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ABSTRACT

Imitation learning methods allow to train reinforcement learning policies by way
of minimizing a divergence measure between the state occupancies of the expert
agent and the novice policy. Alternatively, a true metric in the space of probability
measures can be used by invoking the optimal transport formalism. In this work,
we propose a novel imitation learning method based on the generalized form of
the sliced Wasserstein distance, which presents a number of computational and
sample complexity benefits compared to existing imitation learning approaches.
We derive a per-state reward function based on the approximate differential of the
SW2 distance which allows the use of standard forward RL methods for policy
optimization. We demonstrate that the proposed method exhibits state-of-the-art
performance compared to established imitation learning frameworks on a number
of benchmark tasks from the MuJoCo robotic locomotion suite.

1 INTRODUCTION

Imitation learning methods aim to recover a policy based on a dataset of trajectories sampled from a
policy or a human expert assumed to perform the task at a proficient level. Most existing methods can
be described from a distribution matching perspective as a minimization of a distance or divergence
measure objective defined between the state occupancy measure of the expert trajectories and the state
occupancy measure of the policy induced via interaction with the environment. More specifically,
these methods rely on estimating instances of the class of f -divergences Csiszár (1972); Ho & Ermon
(2016); Fu et al. (2017); Ni et al. (2021) or integral probability metrics Sriperumbudur et al. (2009)
such as the Wasserstein distance. The Wasserstein distance is an appealing objective for distribution
matching due to its metric properties but the computation required for its estimation scales poorly
in the number of samples and dimensions. Furthermore, the application of Wasserstein distance to
the domain of imitation learning poses challenging due to the necessity of formulating a per-step
reward function in order to perform policy optimization, which requires the full transport plan to
be computed beforehand. While it has been shown that this can be circumvented by using a greedy
approximation of the transport plan Dadashi et al. (2020) or utilizing a the Kantorovich-Rubinstein
dual Arjovsky et al. (2017); Xiao et al. (2019), optimization remains a challenge.

Sliced optimal transport methods approximate the Wasserstein-2 distance by leveraging the increasing
arrangements Santambrogio (2015) transport map which yields a closed form solution for the one-
dimensional Wasserstein distance computation. The sliced Wasserstein (SW2) distance is computed
by averaging over a number of randomly sampled one-dimensional projections (slices) of the empirical
data distribution. It carries a number of computational benefits, in particular polynomial sample
convergence properties Deshpande et al. (2019) as opposed to the Wasserstein distance, as well as
worst-case log linear computational complexity. While the number of necessary slices has been shown
to scale poorly with increasing dimensionality of the problem, a number of methods Deshpande et al.
(2019); Nguyen et al. (2020); Kolouri et al. (2019a) have been developed to alleviate this issue. In
particular, extensions such as the max-SW distance Deshpande et al. (2019) or the distributional SW
distance Nguyen et al. (2020) have been shown to be effective.

In this work, we propose to leverage the generalized SW2 distance proposed in Kolouri et al. (2019a)
for the purposes of imitation learning. For the purposes of sample efficiency, we adopt an off-policy
formulation of the policy optimization procedure and discuss the implications in terms of the objective
matching samples from policy mixtures arising in an off-policy optimization setting. We derive a
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per-state reward function via a simple array insertion scheme using a sorting algorithm and show that
the optimization of this reward expectation under the replay buffer distribution corresponds to the
minimization of the sliced Wasserstein distance gradient.

Our main contribution is a novel imitation learning algorithm based on the minimization of the
generalized sliced Wasserstein distance, which is a tractable optimal transport metric under mild
assumptions on the functional properties of the nonlinear projection. To validate our method, we
perform an empirical study of the performance of the algorithm on a number of benchmark tasks
from the MuJoCo suite, where we observe improved sample efficiency and asymptotic performance
compared to a number of adversarial imitation learning baselines.

2 BACKGROUND AND PROBLEM SETTING

This section introduces the necessary notation and formalism to describe the problem setting.

