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Abstract

The combinatorial problem of learning directed acyclic graphs (DAGs) from data
was recently framed as a purely continuous optimization problem by leveraging a
differentiable acyclicity characterization of DAGs based on the trace of a matrix
exponential function. Existing acyclicity characterizations are based on the idea that
powers of an adjacency matrix contain information about walks and cycles. In this
work, we propose a new acyclicity characterization based on the log-determinant
(log-det) function, which leverages the nilpotency property of DAGs. To deal
with the inherent asymmetries of a DAG, we relate the domain of our log-det
characterization to the set of M-matrices, which is a key difference to the classical
log-det function defined over the cone of positive definite matrices. Similar to
acyclicity functions previously proposed, our characterization is also exact and
differentiable. However, when compared to existing characterizations, our log-det
function: (1) Is better at detecting large cycles; (2) Has better-behaved gradients;
and (3) Its runtime is in practice about an order of magnitude faster. From the
optimization side, we drop the typically used augmented Lagrangian scheme and
propose DAGMA (Directed Acyclic Graphs via M-matrices for Acyclicity), a
method that resembles the central path for barrier methods. Each point in the
central path of DAGMA is a solution to an unconstrained problem regularized
by our log-det function, then we show that at the limit of the central path the
solution is guaranteed to be a DAG. Finally, we provide extensive experiments
for linear and nonlinear SEMs and show that our approach can reach large speed-
ups and smaller structural Hamming distances against state-of-the-art methods.
Code implementing the proposed method is open-source and publicly available at
https://github.com/kevinsbello/dagma.

1 Introduction

Structural equation models (SEMs) [44] are a standard modeling tool in several fields such as
economics, social sciences, genetics, and causal inference, to name a few. Under this framework,
in its general form, the value of each variable in the model is assigned by a general nonlinear,
nonparametric function that takes as input the values of other variables in the model, thus, every
SEM can be associated to a graphical model. In particular, we will consider graphical models that are
directed acyclic graphs (DAGs).

A long-standing and active research area deals with the problem of learning the graphical structure
(DAG) given passively observed data (a.k.a. causal discovery). Computationally, this problem is
well-known to be NP-hard in general [10, 12], mainly due to the combinatorial nature of the space of
DAGs. In this work, we will follow a score-based approach, a popular learning framework where the
goal is to find a DAG that minimizes a given score [21, 1 1]. Recently, Zheng et al. [58] proposed an
exact smooth nonconvex characterization of acyclicity which opened the door to solving the originally
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combinatorial problem via a set of tools that work in the fully continuous regime (e.g., gradient-based
methods).

Let W € R%*? be a weighted adjacency matrix of a graph G of d nodes, and let W o T denote the
Hadamard product. The acyclicity function introduced by Zheng et al. [58] is defined as hexpm (W) =
Tr(eV°W) — d, where Tr denotes the trace of a matrix, and it was shown that Aexpm (W) = 0 if
and only if W corresponds to a DAG. A follow-up work [56] proposed another acyclicity function,
which can be computed slightly faster, defined as hyory (W) = Tr((I + 3W o W)?) — d, where
I is the identity matrix. It was similarly shown by Yu et al. [56] that hper, (W) = 0 if and only if
W corresponds to a DAG. While seemingly different, both hexpm and hpely are functions of the

form Tr(ZZ:O cp(W o W)F) — d for some c¢j, > 0, as noted by Wei et al. [55]. To the best of our
knowledge, all subsequent work [e.g., 59, 26, 60, 37, 38, 36, 25, 41, to name a few] that has built
upon the idea of using a continuous acyclicity characterization have used either heyxpm O hpoly, OF
some acyclicity characterization in the form of a trace of a sum of matrix powers. The latter should
come as no surprise, after all, a nonzero diagonal entry of the matrix power (W o W) reveals the
existence of a closed walk of length k£ in W.

