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Abstract

In learning-based image compression approaches, compression models are
based on variational autoencoder(VAE) framework and optimized by a rate-
distortion objective function, which achieve better performance than hybrid
codecs. However, VAE maps the input to a lower dimensional latent space
which becomes a bottleneck of reconstruction. In this paper, we propose a
deep Hierarchical Compression(HC) model, which can achieve good com-
pression performance from low-bit to very high-bit. HC model consists
of two closely-related modules, including hierarchical latent compression
module and Hierarchical Conditional Entropy(HCE) module. Such a de-
sign transmits the details in the shallower layers and coarse information
in the deeper layers and conditions the shallower entropy estimation on
the deeper information. Extensive experiments show that HC model could
breakthrough the AE limit and achieve significant improvements over state-
of-the-art approaches in the high quality regime.

1 Introduction

In recent years, end-to-end optimized image compression methods based on variational
autoencoder(VAE) have achieved better performance than hybrid codecs. The methods
utilize an end-to-end trainable model to jointly optimize the rate and distortion. The state-
of-the-art networks for image compression are (Agustsson et al., 2017; Theis et al., 2017;
Ballé et al., 2016a;b; 2018; Mentzer et al., 2018; Lee et al., 2019; Minnen et al., 2018a; Cheng
et al., 2020; Qian et al., 2020; Hu et al., 2020). A common approach in VAE is to map the
images into a lower dimensional latent space in which a probability distribution is learned
to allow for entropy coding, such as hyper-prior and context model.

However, the operation of the existing VAE models that mapping an image to a lower
dimensional latent space impose an implicit limit on the reconstruction quality. As such,
they cannot address high quality levels well. VAE models are limited on the reconstruction
quality by the AE Limit line (Helminger et al., 2020).

According to the Nyquist–Shannon sampling theorem (Shannon, 1949), high-frequency sig-
nals and low-frequency signals need smaller and larger receptive fields respectively. Shallower
layer has a smaller receptive field, which is good for capturing high-frequency information,
and the deeper layer has a larger receptive field, which is good for capturing low-frequency
signals. Besides, there is a correlation between deep and shallow features. For these reasons,
we explore the HC model. The contributions of our work are as follows:

(1)We propose a hierarchical compression framework, the model allows us to transmit details
in the shallower layers and coarse information in the deeper layers. Entropy estimation of
shallower features are conditioned on deeper features. (2)We propose a residual compression
module, which is different from the widely used VAE framework, and could achieve better
performance. (3)The experiment results show that HC model breaks the AE Limit, and
outperforms the widely used VAE models with lower FLOPs.
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The rest of this work is organized as follows. In Section 2, we introduce the key approaches
of hierarchical compression, and the experimental results are shown in section 3. Finally, in
Section 4, we discuss the current work and future improvements.

Figure 1: From left to right: original image and latent from 2rd layer to 4th layer.

Figure 2: The overall architecture of our method. Left: the HC model. Right: Lossless
compression(LC) module, the comparison of latent compression and residual compression.

2 Hierarchical Compression

2.1 Previous Works

Neural multi-scale image compression was first proposed by (Nakanishi et al., 2018), which
maps the image to multi-scale latents and estimates the probability by a parallel multi-scale
PixelCNN. (Helminger et al., 2020) proposed normalizing flows for lossy image compression
and is superior to the existing VAE solutions in the high quality regime but at low bit-rates
the performance is much lower.

2.2 Compression Based on Hierarchical Condition

The latent representations in deeper and shallower layers have a strong correlation. We
show three latent representations from the 2rd layer to the 4th layer in figure 1. Visually,
it is obvious that the features of different layers are similar. Shallower and deeper features
store details and structural information respectively.

For this reason, we explore a HC model, as shown in the figure 2(left). Our framework
has three fundamental parametric transform functions: an analysis transform ga(x;ϕg), a
synthesis transform gs(ŷ; θg), and a group of conditional transform hs(ŷ; θh).The encoding
process is described as follows: on the encoder side, ga encodes the input image into hier-
archical features yi, i = 1, 2, ..., n which then quantized to form ŷi and lossless compressed
using entropy coding techniques. On the decoder side, an entropy decoder recovers ŷi from
the compressed signal, and gs recovers the reconstructed image x̂ from ŷ. The entropy
coding needs the probability distribution of ŷ, where ŷ = (ŷ1, ŷ2, ..., ŷn). We assumed a
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Gaussian distribution for the Hierarchical Conditional Entropy(HCE), that is,

p(ŷi|ŷi+1, ..., ŷn) ∼ N(µi, σi) (1)