MDP We consider environments modelled by a Markov decision process M = (S,A, T , µ0, R),
where S is the state space, A is the action space, T is the family of transition distributions on S
indexed by S × A with pτ (s′|s, a) : S × A → ∆(S) describing the probability of transitioning to
state s′ when taking action a in state s using transition function τ(s, a) : S ×A → S , µ0 is the initial
state measure, and R : S × A → R is the reward function. A policy π : S × A → ∆(A) is a map
from states s ∈ S to distributions π(·|s) over actions, with π(a|s) being the probability of taking
action a in state s.

Inverse reinforcement learning (IRL) IRL methods aim to estimate a suitable reward function
rψ parameterized by weights ψ based on a dataset of expert trajectories DE = {ξi}i≤N where
ξi = (s

(i)
1:T , a

(i)
1:T ) is a sequence of states and actions of expert i of length T . To achieve this goal,

the expectation statistics of the state features under the state occupancy measure of the expert,
Eτ∼DE [ϕ(ξ)], are matched with the statistics of the student state occupancy measure Eξ∼p(ξ|ψ)[ϕ(ξ)].
ϕ(ξ) denotes the feature representation of the trajectory ξ. The trajectory distribution p(ξ|ψ) is
induced by the policy πrψ trained on the reward function estimate rψ .

Imitation learning via distribution matching Imitation learning (IL) methods are employed
in MDP settings without access to an explicit reward function. IL methods are closely related to
the IRL approach, but omit the explicit estimation of a stationary reward. Instead, they aim to
directly minimize a divergence measure, typically an instance of the class of f -divergences or integral
probability metrics between the empirical state occupancy measure ρe =

∑
i≤N δsEt and policy

occupancy measure ρπ =
∑
i≤N δsπt . The optimization is performed w.r.t to the parameters of the

policy, making use of the fact that there exists a one-to-one correspondence between the policy π and
the induced state occupancy measure ρπ Puterman (2014).

L(π) = argmax
π

D(ρπ, ρe)

Optimal transport The optimal transport formalism allows the definition of a distance between
two densities defined on the appropriate measure spaces ρ ∈ M(X) and ϱ ∈ M′(X). For any p ≥ 1,
the p-Wasserstein distance Wp is defined as follows:

Wp(ρ, ϱ) =

(
inf

ν∈Γ(ρ,ϱ)

∫
X×X ′

c(x, x′)dν(x, x′)

) 1
p

where Γ(ρ, ϱ) is the set of all couplings between the densities ρ and ϱ. For d = 1, the 2-Wasserstein
distance W2 admits a closed form obtained via sorting the samples of empirical distributions and
calculating the total distance between them.

W2(ρ, ϱ) =

∫ 1

0

|F−1
ρ (µ)dµ− F−1

ϱ (µ)|2dµ

where Fρ and F−1
ρ are the cumulative distribution function (CDF) and quantile (inverse CDF)

function respectively. This corresponds to the increasing arrangements optimal transport map
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T (x) = (F−1
ρ (ν)◦F−1

ϱ (µ))(x) Santambrogio (2015). The sliced Wasserstein distance SW2(ρ, ϱ) is
defined as the integral over 1-dimensional random slices defined via the Radon transform Rρ(t, θ) =∫
X ρ(x)δ(t− ⟨x, θ⟩)dx of the density ρ(x):

SW2(ρ, ϱ) =

∫
Sd−1

W2(θ#ρ, θ#ϱ)dθ (1)

where θ#ρ denotes the pushforward measure of slice θ. The challenge with estimating (1) is the
computation of the integral over sphere directions θ ∈ Sd−1, requiring a Monte Carlo scheme.
In particular, a high number of linear projections is often required for accurate approximation of
the W2 distance due to the slow convergence rate n−1/d of the W2 estimator for a d-dimensional
dataset of n samples. The true W2 distance is bounded above and below: SW2(ρ, ϱ) ≤W2(ρ, ϱ) ≤
αSW2(ρ, ϱ)

β , where α is a constant and β = (2(d + 1))−1 is a dimension dependent exponent
Santambrogio (2015).