Contributions. In this work, we propose a new acyclicity function that, as hexpm and hpely, is both
an exact and a smooth acyclicity characterization but that also possesses several advantages when
compared to hexpm and hpoly. Specifically, we make the following set of contributions:

1. We propose a novel acyclicity characterization based on the log-determinant (log-det)
function (see Theorem | and Section 3). In contrast to the classical log-det function defined
over the cone of positive definite matrices, we define the domain of our log-det function
to be the set of M-matrices due to the inherent asymmetries of DAGs. To our knowledge,
we are the first to connect the notion of M-matrices to acyclicity and structure learning for
DAGs.

2. We provide a detailed study of the properties of our log-det characterization in Section 3.1.
First, we establish the similarities of our log-det function to other existing functions such
as hexpm and hpery. Second, we formally argue why these functions can be regarded as
acyclicity regularizers, similar in spirit to the classical ¢; and {5 regularizers. Third, we
show that our log-det function is an invex function, i.e., all stationary points are global
minimum, moreover, these stationary points correspond to DAGs.

3. In Section 3.2, we present three arguments as to why our log-det characterization could be
preferred over other existing acyclicity functions. Briefly, our log-det function is better at
detecting large cycles, has better behaved gradients, and can be computed in about an order
of magnitude faster than heypm and hpoly.

4. Motivated by the properties of our log-det function, in Section 4, we present DAGMA
(Directed Acyclic Graphs via M-matrices for Acyclicity), a method that resembles the widely
known central path approach for barrier methods [39]. We show that, at the limit of the
central path, the solution is guaranteed to be a DAG. In contrast to the commonly adopted
augmented Lagrangian scheme (originally proposed in [58]) each point in the central path
of DAGMA is a solution to an unconstrained problem regularized by our log-det function.

5. Finally, in Section 5 and Appendix C, we provide extensive experiments for linear and
nonlinear SEMs under different score functions (both least squares and log-likelihood),
where we show that DAGMA is capable of obtaining DAGs with better accuracy, i.e., lower
structural Hamming distance (SHD), in a much faster way than the state-of-the-art.

1.1 Related work

The vast majority of methods for learning DAGs can be categorized into two groups: constraint-based
algorithms, which rely on conditional independence tests; and score-based algorithms, which focus
on finding a DAG that minimizes a given score/loss function. We briefly mention classical constraint-
based methods as we follow a score-based approach. [50] developed the PC algorithm, a popular
general method that learns the Markov equivalence class. Other algorithms such as [52, 29] are based
on local Markov boundary search. Finally, hybrid approaches that combine constraint-based learning
with score-based learning, such as [53, 15].



In the line of score-based methods, popular score functions include BDeu [21], BIC [31], and MDL

[7]. Works that study linear Gaussian SEMs include [2, 3, 16, 17, 32, 45], and for linear non-Gaussian
SEMs [27, 49]. For nonlinear SEMs, we note works on additive models [9, 13, 54], additive noise
models [23, 46, 35], generalized linear models [43, 42, 19], and general nonlinear SEMs [34, 18].

More closely related to our work is the line of work built on the nonconvex continuous framework
of Zheng et al. [58], such as, [59, 26, 60, 37, 36, 25, 41]. In contrast to our work, all of the
aforementioned methods rely on the nonconvex acyclicity functions Aexpm Or Rpoly, and with the
exception of [37], all of these works also use the augmented Lagrangian scheme. Finally, the NoCurl
method [57] also departs from using Aexpm, although no other acyclicity constraint is proposed. Two
immediate distinctions can be made to our work. First, we propose a novel acyclicity function based
on the log-det function which we show to be prefereable to hexpm and hpoly. Second, we drop the
commonly adopted augmented Lagrangian scheme to solve the constrained problem and instead
follow a central path approach to leverage the barrier property of our log-det function.

Remark 1. 7o avoid confusion, we also note that in the GOLEM method of Ng et al. [37] the score
includes a log-determinant function of the form log | det(I — W)| which stems from the Gaussian
log-likelihood. While this expression is zero if W corresponds to a DAG, it is not an exact acyclicity
characterization (i.e. log|det(I — W)| = 0 does not imply W is a DAG). By contrast, the use of
M-matrices in our work is crucial to translating the log-det function into a valid acyclicity regularizer.
Moreover; it is not obvious how to extend GOLEM to arbitrary score functions, as their analysis is
specific to the Gaussian likelihood function.

