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ABSTRACT

Distributional reinforcement learning (DRL) has emerged as a paradigm that aims
to learn full distributions of returns under a policy, rather than only their expected
values. The existing DRL algorithms learn the return distribution independently
for each action at a state. However, we establish that in many environments, the
returns for different actions at the same state are statistically dependent due to
shared transition and reward structure, and that learning only per-action marginals
discards information that is exploitable for secondary objectives. We formalize
a joint Markov decision process (MDP) view that lifts an MDP into a partially-
observable MDP whose hidden states encode coupled potential outcomes across
actions, and we derive joint distributional Bellman equations together with a joint
iterative policy evaluation (JIPE) scheme with convergence guarantees. We intro-
duce a deep learning method that represents joint returns with Gaussian mixture
models with optimality and convergence guarantees. Empirically, we first validate
the JIPE scheme on MDPs with known correlation structure. Then, we illustrate
the learned joint structure in control and Arcade Learning Environment tasks us-
ing neural networks. Together, these results demonstrate that modeling return
dependencies yields accurate joint moments and joint distributions that can help
interpretability and be used in deriving safe and cost-efficient policies.

1 INTRODUCTION

Reinforcement learning (RL) has long been utilized as a powerful framework for sequential decision-
making problems where the interaction of the agent and the environment follows a Markov decision
process (MDP). An MDP M = (S,¢, A, R, P,7) is a quintuple where S designates the state
space, ¢p € A(S) is the initial distribution of states, A is the set of actions that the agent may
take, R : S x A — A(R) is a stochastic, real-valued reward function, P : § x A — A(S) is
the transition kernel, and 0 < « < 1 is the discount factor (Puterman| [1994)). In conventional
RL, the learning objective is to find a policy with maximal expected return, which captures the
agent’s cumulative reward throughout its interaction. A policy 7 for MDP M may be thought of
as a decision rule 7 : S — AJ'| To evaluate the merit of a given policy , the expected return
starting from a state-action pair (s,a) E[Z7(s,a)] := E[>_,;° v R(st,a¢) | so = s,a0 = al,
also known as the Q-function or the state-action value function, may be considered. We remark
that Z™ (s, a) is the random variable (RV) which we will refer to as the state-action return. The
objective in RL, then, is to find an optimal policy m* with an optimal state-action value function,
ie, to find 7* € argmax . Q7 (s,a), for all (s,a) € S x A, where II denotes the set of all
possible policies for M. Famously, an optimal state-action value function Q* satisfies the Bellman
optimality equation (Bellman| 1957) Q*(s,a) = E[R(s,a)] + YE[max,c4 Q*(s',a’)], a premise
which many RL algorithms have been built upon (Mnih et al., 2015} Sutton, | 1988;|Watkins & Dayan),
1992; [Sutton, (1991} Rummery & Niranjan, 1994} Bradtke & Barto},|1996} Lagoudakis & Parr;, 2003}
Konda & Tsitsiklis, [1999; |[Hasselt et al.l 2016; Wang et al., |2016).

'A celebrated result states that in the discounted, infinite-horizon setting, a stationary and deterministic
optimal policy 7" exists (Agarwal et al.,2019). We direct our attention to this case.
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Figure 1: Joint return distributions learned by our method in the CartPole environment. On the
left: The pole is perfectly balanced, the returns of both actions are perfectly correlated and the joint
distribution is a ridge. On the right: The pole starts to lose balance to one side, the joint distribution
becomes less degenerate. The curves on the edge of the plot show the two marginal distributions,
which would have been learned by a conventional DRL method.

Distributional RL. More recently, a new paradigm called distributional RL (DRL) (Bellemare et al.,
2017a)) has emerged, based on the argument that reducing the return to its average value can obscure
important aspects of uncertainty, variability, and risk, often leading to suboptimal exploration or brit-
tle policies in stochastic settings. DRL augments the RL paradigm by modeling the full probability
distribution over returns, capturing higher-order moments and tail behavior. This richer characteri-
zation aims to enable agents to both improve in performance, as well as in secondary objectives such
as sample efficiency and policy robustness. All DRL methods up to now have been built around the
tenet of estimating marginal return distributions for each action independently. Although differ-
ent methods estimate different characterizations for these marginal distributions, at the end of the
day, the entity they propose to model and estimate is some characterization of the #-parameterized
marginal state-action return Zy(s, a) for a given state s and for each action a € A.

1.1 MOTIVATION

In this paper, we argue for the theoretical interest in pursuing an alternative approach: It is only
natural, we think, to be curious about the joint distribution of these state-action returns (see Figure
[I). We argue that there is a nontrivial set of MDPs where, given a state s, there is dependence to
be discovered between the returns of different actions. We present the following two motivating
examples, after which a formal explanation follows:

Example 1. Consider an MDP with bounded S C R?, A = {1,2}, and with reward R(s,a) := x,
fora € A, where x ~ N (s,%), and Y. is a non-diagonal positive definite matrix. At any state s,
the rewards R(s,1) and R(s,2) will be dependent RVs with covariance X1 2. Because the return
Z™ (s, a) of any policy m for any state-action pair is a weighted sum of such dependent rewards, the
returns will also have a nontrivial joint distribution.

Example 2. Consider an MDP with S = R and A = {—1,1}. Let X be a Bernoulli RV. Let
the next state be determined in terms of a state-action-dependent measurable function of X as
S = f(s,a,X) = s+a—1if X = 1and s+ a otherwise, so that P(- | s,a) := Law(5’).
The stochasticity of the transition dynamics of the environment is dependent on the RV X. Clearly,
then, the next state RVs S1 = f(s,—1,X) and S, = f(s,1, X) will be dependent.

In the previous example, X might be thought of as modeling an environmental factor such as wind,
pushing the agent leftward. Examples of such factors may include market fluctuations, a system-
wide latency spikes, factors which simultaneously affect the results of all possible actions an agent
could take at that moment. The fact that these two examples are specifically constructed to have
dependencies should not give the impression that such dependencies do not arise in regular RL
problems. The dependence of action returns is highly intrinsic even in the presence of a determin-
istic reward function in applications of RL, especially those involving function approximation (cf.
Section[d})

1.2 CONTRIBUTION
Our main contributions are:

* We show that action returns in many MDPs are statistically dependent due to shared transition and
reward dynamics, motivating the need to move beyond independent per-action return distributions.
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* We formalize a joint MDP perspective that lifts an MDP into a partially-observable MDP
(POMDP) with hidden states encoding coupled potential outcomes across actions.

* We derive joint distributional Bellman equations and propose the Joint Iterative Policy Evaluation
(JIPE) scheme, establishing convergence to joint means and second moments.

* We develop a deep learning approach that fits & -component Gaussian mixture models to represent
joint return distributions, with guarantees on optimality and convergence.

* We validate our approach in synthetic MDPs with known correlation structure, demonstrating that
JIPE accurately recovers joint moments.

* We extend the method to control and ALE tasks, showing that learned joint distributions improve
interpretability and allow for safer and cost-efficient reinforcement learning policies.

2 JOINT DRL: A PRINCIPLED FRAMEWORK

2.1 PRINCIPLED MODELING OF CORRELATIONS VIA JOINT DRL

Having established the existence of return dependence, we develop a framework to study this phe-
nomenon. Two standard assumptions from the literature follow (Bellemare et al., |2023}; [Sutton &
Bartol, [2018)).

Assumption 1. A is finite and | A| = N. In the rest of the work, we will directly take A = [N] for
ease of notation, so each action will be referred to by an integer 1 <n < N.

Assumption 2. For all (s,a), rmin < R(8,a) < rmax almost surely for some ryin, Tmax € R.

In light of the examples of the previous section, we formalize our analysis with the following.

Definition 1 (Jomt MDP). Let M be an MDP ]\gS S0, A, R, P 7). Forany s € S, let Cp(s) be some
coupling on SN with marginals {P(- | s,1) and Cr(s) some coupling on RY with marginals
{R(s,i)}},. Consider the POMDP J = (X,go,.A, P’,R’,Q,O,fy). Here, X := SN x RN. We
write a typical element x € X as © = (s,r), where s = (s1,...,sy) andr = (r1,...,TN).
¢o(x) == <o(s) x 8(0) if s; = s for all i € [N] and O otherwise, where 0 indicates a vector
of N zeros. In other words, the initial distribution over X only assigns nonzero probability to
configurations which initialize all N states in s at the same state, with all initial rewards being 0.
P'(- | z,a) := Cp(sq) X Cr(8a), the product measure of the transition and reward couplings.
R/ (xz,a) := rqy, deterministic. The observation space is ) := S X R and the observation kernel is

O(o| z,a) := 5(%7,,.0)(0).