Generalized Sliced Wasserstein Distances In order to overcome the poor scaling properties of
linear projections, Kolouri et al. propose to use nonlinear projections defined via the generalized
Radon transform Gρ(t, θ) =

∫
X ρ(x)δ(t− gθ(x))dx where gθ(x) is a nonlinear projection defined

as a homogeneous polynomial of odd degree or parametrized by a neural network with parameters θ.
The corresponding generalized distance GSW2 is given as follows:

GSW2(ρ, ϱ) =

∫
Ωθ

W2(gθ(ρ), gθ(ϱ))dθ (2)

In order for the metric properties of the GSW2 distance to be satisfied, the injectivity of the general-
ized Radon transform is required, which is hard to satisfy in practice when using neural networks as
defining functions for the Radon transform. This renders the GSW2 distance a pseudo-metric.

3 SLICED WASSERSTEIN IMITATION LEARNING (SWIL)

In this section, we describe our main algorithmic contribution: the sliced-Wasserstein imitation
learning (SWIL) algorithm and discuss the specific implications of using sliced Wasserstein distances
in the context of Markov decision processes.

3.1 SLICED WASSERSTEIN DISTANCES BETWEEN STATE OCCUPANCY MEASURES

As a first step, we define the state occupancy measures ρe and ρπ we would like to compare. The
expert occupancy measure corresponds to the empirical measure ρe =

∑
x∈DE δx of the dataset of

expert demonstrations DE . The policy occupancy measure is defined analogously ρπ =
∑
x∈Dπ δx

where Dπ is the rollout buffer of the policy interacting with the environment and δx = 1(X = x) is
the characteristic function of set X ⊆ X . 1

The main goal of the algorithm is to learn a policy π which induces a state occupancy measure
ρπ ∈ M(X ) minimizing the GSW2 distance to the empirical state occupancy measure of the expert
ρe ∈ M(X ). We assume that both are defined over the same measure space M(X ) and can thus
be compared. In order to compute the GSW2 distance, we define a generalized projection network
gψ : X → RK mapping state-action tuples to K projection directions. The network defines the
pushforward measures ψ#ρe and ψ#ρπ for which a Monte Carlo estimate of the SW2 distance based
on the K projection directions.

GSWψ
2 (ρe, ρπ) =

1

K

∑
k≤K

W2(ψ#ρe, ψ#ρπ) (3)

relying on the closed-form one-dimensional W2 computation via the increasing arrangements optimal
transport map. While more expressive than linear projections, generalized projections also suffer

1Here, X ∈ {S,S ×A,S ×S,S ×A×S} corresponds to the diffent variants of the underlying measurable
space, defined as respective Cartesian products of state and action spaces.
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from the issue that some projection directions are not informative. In order to circumvent this issue,
we use the max-GSW2 distance parametrized by a neural network with parameters ψ which replaces
the sum in 3 with the maximum over the generalized projection directions and also constitutes a valid
metric. The resulting optimization problem is then given as follows:

LSWIL(π, ψ) = min
π

max
ψ

Eπ[GSWψ
2 (ρe, ρπ)] (4)

A direct minimization of the GSW2 distance via gradient descent requires derivatives w.r.t to
the transition dynamics τ(s, a) which are only implicitly available. This formulation therefore
necessitates the use of an adversarial optimization scheme. In order to obtain the projections
necessary to compute the max-GSW2 distance, we employ a similar scheme to Deshpande et al.
(2019) which defines a linear discriminant projection subspace, where the samples from ρe and ρπ
are easily distinguishable. In order to find this subspace, a discriminator D(x) := (ψ ◦ φ)(x) is
trained using a binary classification loss in order to produce a feature representation φ(x) and linear
predictor ψ. Calculating the 1-DW2 distance in this subspace has been shown to be upper bounded by
the max-SW2 distance Deshpande et al. (2019). It has also been shown that the surrogate loss used in
this scheme can be employed to approximately recover the maximum projection direction. Over the
course of the training with N update rounds, this results in a sequence of projections (ψn)n≤Nwhich
allows the definition of N 1-dimensional Wasserstein distances W2((ψn ◦φ)#ρe, (ψn ◦φ)#ρπ). We
discuss the implications of this fact in 3.4. In order to perform the minimization w.r.t. the policy in 4,
we propose to use a soft actor-critic SAC agent Haarnoja et al. (2018).

