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Abstract001

Generative agents have been increasingly used002
to simulate human behaviour in silico, driven003
by large language models (LLMs). These sim-004
ulacra serve as sandboxes for studying human005
behaviour without compromising privacy or006
safety. However, it remains unclear whether007
such agents can truly represent real individuals.008
In this work, we compare survey data from the009
Understanding America Study (UAS) on health-010
care decision-making with simulated responses011
from generative agents. Using demographic-012
based prompt engineering, we create digital013
twins of survey respondents and analyse how014
well different LLMs reproduce real-world be-015
haviours. Our findings show that some LLMs016
fail to reflect realistic decision-making, such as017
predicting universal vaccine acceptance. How-018
ever, Llama 3 captures variations across race019
and income more accurately but also introduces020
biases not present in the UAS data. This study021
highlights the potential of generative agents for022
behavioural research while underscoring the023
risks of bias from both LLMs and prompting024
strategies.025

1 Introduction026

The rise of large language models (LLMs) has027

enabled advances in agentic artificial intelligence028

(AI), where AI systems can make independent029

choices and act autonomously (Acharya et al.,030

2025; Park et al., 2023; Xi et al., 2025; Shana-031

han et al., 2023). Generative agents, in particu-032

lar, have been shown to create realistic synthetic033

human populations, or simulacra, where individ-034

ual agents follow daily life patterns and interact035

with each other (Park et al., 2023; Shanahan et al.,036

2023; Han et al., 2024; Wang et al., 2024). These037

simulacra offer a promising approach to studying038

human behaviour in silico, raising the question039

of whether they can effectively model complex040

decision-making in real-world scenarios. In health-041

care, where decisions are shaped by personal, so-042

cial, and policy factors, the ability of simulacra to 043

approximate human choices has significant impli- 044

cations. If LLMs can reliably simulate decision- 045

making, they could serve as valuable tools for pol- 046

icy analysis, health behaviour prediction, and in- 047

tervention design. However, their accuracy and 048

potential biases when applied to real-world data re- 049

quire careful evaluation, particularly as LLMs have 050

been shown to amplify racial biases in healthcare 051

applications (Ferrara, 2024). 052

A key challenge in using LLMs for healthcare 053

decision modelling is determining whether they ef- 054

fectively replicate factors shaping real-world health 055

decisions. Unlike clinical diagnosis, which fol- 056

lows medical guidelines, social, economic, and be- 057

havioural influences shape choices such as seeking 058

treatment or vaccination. While surveys provide 059

structured insights into human intentions, LLMs of- 060

fer a scalable alternative for modelling decisions in 061

agent-based simulations. However, their ability to 062

generate realistic health choices remains uncertain. 063

To investigate this, we compare health decision- 064

making in a disease simulation framework, focus- 065

ing on vaccination as a case study. Individuals 066

make choices based on varying levels of contex- 067

tual information, including personal risk percep- 068

tion, demographics, and external messaging. We 069

compare LLM-generated vaccine decisions to sur- 070

vey data from the Understanding America Study 071

(UAS) (Kapteyn et al., 2024), which includes so- 072

cioeconomic, risk perception, and personal belief 073

data. This enables the assessment of LLMs’ align- 074

ment with human decision patterns and potential 075

biases diverging from real-world behaviours. 076

Despite this potential, several challenges remain. 077

First, while LLMs generate human-like responses, 078

it is unclear whether they truly capture the reason- 079

ing behind health-related decisions. Prior research 080

suggests LLMs can retrieve medical knowledge, 081

but their ability to simulate human decision pro- 082

cesses is still in question (Hager et al., 2024). Since 083
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vaccination intentions are shaped by social and psy-084