2 Notation and background

Notation. We use [d] to denote the set of integers {1...d}. For a square matrix A, we use \;(A) to
denote its i-th minimum eigenvalue, and use p(A) to denote its spectral radius. Also, we use Tr(A),
and det(A) to denote the trace and determinant of A. For matrices A, B, we let A o B represent the
element-wise or Hadamard product, moreover, the expression A > B is entrywise, i.e., A; ; > B; ;.
Then, we say that a matrix A is nonnegative whenever A > 0. For a complex number a + bi, we
let R(a + bi) = a denote its real part. We use ||-|,, to denote the vector £,,-norm, and ||-|| .» is the
LP-norm on functions. Lastly, ¢ — j and i ~» j represent an edge from ¢ to j and a directed walk
from ¢ to j, respectively.

Let X = (X1,...,X4) be a d-dimensional random vector. In its general form, a (nonparametric)
structural equation model (SEM) consists of a set of equations of the form:
Xj:f](XaZj)v v‘je [d]v (l)

where each f; : R4T! — R is a nonlinear nonparametric function, and Z; is an exogenous variable
representing errors due to omitted factors. We consider the Markovian model, which assumes that
each Z; is an independent random variable. Note that each f; depends only on a subset of X (i.e.,
the parents of X ;) and Z;; nonetheless, to simplify notation we ensure that each f; is defined on the

same space. Then f = (fi,..., fq) induces a graphical structure, where we focus on directed acyclic
graphs.
For any joint distribution over Z = (Z1, ..., Zy), the functions f; define a joint distribution P(X)

over the observed data, and a graph G(f) via the dependencies in each f;. Then, our goal is to
learn G(f) given n i.i.d. samples from P(X). In score-based learning, given a data matrix X =
[®1,...,24) € R"™9 we define a score function Q(f; X) to measure the ‘quality’ of a candidate
SEM as follows: Q(f; X) = Z;l:l loss(z;, f;(X)), where we adopt the convention that f;(X) €

R". Here l0ss can be any loss function such as least squares loss(u, v) = 2 3" | (u; — v;)? or the

log-likelihood function, often augmented with a penalty such as BIC or ;. Given the score function
@ and a family of functions F, we seek to find the f € F that minimizes the score, i.e.,

?g}Q(f;X) subject to G(f) € DAGs. ()

Similar to [59], we consider that each f; lives in a Sobolev space of square-integrable functions
whose derivatives are also square integrable. Then, let 0, f; denote the partial derivative of f; w.r.t.

X, it is easy to see that f; is independent of X, if and only if ||k f;|| L2 = 0. With this observation,

we construct the matrix W (f) € R4 with entries [W (f)]; ; def 10; f;|l L2, which precisely encodes



the graphical structure amongst the variables X ;. That is G(f) € DAGs <= W(f) € DAGs,
where W is interpreted as the usual weighted adjacency matrix.

In practice, f is replaced with a flexible family of parametrized functions such as deep neural
networks, so that problem (2) is finite dimensional. Finally, note that model (1) includes several
models as special cases, e.g., additive noise models, generalized linear models, additive models,
polynomial regression, and index models. Previous work has studied the identifiability of several of
these models, e.g., [23, 49, 46, 43, 42, 27]. In the sequel, we assume that the model is chosen such
that the graph G(f) is uniquely defined from (2).

3 A new characterization of acyclicity via log-determinant and M-matrices

In this section, we present our acyclicity characterization and study its properties. To declutter
notation, in this section we simply write W instead of W (f) to denote the weighted adjacency matrix
of a graph; however, it should be clear that W depends on functions f; as explained in the previous
section.