Using GSW in MDP In order to apply the GSW distance in the context of imitation learning in
Markov decision processes, it is necessary to provide a reward signal to the agent which is defined
for every timestep. A natural candidate would be the GSW distance itself, however, defining it for
a single state requires an unbalanced optimal transport Séjourné et al. (2023) formulation due to
violation of mass preservation constraints. Instead, we propose to use a reward function which is
based on a differential signal with respect to the GSW distance.

3.2 REWARD FORMULATION

In order to define the per-timestep reward required for policy optimization, we employ the following
scheme. Let ρ̂e and {ρ̂k}k≤K be empirical samples drawn i.i.d. from the expert dataset and replay
buffer respectively. The calculation of the GSW2 distance requires their projection on a set of
1-dimensional subspaces using the projection function gϕ,ψ(x) = (ψ ◦ ϕ)(x) and subsequent sorting
of the projected atoms in the respective subspaces. As can be seen in Fig. 1, assuming equal number
of atoms from expert and replay buffer, sorting the n atoms allows the distance to be computed as
the sum over the rectangle areas

∑
n≤N an where an = 1

N d(F
−1
ρk

(1/n), F−1
ρe (1/m)) 2 is the area of

a single rectangle. Let xt ∼ (τ ◦ π)(st) be a sample from the interaction of the policy π with the
environment using transition function τ . We define the reward as change of integral when the newly
sampled atom replaces the closest atom in ρ̂k. This requires the insertion (and replacement) of the
new atom into the sorted set ρ̂k, which is an efficient computational routine (O(n)). We define the
reward as the atom replacement loss, where the sum is taken over multiple projections K:

rSW (xt) = − 1

K

∑
k≤K

∆aψ,n(st) = −
∑
k≤K

∇̃xtW2(g(ρk), g(ρe)) xt ∈ X (5)

3.3 ANALYSIS

In this section, we analyze the proposed reward computation scheme and show that optimizing its
expectation over policy samples effectively minimizes the SW2 distance in the linear case. We
assume g to be identity and K = 1 for this part.
Proposition 3.1. The agent’s policy optimizing Eπ[

∑
t γ

trSW(xt)] minimizes the SW2 distance
between the policy occupancy measure ρπ and expert occupancy measure ρe.

2w.l.o.g. we assume n = m
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r(x+t ) r(x−t ) aψ

(ψ ◦ φ)(x)

C
D

F ρ̂π
ρ̂π

x+t
x−t

Figure 1: SWIL reward illustration. We propose a simple scheme where the reward for a state
transition sampled from the environment is obtained by replacing the closest projected atom and

computing the difference of rectangles aψ .

In figure 1, we can readily see that the reward calculation 5 corresponds to a finite difference
approximation of the gradient of ∇πW2(ρπ, ρe) for a single projection. The policy optimization
effectively induces an approximation of a SW2 gradient flow Liutkus et al. (2019) on the space of
occupancy measures, which is known to converge in the case of convex functions. In practice, for the
purposes of sample efficiency, we make use of an off-policy RL algorithm to optimize the policy π.

Off-policy distribution matching As opposed to on-policy adversarial imitation methods such as
GAIL, the off-policy formulation poses an additional challenge in the case of distribution matching,
since the samples are obtained by sampling the replay buffer, which contains samples from a mixture
of previous policies. In its base form, this corresponds to minimizing a distance between the replay
buffer occupancy measure ρRB and expert occupancy measure ρe. This has been studied in Kostrikov
et al. (2019); Zhu et al. (2020) in the context of learning from demonstrations and the learning from
observations setting. It can be shown that by using the variational representation of the f -divergence,
the optimization can be rewritten purely w.r.t to the critic function. In our case, we can make use of
previous cached projections to regularize the policy behaviours.

3.4 DESIGN CHOICES

In this section, we outline a few of the design choices that need to be considered when deploying the
algorithm in practice.

Replacing atoms It is possible to get a tighter bound on the GSW2 distance by employing
the ”replacing atoms” strategy. This entails an online update of the GSW2 estimate at round t by
effectively replacing the atoms in the sample buffer ρ̂k closest to the policy sample xt ∼ (τ ◦π)(st, at)
if the distance decreases, i.e. if the reward is positive. This results in a ”stricter” reward structure for
subsequent policy samples and can promote faster convergence.