At each decision time ¢ within the POMDP 7, the hidden state is a pair of vectors z; = (s¢,14),
withs; = (s¢1,...,8:.n) € SN andr; = (141, ...,5,n) € RY. The i" entries s, ; and 7 ; denote
the next state and reward that would be obtained if action ¢ were to be taken from the current base
state. After the agent selects a;, the environment reveals (s; 4,,t.q,) and the base state updates to
St+1 = St,q,. and a fresh pair (s;41,r¢41) is drawn at 5,41 according to the specified couplings. For
initialization, a state s ~ ¢ is sampled and sg = (s,...,s) is set. rog = O is set as a placeholder,
since the reward at the initial state is a reward obtained before any actions have been played, and
hence has no meaning and is unused. This representation is observationally equivalent to the original
MDP M: For any (s,a), the revealed pair (s,,r,) has exactly the same distribution as (S’, R)
under the kernels P(- | s,a) and R(s, a) of M, but in addition, the POMDP’s hidden state preserves
the joint counterfactual outcomes across actions at each step. This makes it meaningful to learn
joint statistics and to write joint Bellman relations, without altering the agent’s observed interaction
process.

In practice, how do we model this joint MDP? The following definitions formalize the vector-
valued RV of joint returns whose distribution we aim to estimate.

Definition 2. Ler Z7 (s, a) denote the state-action return of policy m at (s, a). Then, the N-variate
joint return of policy m at s is defined as Z™(s) = [Z™(s,1),..., Z™ (s, N)]T.

Definition 3. Let ™ (s,a) = Law(Z7 (s, a)). Then, the joint return distribution of policy w at s € S

is a coupling of {n™(s,1)}\.,. Additionally, to denote the bivariate marginal distribution of n™(s)
over the i" and " dimensions, we use

0 (55, 5) = / 7" ()dza. )
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Table 1: SRB joint moments, calculated analytically and estimated by JIPE.

True JIPE Ao
u” [1.8 2.0] [1.8 2.0] 1.849 x 1012
1,000 0.942 1.000 0.942 ”
Corr 4.441 x 10
0.942  1.000 0.942  1.000

The notation dzz denotes that the integral is over dimensions A\{i, j}.

We now provide an example for intuition on a problem we face in estimating joint distributions.

Example 3. Suppose a simple scenario where we want to estimate a bivariate Gaussian distribution
but only observe marginal samples. We observe 1, ...,z N from the first and Y, YN from the
second marginals, each in R. We use the sample mean and variance to estimate ,ul, fi2, 67 and 6 02

We can then estimate the joint distribution as N'(f1, ), where fi = [ji1 uz] , and the marginal
covariances are 62 and 63. The cross-covariance must then be pdica. However, we realize that
although we can make educated estimates for the marginal statistics, it is impossible to do so for p
without observing joint samples from the bivariate distribution.

In this work, we will be interested in learning the joint distribu-

tion ™ (s) associated with a reference policy 7, or certain statistical °
functionals that could aid us in inferring it. Classic RL is concerned a

with learning the mean p™(s) € RA, ie., the state-action value ° 9
function ). As we are interested in inferring the correlations, a 6

natural functional to consider in addition to u™(s) is the N x N

covariance matrix derived from 1™ (s) which we denote by X7 (s).  Figure 2: The state transi-
tions shown as a tree. Starting
at sg, we store two possible
next states s, and s} reached
by taking two actions. The
next two states to be stored
so and s}, are only possible
next states reachable from s;.
Next states reachable from s
are not considered. This pre-
vents the number of stored
states from increasing expo-
nentially.

However, as illustrated by Example [3] since any off-diagonal el-
ement X7 (s),,q Of X7(s) relates knowledge about the joint re-
turns of two actions at state s, the customary transition structure
of 7 := (s,a,r,s’,a’) will no longer suffice to estimate these el-
ements. If we hope to learn a meaningful joint distribution of the
returns of multiple actions at a state, we must change the struc-
ture of our saved and sampled experience replays to be 72 :=
(s,a1,a2,71,79, 81,85, a},dy), where a; and ay are two distinct
actions that can potentially be played at state s, 1 and ro the en-
suing rewards, s} and s} the respective next states, and a} and a,
the actions chosen by 7 in the next states. Much like how, in the
conventional DRL setting, we would expect the observation of the
transition 7 to lend us guidance in updating our estimate of 7™ (s, a),
we would now expect to leverage the observation of 72 to update our estimates of 117 (8)a,, 17 (8)a,
the diagonal covariance elements X7 (8) g, 4,5 27 (5)as,a, and finally the off-diagonal covariance
elements £7(s)q, .q, and 37(8)q, qa,. Obviously, this would result in updating our estimate of the
bivariate marginal distribution 1™ (s; a1, ag). From now on, we will refer to such transition samples
as 72 as joint transitions.

In the formalism of Definition [I] to get access to joint transitions, we must change our observation
space and kernel to allow us a peek into the joint structure. Letting Q := S? x R? and O(o |
x,a1) = O((Say +5a)+(ras 7“2)(0) suffices. At any step of the joint MDP, the observation model lets
us peek into the next state and reward of a; (dictated by a policy ), and those of one additional,
counterfactual action ay that could have been played instead.

Can we obtain joint transitions from an MDP in practice? Many applications of RL are increas-
ingly relying on digital twin technologies, enabling a near-perfect simulation of reality. In many RL
tasks, it is not implausible to assume having access to a perfect simulation of the system which al-
lows taking an action, observing its consequences, rewinding the simulation to the previous state and
then taking another action to observe its consequences. In programming terms, this can be thought
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Table 2: WGW joint moments in the starting cell for actions RIGHT, LEFT, UP, DOWN.

True JIPE PAN[PS
p' [0.771 0.732 0.792 0.732] [0.771 0.732 0.792 0.732 2.004 x 1078
1.000 0.833 0.866 0.833 1.000 0.833 0.866 0.833
0.833 1.000 0.866 1.000 0.833 1.000 0.866 1.000 4
Corr 1.612 x 10
0.866 0.866 1.000 0.866 0.866 0.866 1.000 0.866
0.833 1.000 0.866 1.000 0.833 1.000 0.866 1.000

of as saving a state of the environment and the random number generator before taking an action,
and then restoring these states to take another action.

‘We now introduce the joint Bellman equations.

Definition 4. Let Z7(s) be the N-variate joint return under m and (S = s,A; =
ai, Ry, Sy, A, Ay = as, Ry, Sh, Ab) a sample transition. The 2"¢-order joint Bellman equations
are

Z%(s,a1) 2 Ry +~27 (S}, AY),
(Z7(s,a1))” 2 (Ry + 727 (S, AY)®,
Z™(s,a1) - Z"(s,a2) 2 (Ry + 727 (1, A})) - (Ry + 727 (S, Ay)) .

Proposition 1. Let (S = s, A1 = a1, Ry, S1, A}, Ay = aa, Ra, S, AY) be a sample transition. The
2"_order joint Bellman distributional equations are

E[Z"(s,a1)] = E[Ry + 727 (S}, A}) | S = s, Ay = ai),
E[(Z7(s,a1))’] = E[(Ry +~Z7 (S}, A}))* | S = 5, A1 = ay],
E[Z™(s,a1) - Z7(s,a2)] =
E[(Ri +7 Z7(S1, A})) - (Ro +~Z7(Sh, A3)) | S = 5, A1 = a1, Ao = ag),

where E[-] denotes the expectation with respect to the joint distribution over all RVs involved.

Evidently, these equations provide us with consistency conditions that the first and second moments
of the return Z™ (s, a) must satisfy, in distribution and in expectation.

2.2  JOINT ITERATIVE POLICY EVALUATION (JIPE)

We can compactly represent the 2™-order joint Bellman equations by defining a suitable operator.
For each (s,a), let M(, o) € RV be a vector that concatenates E[Z™ (s, a)] and E[(Z7 (s, a))?] as
its first and second coordinates and E[Z™ (s,a) - Z™(s,a)], where @ € A, @ # a, asits last N — 1
coordinates. With this notation, let us define, for all (s, a),

M, (s,a) := M(sq)1, M, € RS*A
My(s,a) := M(sq)2, M, € RS*A
T —_
M(s,a) = [Misa)3 — Meayn+1] o M. e RN-DxSxA
M= [MT MT MI"
M describes the collection of the means and the second moments of the N-variate joint return,

collected by M,, and M,,, M., respectively. We can further represent the 2"-order joint Bellman
equations by the following 2nd-order N-variate joint Bellman operator

7-27,TN . R(N+l)><8><.A N R(N+l)><8><A’ M = 7-27TNM

We propose the following dynamic programming approach, the joint iterative policy evaluation
(JIPE) scheme, which repeatedly applies the 2"¢-order joint Bellman operator 9N

Mk+1 — 7~27:'NMIC, MO c R(N+1)><S><.A. (2)

M e R(N+1)><S><A'

i
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Theorem [I] (proved in Appendix [A) states the convergence of the scheme in (Z). For simplicity of
notation, the theorem is stated in terms of the uncentered second moment matrix, 37 (s), from which

the covariance can be derived as X7 (s) = 37 (s) — p™ (s)u™(s)7.