Since there is no prior for ŷn, so a factorized density model (Ballé et al., 2018) is used to
estimate the probability distribution. Subsequently, the joint probability p(ŷ) is represented
as the product of the hierarchical conditional distributions:

Figure 3: The detailed architecture of HC. Convolution parameters are denoted as number
of fileters×kernel height×kernel width / stride, where ↑ and ↓ represent upsampling and
downsampling respectively. GDN and IGDN represent generalized divisive normalization
and the inverse counterpart respectively (Ballé et al., 2017). LC represents the lossless
compression module in figure 2(right). HE and HD module are the same as ha and hs in
(Ballé et al., 2018).

p(ŷ) = p(ŷn)

n−1∏
i=1

p(ŷi|ŷi+1, ..., ŷn) (2)

Rate is the expected code length (bit rate) of the compressed representation: assuming the
entropy coding technique is operating efficiently, it can be written as a cross entropy:

R = Ex∼px[−log2pŷ] (3)

The loss function is defined as below:

L = λD +R (4)

where D is distortion, λ is a hyperparameter that controls the bpp.

2.3 Residual compression

As shown in figure 2(right), in latent compression, the quantization of the latents y can be
expressed as follows: ŷ = round(y). This process will inevitably lead to a residual error
r = y − ŷ in the latent space that manifests as extra distortion when ŷ is transformed back
into x̂. In response to this problem, we use residual compression in our approach to reduce
the residual error. The quantization of residual compression can be expressed as follows:
ŷ = round(y − µ) + µ, where µ is the mean value of Gaussian distribution output from the
entropy estimation network. We will show in our experiments that residual compression can
reduce the residual error, and achieve better performance.
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Figure 4: Rate–distortion curves aggregated over the Kodak dataset. The left two plots
compare the performance of HC and (Ballé et al., 2018) with different N, and the right plot
compares the performance of residual compression and latent compression. In order to see
the improvement clearly, we show a shorter BPP range in the right plot.

Table 1: Comparison of calculations (FLOPs)

Model Ballé(18N128) Ballé(18N192) Ballé(18N256) HC N128 HC N192
Encoder 2.36E+09 5.19E+09 9.12E+09 2.70E+09 5.93E+09
Decoder 2.36E+09 5.19E+09 9.12E+09 2.51E+09 5.42E+09

3 Experiments

3.1 Experimental Setup

The detailed framework of our approach is shown in figure 3. The backbone is similar to
(Ballé et al., 2018). The channel of y3, y2, are set to 16, 4 respectively. Entropy estimation
of shallow features are conditioned on deeper ones.

For training, we use Imagenet (Deng et al., 2009) as training dataset. The models are
optimized using Adam (Kingma & Ba, 2015). For each input min-batch, we randomly
crop 8 patches with size of 256 × 256 from the training dataset. It takes 6 epochs for
training. We set the initial learning rate to 10−4 and reduced by 0.5 times at the 4th
epoch. We optimized our models using mean square error (MSE), and λ belongs to the set
{0.002, 0.007, 0.015, 0.005, 0.1, 0.15, 0.3, 0.5, 1.5, 3.0}

3.2 Experimental Results

In this section, we evaluate the effects of HC model. In the HC model with N =
128(HC N128), only y4 is transmitted when bpp ≤ 0.5, y3, y4 are transmitted when
0.5 < bpp ≤ 1.0, and y2, y3, y4 are transmitted when bpp > 1.0. In the HC model with
N = 192(HC N192), only y4 is transmitted when bpp ≤ 1.0 , y3, y4 are transmitted
when 1.0 < bpp ≤ 2, and y2, y3, y4 are transmiteed when bpp > 2.0. Figure 4 compares
the RD curves averaged over the Kodak image set. We can see from the left plot that,
HC N128 model is outperforms (Ballé et al., 2018)(N=128 and N=192). From the middle
plot, HC N192 model outperforms (Ballé et al., 2018)(N=192 and N=256). And from the
right plot residual compression outperforms latent compression.

Take a 256 × 256 image as an example, The FLOPs of different models are shown in the
table 1. It can be seen that our HC model is more lightweight.

4 Discussion

In this paper, we aimed to solve the problem of VAE limition by HC model. We also
proposed a latent residual compression model that effectively improves the performance.
Experimental results show that our approach can break the limitation of VAE and achieve
much better performance at high bit rates with smaller FLOPs.
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