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Abstract

We introduce Invertible Dense Networks (i-DenseNets), a more parameter efficient alter-
native to Residual Flows. The method relies on an analysis of the Lipschitz continuity
of the concatenation in DenseNets, where we enforce the invertibility of the network by
satisfying the Lipschitz constraint. Additionally, we extend this method by proposing a
learnable concatenation, which not only improves the model performance but also indicates
the importance of the concatenated representation. We demonstrate the performance of
i-DenseNets and Residual Flows on toy, MNIST, and CIFAR10 data. Both i-DenseNets
outperform Residual Flows evaluated in negative log-likelihood, on all considered datasets
under an equal parameter budget.

1. Introduction

Neural networks are frequently used in supervised learning tasks such as classification, where
models are trained to predict labels. However, they are also used to parameterize generative
models that try to estimate the true distribution of the observed data. Generative models
can be used to generate realistic-looking images that are hard to separate from real ones,
detection of adversarial attacks (Fetaya et al., 2019; Jacobsen et al., 2018), and for hybrid
modeling (Nalisnick et al., 2019) which have the property to both classify and generate.

The generative architecture come in different designs. A common approach to train
generative models is using the likelihood objective. One kind of model that also uses this
approach are flow-based models. Flow-based models consist of invertible transformations
that allow them to compute the likelihood using the change of variable formula. The
main difference that determines an exact computation or approximation of a flow-based
model, lies in the design of the transformation layer. The design used to make this layer
invertible can consist of the exact computation of the inverse or a numerical technique. For
example, (Dinh et al., 2016) use coupling layers that consist of functions stacked on each
other to make the flow invertible. This allows an exact computation while modeling complex
convolutional neural networks that do not require the computation of the derivative.

Recently, Behrmann et al. (2018) have proposed deep-residual blocks as a transformation
layer. The deep-residual networks (ResNets) of (He et al., 2016) are known for their successes
in supervised learning approaches. In a ResNet block, each input of the block is added to
the output, which forms the input for the next block. Since ResNets are not necessarily
invertible, Behrmann et al. (2018) enforce the Lipschitz constraint in such a manner that
the network becomes invertible. Furthermore, Chen et al. (2019) proposed Residual Flows,
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an improvement of i-ResNets, that uses an unbiased estimator of the log-determinant, which
results in even better performance.

In supervised learning, an architecture that uses fewer parameters and is even more
powerful than the deep-residual network, is the Densely Connected Convolution Network
(DenseNet), which was first presented in (Huang et al., 2017). The network showed to
improve significantly in recognition tasks on benchmark datasets such as CIFAR, SVHN, and
ImageNet, by using fewer computations and having fewer parameters than ResNets while
performing at a similar level. In contrary to a ResNet block, a DenseNet layer consists of
a concatenation of the input with the output. In this work, we introduce invertible Dense
Networks (i-DenseNets), and we show that we can enforce the Lipschitz constraint in a
similar manner as in (Behrmann et al., 2018). Further, we show that this model can be
efficiently trained as a generative model and outperforms Residual Flows under an equal
parameter budget.

2. Background

Let us consider a vector of observable variables x ∈ Rd and a vector of latent variables
z ∈ Rd. We define a bijective function f : Rd → Rd which maps a latent variable to
datapoint x = f(z). If f is invertible, we define its inverse as F = f−1. Further, we use the
change of variable formula to compute the likelihood of a datapoint x by:

ln pX(x) = ln pZ(z) + ln | det JF (x)|, (1)

where pZ(z) is a base distribution (e.g., the standard Gaussian) and JF (x) is the Jacobian
of F at x. The change of variable formula allows tractable evaluation of the data and the
flows are trained using the maximum likelihood objective.

Behrmann et al. (2018) construct an invertible ResNet layer which is only constraint
in Lipschitz continuity. A ResNet is defined as: F (x) = x + g(x), where g is modeled by
a (convolutional) neural network and F represents a ResNet layer which is in general not
invertible. However, they construct g in such way to satisfy Lip(g) < 1 by using spectral
normalization of (Gouk et al., 2018; Miyato et al., 2018), such that:

Lip(g) < 1, if ||Wi||2 < 1, (2)

where || · ||2 is the `2 norm. Since the Banach fixed-point theorem holds in this specific
case, the ResNet layer F has a unique inverse, even though there does not need to be an
analytical closed-form solution. Further, the log-determinant can be estimated using the
Hutchinsons trace estimator (Skilling, 1989; Hutchinson, 1990), at a lower cost than to fully
compute the trace of the Jacobian. Chen et al. (2019) propose Residual Flows that uses an
improved method to estimate the log-determinant with an unbiased estimator.

