PSBench: a large-scale benchmark for estimating the
accuracy of protein complex structural models

Pawan Neupane* Jian Liu*
University of Missouri - Columbia University of Missouri - Columbia
pngkg@missouri.edu jl4mc@missouri.edu

Jianlin Cheng'
University of Missouri - Columbia
chengji@missouri.edu

Abstract

Predicting protein complex structures is essential for protein function analysis,
protein design, and drug discovery. While Al methods like AlphaFold can pre-
dict accurate structural models for many protein complexes, reliably estimating
the quality of these predicted models (estimation of model accuracy, or EMA)
for model ranking and selection remains a major challenge. A key barrier to
developing effective machine learning-based EMA methods is the lack of large,
diverse, and well-annotated datasets for training and evaluation. To address this
gap, we introduce PSBench, a benchmark suite comprising five large-scale, labeled
datasets, four of which were generated during the 15th and 16th community-wide
Critical Assessment of Protein Structure Prediction (CASP15 and CASP16), and
one curated for new Protein Data Bank (PDB) entries deposited between July 2024
and August 2025. PSBench includes over 1.4 million structural models covering
a wide range of protein sequence lengths, complex stoichiometries, functional
classes, and modeling difficulties. Each model is annotated with multiple com-
plementary quality scores at the global, local, and interface levels. PSBench also
provides multiple evaluation metrics and baseline EMA methods to facilitate rig-
orous comparisons. To demonstrate PSBench’s utility, we trained and evaluated
GATE, a graph transformer-based EMA method, on the CASP15 data. GATE was
blindly tested in CASP16 (2024), where it ranked among the top-performing EMA
methods. These results highlight PSBench as a valuable resource for advancing
EMA research in protein complex modeling. PSBench is publicly available at:
https://github.com/BioinfoMachineLearning/PSBench.

1 Introduction

Proteins are essential biological macromolecules whose diverse functions in living organisms are
dictated by their three-dimensional (3D) structures. Although experimental techniques such as X-ray
crystallography, cryo-electron microscopy (cryo-EM), and nuclear magnetic resonance (NMR) spec-
troscopy can determine protein structures with high accuracy, these approaches are time-consuming
and resource-intensive and can only be applied to a tiny portion (< 0.1%) of proteins.

To overcome these challenges, machine learning methods|1} 2} (3] |4} |5} 16} [7} 8}, 9] for predicting
protein structures from sequences have become essential. Among these, AlphaFold[1} (10l [11] has
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revolutionized the field by achieving experimental accuracy for predicting the tertiary structures
of almost all single-chain proteins (monomers) first and then delivering high-accuracy structure
prediction for a large portion of multi-chain protein complexes (multimers). As monomer structure
prediction is largely considered solved, protein complex structure prediction is currently one major
focus in the field. Despite its success, a critical limitation persists: AlphaFold’s self-estimated model
accuracy (quality) scores (e.g., pIDDT, pTM, ipTM, and confidence scores) are not always reliable
for identifying high-quality predicted complex structures (structural models)[12]. For instance, using
AlphaFold2-Multimer or AlphaFold3 to predict many (e.g., thousands of) structural models for a
protein complex target can substantially increase the likelihood of generating some high-quality
ones[9]], but AlphaFold’s own confidence scores or ranking scores often cannot rank them at the
top when the ratio of high quality models versus low-quality models is low. As a result, selecting
structural models of high quality from a pool of models generated by AlphaFold or other AI methods
is a major challenge in protein complex structure prediction and sometimes even harder for users
than model generation itself[8].

This challenge highlights the importance of Estimation of Model Accuracy (EMA) (also called
model quality assessment), which predicts how closely a predicted structural model resembles the
native (true) structure before the true structure is known. Reliable EMA tools are not only critical
for model selection in the prediction phase, but also vital to prioritize accurate structural models
for downstream applications such as protein function annotations and drug discovery. To stimulate
the development of EMA methods for protein complex structural models, since 2020, CASP has
dedicated one competition category to assess EMA methods[13}/14]. However, EMA methods remain
underdeveloped due to two critical gaps: the lack of large, high-quality, labeled complex model
datasets to train and test machine learning EMA methods (like ImageNet for image processing)
and the lack of user-friendly standardized benchmarks and automated evaluation tools to assess the
performance of EMA methods.

To bridge this gap, we introduce PSBench, a comprehensive benchmark for training and testing EMA
methods to predict the accuracy (quality) of predicted protein complex structural models and compar-
ing them with baseline methods via multiple complementary metrics (Fig. [I). PSBench consists of five
complex structure datasets, including four datasets with more than one million community-predicted
and in-house-predicted structures for protein complex targets of the 2022 CASP15[14. (15} |16]] and
2024 CASP16 competitions[[17], and a newly curated dataset of AlphaFold3-predicted models for
the PDB entries deposited between July 2024 and August 2025. The CASP-related datasets were
generated in the truly blind prediction setting (e.g., true structures were unavailable during prediction).
These structural models were predicted mainly by AlphaFold2-Multimer[10] and AlphaFold3[11]
for 79 diverse, representative protein complex targets with different lengths, difficulties and stoi-
chiometries (count of each unique chain in a protein complex), carefully selected by protein structure
experts[15]]. The newly curated dataset further expands this diversity by adding 400,400 structural
models for 2,002 targets, increasing the total number of complex targets to 2,081. Each model is
rigorously labeled with 10 distinct quality scores spanning global, local and interface accuracy mea-
sures (Fig. [Ta). Importantly, CASP15 models and CASP16 models were generated two years apart
and therefore can provide a rigorous split of data for training and testing EMA methods, preventing
information leakage and mirroring real-world EMA workflows.