Theorem 1 (Convergence of JIPE). Suppose Assumptions[Ijand[2hold. Consider the JIPE scheme
in@). Forany s € S, let ¥ (s) and ¥*(s) denote the mean and the second moment matrix recovered
from MP¥. Then,

k Tr _ k sk () ST (s _ i
9 = (Gl = O (4) . 1546) =70l =0 (1)

3 LEARNING OPTIMAL JOINT DISTRIBUTIONS VIA NEURAL NETWORKS

We now present an algorithmic approach to learning the joint distribution, leveraging the deep learn-
ing (DL) paradigm. We propose to model the state-action return as a Gaussian mixture model with
K components (K-GMM), whose parameters are estimated by a neural network with weights 6.
We note that |Chot et al.|(2019) and [Zhang| (2023)) have previously suggested this approach, how-
ever, as usual, these works only consider the estimation of the marginal and not of the joint returns.
For reasons such as reduced computational complexity and feasibility, we choose to only deal with
homoscedastic K-GMMs, i.e., for a given s € S, Xy ;(s) = Xg(s) for all ¢ € [K].

We remind the reader of the discussion in Section [2]of we must rely on joint transitions to be able to
learn the correlation structure of the joint returns. (See Figure 2]for a way to gather joint transitions
without the number of states exponentially increasing.) We now propose the following distribu-
tional variant of the standard Q-learning algorithm, utilizing joint transitions: At each update step,
for a sampled experience replay transition 72 := (s,ay,as, 1,72, 5, 5, a}, ab), we calculate the
distributional temporal difference error between the current state’s bivariate marginal return distri-
bution 79(s; a1, az2), and a TD target distribution 7 (s}, s5), which will be the distribution of an
RV we denote by r + 7Z* (s}, s}). In other words, we take our temporal difference error to be
L (no(s;a1,a2), ni(s],s5)), which then gets used to update the neural network weights 6 through
backpropagation and stochastic gradient descent methodsE] In theory, any statistical distance may
be used for L. To justify this choice, we state two theorems regarding the representation error and
distributional convergence of GMMs in the Cramér distance dc. We refer the reader to Appendix
for the details of the statements and the proofs, and to Appendix [B] for equivalent results in the
Wasserstein distance.

Theorem 2 (Representation error of do-optimal K-GMM). Let n™(s) and 7™ (s) denote the N-
variate joint return distribution of policy 7 and the distribution of its dc-optimal K-GMM approxi-
mation, respectively. Then, under Assumption[2] it holds that for any s € S,

\/N(Tmax - Tmin)
(- KN

de(n"(s), 7" (s)) <

Theorem 3 (Distributional convergence of 1-GMMs in d¢). Instate the notation and hypotheses
of Theorem |1} Let n*(s) = N (p*(s), ¥ (s)), where X¥(s) is the covariance derived from the
uncentered matrix of second moments Y¥F(s). Let 17 (s) = N(u™(s), %™ (s)) be the I-GMM ap-
proximation of the true return distribution 0" (s). Assume that X™(s) is positive definite for all
s € S. Then, forany s € S,

de(™(s),n"(s)) = O [ VN = )
c(™(s),n"(s)) < 7 +(1—7) Amin(E7(s))

The nature of 7 (s,s5) = Law(r + vZ7 (s}, s5)) must now be specified. This distribution re-
sembles the familiar TD target of both classic RL and conventional DRL settings, but due to its
multivariate nature, some clarifications must be made. In truth, n} (s, s5) is a coupling: It is a bi-
variate joint distribution whose univariate marginal distributions are the TD target distributions for
{ne(s,a;)}?_,, ie., Law(r; + vZ, (s}, a})), where a} € argmax, c 4 E[Z,(s;a’)]. Going back to

>We remind that the target RV is calculated with a separate set of parameters w (as opposed to ), the
parameters of the so-called target network (Mnih et al., [2015).
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Table 3: Scores achieved by unsafe policy 7, and Markowitz policies 7y, with varying A values.

Policy Mean Standard deviation Min Max
Tw —2134 102.4 —690.7 —11.2
wa with A = 0.01 —118.7 101.1 —724.0 —15.0
mav with A = 10.0 —127.1 99.4 —568.3 —-16.5

GMM terminology, the i univariate marginal dimension of n* (s}, s5) is a K-GMM with mixing
coefficients p,, (s}) and means 7; + Y, i (s}, a}).

We have specified the mixing coefficients and the means of the TD target 7 (s}, s5), and only
the covariance remains. Let us refer to the covariance matrix as ¥, (s}, s5). Given our previ-
ous logic for constructing the coupling target distribution, our covariance matrix must now satisfy
Zwyi_j.(s'l,sé) = cov(r; + vZu(si,a}),rj + vZu(s};a})) as a sample-based estimate of the true
covariance cov(R(s, a;) +vZ(S},af), R(s,a;) + 'yZ(S’ ax)).

i@ ]’]

We remark that with the provision that the TD target distribution (s}, s5) must be a coupling of
the TD target distributions of the two univariate marginal distributions 79(s,a1) and 74(s, az), it
must, at its most general form, be the distribution of a K2-GMM. Letting (ki, k2) € [K]? index
the K2 components of the target mixture, and referring back to the homoscedasticity assumption
mentioned in the beginning of the section, we finally have

r 4+ sh . a*r
B = 3 (a5 M<52>>N([1 Ve (5 Q]ma,so).

72 + YHw,ky (52, G
o — w 2( 2 2)

In practice, this implies that at each update step, we are fitting a K-GMM to a K2-GMM. This
might be envisioned as distilling the most prominent features of the K2-GMM down to a K-GMM,
keeping the model size reasonably bounded at all times. Notably, in the case of 1-GMMs, both
no(s; a1, az) and 0 (s}, s5) have the same number of components.

4 EXPERIMENTAL RESULTS

4.1 JOINT ITERATIVE POLICY EVALUATION (JIPE)
We report two minimal MDPs that manifest correlated returns.
Shared-Randomness Bandit (SRB). A one-state, two-action MDP with leftward gust
reward R, ~ N (u,,X,), in the spirit of Example The shared Gaus-
sian draw induces dependence between the two actions’ rewards. We set
T . . X —» — Goal

» = [0.0 0.2]". The variance of the first action is 0.8, the second ac- .
tion is 1.0 and the covariance of the two actions is 0.6. The evaluated policy T
plays action 2 for all time steps. - 7
Windy Gridworld (WGW). A 3x3 grid-world environment with a leftward L T
gust of wind, present with probability p = 0.35, akin to Example[2] The wind
perturbs the transition dynamics irrespective of the chosen action, pushing the
agent one cell to the left in addition to the action chosen. The agent starts in  Figure 3: Deter-
the bottom-left cell. The goal cell is absorbing and only the actions that land ministic policy

on the goal cell produce reward 1, all other state-action pairs produce zero
reward. The evaluated policy is presented in Figure

For each setup we evaluate a fixed policy using the JIPE scheme to compute
the means, and the covariance matrix. We derive closed-form ground truth
values for the moments and observe precise agreement in terms of maximum
absolute distance within 20 iterations. The results are presented in Tables [I]

evaluated in the
WGW environment
with leftward gust.
The gust is shared
each time step
between all actions.

and 2] These results validate that the JIPE scheme recovers the moments implied by the coupled

dynamics and rewards.
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Table 4: Scores and costs of 7 vs. 7. across environments.
(&

Scores (mean + sem) Costs (mean + sem) . vs. ™ (%)
Env. * Te * Te AScore  ACost
Atlantis  912204.04+10121.5 957336.0+-12404.8 20483.2+158.3 16496.1+145.5 +4.9 -19.5
Boxing 100.0 + 0.0 100.0 += 0.0 8959 + 1.7 7995 + 5.9 +0.0 -10.8
Pong 21.0 + 0.0 21.0 + 0.0 22934 4+ 13.8 722.3 +19.6 +0.0 -68.5

4.2 SAFETY THROUGH COVARIANCE ESTIMATION

To demonstrate how the estimated covariance matrices might be leveraged for safe RL, we use the
Cliff Walking environment (Sutton & Bartol 2018) (Figure[d) with a high slipping probability of 0.5.
Consider the naive, performance-oriented but unsafe policy m,, of walking straight along the edge of
the cliff to the goal state, shown in the figure in red. m, has the potential of reaching the goal state
within the least amount of steps. However, the high probability of slipping down into the cliff and
incurring a catastrophic negative consequences introduces a large amount of variance to its returns.
We first evaluate this policy through the JIPE scheme. We R=-1

then propose to use the mean-variance selection strategy
(Markowitz,|1952)in the context of portfolio optimization
to derive a safer stochastic policy which incorporates in- | Unsafepath

formation about the covariances. At state s, we use a so- | | I
lution 7y, of the quadratic problem max e, 7 pu(s) — | S [T b€ L B ©
ArT'S(s)m as a stochastic policy, where \ strikes a bal-

ance between performance and risk-aversion. We simu- F=-100

late the environment for 2500 test episodes with the un-
safe m, and with the Markowitz policy ), found with
varying values of A. The results are in Table[3] The aver-
age score achieved by Markowitz policies are greatly improved over 7, for all values of .