3. Invertible Dense Networks

We introduce i-DenseNets, an invertible model based on DenseNets parametrizations. To
formulate i-DenseNets, we define a DenseBlock as a function F : Rd → Rd with F (x) =
x+ g(x), where g consists of Dense Layers {hi}ni=1 that are expressed as:
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g(x) = hn+1 ◦ hn ◦ · · · ◦ h1(x), (3)

where hn+1 represents a 1×1 convolution to match the output size of Rd. A layer hi consist
of two parts concatenated to each other. The upper part is a copy of the input signal. The
lower part consist of the transformed input, where the transformation is a multiplication
of (convolutional) weights Wi with the input signal, followed by a non-linearity φ having
Lip(φ) ≤ 1, such as ReLU, ELU, LipSwish, or tanh. As an example, a Dense Layer h2 can
be composed as follows:

h1(x) =

[
x

φ(W1x)

]
, h2(h1(x)) =

[
h1(x)

φ(W2h1(x))

]
. (4)

3.1. Enforcing Lipschitz constraint

If we enforce the function g to satisfy Lip(g) < 1, the DenseBlock F is invertible and the
Banach fixed point theorem holds. As a result, the inverse can be approximated in the same
manner as in (Behrmann et al., 2018). To satisfy Lip(g) < 1, we can enforce Lip(hi) < 1
for all n layers. Therefore, we first need to determine the Lipschitz constant for a Dense
Layer hi. We know that a function f is K-Lipschitz if for all points v and w the following
holds (for the full derivation see Appendix A):

dY (f(v), f(w)) ≤ KdX(v, w), (5)

where we assume that the distance metrics dX = dY = d are chosen to be the `2-norm.
Further, let two functions f1 and f2 be concatenated in h:

hv =

[
f1(v)
f2(v)

]
, hw =

[
f1(w)
f2(w)

]
, (6)

where function f1 is the upper part and f2 is the lower part. We can now find an analytical
form to express a limit on K for the Dense Layer in the form of Equation (5):

d(hv, hw)2 = d(f1(v), f1(w))2 + d(f2(v), f2(w))2,

d(hv, hw)2 ≤ (K2
1 + K2

2)d(v, w)2,
(7)

where we know that the Lipschitz constant of h consist of two parts, namely, Lip(f1) = K1

and Lip(f2) = K2. Therefore, the Lipschitz constant of layer h can be expressed as:

Lip(h) =
√

(K2
1 + K2

2). (8)

With spectral normalization of Equation (2), we know that we can enforce (convolutional)
weights Wi to be at most 1-Lipschitz. Hence, for all n Dense Layers we apply the spectral
normalization on the lower part which locally enforces Lip(f2) = K2 < 1. Further, since
we enforce each layer hi to be at most 1-Lipschitz and we start with h1, where f1(x) = x,
we know that Lip(f1) = 1. Therefore, the Lipschitz constant of an entire layer can be at
most Lip(h) =

√
12 + 12 =

√
2, thus dividing by this limit enforces each layer to be at most

1-Lipschitz.
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3.2. Learnable concatenation

We have shown that we can enforce an entire Dense Layer to have Lip(hi) < 1 by applying
a spectral norm on the (convolutional) weights Wi and then divide the layer hi by

√
2. To

optimize and learn the importance of the concatenated representations, we create learnable
parameters η1 and η2 for, respectively, the upper and lower part of each layer hi. Since the
upper and lower part of the layer can be at most 1-Lipschitz, multiplication by these factors
results in functions that are at most η1-Lipschitz and η2-Lipschitz. From Appendix A we
know that the layer is then at most

√
η21 + η22−Lipschitz. Dividing by this factor results in

a bound that is at most 1-Lipschitz.

Figure 1: Range of the possible normalized parameters η̂1 and η̂2.