To demonstrate PSBench can be used to train advanced EMA methods and rigorously benchmark
them prior to their use, we trained and tested GATE[18]], a graph transformer-based EMA method
on two CASP15 datasets (CASP15_inhouse_dataset and CASP15_community_dataset) respectively
for two purposes: (1) estimating the accuracy of structural models generated by one predictor for
model selection and ranking, a typical setting for structure predictors and users; and (2) estimating
the accuracy of structural models generated by many predictors in a community, which is a typical
setting of CASP EMA competition. We then blindly tested two GATE variants in the blind CASP16
competition held from May to August 2024.

In the official CASP16 EMA competition category, GATE ranked among the best methods out of
38 participating EMA predictors. In the blind ranking and selection of in-house structural models
predicted by our own protein structure system (MULTICOM4) built on top of AlphaFold2-Multimer
and AlphaFold3 during CASP16, GATE also outperformed five standard EMA methods and helped
MULTICOM4 rank among top predictors in protein complex structure prediction in CASP16[9].
The results demonstrate that PSBench is a valuable resource, including labeled datasets, a model
annotation pipeline, baseline EMA methods, and evaluation tools/metrics, for the Al community to



develop and benchmark cutting-edge machine learning methods to estimate protein complex model
accuracy, addressing a significant bottleneck in the field of protein structure prediction.
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Figure 1: Overview of PSBench. (a) Pipeline. The PSBench pipeline for preparing five datasets for
estimating protein complex model accuracy (EMA). The predicted structural models are compared
with native (true) structures to compute global, local, interface quality scores as labels. (b) Methods.
Six representative baseline EMA methods for performance comparison. (¢) Metrics. Four metrics for
evaluating EMA methods: Pearson’s correlation, Spearman’s correlation, ranking loss, and AUROC
(Area Under Receiver Operating Characteristics Curve) for evaluating predicted model quality scores
against true ones (labels). The evaluation tools are included in PSBench.

2 Background and Related Work

The development of EMA methods, either physics-/statistical potential-based methods[19, 20] or
data-driven machine learning methods[21], 22} 23], requires the availability of high-quality datasets
of predicted protein complex structural models with annotated quality scores. Particularly, the
recently emerged, more powerful deep learning-based EMA methods need to be trained and tested on
large, diverse structural model datasets to reliably predict the accuracy (quality) of structural models
sampled from the vast protein structure space.

Early benchmark datasets, such as the Docking Benchmark (BM)[24]], PPI4DOCK][23]], and
DockGround[26], consist of structural models generated by traditional protein docking tools like
SwarmDock[27], ZDock[28]], and pyDock[29]]. However, as docking tools are not accurate and
have been largely replaced by much more accurate AlphaFold, these datasets are not suitable for
training machine learning methods to predict the quality of structural models generated by widely
used AlphaFold. Moreover, these datasets are relatively small. For instance, PPI4DOCK has 54,000
structural models, and CAPRI Score_set[30] comprises 19,013 structural models for 15 targets.
Furthermore, the structural models were mostly predicted for small protein complexes (such as homo-
and hetero-dimers), which cannot represent large protein complexes consisting of many chains and
having more complicated stoichiometries.



Recent efforts have sought to apply state-of-the-art protein complex structure predictors like Al-
phaFold2 and AlphaFold2-Multimer to create benchmark datasets. For instance, Multimer-AF2
Dataset (MAF2)[31]] comprises 9,251 structural models generated by AlphaFold2 and AlphaFold2-
Multimer, while Heterodimer-AF2 Dataset (HAF2)[31] is a collection of 1,849 structural models for
13 heterodimer proteins generated by the same tools. These datasets have enabled the development of
advanced EMA methods such as DProQA[31] and ComplexQA[32]]. However, like the early datasets,
these datasets contain a small number of structural models generated for small to medium protein
complexes (e.g., sequence length less than 1500 residues), and therefore cannot represent the diverse
protein complex structure space well. Moreover, both early and recent benchmark datasets have a
limited set of quality scores assigned to each structural model without capturing different aspects of
model quality. And the structural models in these datasets were generated in a simulated prediction
environment where true structures were known, which is different from the truly blind prediction
setting where structural models are predicted prior to true structures being available.

Finally, the previous benchmarks do not provide automated evaluation tools and baseline methods to
benchmark new EMA methods, which are important for speeding up the development of machine
learning EMA methods. And they do not include tools to automatically annotate and incorporate new
structural models so that they cannot be expanded.

To address the gaps above, we develop PSBench, a large, comprehensive benchmark for developing,
training, and testing EMA methods for protein complex. PSBench makes the following unique
contributions to the field.

* Providing more than 1.4 million complex structural models generated by state-of-the-art
deep learning methods (mostly AlphaFold2-Multimer and AlphaFold3), much larger than
previous datasets.

* Four of the five datasets (about 1 million models) were generated in the real-world blind
prediction setting (CASP15 and CASP16 competitions) without any knowledge of true
structures. In addition, a newly curated dataset of AlphaFold3-predicted models for protein
complexes deposited in the PDB between July 2024 and August 2025 enables continuous
benchmarking with recent structural data.

¢ The structural models were generated for 2,081 diverse protein complex targets including
79 CASP ones carefully selected by protein structure experts, encompassing 185 distinct
stoichiometries, multiple functional classes, varying difficulty levels (easy, medium, and
hard), and a wide range of sequence lengths (12 to 8,460 residues).

* The structural models are assigned 10 complementary quality scores at the local, global, and
interface levels, measuring their accuracy from different perspectives, important for training
and evaluating EMA methods.

* Providing automated evaluation tools for comparing new EMA methods with 6 standard
baseline EMA methods, as well as a model annotation (labeling) pipeline for continuous
expansion of the datasets.

 The utility of PSBench for developing state-of-the-art EMA methods was blindly and
rigorously proved in CASP16.