Figure 4: Cliff Walking environment
with evaluated unsafe policy outlined.

4.3 INTERPRETABILITY THROUGH COVARIANCE ESTIMATION

We now showcase several DL applications where the learned covariances contribute to interpreting
the agent’s policy and provide context about the environment state.

Firstly, we present the estimated joint distributions of near-optimal returns for two states from the
CartPole environment after 50 thousand frames using the DL framework of Section [3] with a 1-
GMM. Because this is an environment with NV = 2, we are able to plot the joint distribution of
returns. Figure [T] shows these distributions for the given frames. The degenerate ridge structure
observed on the left, in the case of a bivariate Gaussian distribution, is observed when the correlation
coefficient satisfies |p| ~ 1. This indicates that the two are extremely (positively or negatively)
correlated. We anticipate extreme correlation when the pole is perfectly balanced and stable, as the
system is in near-complete symmetry and we also expect this symmetry in the covariance matrix,
which is indeed the case here.

In the domain of the Arcade Learning Environment (ALE) (Bellemare et al) [2012), we present
Figure [5] which shows three correlation matrices belonging to a near-optimal return distribution
of Pong after 50 million training frames. The stark differences between the correlation matrices
allow us to interpret the state of the environment and the decisions of the agent. On the left is
a noncritical state. The game has just started, the ball is heading towards the opponent, there is
no urgency to take any action as the agent has not observed how the ball will be heading towards
them. The corresponding correlation matrix shows that the returns of actions are almost completely
uncorrelated. In the middle are two critical states. The ball is heading toward the agent and the
agent must now start taking the correct actions to return it. The matrix shows clear correlations and
inverse correlations between the returns of actions, as taking incorrect actions at this point may lead
to conceding. On the right is a post-critical state. By this point, the agent has taken the correct
actions and has full belief that they have returned the ball with a perfect shot. Knowing that they
have already scored, any actions taken while they wait have no effect on the outcome of the point.
All actions after this point are perfectly correlated.
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Figure 5: Four examples of covariance matrices of a near-optimal return at the shown states of Pong.
The arrows are added by the authors to provide context as to where the ball is headed. The effective
ranks are respectively 0.998, 0.397, 0.194, and 0.009.

0.483 0.519 0.504 0.536 [ 893 0.997 | 1.000  0.988 | 0.990 | 0.979  0.988

0.995 | 0.988 | 1.000 | 0.996 | 0.995  0.996

1.
-DBBG 0.786 1.000 0.810  0.766 0.995 0.990 0.996 1.000 0.992 0.994

0.989 0.979  0.995 0.992 1.000 0.993

-0.906 0 745 | 0.823 | 0.810 1.000 0.820

0.994 | 0.988  0.996 | 0.994 | 0.993 | 1.000

-0.8940.751 M 0.766 | 0.820 | 1.000

4.4 CoST-EFFICIENCY THROUGH COVARIANCE ESTIMATION

With the intuition of the previous section, we propose a heuristic for the criticality of states. The
observations and discussion on Figure [5|lead us to propose the (normalized) effective rank

ex — N 4 10, i ) — -
Vetterli, [2007), erank(X) = e Z’]:Vl_pll gp:) 1 , where p; = E—]\;\% and ); are the eigenvalues

of matrix . We observe from the figure that in noncritical states, there is small correlation between
the returns of any two actions, and the correlation matrix is close to the identity. The correlation
matrix is full rank, and erank(X) & 1. Similarly, we observe that in post-critical states, there is very
strong positive correlation between any two actions and the entries of the correlation matrix are all
close to 1. The correlation matrix is a rank-one matrix, and erank(X) & 0. These two observations
lead us to consider the critical states as those which satisfy § < erank(X) < 1—4¢ for some threshold
parameter §.

To test this hypothesis through the lens of cost-efficiency, we assign every ALE action an energy
cost. The action NOOP, which corresponds to doing nothing, has zero cost. Simple actions such
as UP, LEFT, FIRE cost 1 energy. Composites of two actions such as UPFIRE cost 2 energy.
Composites of three actions such as UPLEFTFIRE cost 3 energy. We compare the policies 7*
and 7., where 7* is the near-optimal policy learned through the methodology of Section [3]after 50
million training frames, and 7. is the cost-efficient policy which follows 7* but ignores the dictated
action at noncritical states and takes NOOP instead. We set the threshold parameter § = 0.005 for
Atlantis, 0.01 for Boxing and 0.015 for Pong. We present the average scores achieved and energy
costs incurred by the two policies in Atlantis, Boxing, and Pong over 25 test episodes in Table
@ 7. leads to significant reduction in energy cost with zero degradation in score, and even slight
improvement in score in the case of Atlantis. It is perhaps also of note that the scores achieved in
Atlantis beat those of C51 and Rainbow (Hessel et al.| [2018), as reported in Figure 14 and Table 6
in the respective works.

5 CONCLUSION

We argued that dependencies between the returns of actions are intrinsic in many MDPs and devel-
oped a principled way to capture them by learning joint return distributions. We cast the problem
as a POMDP whose hidden states store coupled potential outcomes across actions, derived joint
Bellman equations and the JIPE scheme with convergence guarantees to the joint mean and second
moments. We proposed a DL method that fits K-GMMs to estimate optimal joint return distribu-
tions. Empirical results on environments with known correlations and the proposed DL method on
control and ALE tasks showed that the approach recovers accurate moments which may be used for
safe, interpretable and cost-efficient RL. We envision that future research directions include estimat-
ing joint distributions as couplings of existing DRL methods and extensions to continuous action
spaces.
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A PROOF OF THEOREM [I]

We first state a simple lemma which is used to derive the convergence results.

Lemma 1. Consider two non-negative sequences ay and by. Assume ak < vkao and by <
aoBY* + 42by, for some B > 0 and y € [0,1). Then, by, < 7?kby + “‘)BV .

Proof. We proceed by unrolling the recurrence
bi+1 < 72y, + ag B,
<Y (¥?br-1 + aoBY*) + agBy"
=71 + ag By + agB".

Thus, by induction we have

k k
br1 < 7 * by + agB Z Y EI I = 20 Dy 4 gy B ZVQ(kij)’Yj-
=0 =0

Using a change of variable ¢« = k — j we can calculate the second geometric sum:

k oo koo ) koo 1 — A+t
Z’YQ(k_])’yj — 2722,}/16—@ — 'Yk Z,yv — 'Yk . —
§=0 i=0 i=0 v
Using this in the previous equation furnishes the proof. O

‘We now state the proof of the main result. We re-state the theorem for convenience.

Theorem 4 (Convergence of N-variate joint iterative policy evaluation). Suppose Assumptions 1|
and@]hold Consider the N-variate joint iterative policy evaluation scheme in 2). For any s € S,

let i and ¥ (s) denote the mean and the uncentered matrix of second moments recovered from
MPF. Then

k Tr _ k sk (s) — ST (s _ i
6 = (Gl = 0 (4) . 1546) 70l = 0 (1)

Proof. We adopt and strengthen an argument from Chapter 8 in [Bellemare et al.| (2023). We will
first define the following semi-norms

[M||o,n = sup [M,(s, a)|

(s,a)

||MHoo,cf = sup |M,(s,a)

s,a

[M|[co,c = sup [Me(s, a);|
(s,a,5)

Next, we demonstrate that the second-order N-variate joint Bellman operator 75"y is a contraction

with respect to || - ||oc,, With constant . To see this, we remark that by the definition of M, M,
and || - ||, we have that

( QTNM)M = TﬂMﬂ

where 7T™RS*A — RS*A is the usual Bellman operator. Furthermore, note that | M ||, =
[|1M,]|oo- Thus,

H7—27TNM - 7-27,TNM/||00,;L = H( 2T,FNM);L - ( QTNMI)#”OO
= 17" My = T Mj o
< fYHMM - M;ILHOO
=M — M/HOO,M

13



Under review as a conference paper at ICLR 2026

where we used the y-contraction of 7™ with respect to || - ||c. Now recall, by linear convergence of
the regular Bellman update Mf*+! = T7 M}, we have

IME = M7 loo0 = [|My; = Mo < A*IM = M7 |loo = 7" M° = M [|oc,.

This result establishes that the iterative policy evaluation scheme in (2)) which repeatedly applies the
second order N-variate joint Bellman operator 7,7y converges linearly to the mean of the N-variate

joint return distribution 1™ (s).