We develop our characterization by first noting that for any nonnegative weighted adjacency matrix
W, we have that W € DAGs if and only if T is a nilpotent matrix, or equivalently, all the eigenvalues
of W are zero, i.e., \;(W) = 0,Vi € [d]. Then, for any W € R%*?, we have the following obvious
implications:

W € DAGs <= (WoW) € DAGs < s — \;(Wo W) =s,Vi € [d],Vs € R 3)
d

= [[s—X(WoW)=det(sI - WoW)=s" (4
i=1

Implication (4) can be thought of as a relaxation of acyclicity in the sense that all DAGs satisfy (4),
but not all W that satisfy (4) are DAGs. For example, let s = 1and W o W = [g g} , then it is clear
that det(sI — W o W) = 1 and, thus, (4) is satisfied; however, clearly W is not a DAG.

Thus, two immediate questions arise: (i) Does there exist a domain for W such that (4) = (3)? (ii)
If so, what is the description of such domain? We answer (i) in the affirmative, and answer (ii) by
relating the domain of W to the set of M-matrices, which is defined below.

Definition 1 (M-matrix'). An M-matrix is a matrix A € Rdxd of the form A = sI — B, where B > 0
and s > p(B).

M-matrices were introduced by Ostrowski [40] and arise in a variety of areas including input-output
analysis in economics, linear complementarity problems in operations research, finite difference
methods for partial differential equations, and Markov chains in stochastic processes. To the best
of our knowledge, we are the first to connect the notion of M-matrices to graphical model structure
learning through an acyclicity characterization.

The following proposition is an immediate consequence of Definition 1:
Proposition 1 (Berman and Plemmons [5]). Let A € R?*? be an M-matrix, then:

(i) R(Ni(A)) > 0, foralli € [d]. (ii) A=1 exists and is nonnegative, i.e., A~1 > 0.

In the above, item (i) states that the eigenvalues of an M-matrix lie in the open right-half plane.
Matrices which satisfy the latter property are also known as positive stable matrices. We thus have
that M-matrices are special cases of positive stable matrices. It follows that the determinant of any
M-matrix is positive.” This fact will be used for defining i, . (W), our acyclicity characterization
given in Theorem 1. Finally, the nonnegativity of the inverse from item (ii) will be used to understand
some properties of the gradient of ., (W).

We now define the domain over which (4) = (3) (see Theorem 1). For any s > 0, define
W = {W € R | s > p(Wo W)}, 5)

"More precisely, we consider the definition of a non-singular M-matrix, which is sufficient for the purposes
of this work.

Note that due to asymmetries it is possible for an M-matrix to have complex eigenvalues. However, since
we work with matrices with real entries, the complex eigenvalues come in conjugate pairs.



i.e., W¥ is the set of real matrices whose entry-wise square given by W o W have spectral radius less
than s. The following lemma lists some relevant properties of W=,

Lemma 1. Let W? defined as in (5). Then, for all s > 0:
(i) DAGs C W&, (ii) W* is path-connected. (iii) W® C W! for any t > s.

In Lemma [, item (i) implies that the W we look for is in the interior of W*; item (ii) indicates that
we can find a path from any point in W* to any DAG without leaving the set W*; item (iii) shows
that one can vary s to enlarge or shrink the set W*.

Having defined the domain set W*, we now define our acyclicity characterization hj;., : W® — R.
Recall that item (i) in Proposition | implies that applying the logarithm function to the determinant
of an M-matrix is always well defined, which motivates our following result.

Theorem 1 (Log-determinant characterization). Let s > 0 and let hi;,, : W* — R be defined as

hiyee (W) L jog det(sI — W o W) + dlog s. Then, the following holds:

(i) hisot (W) >0, with by (W) = 0 if and only if W is a DAG.
(i) Vhi (W) =2(sI =W o W)~ oW, with Vh;.(W) = 0if and only if W is a DAG.

3.1 Properties of i}, . (V)

In this section, we list several properties of our acyclicity characterization. The first property we
discuss is related to the entries of VA, . (W).

Lemma 2. Foralli,j € [d), [Vhiy. (W)]i,; = 0if and only if W; ; = 0 or there is no directed walk
from j to i. Equivalently, [Vhi,.(W)l; ; # 0 if and only if the edge i — j is part of some cycle in
W. Finally, whenever [Vhi,.(W)]; j # 0, we have that sign([Vh,..(W)]; ;) = sign(W; ;).