3 PSBench Design

PSBench encompasses over 1.4 million predicted structural models, distributed across five
datasets: CASP15_inhouse_dataset, CASP15_community_dataset, CASP16_inhouse_dataset,
CASP16_community_datase, and Multimer_7_2024_8_2025_dataset. The first four datasets were
generated for 79 CASP complex targets during the 2022 CASP15 competition and the 2024 CASP16
competition, while the fifth dataset consists of AlphaFold3-generated structural models for 2,002
non-redundant multimeric protein entries deposited in the RCSB PDB between July 2024 and August
2025 (Fig.[Ta).These targets represent 185 distinct stoichiometries (Fig.[STalin Appendix[A.T)) and
more than 145 protein classes (Fig. [STb), providing a broad coverage of protein complexes.

The structural models were compared with the corresponding native (true) structures of the targets
by an automated annotation pipeline in PSBench to assign quality scores to them as labels. The
annotation pipeline pre-processed structural models and true structures so that they could be aligned
and compared by two tools, OpenStructure[33},34}|35] and USalign[36], generating 10 complementary



quality scores measuring model accuracy from three different aspects: global quality, interface quality,
and local quality (see the detailed description of these quality scores in Appendix [A.2). The global
quality scores (variants of tm-score and rmsd) quantify the similarity between the global fold of a
model and that of the true structure. The interface quality scores (ics, ics_precision,ics_recall,
ips, gs_global, gs_best, and dockq_wave) measure the quality of interface regions where two
chains in a protein complex interact. The local quality score (1ddt) measures the accuracy of the
location of each residue with respect to its contacted residues.

The quality scores computed by the annotation pipeline for the models in the
CASP15_community_dataset and CASP16_community_dataset were cross-validated with
the scores compiled from the CASP15 and CASP16 websites to make sure that it worked correctly
(see Appendix [A.3]for preprocessing, implementation details and edge cases). Users can use one
or more quality scores to train and test their EMA methods. Generally, it is recommended at least
one global quality score and one interface quality score be used to benchmark EMA methods. We
also analyzed inter-score relationships and redundancy (Appendix and examined how the
interface contact density relates to interface quality scores (Appendix . A detailed guidance
linking each quality score to relevant structural biology and bioinformatics applications is presented
in Appendix [A.6] The main characteristics of the five datasets are discussed below.

3.1 CASP15_inhouse_dataset
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Figure 2: CASP15_inhouse_dataset. (a) Model count. Number of models per target in the dataset.
(b) Score Distribution. Box plots of each of six representative quality scores of the models for each
target. (¢) Example. Three representative models (worst, average, best) in terms of sum of the six
representative quality scores for a target H1143. Each model with two chains colored in blue and red
is superimposed with the true structure in gray.

The structural models in CASP15_inhouse_dataset were generated by our MULTICOM3[8] system
during the 2022 CASP15 competition. MULTICOM3 generated diverse multiple sequence alignment
(MSA), structural templates and hyperparameters as input for AlphaFold2-Multimer[10] to predict
the structures for 31 CASP15 complex targets and ranked as one of top 10 complex predictors in
CASP15. It generated 97 to 580 structural models per target (see model count per target in Fig. Zh),
resulting in 7,885 models in total included in CASP15_inhouse_dataset.

The 31 CASP15 targets cover a wide range of distinct stoichiometries, sequence lengths, protein
classes (see Table[ST|for details). The distribution of six representative quality scores of the structural
models for the targets are visualized as box plots in Fig. Zp. It can be seen that the targets are of
different difficulty levels. Some easy targets have most models above the threshold of good quality,



some average targets have one portion of models above the good model threshold and another portion
below the bad model threshold, and some difficult targets have most models below the bad model
threshold. Therefore, this dataset is ideal for benchmarking EMA methods’ capability to work for
different kinds of targets and train them to possess the capability. The detailed numbers of good,
acceptable, and bad models are reported in Table[S2} Fig. 2k illustrates three representative models
(worst, average, and best) of a target H1143 and their quality scores.

Because the structural models in CASP15_inhouse_dataset were generated by our own predictor,
in addition to a structural file in the Protein Data Bank (PDB) format, every model has four extra
features, i.e., four estimated quality scores assigned by AlphaFold2-Multimer during the model
generation process, including AlphaFold2-Multimer confidence score (afm_confidence_score),
interface predicted Template Modeling score (iptm), number of inter-chain predicted aligned errors
(<5 A) (num_inter_pae), and predicted multimer DockQ score (mpDockQ) (see Appendix for
details). This is different from CASP15_community_dataset generated by many CASP15 predictors
that did not submit these features. It is worth noting that these estimated model quality scores are
not true quality scores, but can be used as input features to improve the prediction of true quality
scores[18]]. Therefore, CASP15_inhouse_dataset is an excellent resource for training EMA methods
to rank and select structural models generated by AlphaFold-based structure predictors.

3.2 CASP15_community_dataset

The CASP15_community_dataset contains structural models submitted by 87 predictors during
the CASP15 competition, where each predictor submitted at most 5 models for each target. Most
predictors used different variants of AlphaFold2 and AlphaFold2-Multimer to generate models, while
some predictors also used other structure prediction methods such as template-based modeling and
protein language model-based modeling (e.g., ESMFold[37]), resulting in a diverse set of structural
models. It contains 215 to 319 structural models per target and 10,942 models in total for 40 complex
targets (see model count per target in Fig.[S5h and Table [S3).

Unlike CASP15_inhouse_dataset generated in an in-house controlled generation process,
CASP15_community_dataset has more variability in modeling approaches and model quality. As
shown in Fig.[S5p, the quality scores of the models for many targets spread in a wider range, making
the dataset particularly valuable for training and benchmark EMA methods for estimating the accuracy
of the models generated by a diverse set of predictors with different performance. Fig. [S5 illustrates
three representative models for a target. Table [S4|reports the number of bad, acceptable and good
models for each target. Some targets such as T11600 have only one or a few good models, making
them challenging targets for EMA methods to pick good ones.