To prove the rest of the statement, recall that for any (s, a) by Assumptlon 2l |E[R(s,a)]| <
max{|rmin|, [rmax|} < B and |E[R(s,a)?]| < max{|rmin|? |rmax|?} < B for some B> 0
Furthermore, by the definition of M, M o> M, || - ||oo,u» and || - ||oo,o, for all (s, a), we have

(T M) (s,0)2 — (TEnM')(s,a)2] <2By| > P(s' | s,a)w(d | &')(M — M')(s',a'),
(s',a")eSX.A

+22 Y P sa)m(a | (M~ M)(s' )z

(s,a’)ESXA
< 2B7||M = My lloe + 7| Mg — M|l
= 2B7||M — M'|locp + 7| M — M'||0,0
Hence,

TSN M = TN M loo,e < 2BYIM = M [loo,u + 72 1M — M|l oc,0

Similarly, we can establish a recursive inequality for the cross covariance M.. In particular, for all
(s,a,j) €S X Ax{3,...,N+1},

(TEn M)(s,a); — (TEnM')(s,0); < By| Y P(sy|s,a)m(d) | s1)(M — M')(s},a))
(s},al)eSxA

+By| Y Plsh|sap)mlay | sh) (M — M')(sh,a5)
(sh,ab)eSxA

2| S P | ssapm(a | $)(M - M)(s,a),

(s",a’)eSxA
< QBVHMM - M[LHOO +72||Mc - MéHoo
=2BY|M — M'[lou + M = M'[loc,c

where a; denotes the action used to calculate the cross covariance term for (s, a) which is stored
in M.(s,a);, and we use the definition of the joint MDP, notably the fact that P'(- | x,a) :=
Cp(sa) X Cr(84), to bound the term in the bound (that is, the next state transition is dictated by a,
not a;). Hence,

||T2TNM - T277FNM/||00,C <2By|M — MIHoo,u + 'YQHM - M/Hoo,o
Thus, by invoking Lemmal[T] one can readily establish

2||M° — M™ ||, BY®
HMIc 7M7r”oo,a S,}/ZkHJ\4O7]\471'”007”+ H H B

1—x
. 2|MO — M™||o, B
I35 = Moo < 7 = M7 ZLEE M e
-

These results establish that the iterative policy evaluation scheme in (2) which repeatedly applies the
2nd order N-variate joint Bellman operator 7"y, converges linearly to the second moment (shifted

covariance) of the N-variate joint return distribution N (s). O
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B PROPERTIES OF K-GMMS UNDER THE WASSERSTEIN-2 DISTANCE

We first state a simple result, which is immediate from Assumption 2]

Proposition 2 (Boundedness of return). Under Assumption 2| Z7(s,a) € [Tmin/(1—y), Tmax/(1—)]
almost surely. Furthermore, Z™(s) € [rmin/(1—~), rmax/(1—+)|"" almost surely.

Next, let us recall the definition of the W5 distance and its important properties.

Definition 5 (Wasserstein-2 distance). Consider RY with the Euclidean distance as the metric. Let
p and q be two probability measures on RY with bounded second moment, i.e.,

/ |z ||*dp(z) < oo, / |z||2dg(x) < oc.
RN RN

Then, the Wasserstein-2 distance between p and q is defined as

Walp.q) = inf /wamw»
aEF(p,q) (z,y)

where T'(p, q) is the set of all couplings of p and q.

Proposition 3 (Properties of W5). Consider two random variables Z,, and Z, with distributions p
and q, respectively. With the notation Wa(p, q) = Wa(Z,, Zy), the following holds

* 1-homogeneity and regularity:
Wao (X +7Zp, X +7Z4) < AW2(Zp, Z4),
Sorall v € [0,1) and for any independent random variable X.
* 2-convexity:
WEp + (1= Np, A+ (1= 2)a) < AWZ(p, q) + (1= W3(5, ),
for all X € [0,1] and probability measures p and §.

We now state two main results, regarding the representation error of optimal K-GMMs and the
distributional convergence of 1-GMMs under W.

B.1 REPRESENTATION ERROR

We first start by an intuitive definition of our optimality criterion of K-GMMs estimating a return
Z™(s), in terms of its W3 distance.

Definition 6 (1W5-optimal K-GMM approximation). Let Z7(s) and 0™ (s) denote the N-variate
Jjoint return random variable and its distribution, respectively, following policy . The Ws-
optimal K-GMM is a multivariate random variable Z7(s) with the distribution 7™ (s) =
S i(sIN (ia(5), Si(s)), which satisfies Wa(i™ (s), 77 () < Wa(ii*(s),17(s)). for all K-
GMM distributions 7" (s). Here, p;(s) € Ay are the mixture coefficients, i;(s) € RN are the
mixture means, and f],(s) S S_]‘Y are the mixture covariance matrices, where Sf denotes the space
of real-valued N x N positive definite matrices.

As stated, this definition establishes the optimality criterion for any K-GMM. We argue, however,
that when one restricts themselves to 1-GMMs, the optimal GMM is found to be parameterized by
the true mean and covariance of Z™(s), i.e., 1™ (s) and X7 (s).

Proposition 4 (W5-optimal 1-GMM approximation). Ler u™(s) and X7 (s) denote the mean and
covariance of the N-variate joint return Z7(s), respectively. Then, if K = 1, the Wy-optimal
1-GMM approximation of Z™(s) has distribution 1™ (s) = N (u"(s), X7 (s)).

The previous definition and proposition characterize the optimal K-GMM and 1-GMM representa-

tions of Z™(s), respectively, but make no guarantees on the accuracy of these representations. We
establish, in Theorem 5] a bound on the representation error incurred by optimal K-GMMs.
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Theorem 5 (Representation error of Ws-optimal K-GMM). Let 17 (s) and 7™ (s) denote the N-
variate joint return distribution of policy m and the distribution of its Ws-optimal K-GMM approx-
imation, respectively. Then, under Assumption[2} it holds that for any s € S,

Wa (™ (), 77 (s)) < “(Nl(im;’; I;in“).

Proof. We adopt an argument from computational optimal transport (Peyré et al.| 2019) and optimal
quantization theory (Gruber, [2004)).

Recall that under Assumption Z™(8) € [rmin/(1—7), "max/(1—)]™ almost surely by Proposition
Let us consider partitioning [rmin/(1—~), Tmax/(1—)]" into K disjoint cubes Q;, i € [K].

The side of each cube will be of length % Furthermore, the volume of each cube will be
N

(rssieen)

LetC = {c1,...,ck } denote the center of these cubes. This helps us to define these cubes formally

as

N
Qi = {ze[fi‘yf“f’;] ||zci|§||zcj||,w¢i,jem}.

Furthermore, note that ||z — ¢;|| < % forall z € Q;.

Let w; = 1" (s)(Q;) and note that w; > 0 and Ei:l w; = 1 as ™ (s) is a valid probability measure
on RY. Now, define the empirical measure

K
= Zwid(z - ),
i=1

where §(z) is the standard delta Dirac function. To upper bound Ws(n™(s), P.), we define a non-
optimal coupling « between 1™ (s) and P, as follows: For each ¢ € [K], couple all the mass of ™ (s)
in cube @); to the center point ¢;. That is, let

)= ) Lecg, -0 = )77 (5)(2)

Using this coupling, we have

W22(77W(5)7Pe) = (ael“(%nfe) P.) \// |Z - ZIH2dCY(Z z ))

g/ Iz — 2/||2da(z, )
z,2'

K
=3 [ teelraree
- (\/N Tmax — Tmin)

2(1 — y)KY/N

- ( 2(1 — 7) KN

o \/N Tmax Tmln
- 2( Kl /N

\/N Tmax — Tmin ’ 4l
i

Next, let us consider the following GMM:

K
= Z wiN (¢, 2
i=1
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Recall that, by definition, Wy (7™ (s),n™ (s)) < Wa(n™(s),n™ (s)). Furthermore, as W5 is a metric,
by the triangle inequality we obtain

Wa (" (s), 0" (s)) < Wa("(s),n"(s))
< Wa(i" (s), Pe) + Wa(Pe,n"(s))
\/N(Tmax - Tmin)
20— KN
In what follows, we will set ¥ such that Wo (7" (s), P,) < %
stated bound.

P
< Wa(i™(s), Pe) +

, thereby proving the

By 2-convexity and regularity of W,

w; W3 (N (e, ), 6(2 — ¢;))

M=

W3 (i7" (), Pe) <

.
Il

|
SNl

(N(0,%),6(2)),
using Zfil w; = 1. Next, we will upper bound W3 (N (0, ), 6(z)) using the independent coupling

WZ(N(0,%),8(2)) < /// llz = 2'|?6(2") N(0,%)(2)dzd2’

- / IAPA(0, £)(2)dz = Egoniosy |1 2] = T(S),

where we used the properties for the trace of a matrix and the linearity of the trace operator. Setting

Y such that Tr(X) = % finishes the proof. O

B.2 DISTRIBUTIONAL CONVERGENCE

We now state the following result, establishing the distributional convergence in W5 distance of
1-GMMs to the W5-optimal 1-GMM, under the iterative evaluation scheme introduced in Section

Theorem 6 (Distributional convergence of 1-GMMs in W, distance). Instate the notation and hy-
potheses of Theorem Let n*(s) = N(u* (_32, Y% (s)), where ¥¥(s) is the covariance derived from
the uncentered matrix of second moments ¥*(s) as ¥¥(s) = Xk (s) — p*(s)u*(s)T. Then, n*(s)
linearly converges to 7™ (s) = N (u™(s), X" (s)), i.e., to the Wy-optimal 1-GMM approximation of
the N-variate joint return distribution 0™ (s). That is, for any s € S,

where Amax (+) and Amin(+) denote the maximum and minimum eigenvalues of their argument.