chological factors, it is critical to assess whether085

LLMs accurately model these influences or merely086

reflect statistical patterns from their training data.087

LLM-generated decisions may exhibit biases088

that diverge from human decision-making, rais-089

ing concerns about their reliability in public health090

modelling. Biases in LLM training data can create091

demographic disparities (Kim et al., 2025), mak-092

ing assessing them against actual human decisions093

essential. This study explores: RQ1: Can LLMs094

effectively model healthcare decisions, such as vac-095

cination intentions?; RQ2: What biases emerge096

in LLM-generated decisions across demographic097

groups, and how do models distribute decisions098

among populations?099

We hypothesise that LLMs can approximate hu-100

man decision-making, but their effectiveness de-101

pends on the amount and type of contextual infor-102

mation provided (H1). Additionally, pretraining103

data and prompt formulation may cause LLMs to104

exhibit biases that differ from human biases (H2).105

This study tests these hypotheses through a struc-106

tured experiment. We compare LLM-generated107

vaccination decisions with survey responses to as-108

sess alignment and examine biases by analysing109

disparities across demographic groups. Our find-110

ings enhance an understanding of LLMs’ strengths111

and limitations in modelling healthcare behaviours112

and decision-making.113

2 Method114

To analyse how LLMs approximate human115

decision-making in healthcare, we design a study116

that integrates demographic attributes, contextual117

prompts, and LLM-generated decisions (Figure 1).118

LLMs are prompted with structured demographic119

profiles under various pandemic scenarios, and120

their responses are analysed to assess decision pat-121

terns and potential biases.122

We evaluate vaccination decisions by testing123

models across four historical pandemic contexts124

from 2020. Each model is presented with a stan-125

dardised decision-making prompt, incorporating126

demographic details and situational factors. Model127

predictions are then compared to UAS survey data128

to assess alignment with real-world trends across129

different pandemic phases. To analyse biases,130

we examine disparities in LLM-generated deci-131

sions within each demographic category (e.g., vari-132

ations in vaccine hesitancy across racial or income133

Survey Dataset

Demographics
info

Gender

Race

Income

Etc.

Age
Prompt generator

- General prompt
- Prompt with context

Prompt

Vaccination
decision

LLM models
 Llama 3, Galactica, Gemma 2, Mixtral 

Figure 1: Overview of the experimental setup

groups). Instead of benchmarking these disparities 134

against survey data, we assess internal inconsis- 135

tencies, identifying whether models treat similar 136

demographic profiles differently. 137

This approach assesses LLMs’ reliability in 138

healthcare decisions and highlights potential biases 139

from demographic variations in responses. 140

2.1 Dataset 141

Our study utilises data from the Understanding 142

America Study’s Coronavirus in America sur- 143

vey (Kapteyn et al., 2024), which tracks U.S. at- 144

titudes, health behaviours, and policy responses 145

to COVID-19. We analyse data from the national 146

long-form questionnaire, focusing on survey waves 147

from March 2020 to January 2021. The initial 148

survey (Wave 1) launched on March 10, 2020, fol- 149

lowed by bi-weekly tracking surveys (Waves 2–21) 150

to capture shifting public sentiment. By restricting 151

our analysis to this period, we examine decision- 152

making patterns before and during early vaccine 153

distribution. This dataset helps assess how demo- 154

graphics influenced vaccination intentions and pre- 155

ventive behaviours in the pandemic’s initial stages 156

(see Appendix A.1). 157

2.2 Experimental Design 158

2.2.1 Experimental Setup 159

To investigate whether LLMs can approximate hu- 160

man decision-making in healthcare, we test LLMs 161

on the question: "How likely are you to get vacci- 162

nated for coronavirus once a vaccination is avail- 163

able to the public?". Each model is prompted with 164

demographic attributes (age, gender, income, race, 165

education, and worry level) to simulate individual 166

decision-making. The responses are compared to 167

real-world survey data from the UAS to evaluate 168

alignment and detect biases in predictions. 169

To assess whether LLM-generated decisions re- 170

flect changes in public sentiment, we structure the 171

experiment around four historical pandemic con- 172

texts in 2020: Jan–Mar (early outbreak, economic 173
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uncertainty, healthcare preparations), Apr–Jun174