3.3 CASP16_inhouse_dataset

The structural models in CASP16_inhouse_dataset were generated by our MULTICOM4 system[9]
built on top of both AlphaFold2-Multimer and AlphaFold3[11] during 2024 CASP16 competition.
MULTICOM4 ranked no. 1 in the Phase O competition of CASP16 in which the stoichiometry of
each target was not provided and needed to be predicted and among top 5 in the Phase 1 competition
in which the stoichiometry was provided. MULTICOM4 generated 712 to 78,410 structural models
for each target (see model count per target in Fig. [S6p), resulting in 1,009,050 models for 36 complex
targets. The stoichiometry, total number of models, number of AlphaFold3 models, sequence length,
and protein class for each target are reported in Table [S5] The CASP16 targets represent a broad
range of stoichiometries, protein classes, and sequence lengths.

Fig.[S6b illustrates the distribution of the six representative quality scores of the models across targets.
In contrast to CASP15_inhouse_dataset, CASP16_inhouse_dataset exhibits greater variability in
model quality, due to a much larger number of models per target and the use of both AlphaFold2-
Multimer and AlphaFold3. Table [S6]reports the number of good, acceptable, and bad models for
each target. Some targets have many good models, while other have very few, representing different
levels of difficulty. As an example, the worst, average, and best models of target T12350 are shown

in Fig.[S6L.
Same as CASP15_inhouse_dataset, each model in CASP16_inhouse_dataset also includes four

AlphaFold2-Multimer-like self-estimated quality features. Additionally, AlphaFold3-based models
have one more feature, af3_ranking_score. These scores can be used as input features for EMA



methods to predict the quality of the models. Due to these additional features and a very large
number of structural models for a diverse set of protein complex targets, CASP16_inhouse_dataset is
a large, valuable resource to train and benchmark EMA to estimate the accuracy of structural models
predicted by both AlphaFold2-Multimer and AlphaFold3. Particularly, to our knowledge, it contains
the largest number of labeled protein complex structural models generated by AlphaFold3 to date.

3.4 CASP16_community_dataset

CASP16_community_dataset comprises 12,904 models for 39 complex targets (166 to 377 models
per target) generated by 82 predictors during the CASP16 competition. Most of the predictors used
AlphaFold2-Multimer and/or AlphaFold3 to generate structural models, even though some predictors
used additional prediction techniques. The per-target model counts, distribution of quality scores and
three model examples are illustrated in Fig.[S9] The stoichiometry, protein class, sequence length,
and number of good/acceptable/bad models of each target are reported in Tables|S7|and

Like CASP15_community_dataset, the models in CASP16_community_dataset originated from a
large number of diverse predictors and therefore have a wide range of quality scores (Fig. [S9p).
The dataset is ideal for training and benchmarking EMA methods for predicting the quality of
structural models generated by various modern deep learning-based protein structure prediction
methods including, but not limited to AlphaFold2-Multimer and AlphaFold3.

3.5 Multimer_7_2024_8_2025_dataset

Multimer_7_2024_8_2025_dataset expands the CASP datasets by including 400,400 AlphaFold3-
predicted models (200 per target) for 2,002 non-redundant multimeric protein entries deposited in
the RCSB PDB between July 2024 and August 2025. Initially, 3,379 targets were collected from the
PDB and subjected to redundancy reduction by grouping entries that contain the same number of
protein chains with identical sequences but differ in ligands or nucleic acids, followed by selection
of representative targets (i.e. the target in each group that appeared first in the PDB). This process
yielded 2,216 unique entries for AlphaFold3 prediction, of which 214 could not be processed due
to GPU memory constraints arising from large residue count. It is worth noting that the PDB is
continuously updated, and the exact number of available entries within a deposition window may
vary over time.

This dataset represents the most diverse collection in PSBench, encompassing 179 distinct stoi-
chiometries and 143 distinct protein classes. The lengths of the targets range from 12 to 4,591
residues (see Fig.[ST0). The distribution of average structural quality scores across all targets in the
Multimer_7_2024_8_2025_dataset is shown in Fig.[STI]

Similar to the in-house datasets, each model in Multimer_7_2024_8_2025_dataset contains
AlphaFold-derived self-estimated features, including afm_confidence_score ( Fig. [ST2),
af3_ranking_score (Fig. [SI3), iptm, num_inter_pae, and mpDockQ. These features can be
used as input for EMA methods to predict structural accuracy.

4 Evaluation Framework

4.1 Evaluating the Utility of PSBench for Training and Testing EMA Methods

To assess if PSBench could support the development of machine learning EMA methods, we trained
and validated a graph transformer EMA method (GATE[18]]) on CASP15_inhouse_dataset and
CASP15_community_dataset separately to obtain two EMA predictors, i.e., (1) one (referred to as
GATE-AFM) for predicting the quality scores of structural models generated by AlphaFold and (2)
another (referred to as GATE) for predicting the quality scores of structural models generated by
many predictors participating in CASP. The two predictors were blindly tested during the CASP16
competition from May to August 2024 as follows.

First, GATE-AFM was used to predict the quality of the in-house structural models generated by
MULTICOM4 and select top ones to submit to CASP16 for complex structure prediction competition.
To benchmark how GATE performed, five standard EMA methods with source codes available
were blindly run in parallel during CASP16, which included DProQA[31], VoroIF-GNN scores[38]],
GCPNet-EMA[39]], PSS[40] and AlphaFold2-Multimer confidence scores (AFM Confidence) (Fig.