Proof. Let X¥(s) = X7(s) + AF. Note that, without loss of generality, we can assume A* is
positive definite, otherwise we set %(s) = ¥7(s) — A¥. Recall that the W5 distance between two
multivariate Gaussian distributions is given by

, 1/2
WE("(5), 1" (5)) = [l ()~ () |3+ T (ms) + 25 (s) = 2 (37(s) /25 ()57 ()12 ) .
Theorem 1| establishes the linear convergence of the mean. Thus ||u*(s) — u™(s)||2 = O(N~?)
using norm properties. On the other hand,
1/2

(5725 ()5 (9)V2) " = (570 V2 () + AR (9)2)

= (27(0)? + 27 (s) V28w (5)/2)
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Since the matrix square root operator is monotone and analytic on the positive definite cone, its
Fréchet derivative exists (Higham), [2008)). Thus, we can write the first-order (Fréchet) Taylor expan-
sion of the matrix square root function around ¥ (s)? as

1/2
(Z7() + £7()2A%57(5)2) 7 = £7(s) 4+ X + o7 (5) /2ARE" (5)/2] ),
where X the is unique solution to the Sylvester equation:
T(X) :=3(s)X + XX7(s) = X7 (s)/2AF %™ ()12,

and by the linear convergence of the covariance established by Theorem [I] we have
k T
sz(s)l/QAkETr(s)l/Q”F _ O(N’Y Amax (2 (S))).

1=
Note that for any unitary invariant matrix norm, notably the Frobenius norm, the Ando-Hemmen
inequality establishes the Lipschitz continuity of the matrix square root (see, e.g., Equation (1)
in |Del Moral & Niclas| (2018)). In our application, the Lipschitz constant is strictly smaller than
m Consequently, the linear Sylvester operator 7 is positive definite and invertible. Hence,

IXIlr = T (E7(s)/2AF S (5)!/2) |
1Z7(s) /2 ARE" (5) 2]
o )\min(zﬂ (3)>

o N (57 (s))
-0 ((1 - v)Amm@”(s))) '

Consequently,

1/2 k (s
(27() 4+ 37(s) /2% 57 (s)112) P o ro ((iv - vﬁ?m(?xi()s)») ’

and

Tr (z”(s) +3F(s) -2 (ZW(S)V?z’f(s)z”(s)lﬂ) UQ) ‘ < |Tr (SF(s) — S7(s))|

NVkAmaX(EW(S))
O ((1 - v)Amm@ﬂ(s))) |

Using the linear convergence of the covariance (and in particular, its diagonal) as established by
k
Theorem we have |Tr (XF(s) — X7(s))| = (’)(11\7_—77), using norm properties.

Leveraging all of our findings and using the inequality vVa +b < /a + /b for positive a and b

yields
B B NAk Amax(57(5))
W (i (), () = O (WW“ * \/1 S (1 Amin@w(s»)) |

C PROPERTIES OF K-GMMS UNDER THE CRAMER DISTANCE

We extend the analysis of the representation error of a GMM approximation to the Cramér distance,
which is an alternative metric on the space of probability distributions.

Much like the results on the W distance (Appendix[B)), the analysis is predicated on the foundational
assumption regarding the bounded nature of the reward function, which in turn ensures that the return
distribution has bounded support. (cf. Assumption[2]and[2}) Next, we provide the definition of the
Cramér distance and list its essential properties that are instrumental to the proof.

Definition 7 (Cramér distance). Consider RY with the Euclidean distance as the metric. Let p and
q be two probability measures on R . Let X and X' be independent random variables drawn from
p, and' Y and Y’ be independent random variables drawn from q. The squared Cramér distance
between p and q is defined as

d&(p,q) == 2E|X — Y| - E|X - X'|| - E[JY — Y.
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Proposition 5 (Properties of d¢). Consider two random variables Z,, and Z, with distributions p
and q, respectively. With the notation dc(p, q) = dc(Zp, Zy), the following holds:

* Metric property: d¢ satisfies the properties of a metric, including the triangle inequality:
dc(pa T) S dC(p7 q) + dC(Q7 T)'

* Convexity: For probability measures p,p, q, § and any A € [0,1],
dg:(Ap + (1= N, Ag + (1= N)d) < Ade(p,q) + (1 = \)de(p, 4)-

* Relation to expected norm: For a distribution p and a Dirac measure 6. at point ¢, d¢ is
bounded by the expected Euclidean distance:

de(p,dc) < ExpllX — .

* Invariance under translation: For any two d-dimensional random vectors X and Y, and
for any constant vector ¢ € RY, the following equality holds:

de(X+¢,Y +¢) =de(X,Y).

C.1 REPRESENTATION ERROR

We now present the main theorem concerning the representation error bound with respect to the
Cramér distance.

Theorem 7 (Representation error of do-optimal K-GMM). Let n™(s) and 7™ (s) denote the N-
variate joint return distribution of policy 7 and the distribution of its dc-optimal K-GMM approxi-
mation, respectively. Then, under Assumption[2] it holds that for any s € S,

\/N(rmax - Tmin)

e (), 7)) < S

Proof. The structure of this proof is analogous to that of Theorem [ adapting the arguments from
the Wasserstein-2 distance to the Cramér distance.

From Proposmon]' we recall that the support of the return distribution 7™ (s) is the hypercube

H = T‘j‘; ’"“j’; We partition this hypercube into K disjoint cubic cells Q; for ¢ € [K], with
centers denoted by C = {c1,...,cx}. The side length of each cube is L = (’1“‘_2;)% For any

point z € @;, the Euclidean distance to its center ¢; is bounded by half the main diagonal of the
cube:

\/NL _ \/ﬁ(rmax - Tmin)
2 2l —7)KYN

Let w; = n™(s)(Q;) be the probability mass of the true distribution within cell Q;. We define an
empirical measure P, composed of Dirac delta functions at the cell centers:

K
= Zwié(z - ).
i=1

The Cramér distance is known to be upper-bounded by the Wasserstein-2 distance, i.e., do(p, q) <
Wa(p, q). We may therefore utilize the intermediate quantization error bound derived in the proof
of Theorem E} Specifically, it was established that

\/N(rmax - Tmin)
2(1— ) KN

This directly implies a bound on the Cramér distance between the true distribution and the discrete
approximation:

Iz — el <

W2(777r(5)7 PE) <

\/N(Tmax - rmin)

dC(nﬂ-(S)aPe) < W2(le(3)ape) < 2(1 _ ,Y)Kl/N

3)
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Now, let 7)™ (s) be the dc-optimal K-GMM approximation to 1" (s), and consider an intermediate
GMM, 7™ (s) = ZZ L wiN(c;,X). By the optimality of 77 (s), we have dc (7)™ (s),n™(s)) <
de (77 (s),n™(s)). The triangle inequality for d¢ yields:
do (0™ (s),n™(s)) < dc (" (s),n" (s))
< dc(’f]ﬂ'(s), Pe) + dC(Pea Wﬂ(s))
\/N(Tmax - Tmin)
<dc(7"(s), P, .
= 0(77 (S)a e)+ 2(1_7)[(1/1\/

It remains to bound the term d¢ (777 (s), P.). Applying the convexity property of the squared Cramér
distance from Proposition [5}

K
= Zw dZ(N(0,%),80) = dZ(N(0,3),8),

where the final step uses the translation-invariance of the Cramér distance and the fact that > w; =
1. Using a property from Proposition [5|and Jensen’s inequality:

1/2
dc(N(0,%),80) < Ezno) 2] < (BN ZI) .
For a random vector Z ~ N(0, %), E||Z||? = Tr(X). Therefore, do (77 (s), P.) < \/Tr(X).

We select the covariance matrix > to match the bound from (E]) Let Y = 021, where [ is the identity
matrix. We set o such that:

\/7(Tmax Tmm)
\/Tr(02I VNo?2 =oV/N = 2(1— KN

which implies o = Sfmss=Emiac. With this choice, do (777 (s), Pr) < Y(rms—rus),

Substituting this result into the main inequality completes the proof:

< \/N(Tmax - Tmin) \/N(Tmax - Tmin)

dC('f)W(S)anw(s)) > 2(1 — ’y)Kl/N 2(1 _ V)Kl/N
N \/N(rmax - 7Amin)
(1—y) KN

C.2 DISTRIBUTIONAL CONVERGENCE

We derive a convergence result for the iterative policy evaluation scheme when the target distribu-
tion is approximated by a single multivariate Gaussian distribution (a 1-GMM). The convergence is
analyzed with respect to the Cramér distance, providing an analogue to the Wasserstein-2 distance
result in Theorem

We first establish two key properties of the Cramér distance between multivariate Gaussian distribu-
tions, which are instrumental for the main proof.