In practice, we initialize η1 and η2 at value 1 and during training use a softplus function to
avoid them being negative. The range of the normalized parameters is between 0 ≤ η̂1, η̂2 ≤
1 and can be expressed on the unit circle as is shown in Figure 1. In the special case where
η1 = η2, the normalized parameters are η̂1 = η̂2 = 1

2

√
2. This case corresponds to the

situation in Section 3.1 where the concatenation was not learned. An additional advantage
is that the normalized η̂1 and η̂2 express the importance of the upper and lower signal.
For example, when η̂1 > η̂2, the input signal is of more importance than the transformed
signal.

4. Experiments

To make a clear comparison between the performance of Residual Flows and i-DenseNets, we
train both models on 2-dimensional toy data and on high-dimensional image data, MNIST
and CIFAR10. To benchmark the models, we use the architecture of Residual flow (Chen
et al., 2019). Since we have a constrained computational budget, we use a smaller archi-
tecture of the model and choose number of scales for the toy data and image data set to,
respectively, 10 blocks and 4 blocks per 3 scales instead of 100 blocks and 16 blocks per 3
scales. For the other arguments, default settings are used. To compare Residual Flows with
i-DenseNets, we utilize an architecture that uses a similar number of parameters for each
dataset trained on. A detailed description of this architecture can be found in Appendix B.
Furthermore, we add the option to learn the parameters of the concatenation. The models
trained on toy data were trained for 50,000 iterations (default setting) and on image data
for 200 epochs.
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4.1. Toy data

We trained the models on different types of 2-dimensional toy data distributions, namely,
two circles, a checkerboard, and two moons. The results of the learned density distributions
are presented in Figure 2(a). We observe that Residual Flows are capable to capture high-
probability areas. However, they have trouble with learning low probability regions for two
circles and moons. i-DenseNets are capable in capturing all regions of the datasets. Table 1,
where the negative log-likelihood for the models are presented, also shows that i-DenseNets
with and without learnable concatenation (LC) outperform Residual Flows. The biggest
difference in performance is for two moons where i-DenseNets with LC obtain 2.39 nats
compared to 2.60 nats for Residual Flows. This is consistent with the density estimation
plots where i-DenseNets are better in capturing the data distribution than Residual Flows.

(a) Density estimation results after 50,000
iterations of the Residual Flow and i-
DenseNet. Trained on 2-dimensional
toy data.

(b) Samples of i-DenseNet with learnable
concatenation.

Figure 2: Results of density estimation for 2-dimensional toy data (a), and samples of the
i-DenseNet trained on CIFAR10 (b).

4.2. Image Data

The results of the models trained on MNIST and CIFAR10 data are presented in Table 1.
We notice that i-DenseNets outperform Residual Flows in bits per dimension (bpd) on CI-
FAR10 with 3.41 bpd without LC and 3.39 bpd with LC, against 3.42 bpd for the Residual
Flow. Figure 2(b) presents samples of the i-DenseNet with LC trained on CIFAR10, in Ap-
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pendix D more samples of the models can be found. Additionally, in Appendix C a heatmap
of the normalized parameters η̂1 and η̂2 of the learnable concatenation is presented.

During training on MNIST the original Residual Flow suffered from unstable results.
This might be due to the coefficient for the spectral normalization, which controls the
Lipschitz constraint. In return, this leads to an unstable Jacobian determinant estimation.
We adjusted the Lipschitz coefficient for the spectral normalization by setting it to 0.93
for all models. Additionally, the concatenation in DenseNets is multiplied by 0.98. Due
to slight fluctuations, the results are averaged over the last 5 epochs, which are presented
in Table 1. We observe that i-DeseNets without and with LC outperform the Residual Flow
with respectively 1.05 bpd and 1.04 bpd against 1.08 bpd of the Residual Flow. In general
we observe that i-DenseNets with LC outperform Residual Flows and i-DenseNets without
LC. On two moons, the performance of i-DenseNets with and without LC are tied.

Model 2 circles Checkerboard 2 moons MNIST CIFAR10

Residual Flow 3.44 3.81 2.60 1.08 3.42

Invertible DenseNet 3.32 3.68 2.39 1.05 3.41
Invertible DenseNet+LC 3.30 3.66 2.39 1.04 3.39

Table 1: Negative log-likelihood results on test data in nats (toy data) and bits per dimen-
sion (MNIST and CIFAR10). i-DenseNets with and without learnable concatena-
tion are compared with the Residual Flow.