Reusing cached samples The convergence of the procedure outlined in 3.2 can be slow and is
prone to exhibit high variance. To combat the latter, we propose to reuse K previous projections in
order to compute the reward. Intuitively, this is similar to reusing the cached transitions in the replay
buffer. We study the effect of these design choices empirically in 4.2.

Motivation for choice of feature representation High-dimensional state spaces might have non-
trivial topologies, which necessitate alternatives to the L2 cost typically used in the calculation of
the Wasserstein distance by considering e.g optimal transport on manifolds Bianchini et al. (2011).
This is a widely acknowledged fact in the image domain, however, this is also the case in various
robotics scenarios, where the kinematic poses of objects typically feature a Cartesian product of
Euclidean (translation) and non-Euclidean (rotation) geometries. The use of an intermediate feature
representation φ(x), x ∈ X allows to defer this problem to the question of finding the optimal feature
space, in which it is more amenable to use the L2 transport cost.
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Algorithm 1 Sliced Wasserstein imitation learning (SWIL)

Input: Expert trajectories {ξi}i≤N
Initialize soft actor-critic πθ, Qϑ, projection network gψ,φ and replay buffer DRB
for t = 1 to Nrounds do

Collect trajectory τi by executing the policy πθ and add the transitions to DRB
Update gϕ,ψ(x) using the surrogate binary cross entropy loss Ls between ρe and ρRB by
minimizing

L(ρe, ρRB) =
1

K

∑
k≤K

Ls(gψ(ρe), gψ(ρRB))

using finite samples (ρ̂e ∼ De, ρ̂π ∼ DRB)
Update the actor-critic functions πθ, Qϑ by using the SAC optimization procedure w.r.t to the
atom replacement loss rψ(st) = 1

|a|
∑
aψ

∆aψ(st) as the reward
end for

4 EXPERIMENTS

In order to evaluate our method empirically, we propose to conduct a set of experiments on a set of
MuJoCo robot locomotion tasks. The experimental evaluation aims to answer the following questions:

• Can the proposed method recover the asymptotic performance demonstrated in the expert
dataset in a sample efficient manner?

• How does the method perform in different data sparsity settings?

• What is the impact of different modeling choices on the performance of the algorithm?

Baselines We compare our method to a number of established baselines on MuJoCo locomotion
tasks: Discriminator-Actor-Critic (DAC) Kostrikov et al. (2018), which is an off-policy GAIL-like
algorithm which uses a Lipschitz regularizer, Primal Wasserstein Imitation Learning (PWIL) Dadashi
et al. (2020), a primal OT problem solver which uses a greedy approximation of the transport plan
as well as three variants of the GAIL algorithm: on-policy GAIL Ho & Ermon (2016) with spectral
normalization Yoshida & Miyato (2017) 3, off-policy GAIL (with and without spectral normalization)
and off-policy AIRL Fu et al. (2017), which uses a shaped discriminator structure. We use soft
actor-critic (SAC) as the same off-policy forward RL algorithm for all baselines with the exception of
on-policy GAIL which use the proximal policy optimization (PPO) Schulman et al. (2017) algorithm.

We further evaluate the methods in a number of data sparsity regimes by using different subsampling
factors for the expert datasets. We conclude the experimental evaluation by investigating different
aspects of the proposed algorithm by performing an ablation study on the design choices outlines in
section 3.4.