[ID) (see Appendix [B.T]for details). The model quality scores predicted by GATE-AFM and the
five methods were compared with the true quality scores available only after CASP16 concluded
in December 2024 (see the results in Section[5.1)). The six methods are included in PSBench for
comparison with future EMA methods.

Second, GATE directly participated in the EMA competition category of CASP16 to evaluate the
complex structural models generated by CASP16 complex structure predictors. GATE was assessed
along with 37 EMA predictors participated in the CASP16 EMA competition by CASP16 organizers
and assessors (see the results in Section[5.2)). This assessment is highly rigorous and objective because
GATE was evaluated with the best EMA predictors in the field by external experts.

4.2 Protocols of Training and Validating GATE-AFM and GATE on CASP15 Datasets

GATE-AFM and GATE use the same graph transformer architecture to predict the global quality
scores of structural models. It takes as input a graph of a set of structural models of a target, in which
a node denotes a model and an edge connects two similar models, to predict the quality score (e.g.,
TM-score) of each model. The common features for each node shared by both GATE-AFM and
GATE are the estimated model quality scores assigned by several EMA methods. The only difference
between GATE-AFM and GATE is that the former uses four additional AlphaFold2-Multimer features
(confidence scores, ipTM, number of inter-chain predicted aligned errors and mpDockQ) that are only
available in CASP15_inhouse_dataset but not in CASP15_community_dataset. GATE-AFM and
GATE use the same set of edge features, including structural similarity scores between two connected
nodes.

GATE was trained and validated on the CASP15_community_dataset via 10-fold cross-validation,
which comprises 10,935 models of 40 complex targets, plus 187 models from another target (i.e.,
T11150) whose native structure is not publicly available. For this target, we obtained its quality scores
from the CASP15’s website as labels. For each target, a pairwise similarity graph was constructed for
all the models of each target first. 2000 subgraphs containing up to 50 nodes were then sampled from
the full graph of each target to train and validate GATE. GATE-AFM was trained and validated on
the CASP15_inhouse_dataset in the similar way. To reduce computational costs, only a subset of
CASP15_inhouse_dataset was used to train GATE-AFM (see Appendix[A.T3). The details of training
and validation are provided in the Appendix and a discussion of computational requirements is
included in Appendix [B.3]

4.3 Evaluation Metrics

PSBench provides four complementary metrics (Fig. to evaluate the performance of EMA
methods. Pearson’s correlation coefficient measures the linear correlation between predicted quality
scores from an EMA method and ground-truth quality scores. Spearman’s correlation coefficient
evaluates rank-order consistency between predicted scores and ground-truth scores. Ranking loss
directly assesses model selection capability by computing the difference between the ground-truth
quality score of the truly best model (highest ground-truth score) and the ground truth score of the
no.1 model selected by an EMA method, where lower loss values correspond to better selection and
0 means a prefect selection. Area Under the Receiver Operating Characteristic Curve (AUROC)
quantifies binary classification performance by labeling models as high-quality (above the 75%
percentile of ground-truth scores) or low-quality otherwise. An AUROC of 1.0 indicates perfect
classification, while 0.5 corresponds to random guessing. Each metrics is usually calculated for
the models of each protein target first and then is averaged over all the targets in a dataset as the
performance score for an EMA method. The scripts that can automatically calculate these scoring
metrics for EMA methods are included in PSBench.

5 Results

5.1 Blind Prediction Results of Estimating the Accuracy of CASP16 In-house Models

During CASP16 competition, GATE-AFM pretrained on a subset of CASP15_inhouse_dataset, was
blindly applied to our in-house models generated by MULTICOMA4. Due to the three-day prediction
time constraint, we used it to predict the quality of only hundreds of top-ranked models for each target
(i.e., the collection of top 5 models generated by each of dozens of predictors based on AlphaFold2-



Multimer and AlphaFold3 in MULTICOM4). Four targets (T1249v1o and T1249v20, T1294v1o and
T1294v20) that have the same sequence but different conformations are excluded. The performance
of GATE and the other EMA methods on the top models for the remaining 32 targets (referred to as
CASP16_inhouse_TOPS5_dataset, a subset of CASP16_inhouse_dataset) was compared in Table E}

Table 1: Performance of EMA methods in estimating the accuracy of the CASP16 in-house models.
Metrics include Pearson’s correlation (Corr?), Spearman’s correlation (Corr®), ranking loss, and
AUROC, reported separately for TM-score and DockQ_wave. Bold font and underline denote the
best and second best results respectively. Significant difference (p < 0.05) between GATE-AFM and
other methods based on the one-sided Wilcoxon signed-rank test is marked with *.

TM-score DockQ_wave
Method
Cor® 1+ Corr®1 Loss| AUROCYT Corr®t Corr®1 Loss] AUROC 1

GATE-AFM 0.372 0.283 0.102  0.658 0.431 0.322 0.138  0.662
AFM Confidence 0.259*%  0.143*  0.106  0.597* 0.252*  0.114*  0.151 0.593*
PSS 0.394 0.261 0.114  0.647 0.369 0.284 0.154  0.645
GCPNet-EMA 0.360 0.249 0.135  0.643 0.355 0.264 0.169  0.648
VoroMQA-dark 0.039*%  0.144 0.129  0.609 -0.013* 0.146* 0.163  0.622
VorolF-GNN-pCAD-score  0.073*  0.105*  0.167* 0.589* 0.074*  0.137*  0.204  0.615
VorolF-GNN-score 0.065*  0.116*%  0.193* 0.599* 0.114*  0.170*  0.207* 0.622
DProQA -0.051* 0.011*  0.194* 0.569* 0.032*  0.071*%  0.223* 0.587*