Lemma 2. Let y = N (1, X1) and 1o = N (12, 32) be two non-degenerate multivariate Gaussian
distributions on RN . The Cramér distance dc(n1,12) satisfies the following inequalities:

1. Shift property: The d¢ distance between two Gaussian distributions with identical covari-
ance matrices is bounded by the Euclidean distance between their means:

do(N (11, 2), N (2, %)) < [|p1 — pz|l2.

20



Under review as a conference paper at ICLR 2026

2. Covariance property: The squared d¢o distance between two zero-mean Gaussian distri-
butions is bounded by the squared Frobenius norm of the difference of their matrix square
roots:

A2 (N(0,51), N(0,52)) < =1 — 532

Proof. The proof relies on the property that the Cramér distance is upper-bounded by the
Wasserstein-2 distance, dc(p,q) < Wa(p,q). The Ws distance for a specific coupling provides
an upper bound on the true W5 distance (which is the infimum over all couplings) and therefore also
on the Cramér distance. We construct convenient couplings for both properties.

Proof of the shift property. Let p = A (u1,Y) and ¢ = N (2, ). We construct a coupling of
(X,Y) by letting Z ~ N (0, I) and defining:

X =m+x?Z
Y = pp + 222
By construction, X ~ N (u1,%) and Y ~ N (uz, X). The expected squared Euclidean distance is:
E|X - Y5 =E|(m +5%2Z) = (u2 + 222) |3
=E|pm — Mz”% = [l — M2||§-
Applying the upper bound d¢(p, ¢)? < E||X — Y||3 furnishes the proof of the first property.
2. Proof of the covariance property. Let p = N(0,%) and ¢ = N(0,X3). We construct a
coupling of (X,Y) by letting Z ~ N(0, I) and defining:
xX=x%z
Y =527

This is a valid coupling where X ~ N(0,%1) and Y ~ N(0,35). Let A = 21/2 - Zé/Q. The
expected squared Euclidean distance is computed as follows:

E|lX - Y|} = E(2” - 5,)2|I3 = E|AZ]3
=E[Tr((AZ2)T(AZ))] = E[Tx(ZTATAZ))
=E[Tr(ATAZZT)] = Tr(ATAE[ZZT]).
Since Z ~ N(0,1), its covariance matrix is the identity, E[ZZ”] = I. Thus,
E|X - Y|l = THATA) = Al = 217 - 25|
Applying the upper bound d¢(p, q)? < E|| X —Y||3 completes the proof of the second property. [

We now state the main theorem and its proof.

Theorem 8 (Distributional convergence of 1-GMMs in d¢ distance). Instate the notation and hy-
potheses of Theorem Let n*(s) = N'(u*(s), $¥(s)), where 3*(s) is the covariance derived from
the uncentered matrix of second moments ¥*(s). Let 7™ (s) = N(u™(s), X" (s)) be the 1-GMM
approximation of the true return distribution 0" (s). Assume that X7 (s) is positive definite for all
s € S. Then, forany s € S,

] Aws’ks _ o vk prk )
(7 (5),7(5)) ( T Vo)

Proof. Let n*(s) = N (u*,%*) and 7™ (s) = N(u™,X™) for notational simplicity. We bound
the Cramér distance by applying the triangle inequality with an intermediate distribution 7j(s) =
N (pm, %)

dC(ﬁﬂ-(s)ank(s)) < dC(N(Mﬂv Eﬂ')?N(,ufﬂ-a Ek)) + dc(./\/(/iﬂ—7 Zk)v-/\[(ukv Ek)) “)

We bound each of the two terms on the right-hand side separately.
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For the second term in @I), which involves distributions with identical covariance, we use Lemma
Rl1. This gives de (N (1™, %), N (¥, 2*)) < ||u™ — pi*||2. From Theorem 1] we have ||z*(s) —
1™ (8) ]l = O(7*). Relating the infinity norm to the Euclidean norm yields:

i (s) = 17 (8)ll2 < VN[*(s) = 57 (5) |0 = O(VNAF).

For the first term in @]), which involves distributions with identical means, the translation-invariance
of the Cramér distance and Lemma[2]2 imply

dgWN (1™, =), N (", %)) = dg:(N'(0,7), (0, 5%)) < [[(57)Y/2 — (=9)/2 %
The matrix square root function is Lipschitz continuous on the cone of positive definite matrices.

k T T\1/2 k\1/2 1 T k
As XF(s) — X7(s), we have the bound ||(X™)'/2 — (X¥)Y/2||p < O (m) |27 — ZF||p.
We bound the term ||X7(s) — X*(s)||r by analyzing its components, 3(s) = %(s) — u(s)u(s).
The difference is X" — XF = (7 — ¥F) — (u™(u™)T — p*(u*)T). By Theoremand standard
norm inequalities, the Frobenius norm of this difference is dominated by the convergence rate of

the uncentered second moments, giving || X7 (s) — X*(s)||r = O (%) Combining these results

gives the bound for the covariance-related term:

(1 =)V Amin(37(s))

Substituting the bounds for both terms back into the triangle inequality in (@) yields the final con-
vergence rate:

do (N (u™, 37), N (u™, 5F)) = 0( Nt ) :

(1 =)V Amin(X7(s))
This completes the proof. O

de(ii™(s). () = O (VENA¥) + 0 ( Ny ) .

D MARGINALIZATION IN GMMS

We take the time to discuss the relationship between indexing by actions and marginalization in
K-GMMs, which is helpful to the exposition in Section |3} Note that Z(s), unindexed by any action
a € A, indicates the N-variate random variable of state-action returns for state s and for all actions.
We once again refer to the convention A = [N] established in Assumption|[I] and indicate by Z (s, i)
the i component of Z(s):

Z(s)=[Z(s,1) Z(s,2) ... Z(s,N)]".

Similarly, the marginal distribution of the i component of Z(s) may be expressed in terms of the
joint distribution 7(s) as in (I), where we “marginalize out” every dimension except for the i
dimension through integration. Note that it is straightforward to extend this definition to indexing
by multiple distinct actions, where, for instance, Z(s; 4, j) would indicate the bivariate joint random
variable of state-action returns at state s and for actions ¢ and j € [N], whose distribution 7(s; 4, j)
would be obtained by integrating over every dimension of 7)(s) except the i and j™ dimensions.

Fortunately, with the choice of N-variate mixture of jointly-Gaussian random variables to model
Z(s), the integration in (T) becomes as simple as selecting relevant entries from the mean vectors
1x(s) and from the covariance matrices X (s) to parameterize yet another K-GMM distribution in

R. Indeed, if 7(s) = 31y pr(s)N (ur(s), Sr(s)), then,

K
n(s:5) =Y pr(s) N (1 ()55 Sa(8)5) -
k=1

Similarly, it is simple enough to extend this to multivariate marginal distributions of Z(s). One only
has to extract the multiple relevant entries from the mean vectors, and select the relevant sub-block
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matrix out of the covariance matrices of the mixture. For instance, a marginalization of the 1% and
the 3™ dimensions would simply be obtained by

Yr(s)ir Ze(s)iz Ye(s)iz - Ze(s)in
Ye(8)21 Zk(8)22 Zk(s)2s - Zg(s)an
Se(s) = Yr(s)sn Zr(s)s2  Zr(s)ss -+ Zp(s)sn
Ek(:s)N,l Ek(é)z\r,z Ek(eé)N,g Ek(s.)N,N
b)) S)1.1 Dy S)1
= == SO S
and
p() = ) Gl (s ()"

= (s 1,3) = [(me(s)1 (e(s))s]"
for each k € [K], and hence,

K
n(si1,3) = > pr(s) N (pr(s31,3), (55 1,3))
k=1

once again, the distribution of a K-GMM, this time in R2.

E RELATED WORK

A very early view of the DRL paradigm was first introduced by |Morimura et al.|(2010ajb), where the
concept of the distributional Bellman equations were first laid out. These works, prior to the advent
of deep learning methods, propose (non)parametric estimators for the modeling of the distribution
of returns.

After the proliferation of deep learning methods in the context of reinforcement learning, and the
success of DQN (Mnih et al., [2015)), a sequence of DRL methods within this paradigm were pro-
posed. [Dabney et al.| (2018a) propose a taxonomy of such methods, based on their two characteris-
tics: How they parameterize the return distribution, and the distance metric they choose to optimize.
We will adhere to this taxonomy in the following exposition. C51 (Bellemare et al., 2017a)), which
reinvigorated the field of DRL, and its extension Rainbow (Hessel et al.| [2018) propose to model
the return distribution of each state-action pair as a categorical distribution. In their case, a neural
network produces a single categorical marginal distribution of 51 parameters for each one of the
| A| actions. They propose to use the Kullback-Leibler (KL) divergence as loss function. QR-DQN
(Dabney et al.l|2018b), IQN (Dabney et al., 2018a) and FQF (Yang et al.| |2019) take a somewhat or-
thogonal approach and propose to model the inverse CDF, also known as the quantile function, with
increasing levels of degrees of freedom, increasing the expressivity of the methods. They optimize
the Huber quantile regression loss.