The lemma above characterizes the nonzero entries and their signs of the gradient of hj,.,. This
property formally offers a regularizer perspective for hy;.., which we highlight next.

Remark 2 (A regularizer viewpoint). The function hj,., promotes small parameters values in much
the same way that the classical {1 and {5 regularizers do. In contrast to the latter regularizers, hj; .,
will only shrink the value of a parameter W ; if and only if the edge (i, j) is part of some cycle in W,
as prescribed by Lemma 2.

Recall that Aexpm (W) = Tr(eV°W) — d and hyory (W) = Tr((1 + LW o W)?) — d. It was noted
by [55] that acyclicity characterizations of the form Tr(zzzl cp(W o W)4) for ¢, > 0 also have the
property in Lemma 2. This implies that hexpm and hpor, hold the property above and can also be

interpreted as acyclicity regularizers. We note that the interesting part here is that hj,., holds this
property besides being different in nature to Aexpm and hApoly.

Next, we state an important consequence of Lemma 2, which is related to the direction of VA, (W).
Corollary 1. Arany W € W?, the negative gradient V hi, (W) points towards the interior of W*.
In optimization, the Hessian matrix plays an important role as it contains relevant information about

saddle points and local extrema of a function, and is key to Newton-type methods. Another appealing
property of h{, . (W) is that it has a Hessian described by a simple closed-form expression.

Lemma 3. The Hessian of h;..(W), which resides in R% XdQ, is given by:

V2hie (W) = 4 Diag(vec(W))(N @ N T) Diag(vec(W T )) K% 4 2 Diag(vec(N 1)),
where N = (sI —W o W)™, ® denotes the Kronecker product, and K is the d* x d? commutation
matrix such that K% vec(A) = vec(AT), for any d x d matrix A.

Here we note that among hexpm, Apoly and hj,.,, only k.. has a tractable expression for the Hessian.
Furthermore, note that V2hg, ., (W) is indexed by vertex pairs so that the entry [V2hg, . (W)] k.1, (p.q)

. .. 8%h? . .
corresponds to the second partial derivative W on, - Using Lemma 3, we can characterize the
) p,q

nonzero entries, and their signs, of the Hessian of Mot



Corollary 2. The entries of the Hessian Vzhfdet (W) are described as follows:

|:v2hs (W)] —_ 4VVl;ka7quleQ7P lf (k’l) 75 (p7 Q)a
tdet kD.p.a) | 4Wik)?(Net)? +2Nea if (k1) = (p,9),

where N = (sI —W o W)~'. Moreover, an off-diagonal entry [V?hiy . (W) (1.1).(p.q) IS nONZEr0
if and only if there exists a cycle in W of the form ¢ — p ~> | — k ~» q, and has a sign equal to
sign(Wy, e Wy ). Lastly, a diagonal entry [V2 .o (W)] k.1, k1) is nonzero if and only if there exists
a directed walk from k to l, and its sign is always positive.

Recall from Theorem 1 that all DAGs attain the minimum value and are critical points of h{,,; thus,
DAGs are local (and global) minimum of A}, and the Hessian matrix evaluated at a DAG must be
positive (semi)definite. Let us corroborate the latter, when W is a DAG, from Corollary 2 we have
that the off-diagonal elements of V2h{, (W) are zero, while the diagonal entries are nonnegative.
That is, the Hessian is positive semidefinite whenever W' is a DAG. This implies that all its stationary
points are global minima: Such functions are called invex [20, 30].

Corollary 3. Let s > 0. Then, hi, (W) is an invex function, i.e., all its stationary points are global
minima, and these correspond to DAGs.

We note that even though hexpm and hyo1y are also invex functions, they were not explicitly considered
as invex functions before. In fact, it was noted in [58] that DAGs were global minima of hexpm but no
characterization of its stationary points were given. Wei et al. [55] noted that DAGs were stationary
points of heyxpm and hpo1y but the notion of invexity was not explicitly stated.