5. Conclusion

We introduced i-DenseNets, a parameter efficient alternative to Invertible ResNets. Our
method enforces invertibility by satisfying the Lipschitz continuity in Dense Layers. In
addition, we proposed a version where the concatenation is learned during training, which
also indicates which representations are used. We used a smaller architecture under an equal
parameter budget, where we demonstrated the performance of i-DenseNets and compared
these models to Residual Flows on toy, MNIST, and CIFAR10 data. In conclusion, both i-
DenseNets with fixed and learnable concatenation outperformed Residual Flows in negative
log-likelihood.
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Appendix A. Derivation of Lipschitz constant K for the concatenation

We know that a function f is K-Lipschitz if for all points v and w the following holds:

dY (f(v), f(w)) ≤ KdX(v, w), (9)

where dY and dX are distance metrics and K is the Lipschitz constant.
Consider the case where we assume to have the same distance metric dY = dX = d and

where the distance metric is assumed to be chosen as any p-norm, where p ≥ 1, for vectors:

||δ||p =
p

√∑len(δ)
i=1 |δi|p. Further, we assume a DenseBlock to be a function h where the

output for each data point v and w is expressed as follows:

hv =

[
f1(v)
f2(v)

]
=

[
av
bv

]
, hw =

[
f1(w)
f2(w)

]
=

[
aw
bw

]
, (10)

where in this paper for a Dense Layer and for a data point x the function f1(x) = x and f2
expresses a linear combination of (convolutional) weights with x followed by a non-linearity,
for example φ(W1x). We can re-write Equation (9) for the DenseNet function as:

d(hv, hw) ≤ Kd(v, w), (11)

where K is the unknown Lipschitz constant for the entire DenseBlock. However, we can
find an analytical form to express a limit on K. To solve this, we know that the distance
between hv and hw can be expressed by the p-norm as:

d(hv, hw) =
p

√√√√len(hv)∑
i=1

|hv,i − hw,i|p, (12)

where we can simplify the equation by taking the p-th power:

d(hv, hw)p =

len(av)∑
i=1

|av,i − aw,i|p +

len(bv)∑
i=1

|bv,i − bw,i|p. (13)

Since we know that the distance of a can be expressed as:

d(av, aw) =
p

√√√√len(av)∑
i=1

|av,i − aw,i|p, (14)

which is similar for the distance of b, re-writing the second term of Equation (13) in the
form of Equation (11) is assumed to be of form:

d(av, aw)p ≤ Kp
1d(v, w)p, (15)

which is similar for b, d(bv, bw)p ≤ Kp
2d(v, w)p. Assuming this, we can find a form of

Equation (11) by substituting with Equation (13) and Equation (15):
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d(hv, hw)p =

len(hv)∑
i

|hv,i − hw,i|p ≤ Kp
1d(av, aw)p + Kp

2d(bv, bw)p

= (Kp
1 + Kp

2)d(v, w)p.

(16)

Now, taking the p-th root we have:

d(hv, hw) ≤ p

√
(Kp

1 + Kp
2)d(v, w), (17)

where we have derived the form of Equation (11) and where Lip(h) = K is expressed as:

Lip(h) =
p

√
(Kp

1 + Kp
2), (18)

where Lip(f1) = K1 and Lip(f2) = K2, which are assumed to be known Lipschitz constants.

Appendix B. Implementation

We used a smaller architecture of Residual Flows (Chen et al., 2019), with an adjustment
of number of blocks per scale set to 4 instead of 16. For training we ensured an equal
parameter budget for i-DenseNets. The architecture of i-DenseNets for image data are
presented in Table 2. A DenseBlock consist of several Dense Layers. The last Dense Layer
hn is followed by a 1×1 convolution to match the output of size Rd after which a squeezing
layer is applied. The final part of the network consist of a Fully Connected (FC) layer with
number of blocks set to 4. Before the concatenation in the FC layer, a Linear layer of input
Rd to output dimension 64 is applied, followed by the Dense Layer with DenseNet growth
32 and activation LipSwish. The DenseNet depth is set to 3. The final part consist of a
Linear layer to match the output of size Rd.

Nr.
of scales

Nr. of blocks
per scale

DenseNet
Depth

DenseNet
Growth

Dense Layer Output

3 4 3
108 (MNIST)
124 (CIFAR10)

3× 3 conv
LipSwish

concat

 [
1× 1 conv

]
Table 2: The architecture for function g for image data.