GATE-AFM outperformed the other methods according to almost all evaluation metrics. In terms of
a global quality score - TM-score, GATE-AFM achieved the highest Spearman’s correlation (0.283),
the lowest ranking loss (0.102), the best AUROC (0.658), and second highest Pearson’s correlation
(0.372), indicating superior ranking consistency and classification reliability. In terms of an interface
quality score - DockQ_wave, GATE-AFM again outperformed all other methods, attaining the highest
Pearson’s correlation (0.431), the highest Spearman’s correlation (0.322), the lowest ranking loss
(0.138), and the highest AUROC (0.662). It performed better than AFM Confidence (the default
self-estimated quality score of AlphaFold2-Multimer) in terms of all the metrics, demonstrating
its significant value of estimating the quality of AlphaFold-generated structural models. In many
cases, the improvement of GATE-AFM over the other methods is significant (see the cases marked
with * in Table EI) Additional AUROC analyses with fixed thresholds (e.g., TM-score > 0.5,
DockQ_Wave > 0.49) are provided in Appendix[B.4] To complement these aggregate results, we also
examined some failed cases with large prediction errors, which revealed two distinct failure modes
(Appendix [B.3). GATE-AFM’s strong capability of selecting good models was one important reason
that our MULTICOM4 predictors ranked among top predictors in the CASP16 complex structure
prediction category[9]]. These results show that PSBench can be used to develop state-of-the-art EMA
methods.

5.2 Blind Prediction Results in CASP16 EMA Competition

GATE, pretrained on CASP15_community_dataset, participated in 2024 CASP16 EMA competition
under the predictor name: MULTICOM_GATE. We downloaded the EMA prediction results of
MULTICOM_GATE and other 37 CASP16 EMA predictors from the CASP16 website. Two very
large targets (H1217 and H1227) were excluded because GATE did not generate predictions for
their models due to time constraints during CASP16, resulting in using 37 out of 39 targets in
CASP16_community_dataset for evaluation.

The blind prediction results of top 20 out of 38 CASP16 EMA predictors were shown in Fig. [3]
In terms of TM-score, MULTICOM_GATE was ranked first according to Pearson’s correlation
(0.673), third according to Spearmans’ correlation (0.456), ranking loss (0.135) and AUROC (0.652)
respectively. Moreover, we assessed the performance of the 38 EMA predictors using a Z-score—based
ranking, where MULTICOM_GATE ranked third (see detailed results in Appendix [B.6). The
outstanding performance of MULTICOM_GATE in CASP16 EMA competition[41] highlights
PSBench’s unique value: its high-quality training and test datasets and rigorous evaluation protocols
provide a strong framework to develop and validate state-of-the-art machine learning methods.

6 Conclusion, Limitations and Future Work
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tween July 2024 and August and third in terms of the four metrics respectively.
2025. We will continue to ex-

tend PSBench by incorporating structural models for more targets (e.g., the targets of the upcoming
2026 CASP17 competition and newly released protein complex structures in the PDB). Most models
in PSBench were generated by AlphaFold, reflecting its current dominance but also introducing
potential method-specific bias (see Appendix [A.T4]for detailed analysis). As new structure prediction
methods emerge, we will incorporate their models into PSBench to further expand the diversity of
prediction approaches represented in PSBench. We have also provided the model annotation pipeline
in PSBench for third-party users to automatically label structural models generated in their research.
New quality metrics that emerge in the field will be incorporated into PSBench to ensure the bench-
mark remains comprehensive and up to date. In addition, we benchmarked the runtime and memory
usage of the baseline EMA methods (see Appendix [B.7), which highlights the trade-off between
the higher accuracy of multi-model EMA approaches such as GATE and the greater efficiency of
lightweight single-model EMA methods. Finally, we provide a web server to accept structural models
contributed by third-parties and will acknowledge their contribution in the future release of PSBench.
Our goal is to make PSBench a community-driven resource like ImageNet or MNIST to support Al
researchers to solve the critical protein model accuracy estimation problem.

7 Data and Software Availability

Data Availability

The PSBench datasets are publicly available at Harvard Dataverse: https://dataverse.harvard|
edu/dataset.xhtml?persistentId=doi:10.7910/DVN/75SZ1U. DOI: https://doi.org/
10.7910/DVN/75SZ1U .

Software Availability

The programs to evaluate EMA methods on the benchmark datasets, to generate labels for new
datasets, and a web server for third-party model upload are available at GitHub: https://github.
com/BioinfoMachineLearning/PSBench. The requirements to run PSBench are described in

Appendix [C]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s scope and contri-
butions. They clearly motivate the need for robust Estimation of Model Accuracy (EMA)
methods in protein complex structure prediction and identify the lack of large, diverse,
and well-annotated datasets as a key barrier to develop them. The main claims include the
introduction of PSBench, a benchmark suite comprising five large-scale datasets: four gen-
erated during CASP15 and CASP16, and one newly curated for new PDB entries deposited
between July 2024 and August 2025. PSBench also provides extensive model quality annota-
tions, standardized evaluation metrics, baseline EMA methods, and an automated evaluation
pipeline. These claims are supported by the content of the paper and are appropriately
scoped.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation regarding the potential bias in the protein structure prediction
methods used to generate the datasets is discussed in Section[6] There is a future plan to ad-
dress the limitation by incorporating structural models generated by new structure prediction
methods. In addition, PSBench provides a web interface that allows third parties to con-
tribute their own models to PSBench, ensuring that the benchmark remains comprehensive,
diverse, and up to date.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We only include practical/experimental results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details necessary to reproduce the main
experimental results. This includes detailed procedures for generating model quality
scores using the annotation pipeline described in Appendix [A.3| (Preprocessing, Imple-
mentation Details, and Edge Cases of the Annotation Pipeline), as well as descriptions
of the experimental setup, training and validation protocols, evaluation metrics, and
baseline EMA methods presented in Sections [ 5l and Appendix [B] The datasets are
hosted on Harvard Dataverse (https://doi.org/10.7910/DVN/755Z1U) and the source
codes of the structural model quality annotations and evaluation are available on GitHub
(https://github.com/BioinfoMachineLearning/PSBench), as noted in Section
Detailed reproduction instructions are provided in the GitHub repository under the sec-
tion I1I. Reproducing the evaluation results of GATE and other baseline EMA methods in
PSBench, ensuring that other researchers can replicate and verify the findings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed

instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The open source data are released at Harvard Dataverse with DOI: https:
//doi.org/10.7910/DVN/75SZ1U and the source code is available on GitHub: https://
github.com/BioinfoMachineLearning/PSBench, as described in Section[7} Detailed
instructions for reproducing the EMA evaluation results using PSBench in Section [5] are
provided in the GitHub repository under the section /1. Reproducing the evaluation results
of GATE and other baseline EMA methods in PSBench.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: We provide the training, validation and test details of GATE/GATE-AFM in
Section[4.2]and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have performed statistical significance test between GATE-AFM and other
EMA methods for the results shown in Table[T} as described in Section[5.1] Statistically
significant differences were determined using the one-sided Wilcoxon signed-rank test and
are annotated in the table with appropriate symbols.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This paper presents the system requirements in Appendix [C]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted fully complies with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential societal impacts. On the positive side, PSBench
enables the development of more accurate and reliable EMA methods, which can improve
downstream applications in protein function annotation, drug discovery, and disease under-
standing. These advances could accelerate biomedical research and therapeutic development.
No negative impact is noticed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All tools and external datasets used in this work have been appropriately
cited in the paper and acknowledged within the GitHub repository. The source code is
released under the MIT License, and the dataset is made available on Harvard Dataverse
under the CCO 1.0 Public Domain Dedication, permitting unrestricted use, distribution, and
reproduction in any medium without limitation.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces datasets and tools, which are thoroughly documented
in the paper, the GitHub repository, and the Harvard Dataverse. Documentation includes
dataset descriptions, usage instructions, licensing information, and relevant limitations. No
human subjects were involved, so consent was not required.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is not directly involved as any important, original, or non-standard
component in this study.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Design

A.1 Diversity of Protein Complex Targets in PSBench
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Figure S1: Diversity of 2081 protein complex targets. (a) Number of targets for each of top-30
stoichiometries (out of 185) represented in PSBench. A stoichiometry is denoted by letters interleaved
with numbers. Each letter represents a unique chain. The number following a letter is the number of
the copies (count) of the chain. For instance, A1B2 means a complex has two unique chains A and B,
while A has one copy and B has two copies. (b) Number of targets for each of top-30 broad protein
function classes (out of 145) and an "Unknown" class in PSBench. "Unknown" means there is no
class information and therefore may include many different classes.

A.2 Definitions of Quality Scores

PSBench provides a comprehensive list of quality scores for each protein complex structural model
as labels, which are described below.

Global quality scores

* tmscore : The Template Modeling score (TM-score) measures structural similarity between
a predicted structure and a reference structure, with higher values (above 0.8) indicat-
ing strong agreement. In our evaluation, four variants of the TM-score are used: (1)
tmscore_mmalign, computed using OpenStructure with the USalign plugin and parame-
ters -mm 1 -ter O, following the CASP16 evaluation protocol; (2) tmscore_usalign,
calculated with the USalign program using parameters -ter 1 -TMscore 6, aligning with
the CASP15 evaluation protocol; (3) tmscore_usalign_aligned, which further incorpo-
rates residue-residue correspondence via an in-house alignment and filtration script before
applying USalign with the same parameters; and (4) tmscore_usalign_aligned_vO, an
earlier version based on a prior alignment script, used for generating GATE EMA train-
ing labels and available only for the CASP15_inhouse_dataset. Despite slight procedural
differences, all variants apply a consistent threshold interpretation for assessing structural
similarity.

* rmsd : The Root Mean Square Deviation (rmsd) measures the average distance between
corresponding atoms in the model and target structures. It quantifies how much the predicted
model deviates from the native structure, with lower values indicating a more accurate
structure.

Local quality score
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* lddt : The measures the agreement between inter-atomic distances in the model and the
target structure. It evaluates how accurately the overall atomic arrangement is reproduced,
focusing on all residues from all chains.

Interface quality scores

* ics : The Interface Contact Score(ics) measures how accurately predicted residue contacts
between protein chains match the true contacts in the target structure. It is a weighted
average of F1-scores for each chain-chain interface, where interfaces with more true contacts
contribute more to the overall score.

* ics_precision : The Interface Contact Precision(ics_precision) measures how many
predicted residue contacts are correct, focusing on prediction accuracy rather than coverage.
It is a weighted average of precision for each chain-chain interface, with larger interfaces
(more true contacts) contributing more to the final score.

¢ ics_recall : The Interface Contact Recall(ics_recall)measures how many true residue
contacts are correctly predicted, focusing on coverage. It is a weighted average of recall for
each chain-chain interface, with larger interfaces (more true contacts) contributing more to
the final score.

¢ ips : The Interface Patch Similarity(ips) measures the similarity between predicted and
true interface residue contacts using the Jaccard coefficient. It is a weighted average of
the Jaccard index for each chain-chain interface, with larger interfaces (more true contacts)
contributing more to the final score.

* gs_global : The QS (global) score(qs_global) measures the fraction of correctly predicted
interface contacts relative to the total number of true or predicted contacts, whichever is
larger. It reflects the overall accuracy of contact prediction across the entire protein complex.

» gs_best : The QS (best) score(qs_best) measures the highest fraction of correctly predicted
interface contacts for any single chain-chain interface in the complex. It highlights the
best-performing interface prediction within the entire structure.