(lockdowns, financial hardship, overwhelmed hos-175

pitals), Jul–Sep (reopening, second-wave concerns,176

vaccine trials), and Oct–Dec (U.S. election, emer-177

gency vaccine approval, economic relief).178

We assess each LLM to see how contextual vari-179

ations influence decision-making. We also anal-180

yse bias to identify disparities in LLM responses181

regarding vaccine hesitancy and whether demo-182

graphic details mitigate biases. Each model gener-183

ates 11.5k samples covering all demographic pro-184

files through four pandemic phases. To enhance185

robustness and minimise variability, we run each186

sample three times and utilise majority voting for187

the final outcome, ensuring stable predictions. By188

comparing LLM predictions with survey data, we189

assess generative models’ strengths and limitations190

while exploring potential biases that may impact191

their use in policy and healthcare.192

2.2.2 Model Selection and Specifications193

We evaluate four instruction-tuned LLMs with194

diverse architectures to compare their decision-195

making in healthcare contexts: Meta Llama-3-196

8B-Instruct (Dubey et al., 2024), optimized for197

instruction-following with reinforcement learn-198

ing from human feedback (RLHF); Google199

Gemma-2-9B-IT (Team et al., 2024), designed200

for improved generalization and contextual un-201

derstanding; Galactica-6.7B-Evol-Instruct (Taylor202

et al., 2022), fine-tuned for structured instruction-203

following and domain-specific knowledge; and204

Mistralai Mistral-8B-Instruct (Jiang et al., 2023),205

known for balancing efficiency and reasoning per-206

formance.207

These models were selected based on their di-208

verse architectures and training methodologies, al-209

lowing us to examine how different LLM fami-210

lies handle structured prompts and demographic211

attributes when predicting vaccination decisions.212

2.2.3 Evaluation Metrics213

We employ two key metrics, the Disparate Impact214

Ratio and Jensen-Shannon Divergence, to assess215

bias and alignment in LLM-generated decisions.216

Disparate Impact Ratio (DIR) measures dispar-217

ities in decision distributions across demographic218

groups (Feldman et al., 2015). It is defined as:219

DIR = min(Pi)
max(Pi)

, where Pi represents the proba-220

bility of vaccine acceptance for each demographic221

category. When multiple categories exist, we com-222

pute the ratio of the best to worst outcomes to iden-223
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Figure 2: Comparison of survey and LLMs decision
outputs 4 different situations

tify the largest bias. A DIR near 1 suggests fair 224

treatment, while lower values indicate significant 225

disparities. 226

Jensen-Shannon Divergence (JSD) quantifies 227

differences in decision distributions (Lin, 1991) 228

within LLM-generated outputs across demographic 229

groups (e.g., Male vs. Female, White vs. Black 230

vs. Asian). A higher JSD value indicates greater 231

inconsistencies in decision patterns, suggesting po- 232

tential demographic biases in the model’s decision- 233

making. 234

3 Result 235

3.1 Comparison of LLM predictions with 236

UAS survey data 237

Our study examines vaccination intentions using 238

four LLMs, prompting them with pandemic-phase- 239

specific contexts and demographic profiles. The 240

structured prompts cover four COVID-19 phases 241

in the U.S. (Jan–Dec 2020), which allows us to 242

assess how LLMs simulate decision-making trends 243

compared to UAS survey data. 244

In Jan–Mar 2020, early uncertainty led to a 245

moderate hesitancy of (≈25%) in the UAS sur- 246

vey. Llama3 closely matched this, while Mistral 247

and Galactica overestimated hesitancy nearly three- 248

fold. By Apr-Jun 2020, as the lockdowns and 249

economic strain intensified, hesitancy increased 250

slightly. Llama3 remained the closest match, while 251

Gemma2 and Galactica still overestimated hesi- 252

tancy but adjusted slightly. 253

During Jul–Sep 2020, vaccine trials progressed, 254

but concerns over a second wave grew. Hesitancy 255

exceeded 40% in the UAS data. Gemma2 aligned 256

well, while Llama3 underestimated hesitancy, sug- 257

gesting it assumed vaccine acceptance earlier than 258
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observed. Mistral and Galactica continued to over-259

estimate scepticism. In Oct-Dec 2020, as vaccines260

gained emergency approval, hesitancy remained261

just under 40% in the UAS data. Mistral closely262

matched, while Galactica and Gemma2 overesti-263

mated hesitancy and Llama3 again underestimated,264

indicating a bias toward optimism.265

These findings highlight LLM tendencies:266

Llama3 assumes early acceptance, while Mistral267

and Galactica persistently overestimate scepticism,268

even as vaccine availability improves. This sug-269

gests LLMs interpret decision-making differently,270

with some over-representing early fears and others271

assuming a more rational acceptance curve. Un-272

derstanding these biases is essential for evaluating273

LLMs’ reliability in public health modelling.274

3.2 Bias analysis in LLM-generated decisions275

Table 1: Disparate Impact Ratio (DIR) and Jensen-
Shannon Divergence (JSD) across models. Values are
shown as DIR / JSD