Remark 3 (A dynamical system perspective). The importance of invexity here is that in the eyes
of hiye» all DAGs are the same. That is, DAGs correspond to the set of attractors in hi,,,, and
depending on the initial condition, the system will converge to a different attractor. This offers the
Jollowing viewpoint for the role of the score function Q(f; X), namely, “use the score Q) to find a
basin of attraction such that the force field of hi,,, will dictate the trajectory towards a DAG that is
equal or close to the ground-truth”.

In Figure 1, we illustrate in a toy example the properties discussed in this subsection.
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Figure 1: Behavior of hj;, for W = [182 o ] . Here clearly W is a DAG whenever one of w; or ws

(or both) are zero. In particular, for (c) we note the perspective given in Remark 3, i.e., starting at any
point in region R2 will converge to attractors (DAGs) of the form X; — X5 (red line); while starting
at any point in region R1 will converge to attractors (DAGs) of the form X, — X3 (blue line).

3.2 Why the log-determinant regularizer is preferable to existing acyclicity regularizers

In this section, we present three arguments as to why one should use hj,,, instead of existing functions
such as hexpm and hpoly. We invite the reader to look at Appendix B for additional details.

Argument (i). hj;., does not diminish cycles of any length. Let us expand the functions Aeypm, and
Rpoly in their sum of matrix powers form, that is, Aexpm (W) = > pe /& Tr((W o W)*) — d and
hpoty(W) = ZZ:O (k)/d* Tr((W o W)*) — d. Recall also that the entry [(W o W)¥], ; represents



the sum of weighted walks from node ¢ to node 7 of length k, where each edge has weight wg’v. Thus,
one can notice that if W has cycles of length &, their contribution to hexpm and hpory are diminished
by 1/kt and (i)/d*, respectively. Numerically, the latter can be problematic for the following reason:
Cycles of length k£ can go undetected even for small values of d and k. In practice, a value of
Rexpms Apoty € [1078,107°] is typically regarded as zero [55, 58]. Consider a cycle graph of d nodes
where each edge weight is +1 or —1.> The plot in Figure 2 shows how the values of hexpm and hApoly
decay much faster than that of hj,,; in fact, at d = 13 we already observe hexpm(W) ~ 10~ and
hpoty (W) ~ 10—, i.e., cycles of length at least 13 would be numerically undetected by hexpm and
hpoty. In contrast, we observe that the value of the log-det function remains bounded away from zero
and is able to detect larger cycles.

e\t — W) == V(W) 180
L hegm(W) [ Vhepm (W) llso || 160
5 \ oty (W) === |V hpoty (W)l 140

@T@ 0 20 40 60 80 100

Number of nodes

Figure 2: The values of hexpm and hpoly get very close to zero for a number of nodes as small as ten.
In contrast, letting s = 1.001, we observe that hj,., can stay away from zero even for a cycle graph
of 100 nodes. Finally, we note a similar pattern for the entrywise £, norm of the gradients.

At first glance, it might seem difficult to directly compare the value of hj; t0 hexpm and hpory. We
next show that when s = 1, hfd:e% is an upper bound to hexpm and Apely.

Lemma 4. For all W € W=, we have hpoly (W) < hexpm (W) < hiTt (W).

The lemma above shows that in spite of hf;}%, hexpm, and hyoly being exact acyclicity characteriza-
tions, hfd:e% will attain the largest value.

Argument (ii). hj,., has better behaved gradients. Similar to argument (i), we show in Appendix
B that hexpm and hpo1y are susceptible to vanishing gradients even when the graph contains cycles
(see Figure 2). The following lemma states that the magnitude of each entry of Vhy,, at least as
large as the magnitude of the corresponding entry of Vhexpm and Vhyely, and hence, higet has larger
gradients to guide optimization.

Lemma 5. For any walk of length k, its contribution to the gradients V hexpm (W) and V hpor, (W)
are diminished by /! and (.")/(a-1)*, respectively. In contrast, Vhi.t(W) does not diminish any
walk of any length. This implies that |V hpolty (W) < |Vhexpm (W)| < |[VAEEW)).

