy on the FoVS-Aria test split.
Methods Orientation Peripheral30◦ Central8◦ Foveal2◦

IoU F1 Pr Re IoU F1 Pr Re IoU F1 Pr Re IoU F1 Pr Re

2D Center Prior + EgoSpanLift + [6] 0.5868 0.7311 0.6513 0.8817 0.4061 0.5583 0.5570 0.6251 0.1621 0.2497 0.2704 0.2968 0.0685 0.1049 0.1132 0.1286
GLC [7] + EgoSpanLift + [6] 0.5868 0.7311 0.6513 0.8817 0.4553 0.6064 0.5880 0.6909 0.2227 0.3267 0.3569 0.3634 0.1321 0.1873 0.1962 0.2225
CSTS [8] + EgoSpanLift + [6] 0.5868 0.7311 0.6513 0.8817 0.4567 0.6076 0.5920 0.6909 0.2342 0.3423 0.3689 0.3865 0.1388 0.1948 0.2059 0.2295

OccFormer [9] 0.1395 0.2352 0.2340 0.2422 0.1106 0.1846 0.1799 0.1981 0.0429 0.0632 0.0916 0.0534 0.0158 0.0289 0.0313 0.0276
VoxFormer [10] 0.2192 0.3093 0.3544 0.3027 0.1847 0.2580 0.3600 0.2225 0.0915 0.1279 0.0943 0.2571 0.0453 0.0704 0.0541 0.1175
IAG [11] 0.3250 0.3669 0.4032 0.4305 0.2154 0.2542 0.2474 0.3412 0.1250 0.1851 0.1407 0.3195 0.0747 0.1050 0.0932 0.1443
EgoChoir [12] 0.4959 0.6579 0.6591 0.6624 0.4302 0.5581 0.5744 0.5853 0.2612 0.3608 0.3711 0.3908 0.1987 0.2311 0.2445 0.2835

Global Prior 0.1359 0.2314 0.1878 0.3594 0.1048 0.1825 0.1324 0.3843 0.0331 0.0618 0.0359 0.3323 0.0146 0.0280 0.0149 0.3378
Ours (w/o previous span) 0.3424 0.4906 0.4864 0.5528 0.2616 0.3928 0.3891 0.4636 0.1071 0.1739 0.1742 0.2310 0.0594 0.0828 0.0896 0.0989
Ours (LBCE) 0.5730 0.7134 0.8234 0.6593 0.4594 0.6017 0.7580 0.5454 0.2836 0.3879 0.5853 0.3428 0.2059 0.2609 0.3618 0.2501
Ours (Single-task) 0.5832 0.7238 0.7751 0.7070 0.4721 0.6154 0.7195 0.5803 0.3351 0.4485 0.5292 0.4445 0.2494 0.3193 0.3958 0.3131
Ours (w/o global embedding) 0.5602 0.7042 0.7760 0.6779 0.4647 0.6128 0.6739 0.6169 0.3241 0.4476 0.5047 0.4756 0.2624 0.3487 0.3732 0.3903
Ours (full) 0.5838 0.7247 0.7848 0.7002 0.4886 0.6350 0.6883 0.6354 0.3513 0.4762 0.5242 0.5054 0.2836 0.3709 0.4088 0.4006

average, evaluating over the 2-second forecast windows. The resulting datasets comprise 23.2k17

samples for FoVS-Aria and 341.4k samples for FoVS-EgoExo, providing rich visual span-based18

forecasting samples across diverse scenarios, as illustrated in Fig. 6.19

A.2 Implementation Details20

For all reported experiments, we use the Adam optimizer [1] with a learning rate of 1e-4, without21

applying any scheduler or weight decay. We train our models with a batch size of 16 for 50 epochs22

and select the epoch that achieves the highest average IoU across all visual spans on the validation23

split for final testing. Input volumes are augmented through axis permutation and flipping (excluding24

upside-down orientation), along with random translation applied up to 2 units.25

The unidirectional transformer utilizes a feature dimension of C = 1024. To achieve this di-26

mensionality, each U-Net layer reduces the feature dimension by a factor of 2, i.e., an encoding27

progression of 5-128-256-512-1024 for 163 grids. Each U-Net layer consists of two applications of28

Conv-BatchNorm-ReLU-Dropout blocks, with a dropout rate of 0.1.29

While experimental results are reported for single runs, we conduct three random runs for our30

method and observe performance variations of less than 1%, which proved negligible compared to31

performance differences with other models. All experiments are conducted using NVIDIA RTX32