Llama3 Gemma2 Mistral Galactica

Feature Set DIR JSD DIR JSD DIR JSD DIR JSD

Gender 0.918 0.004 0.853 0.002 0.933 0.000 0.974 0.0001
Race 0.942 0.001 0.602 0.009 0.864 0.001 0.973 0.0000

Income 0.624 0.019 0.236 0.035 0.404 0.013 0.889 0.0001
Education 0.614 0.066 0.061 0.140 0.349 0.045 0.941 0.0020

Our results reveal significant biases in LLM-276

generated vaccine decisions across income, edu-277

cation, and race, as shown in Table 1. Gemma2278

and Mistral exhibit the most pronounced dispari-279

ties, with low DIR for income (0.236 and 0.404)280

and education (0.061 and 0.349). Their high JSD281

scores indicate substantial deviations from real-282

world trends. Prior studies confirm that income283

and education strongly influence vaccine hesitancy,284

with lower-income and less-educated individuals285

being more reluctant (Aw et al., 2021; Allen et al.,286

2021). Galactica maintains the most balanced pre-287

dictions across demographic groups, while Llama3288

performs moderately well but tends to underesti-289

mate hesitancy.290

To illustrate these disparities, Figure 3 presents291

the racial distribution of "No" decisions across292

models. Gemma2 shows the highest hesitancy293

rate for Black respondents (above 70%), deviat-294

ing significantly from UAS data. Llama3, in con-295

trast, exhibits the lowest hesitancy rates, aligning296

more closely with UAS trends. These findings sug-297

gest that some models may amplify existing biases,298

overestimating vaccine scepticism among certain299
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Figure 3: Racial bias in LLM-generated vaccine deci-
sions

populations. 300

These results highlight the need for bias-aware 301

evaluation in LLM-driven decision modelling, as 302

disparities in model-generated outcomes may rein- 303

force real-world inequities. Future work should 304

explore mitigation strategies, including refining 305

prompts, improving training data representation, 306

and integrating fairness-aware techniques. 307

4 Conclusion 308

This study evaluates how LLMs simulate vaccine 309

decision-making across different phases of the 310

COVID-19 pandemic, examining biases in model- 311

generated responses. Our findings reveal distinct 312

disparities: Llama3 aligns well with early trends 313

but underestimates scepticism in later phases, while 314

Mistral and Galactica consistently overestimate 315

hesitancy. Gemma2 exhibits the most significant 316

demographic disparities, particularly across in- 317

come and education, where lower-income and less- 318

educated groups show higher hesitancy—trends 319

also observed in real-world survey data. By 320

analysing bias through DIR and JSD, we show 321

how LLMs reflect and potentially reinforce de- 322

mographic disparities rather than model decision- 323

making equally. 324

This work contributes by quantifying LLM bi- 325

ases in vaccine decision modelling and demon- 326

strating how disparities vary across demographic 327

groups. Using DIR and JSD, we provide a struc- 328

tured approach to assessing bias in AI-generated 329

decisions. Our findings highlight the importance 330

of evaluating and mitigating demographic biases 331

in LLM-based public health applications. Future 332

work should explore how adjustments in train- 333

ing data, prompt design, and bias-mitigation tech- 334

niques can improve fairness and reliability in be- 335

havioural modelling. 336
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Limitations337

We show that LLM-based simulacra of human in-338

dividuals show the potential to be used as a surro-339

gate model for real surveys on human populations,340

specifically with LLama3 and Galactica capturing341

the effect of gender, racial, income, and education342

in vaccine acceptance surveys quite well. One lim-343

itation of this study is that these LLMs may have344

seen the UAS Survey Data that we used for our345

evaluation. The UAS Data is not publicly avail-346

able and should not have been used for training of347

these LLMs, but it is possible that this dataset may348

have been directly used in training, or that scien-349

tific results summarising the ACS data may have350

been used to expose this data indirectly. Another351

shortcoming of our work is using the UAS data as a352

ground truth to evaluate the bias of models. While353

the UAS household panel is quite large, having354

14,700 respondents in 2024, representing the entire355

United States, even such a large sample is still a356

sample and subject to sampling variance. Addition-357

ally, LLM-generated decisions may amplify biases358

rather than merely reflect them, raising concerns359

about their reliability in behavioural modelling. Fu-360

ture research should explore mitigation strategies361

to reduce bias propagation in AI-driven decision-362

making and assess model robustness across more363

diverse datasets.364
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A Appendix474