Toy data We used 10 scale blocks for all models. Furthermore, we used default settings of
Residual Flows. For i-DenseNets, we choose a DenseNet -depth and -growth of, respectively,
4 and 90 with 504K parameters and Residual Flows utilize 501K parameters.

MNIST All models used 3 scales where the number of blocks per scale is set to 4. Due
to instability of Residual Flows, we set our coefficient that controls the Lipschitz con-
straint from 0.98 to 0.93. Furthermore, default settings of Residual Flows are used. For
i-DenseNets, we used a coefficient controlling the Lipschitz of the concatenated blocks set
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to 0.98. i-DenseNets use a DenseNet -depth and -growth of, respectively, 3 and 108 with
5.0M parameters and Residual Flows utilize 5.0M parameters.

CIFAR10 All models used 3 scales where the number of blocks per scale is set to 4.
Furthermore, default settings of Residual Flows are used. i-DenseNets use a DenseNet -
depth and -growth of, respectively, 3 and 124 with 8.7M parameters and Residual Flows
utilize the 8.7M parameters.

Appendix C. Visualization of learnable concatenation

h1a h1b h1c h2a h2b h2c h3a h3b h3c h4a h4b h4c

Scale 1

Scale 2

Scale 3

FC

0.8 0.26 0.0 0.77 0.34 0.0 0.72 0.3 0.0 0.65 0.18 0.0

0.6 0.31 0.0 0.6 0.41 0.0 0.57 0.46 0.0 0.68 0.48 0.0

0.64 0.61 0.27 0.64 0.57 0.01 0.69 0.57 0.01 0.75 0.65 0.3

0.8 0.8 0.73 0.78 0.77 0.8 0.81 0.73 0.82 0.82 0.84 0.83
0.0

0.2

0.4

0.6

0.8

(a) Heatmap of η̂1

h1a h1b h1c h2a h2b h2c h3a h3b h3c h4a h4b h4c

Scale 1

Scale 2

Scale 3

FC

0.59 0.96 0.99 0.62 0.93 0.99 0.68 0.94 0.99 0.75 0.97 0.99

0.79 0.94 0.99 0.79 0.9 0.99 0.81 0.88 0.99 0.72 0.86 0.99

0.75 0.78 0.95 0.75 0.81 0.99 0.71 0.81 0.99 0.64 0.75 0.94

0.58 0.58 0.67 0.61 0.62 0.58 0.57 0.67 0.55 0.56 0.52 0.53
0.6

0.7

0.8

0.9

(b) Heatmap of η̂2.

Figure 3: Heatmaps of the normalized η1 and η2 after training for 200 epochs on CIFAR10.

Figure 3 shows the heatmap for (a) the normalized parameter η̂1 and (b) normalized pa-
rameter η̂2 after 200 epochs, trained on CIFAR10. Every scale level 1, 2 and 3 contain 4
DenseBlocks, that each contain 3 Dense Layers with convolutional layers. The final level
FC indicates that fully connected layers are used. The letters ‘a’, ‘b’, and ‘c’ index the
Dense Layers per block. Remarkably, all scale levels for the last layers hic give little impor-
tance to the input signal. The input signals for these layers are in most cases multiplied
with η̂1 (close to) zero, while the transformed signal uses almost all the information when
multiplied with η̂2 which is close to one. This indicates that the transformed signal is of
more importance for the network than the input signal. For the fully connected part, this
difference is not that pronounced.
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Appendix D. Model samples

This appendix contains real images and samples of the models trained on MNIST (Figure 4).
(a) shows real images of MNIST, (b) shows samples of the Residual Flow trained on MNIST,
as well as samples of (c) i-DenseNet without LC and (d) i-DenseNet with LC.

Figure 5 contains real images and samples of the models trained on images of CIFAR10.
(a) shows real images of CIFAR10, (b) shows samples of the Residual Flow trained on
CIFAR10, as well as samples of (c) i-DenseNet without LC and (d) i-DenseNet with LC.

(a) Real images. (b) Samples of the Residual Flow.

(c) Samples of i-DenseNet without LC. (d) Samples of i-DenseNet with LC.

Figure 4: Results on MNIST.
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(a) Real images. (b) Samples of the Residual Flow.

(c) Samples of i-DenseNet without LC. (d) Samples of i-DenseNet with LC.

Figure 5: Results on CIFAR10
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