A6000 GPUs with 48GB memory and 16 CPU cores. Additional implementation details can be found33

in the source code.34

A.3 Environment and Asset Usage35

The raw egocentric data sources used for curating the testbed are Aria Everyday Activities [2]36

and Ego-Exo4D [3]. Aria Everyday Activities1 is released under a custom license2 that permits37

academic research only, while Ego-Exo4D3 uses a custom license4 allowing both academic and38

commercial usage. We confirm that our usage aligns with their intended purposes. Since both datasets39

are collected using Aria glasses5, we utilize the Project Aria Tools library6 (Apache-2.0) for data40

processing. Additionally, we conduct experiments using PyTorch 2.4.1, employing Open3D [4]41

for data processing and the PyTorch-3DUNet [5] library for model construction, both of which are42

distributed under the MIT License.43

B Additional Experiments44

B.1 Additional Results on 3D Visual Span Forecasting45

Table 5 presents the complete experimental results for FoVS-Aria, including both Precision and46

Recall metrics. In some cases, the harmonic mean of Precision and Recall differs from the F1 score47

because the harmonic mean was calculated at the sample level rather than globally, resulting in48

1https://www.projectaria.com/datasets/aea/
2https://www.projectaria.com/datasets/aea/license/
3https://ego-exo4d-data.org/
4https://ego4d-data.org/pdfs/Ego-Exo4D-Model-License.pdf
5https://www.projectaria.com/
6https://github.com/facebookresearch/projectaria_tools
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Table 6: Comparison of overlap-based metrics and saliency-based metrics on the FoVS-Aria test split.
Ours Orientation Peripheral30◦ Central8◦ Foveal2◦

IoU F1 CC AUC IoU F1 CC AUC IoU F1 CC AUC IoU F1 CC AUC

Single-task 0.583 0.724 0.725 0.861 0.472 0.615 0.630 0.791 0.335 0.449 0.468 0.674 0.249 0.319 0.340 0.524
w/o global 0.560 0.704 0.711 0.847 0.465 0.613 0.631 0.827 0.324 0.448 0.477 0.765 0.262 0.349 0.376 0.613
Full 0.584 0.725 0.729 0.858 0.489 0.635 0.649 0.840 0.351 0.476 0.502 0.771 0.284 0.371 0.399 0.624

Table 7: SLAM sensitivity analysis on the FoVS-Aria test split.
Orientation Peripheral30◦ Central8◦ Foveal2◦

IoU F1 IoU F1 IoU F1 IoU F1

EgoChoir [12] 0.4959 0.6579 0.4302 0.5581 0.2612 0.3608 0.1987 0.2311

Ours (original) 0.5838 0.7247 0.4886 0.6350 0.3513 0.4762 0.2836 0.3709
w/ temporal (5%) 0.5592 0.6956 0.4666 0.6071 0.3343 0.4543 0.2697 0.3530
w/ temporal (10%) 0.5347 0.6674 0.4457 0.5810 0.3194 0.4344 0.2571 0.3371
w/ translation (5cm) 0.5814 0.7226 0.4871 0.6332 0.3399 0.4661 0.2611 0.3498
w/ translation (10cm) 0.5727 0.7158 0.4780 0.6258 0.3129 0.4407 0.2174 0.3022
w/ rotation (2.5◦) 0.5818 0.7227 0.4882 0.6338 0.3461 0.4717 0.2681 0.3563
w/ rotation (5◦) 0.5775 0.7193 0.4836 0.6298 0.3328 0.4575 0.2490 0.3357
w/ Gaussian (2.5cm) 0.5759 0.7190 0.4839 0.6313 0.3432 0.4697 0.2758 0.3661
w/ Gaussian (5cm) 0.5292 0.6831 0.4503 0.6037 0.3133 0.4436 0.2364 0.3336
w/ point drop (10%) 0.5823 0.7231 0.4890 0.6346 0.3500 0.4751 0.2823 0.3691
w/ point drop (20%) 0.5799 0.7212 0.4871 0.6330 0.3498 0.4741 0.2806 0.3676

different patterns of invalid values across metrics. For the 2D Gaze model, the numbers in gray49

(i.e., orientation) are mechanically assigned based on camera position regardless of gaze anticipation50

quality, thereby identical for all cases. Examining Precision and Recall performance, our full model51

demonstrates superior results across all Foveal span metrics. However, for broader spans, single-task52

models and those using BCE loss achieve slightly higher precision scores. Nevertheless, these53

models tend to make relatively sparse predictions, resulting in notably lower recall performance.54

Consequently, Dice loss is preferred in our multi-task model due to its more balanced performance.55

To provide complementary analysis on saliency metrics in our benchmarks, we report Correlation56

Coefficient (CC) and Area Under Curve (AUC) over the logit distribution of 3D grids using three57

variants of our framework in Table 6. We use AUC instead of KLD due to zero-value sensitivity58

of KLD [13] in our evaluation. The results demonstrate patterns that are generally consistent with59

previously reported metrics.60

B.2 Sensitivity Analysis on SLAM Keypoints61

Since our approach utilizes semidense keypoints derived from SLAM, their quality could affect62

performance. However, this applies to any framework that relies on SLAM-derived keypoints as63

input. Still, it is feasible to utilize accurate pre-mapped information as a fallback option since our64

framework should typically be deployed in familiar everyday environments, e.g., home and office.65