The most similar DRL method to this work is MoG-DQN, proposed by (Chot et al| (2019). They
propose to model the marginal return distributions using Gaussian mixture models (GMMs) and
use the Jensen-Tsallis distance, i.e., the ¢2 distance between the probability distributions, as loss
function. In a similar vein, Zhang| (2023) proposes the use of GMMs in RL, but proposes the
optimization of the Cramér-2 distance instead, which we adopt in the experimental results of this
work.

DRL methods which consider multivariate reward functions bear resemblance to our work. To name
a few, the Bellman GAN model (Freirich et al.| [2019) is proposed as a GAN-based approach to
learn a deep generative model of the return distribution, allowing for the modeling and learning
of DRL methods with multivariate rewards. |Zhang et al.| (2021)) propose MD3QN, which extends
distributional RL to model the joint return distribution from multiple reward sources, also aiming to
learn the correlation of rewards coming from different sources.

Another area of RL which is relevant is counterfactual reasoning. Counterfactual reasoning in RL
considers the outcomes of actions that were not actually taken, allowing one to ask “what if”” ques-
tions about alternative decisions. By leveraging such counterfactuals, one can either augment the
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data available for learning or provide more interpretable explanations of an agent’s behavior.
(2020) propose generating synthetic experience by replacing taken actions with counterfactual
ones under learned dynamics, thereby improving sample efficiency. |Amitai et al.[ (2024)) instead
use counterfactual trajectories to highlight how different actions would have changed the observed
behavior, offering a means to interpret and communicate the agent’s decision making.

F USED NEURAL NETWORK ARCHITECTURE

po(sh)
—— po(s3)
sh
o(s1)
| S (s 55)
b(s3)
to(sh)
85 Ho(s5)

Figure 6: The architecture used in practice with Atari games from the Arcade Learning Environment.
The orange blocks indicate convolutional layers. The blue blocks indicate linear layers. The first
four blocks work as a feature extractor. The green block indicates an “augmentation layer”. The
three linear layers at the right end are, from top to bottom, the mixing, covariance, and mean heads.

We specify the architecture of the neural network, presented in Figure [6] to discuss how the K-
GMM parameters are estimated. The general architecture follows that of DQN 20135)
closely, but with a few significant differences. Firstly, the fully-connected output layer of DQN
is split into three heads, estimating the mixing coefficients, the mean vectors, and the covariance

matrix separately. These heads have K, KN, and N(V+1) output nodes, respectively. The raw
output of the mixing coefficient head is passed through the softmax function to produce the mixing
coefficients. The output of the mean head is used directly as the estimate for the /V-variate mean
for each of the K components. The output of the covariance head is used to construct a lower-
triangular matrix, from which the estimate for the covariance matrix is constructed through the
Cholesky composition. To ensure that the resulting estimate of the covariance matrix is positive

definite, we take the exponential of its diagonal entries, and add a small positive constant.

We remark that through this process, we aim to learn a full covariance matrix with all of its off-
diagonal elements, as opposed to adopting the usual assumption of diagonal covariance matrices,
which would be no different than learning separate marginal distributions for each action, as in
conventional DRL. It is only through the learning of these off-diagonal elements that we can prospect
the interrelations and dependencies of the marginal distributions.

Furthermore, we add an augmentation layer before the covariance head, which takes two inputs u, v
(Chen et al.,

and returns the vector[u v. u—v u® V]T, a form familiar from LSTM literature

[2017), which then gets input into the covariance head. In a sense, all the layers before the three
heads and the augmentation layer work as a feature extractor, extracting features ¢(s) from input
state s.

The mixing coefficients for both 1y (s;a1,az) and 1 (s}, s5) are estimated in the same manner:
In the case of ny(s; a1, asz), a forward pass of s through the network yields pg(s). In the case of
0% (s], ), one forward pass each for s} and s, yield the mixing coefficients for the two univariate
marginal distributions. The means follow a similar approach, where a forward pass of s yields
the 1 1(s), from which the relevant g j(s;a1,a2) are obtained by marginalization. Similarly,
one forward pass each of s} and s yield p, (s7) and g, k(sh), from which g, (s}, a3) and
e k (S5, a3) are obtained by marginalization of the optimizing action’s dimension.
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The estimation of the covariances follows a different pattern. ¥4(s) is obtained by a forward pass of
s to extract the features ¢(s). Then two copies of the same ¢(s) are put through the augmentation

layer, resulting in the input to the covariance head being [¢(s) ¢(s) 0 ¢(s)® qb(s)]T. This
input, passed through the covariance head, yields the estimate Xy (s).

In the case of X, (s}, s5), however, the features ¢(s) and ¢(s}) are combined in the augmenta-

tion layer to produce [¢(s]) ¢(s5) @(s7) — d(s5) @(sh) © qﬁ(sg)]T, which yields the estimate
Y. (s, sh) after passing through the covariance head.

G ADDITIONAL EXPERIMENTAL DETAILS

In the choice of loss function, left unspecified in Section 3] the Kullbeck-Leibler divergence, the
Wasserstein-2 distance (Gibbs & Sul 2002), the Cramér distance (Bellemare et al.l |2017b) or the
Jensen-Tsallis distance (Choi et al., [2019) are all tractable candidates. All of these statistical dis-
tances between, or upper bounds thereof, are simple to obtain computationally when their arguments
are two GMMs (Hershey & Olsen,|2007;|Delon & Desolneuxl|2020; /Zhang}, 2023). In this work, we
choose to present results obtained with the Cramér distance, as guided by Bellemare et al.|(2017b);
Zhang| (2023). The Cramér distance does not have a closed-form expression in the case of multi-
variate GMMs, so we resort to using a slicing approach guided by the Cramér-Wold theorem (An
et al} [2023) as in [Kolouri et al| (2020; 2018). Because the training method outlined in Section
[3]involves using multiple sample transitions starting from s under the same policy, it incurs some
bias due to the correlation of the samples. To overcome this, we use a decaying hyperparameter g
which dictates that more transitions of form 72 are used towards the beginning of training, gradually
decreasing down to predominantly using transitions of form 7 towards the end. This also aligns
with the common MDP philosophy of explore-then-commit (Lattimore & Szepesvari, 2020), as the
additional actions taken further help with exploration. For all ALE experiments, we use 3-GMM:s.

H BROADER IMPACT

The goal of this work to broaden the understanding of DRL to capture joint distributions of multiple
actions per states. We argue for the validity of this underexplored approach, making appeal to the
possible dependencies of the returns of actions at a given state, arising from dependencies in the
rewards or the transition dynamics of the system. We believe there is a great deal to be explored in
this area, as existing DRL algorithms have all implicitly adopted the assumption that these returns are
independently distributed, or that it is of no use or interest to an agent to capture such dependencies.
Although we present a concrete algorithmic method to model joint distributions of returns using
GMMs, we think of these as marginal to the theoretical insights explored in the work. We believe
that the methods presented in this work will serve as prototypes for further exploration in modeling
joint distributions of returns in DRL, in the development of methods that have better performance,
are safer, more interpretable, and better-informed.

I LIMITATIONS

The standard RL workflow, evidently, does not involve intentionally revisiting past states. Therefore,
existing RL libraries are not suited (and furthermore, not optimized) for gathering experience replays
as detailed in this work, and require heavy modification before these methods become applicable.
The authors resorted to an unsophisticated and unoptimized implementation of the experience replay
gathering process, which, at a state s, simply plays possible actions a1, . . ., a,, one by one, observing

rewards 71, . .., T, and visiting next states s}, ..., s/, restoring the state of the environment and the

19N
random number generator back to their previous values after each visit. We suggest, however, that
in theory, it is possible to parallelize this experience gathering process, simultaneously playing the
n actions and observing their consequences, resulting in a great decrease in the wall-clock running

time of the method.

An additional limitation of the algorithm is the number of additional hyperparameters it introduces
to the training process. As stated in Appendix because using transition samples of form 72
has an equivalent effect to using pairs of heavily-correlated transition samples of form 7, one must
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introduce the additional hyperparameter ¢ which dictates how often multivariate marginals are used
in training as opposed to univariate marginals.

J LICENSES FOR ASSETS USED
For the practical implementation of the methods described in this work, we credit the Autonomous
Learning Library (Nota, |2020), whose base code repository we made extensive use of.

For the CartPole environment, we credit the OpenAl Gym library (Brockman et al.,[2016). For the
ALE environments, we further credit the Arcade Learning Environment (Bellemare et al., [2012).
All game visuals are © Atari.
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