Argument (iii). Computing hj, ., and Vhj;., is empirically faster. Even though hj;.,, fexpm, and
hpoly all three share the same computational complexity of O(d?), in practice hf;., can be computed
in about an order of magnitude faster than heypm and hpoly. In Figure 3, we compare the runtimes of
et Pexpm and hpory, for randomly generated matrices, where we observe that computing Ay, can
be 10x faster than Aexpm and hpoly. See Appendix B for further details.

4 Optimization

In the previous section we argued why the log-det function should be preferred in practice. Let fy
denote a model with parameters 6 for the functions f; in (1), e.g., neural networks as in [59]. In
this section we turn to the problem of minimizing a given score function Q( fg; X ) constrained to
hi10: (W (8)) = 0. That is, we aim to solve:

min Q(fo: X) + A1[|6]]1 - subject to hige,(W(0)) = 0, (6)

where we include the ¢; regularizer to promote sparse solutions.

*Note that here the sign of an edge is not important since W o W will have all edge weights equal to +1.



hlsd=91‘(W) th;ell(w)

Runtime (ms)
- 5

= o o

o o o

o
=

0 200 400 600 800 1000 0 200 400 600 800 1000
d (number of nodes)

Methods logdet === expm poly

Figure 3: For each d, 30 matrices were randomly sampled from a standard Gaussian distribution.

Since the inception of the purely continuous framework for learning DAGs in [58], almost all follow-

up work uses the augmented Lagrangian (AML) scheme to tackle problem (6), and L-BFGS-B [39]

for solving the sequence of unconstrained problems. Motivated by the properties of hj,., given in

3.1, we propose a simpler scheme named DAGMA, based on solving a sequence of unconstrained

problems in which hj,, is simply seen as a regularizer. DAGMA resembles the central path approach

of barrier methods [8, 39], or the classical path-following approach for solving lasso problems [e.g.
]. Our method is given in Algorithm 1.

Algorithm 1 DAGMA

Require: Data matrix X, initial central path coefficient 1(?) (e.g., 1), decay factor @ € (0,1) (e.g.,
0.1), ¢; parameter 51 > 0 (e.g., 0.01), log-det parameter s > 0 (e.g., 1), number of iterations 7.
1: Tnitialize 6(9) so that W (0(©)) € W=,
2: fort=0,1,2,... T —1do
3:  Starting at 04, solve 00+ = argming 1™ (Q(fo; X) + B1|0]11) + Ay (W (0))
4: Set pt+1H) = qpu®
Ensure: W (0(7))

The following lemma states that DAGMA will return a DAG at the limit of the central path. This is a
critical distinction against existing methods, many of which rely on some type of post-processing
(e.g. thresholding) to ensure that the solution is a DAG.

Lemma 6. Algorithm I is guaranteed to return a DAG whenever u(t) — 0.

4.1 Practical Considerations

1. As in barrier methods, where it is required to start at the interior of the feasibility region,
in Algorithm 1, we require that the initial point T/ ((?)) be inside W*. This is very easy
to achieve since the zero matrix is in the interior of W# for any s > 0; therefore, in our
experiments we simply set 0(0) = 0.

2. Note that in Algorithm 1, we let u(t) decrease by a constant factor at each iteration; however,

it is possible to specify explicitly the value of each u(¥), e.g., for T = 4, we can let
= {1,0.1,0.001,0}.

3. Regarding the choice of s, in principle s could take any value greater than zero since DAGs
are inside W* for any s > 0. Similar to y, it is also possible to let s vary at each iteration,
e.g., for T = 4, we can set s = {1,0.9,0.8,0.8}. In practive, we observe that slightly
decreasing s can help to obtain larger gradients as W gets closer to a DAG. Note, however,
that letting s be equal or close to 1 is generally easier to optimize than setting s closer to
zero, the reason being that for smaller values of s the volume of W* is smaller and will
require much smaller learning rates to stay inside W#, hence affecting convergence.