To conduct a sensitivity analysis examining how the performance of our framework changes when66

SLAM struggles, we explore several types of sensory corruption across mild to severe scenarios. First,67

multi-sensor devices may experience temporary frame drops or time drift due to hardware issues,68

representing temporal corruption. Second, spatial degradation in egocentric localization may occur,69

which we apply separately to translation and rotation components. Finally, we consider corruption70

that can affect the set of keypoints by adding Gaussian noise to individual points or dropping certain71

points entirely.72

Performance results measured on the FoVS-Aria test split for each corruption type are presented in73

Table 7. Under mild corruption, the impact on performance is negligible. However, applying higher-74

intensity corruption results in performance degradation of several percentage points. Among the75

different spans, those requiring wider coverage (Orientation and Peripheral) show smaller performance76

drops. In contrast, spans demanding higher precision (Central and Foveal) exhibit larger degradation.77

Despite these challenges, our framework maintains superior performance compared to EgoChoir78

even under severe corruption scenarios. This suggests that our framework can perform reliable79

forecasting despite some degree of SLAM-induced imprecision. In practice, real-world scenarios80
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Figure 7: More qualitative examples on FoVS-Aria test split.

involve multiple types of corruption occurring in complex and somewhat unpredictable combinations.81

Therefore, training our framework to be robust against such corruption would represent an interesting82

extension for future work.83

B.3 More Qualitative Examples84

Fig. 7 provides additional qualitative analysis of examples from FoVS-Aria. Consistent with the85

findings in Fig. 5, these results demonstrate our model’s ability to perform effective forecasting across86

diverse scenarios and show meaningfully closer approximations to ground truth compared to other87

competitive models. Fig. 8 presents additional qualitative analysis of examples from FoVS-EgoExo.88

Our model performs well across various scenarios including bike repairing, cooking, and bouldering.89

For instance, it appropriately predicts the semantic significance of actions such as gathering items90

on a workbench or looking around while holding a knife in the kitchen, accurately anticipating the91

future visual focus these behaviors will lead to.92

Fig. 9 shows qualitative examples of egocentric 2D gaze anticipation when our model’s 3D inference93

results are projected to 2D. The results reveal that actual human gaze tends to be linked to specific 3D94

positions or objects rather than simply following head rotation patterns, which our model captures95

effectively. The final example illustrates a challenging case for our model in both 2D and 3D: when96

people interact with objects and create three-dimensional spaces that were not captured by semidense97

keypoints at previous time steps, performing precise inference becomes relatively difficult.98

C Limitations and Broader Impact99

Our research interpret the primary source of perceptual intent in terms of gaze and peripheral100

span. However, human intent is comprehensively formed through the interplay of multiple sensory101

perceptions, including audio and proprioceptive inputs, beyond visual attention alone. Therefore,102

gaze alone may not fully capture the complexity of human intent. Future work could generalize103

toward forecasting human intent that can be identified through more broadly defined multisensory104

perception. Additionally, while we utilized semidense keypoints to minimize latency for real-time105

applications while conveying an accurate sense of distance, we did not interpret the visual span106

as a continuous surface representation. From this perspective, an approach that combines neural107

rendering [14] to represent visual span in a fine-grained manner would be beneficial for modeling108

intent with greater precision.109

Moving forward, our research can be applied to facilitate service delivery in various egocentric110

latency-sensitive services by preemptively capturing the wearer’s intent. For instance, it can predict111
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Figure 8: More qualitative examples on FoVS-EgoExo test split.
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Figure 9: More qualitative examples on egocentric 2D gaze anticipation.
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users’ future focus or interest, enabling ambient computing to proactively adapt the surrounding112

environment in a more user-friendly manner. We anticipate that such technology will be useful for113

providing seamless access to desired objects or information for individuals with various impairments114

in a non-invasive manner. Furthermore, for general users, when providing augmented reality services,115

it will be possible to render or deliver information with higher fidelity in areas that align with user’s116

intent.117

On the other hand, using the wearer’s perceptual input for model training or data utilization could118

potentially raise privacy issues. Our model is relatively unaffected by such concerns as it uses source119

data [2, 3] that are in compliance with privacy requirements and does not explicitly exploit personally120

identifiable information. However, careful consideration is needed when applying this technology121

in real-world scenarios. Since our methodology adopted a direct and lightweight approach in both122

volumetric region representation as visual span and network design due to latency-sensitive aspect of123

the problem setup, suggesting that on-device processing could also be a viable direction for mitigating124

privacy concerns.125
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