A.1 Features in UAS dataset475

The Understanding America Study (UAS) dataset476

features include demographic attributes and be-477

havioural indicators relevant to vaccine decision-478

making. The demographic attributes consist of gen-479

der (Male/Female), age (15–99), and race (White,480

Black, Asian). Socioeconomic factors include481

household income, categorised into eight bins from482

‘Less than $25,000’ to ‘$200,000 and above’, and483

education level, classified as "High school or less",484

"Some college", and "Bachelor or more". Psycho-485

logical factors, such as worry levels over the past486

two weeks, are grouped into four categories: ‘Not487

at all’, ‘Several days’, ‘More than half the days’,488

and ‘Nearly every day’. The survey also includes489

vaccination intent, which is recorded as a binary490

outcome (Yes/No).491

For prompt generation, we selected representa-492

tive values for each attribute: ages (18-99), gen-493

ders (Male, Female), races (White, Black, Asian),494

and income levels spanning eight bins. Education 495

was categorized into three levels, and worry levels 496

followed the original survey classification. These 497

structured inputs allowed us to systematically anal- 498

yse how LLMs simulate vaccine decision-making 499

across different demographic groups. 500

A.2 Prompt template 501

Imagine yourself in the following situation: [SITU 502

PROMPT]. Your background and personal circum- 503

stances are as follows: [You are a AGE-year- 504

old GENDER of RACE ethnicity, living in a di- 505

verse country with varying access to healthcare, 506

differing levels of trust in government and med- 507

ical institutions, and socioeconomic disparities. 508

Your annual income is INCOME. Your educa- 509

tion level is EDU_LEVEL. Over the past two 510

weeks, you have been worrying about your health 511

WORRY_LEVEL]. Please use this persona to an- 512

swer the question below: 513

‘How likely are you to get vaccinated for coron- 514

avirus once a vaccination is available to the pub- 515

lic?’ 516

In this context, please answer based on your 517

persona. Answer: [Yes/ No] Short reason: [FILL 518

IN] based on your persona 519

The [SITU PROMPT] will be replaced by the 520

following contextual prompt from a different pe- 521

riod: 522

January - March 2020: From January to March 523

2020, COVID-19 emerged in the US, leading to 524

the first reported cases and the declaration of a pan- 525

demic by the WHO. The early economic impact in- 526

cluded business closures and rising unemployment 527

while the healthcare system began preparing for 528

an influx of patients. Consider the initial response 529

to the virus, the economic impact, and healthcare 530

system preparations. 531

April - June 2020: During April to June 2020, 532

the US experienced strict lockdown measures, a 533

surge in unemployment, and significant strain on 534

the healthcare system due to COVID-19. Busi- 535

nesses were closed, and many people faced fi- 536

nancial hardships. Healthcare workers were over- 537

whelmed, and there were shortages of essential 538

medical supplies. Considering these challenges 539

and public health measures 540

July - September 2020: From July to Septem- 541

ber 2020, states in the US began to reopen, leading 542

to mixed responses in terms of economic recov- 543

ery and public health. Concerns about a second 544

wave of COVID-19 emerged as cases began to rise 545
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again in some areas. Progress was made in vac-546

cine development, with several candidates entering547

late-stage trials. Include considerations of reopen-548

ing efforts, second-wave concerns, and progress in549

vaccine development.550

October - December 2020: In the period from551

October to December 2020, the US presidential552

election took place, creating significant political553

and social implications. COVID-19 vaccines re-554

ceived emergency use authorization in December,555

leading to the beginning of vaccination campaigns.556

Additional economic relief measures were imple-557

mented to support individuals and businesses af-558

fected by the pandemic.559

A.3 LLMs licensing, Data usage approval and560

Generation parameters561

All LLMs used in this study were accessed through562

Hugging Face, with the necessary licences acquired563

before the experiments. The generation parame-564

ters were configured with a temperature of 0.6 and565

a top-p of 0.9, which allowed for controlled ran-566

domness in responses while maintaining coherence.567

Additionally, approval for using the Understanding568

America Study (UAS) survey data was obtained in569

accordance with its usage policies.570
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