In a first experiment, we compare the same algorithms in a more sophisticated set of benchmark
environments. We select five robot locomotion tasks of moderate and high state space dimensionality
(d ∈ {8, 11, 17, 111, 376}). 4 from the MuJoCo Todorov et al. (2012) suite. For each environment,
we obtain the expert demonstrations by rolling out pretrained SAC models downloaded from the
stable-baselines3 repository on Huggingface 5. We generate three sets of trajectories |DE | ∈
{1, 4, 10} with 1, 4 and 10 trajectories in each dataset with a minimum ground truth cumulative
reward threshold to ensure valid behaviours. Figure 2 depicts the training behaviour of the algorithm
over 1M timesteps compared to the baselines for a different number of trajectories |DE |. We can
observe that our method exhibits superior sample efficiency in four out of five tasks with the exception
of Hopper-v3 and demonstrates superior asymptotic performance on all tasks when trained on a
single trajectory. The final rollout performance at 1M timesteps is further summarized in Table 1. As
the number of trajectories increases, our algorithm exhibits a deteriorated asymptotic performance
on the HalfCheetah-v3 task. We hypothesize that this might be due to the more diverse set of

3here, we omit the default on-policy GAIL formulation due to poor performance
4Ant-v3, HalfCheetah-v3, Hopper-v3, Walker2d-v3 and Humanoid-v3
5https://huggingface.co/sb3
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Figure 2: Comparison of imitation learning algorithms on five MuJoCo benchmark tasks. The three
rows correspond to models trained on 1, 4 and 10 trajectories respectively.

demonstrations, which might necessitate a multi-marginal formulation of the sliced optimal transport
problem Cohen et al. (2021).

4.1 DATA SPARSITY PERFORMANCE

In a second experiment, we investigate the behaviour of the proposed approach in a number of
data sparsity regimes, induced by varying the subsampling factor of a single expert demonstration
ς ∈ {1, 20, 100}. We perform a comparison against baselines on two of the more challenging
robot locomotion tasks: Ant-v3 and Humanoid-v3. The performance is illustrated in Figure 4.
Remarkably, our algorithm is able to recover the expert behaviour on the challenging Humanoid task
from only 10 state-action pairs.

Table 1: Policy rollout results using ground truth reward for MuJoCo environments using a single
demonstration and trained for 1M timesteps. The results are averaged over 10 rollouts and obtained

by training the model using five different random seeds.

Environment Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Walker2d-v3

Expert 5159.77 8900.85 3607.17 6249.60 4063.81

DAC 3553.38±1580.64 3292.43±1365.91 3400.87±247.88 169.06±40.84 3433.62±362.73

GAIL (SAC) 4261.13±415.56 2569.26±1179.47 2866.05±760.34 147.39±59.98 3296.62±417.84

GAIL (SAC-SN) 2956.94±697.31 804.24±1441.09 3263.01±540.13 4643.93±2203.33 3296.62±417.84

AIRL (SAC) 361.58±1424.61 -9.47±382.93 3197.09±614.25 4778.57±404.82 3257.18±867.42

PWIL 1289.23±697.31 1089.76±923.19 2890.14±430.12 5252.23±156.22 2452.17±856.22

GAIL (PPO-SN) -545.44±556.98 2863.42±1155.38 2859.98±1114.94 425.11±125.65 2648.65±1128.32

SWIL 4338.65±555.83 7481.79±769.22 3585.28±66.63 5952.09±315.92 3936.35±365.69

4.2 ABLATION STUDY

In this section, we perform an ablation study of our approach by considering a number of algorithmic
variations of the baselines and our proposed approach. In particular, we address the following settings:
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Figure 3: Ablation of SWIL hyperparameters for best evaluation runs on Ant-v3 and
Humanoid-v3. The legend format is as follows: ra denotes the atom replacement, ql:x denotes the
number of projections used and sa the choice of measurable space. The models are trained using a

single trajectory with subsampling factor ς = 20.

Figure 4: Expert data sparsity (ς ∈ {1, 20, 100}) scaling behaviour of algorithms on Ant-v3 and
Humanoid-v3. SWIL variants correspond to different X .

• Underlying measurable space: we evaluate our method on the following spaces X ∈
{S,S ×A,S × S,S ×A× S}.

• Number of projections: we compare the efficacy of using a moving average of rewards
extracted from previous projected SW2 calculations.

• Atom replacement: in this setting, we compare the impact of replacing the projected atoms
with samples from the policy.