4. Finally, we do not specify how to solve line 3 in Algorithm 1, this is because we leave the
door open for different solvers to be used. For our experiments in the next section, we solve
line 3 by using a first-order method with the ADAM optimizer [24], which works remarkably
well as shown in our experiments. It remains as future work to exploit the Hessian structure
of hjget given in Lemma 3 for second-order methods.



5 Experiments

We compare our method against GES [11], PC [51], NOTEARS [58], and GOLEM [37] on both
linear and nonlinear SEMs. In Appendix C, we specify which existing implementation we used for
each of the aforementioned methods. Consistent with previous work in this area (e.g., NOTEARS
and follow up work), we have not performed any hyperparameter optimization: This is to avoid
presenting unintentionally biased results. As a concrete example, for each of the SEM settings, we
simply chose a reasonable value for the ¢, penalty coefficient and used that same value for all graphs
across many different numbers of nodes.

Our experimental setting is similar to [58, 59]. For the main text, we present only a small fraction of
all our experiments. Moreover, since the accuracy of certain methods were significantly lower than
other methods, we report results only against the most competitive ones; full results for all settings
and methods can be found in Appendix C.

Linear Models. In Appendix C.1, we report results for linear SEMs with Gaussian, Gumbel, and
exponential noises, and use the least squares loss. For small to moderate number of nodes, see
Appendix C.1.1; for large number of nodes, see Appendix C.1.2; for denser graphs, see Appendix
C.1.4; and for a comparison against GOLEM for sparser graphs, see Appendix C.1.3.

Nonlinear Models. In Appendix C.2, we report results for nonlinear SEMs with binary and con-
tinuous data. For binary data, we use a logistic model for each structural equation, and use the
log-likelihood loss as the score, we report results for small to large number of nodes in Appendix
C.2.1. For continuous data, we consider the continuous additive noise model with Gaussian noise [9],
where each nonlinear relationship is modeled by a multilayer perceptron, and use the log-likelihood
loss as the score, we report results for small to moderate number of nodes in Appendix C.2.2.

In the following figures, ER4 and SF4 denote Erd6s-Rényi and scale-free graphs, respectively, where
for each number of nodes d, each graph has in expectation 4d edges. It is worth noting that the
empirical settings by Zheng et al. [58, 59] consider graph models such as ER1, ER2, SF1, and SF2.
Here we focus on the hardest setting, i.e., ER4 and SF4 graphs. For linear SEMs, Figure 4 shows
results for graphs with d € [20, 100], and Figure 5 shows results for graphs with d € [200, 1000].
In both regimes, we note that DAGMA obtains significant speedups and improvements in terms of
structural accuracy (SHD) against NOTEARS and GOLEM, even though GOLEM is specific to
and specialized for linear Gaussian SEMs. For nonlinear SEMs, Figure 6 shows results for logistic
models, we similarly observe that DAGMA attains major speedups and improvements on SHD against
NOTEARS [58]. Finally, for nonlinear models using neural networks, we observe that DAGMA is
comparable in SHD to the NONLINEAR NOTEARS [59] but obtains significant speedups. Again,
we invite the reader to look at Appendix C for more details and additional experiments.

6 Final Remarks

A relevant assumption in this work is that of sufficiency, that is, there are no hidden variables that
are a common cause of at least two observed variables. While this assumption is widely used for
structure learning, we nonetheless highlight that in practice it is very difficult to find scenarios where
such assumption holds. As with all work that assumes sufficiency, our work is an important necessary
step to understanding settings with hidden variables. Finally, we note that the work by [6] proposes
a differentiable approach for ADMG for the semi-Markovian case using Aexpm. It is left for future
work to explore the performance of such method using Ajqet-

Another important limitation of this and previous work on the continuous framework for learning
DAG:s is that of providing guarantees on the learned structure. As in real-life applications one does not
have access to the ground-truth DAG, there is much uncertainty as to whether an edge in the predicted
DAG actually corresponds to a causal relation. Thus, there is still a need for formal guarantees under
the continuous framework.
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Figure 4: Experiments on linear SEMs for d € [20, 100]. Each point in the plot is estimated over 10
repetitions, where error bars are the standard error. Wall time limit was set to 36 hours.
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