Figure 3 illustrates the impact of the algorithm variations listed above. We make the following
observations. Using measurable spaces with higher dimensionality (S × A × S as opposed to
S) improves the asymptotic performance significantly for Ant-v3 but has a modest effect on
Humanoid-v3. Increasing the number of projections to compute the reward tends to improve
average performances and reduce variance for all spaces except S ×A×S × {0, 1}. We ascribe this
to the fact that the Cartesian product S × A× S takes into account the transition dynamics of the
environment, which makes the adversarial optimization more stable. Replacing atoms improves the
state-only performance in both cases. Its effect is more pronounced in Ant-v3.

5 RELATED WORK

Imitation learning Imitation learning via the minimization of f -divergences by using a GAN-
like approach has been introduced in Ho & Ermon (2016). This method has been extended to
the reward recovery setting in Fu et al. (2017) by choosing a specific discriminator structure. Ni
et al. further extend this to obtain an analytical gradient, while still requiring a discriminator to
estimate a density ratio needed to compute the gradient. To combat issues with sample efficiency of
on-policy methods used for policy optimization in the above settings, a number of methods have been
proposed Kostrikov et al. (2018); Blondé & Kalousis (2019) to alleviate the problem by leveraging
policy samples generated by an off-policy agent. The introduction of off-policy samples requires a
reinterpretation of the discrepancy measure, as the state occupancy of the policy is no longer defined
for a single policy but a mixture of previous iteration samples stored in a replay buffer. Kostrikov
et al. reconcile this in a principled way by introducing an optimization scheme which does not require
an RL loop. However, the practical instantiation still requires RL samples. Our approach is most
similar to off-policy AIL methods like Kostrikov et al. (2018); Blondé & Kalousis (2019) in that it
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uses an adversarially learned feature space but does not require regularization and approximates the
generalized sliced Wasserstein distance by using a reward based on the SW2 differential.

Sliced optimal transport in machine learning A number of works have leveraged the sliced
Wasserstein distance for various machine learning tasks. The authors of Kolouri et al. (2019b)
propose to use to regularize an autoencoder architecture by minimizing the distance between prior
and posterior measures in the latent space. The SW2 distance has further been used for implicit
generative modeling by defining sliced Wasserstein flows Liutkus et al. (2019). It has further been
used for generative modeling using the maximum SW2 distance in Deshpande et al. (2019). A
generalized version of sliced Wasserstein distances has been presented in Kolouri et al. (2019a). We
adapt this formulation for the purposes of imitation learning in our work.

Optimal transport for imitation learning Optimal transport has previously been explored in the
context of imitation and inverse reinforcement learning. The authors of Xiao et al. (2019) make use
of the entropy regularized Kantorovich-Rubinstein dual formulation to optimize the policy using a
similar scheme to Wasserstein GANs Arjovsky et al. (2017). Dadashi et al. use the primal formulation
of the OT problem which relies on a greedy approximation scheme of the true distance. The proposed
method relies on the L2 cost in the primal formulation, which is a strong assumption to describe
discrepancies in high-dimensional state spaces. Furthermore, the reward is non-Markovian as it
relies on the entire dataset of demonstrations. Fickinger et al. (2021) propose an imitation learning
method based on the Gromov-Wasserstein distance which allows to compare incompatible spaces
across domains. In contrast to these approaches, we propose to use the sliced Wasserstein distance to
compute the distance between state occupancy measures using an adversarially learned feature space.

6 CONCLUSION

In this work, we have presented a novel imitation learning algorithm which uses the generalized
sliced Wasserstein distance to match state occupancy measures between expert and policy samples.
The method favorably compares to existing adversarial imitation learning approaches in a number of
experimental settings. A number of open research avenues remain. In particular, the current choice of
feature space is subject to optimization issues common to adversarial methods. Alleviating this issue
would make the method more robust and generalizable. Various regularization strategies might be
used such as injecting noise into projection directions using e.g. the variational bottleneck principle ?
could give rise to more diverse policies. Alternatively, autoencoder features or other unsupervised
pretraining methods such as contrastive predictive coding Oord et al. (2018) may be investigated.
Due to the nonlinear structure of the network, the GSW distance can only be seen as a pseudo metric
owing to the lack of a formal proof for its injectivity. Extending the method to discrete spaces by
leveraging e.g. a variant of DQN Mnih et al. (2013) for off-policy optimization would be another
valid direction.
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