* dockq_wave : The DockQ_wave(dockq_wave) measures the weighted average of DockQ
scores across all chain-chain interfaces in the complex. It provides an overall measure of
interface prediction quality, combining precision, recall, and Fnat into a single score.

A.3 Preprocessing, Implementation Details, and Edge Cases of the Annotation Pipeline

To enable fair and reproducible benchmarking of EMA methods, PSBench employs an automated
annotation pipeline to compute quality scores for structural models using their corresponding native
structures as references. This pipeline ensures that models from diverse sources are consistently
aligned, compared, and labeled with multiple complementary accuracy measures.

Preprocessing. All native PDB structures were reindexed to match the full-length protein sequences.
Non-protein components (e.g., ligands and metal ions) were excluded. If there are insertion codes
(e.g., 85A, 86B) in the residue indices of the native structure, they are replaced with indices that
correspond to the residue positions in the FASTA sequence. All subsequent residues are renumbered
to ensure continuous, monotonic indexing without gaps or duplicates.

Alignment and quality score computation. After preprocessing, the pipeline aligns predicted and
native structures based on sequence identity and computes scores such as RMSD and IDDT without re-
quiring additional preprocessing. During alignment/evaluation, residues that are missing in the native
PDB structure are automatically excluded by OpenStructure, so scoring is restricted to experimentally
resolved regions. For TM-score, two routes were used: (i) tmscore_mmalign, via OpenStructure’s
embedded MM-align interface with CASP16-style parameters; and (ii) tmscore_usalign, via the
standalone US-align program with CASP15-style parameters. For tmscore_usalign_aligned, we
additionally applied a residue reindexing/filtration step to enforce residue-residue correspondence
before running US-align; no such preprocessing was applied to tmscore_usalign. TM-score was
interpreted following standard practice.

Edge cases. Despite the robustness of the pipeline, a small fraction of structural models from
the CASP community datasets failed annotation due to format inconsistencies or violations of
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OpenStructure’s assumptions. For example, non-monotonic residue numbering (e.g., H1272TS191_1
from the CASP16_community_dataset) caused alignment failures, while malformed PDB files
with duplicate atom labels (e.g., H1114TS229_1 from the CASP15_community_dataset) triggered
parsing errors. When the number of valid residues in a chain is less than six, OpenStructure refuses
to include such chains in chain mapping and evaluation.

Fallbacks and exclusions. When OpenStructure failed but US-align succeeded, we re-
tained the model and reported the TM-score from US-align. For example, in the
Multimer_7_2024_8_2025_dataset, OpenStructure fails for three targets (9DYY, 9KAP, and
907J) because all chains contain fewer than six valid residues. For these cases, only TM-scores
computed using US-align are included. Models that failed under both frameworks were excluded.
For our datasets, such failures were extremely rare, affecting fewer than 0.002% out of more than 1.4
million models.

Finally, it is worth noting that the native structures used as ground truth in PSBench, although
experimentally determined, are not error-free. Some structures solved by X-ray crystallography,
cryo-EM, or NMR may have some problems such as highly flexible regions, crystal artifacts, or
low-resolution density. To mitigate these effects, PSBench limits the evaluation to resolved regions
and incorporates local metrics (e.g., IDDT) that are less sensitive to global alignment noise. Users
should therefore interpret benchmark results as reflecting both prediction accuracy and the inherent
uncertainty of the experimental references.

A.4 Metric Redundancy Analysis

PSBench provides ten complementary quality metrics that capture different aspects of model accuracy,
including global fold, residue-level details, and interfacial quality. While this diversity allows for
more comprehensive evaluation, some metrics may be redundant due to overlapping definitions. To
better understand their relationships, we analyzed metric redundancy across all five datasets.

The pairwise Pearson’s correlation analysis (Figure [S2a)) indicates moderate to strong dependencies
among several metrics. Among the interface contact—based measures, ics and ics_precision
were strongly correlated (r = 0.88), and ics also showed substantial association with ics_recall
(r = 0.74), indicating that these metrics capture overlapping aspects of interface accuracy. Simi-
larly, gs_best and gqs_global were closely related (r = 0.76), consistent with their shared focus
on interface quality. dockq_wave, which integrates multiple interface-level components such as
interface contact accuracy and interface RMSD into a single continuous score, showed moderate
correlations with both interface-based metrics (ics: r = 0.64; ics_recall: r = (0.72) and global
fold metrics (tmscore_mmalign: r = 0.55). This indicates that dockq_wave captures aspects of
both local interface geometry and overall model correctness. In contrast, metrics that assess overall
or local residue-level accuracy showed weaker correlations with interface-based measures. For
example, 1ddt exhibited only moderate correlations with global and interface metrics (r = 0.56 with
dockq_wave; r = 0.47 with tmscore_mmalign), reflecting its distinct sensitivity to local residue
details. tmscore_mmalign and rmsd also showed moderate inter-metric correlations (r ~ 0.3-0.7),
suggesting complementary perspectives on overall structural similarity.

Principal Component Analysis (PCA) provided further insights into metric relationships as shown in
Figure[S2b] PC1 exhibited similar negative loadings across nearly all metrics (approximately —0.3),
except for rmsd, which showed an opposite loading (0.20). This pattern indicates that PC1 captures
a general dimension of overall model quality, where improvements in most metrics correspond to
lower RMSD values. PC2 was primarily driven by rmsd (loading = 0.75), while PC3 was dominated
by 1ddt (loading = 0.91). PC4 showed strong contributions from tmscore_mmalign (loading =
0.67) and rmsd (loading = 0.43). PC5 was characterized by ips (loading = 0.64) and dockq_wave
(loading = -0.57). The variance information (Fig. shows that PC1 captures the vast majority of
variance, with subsequent components contributing progressively less.

To account for redundancy when combining metrics during training, we propose a correlation-based
weighting scheme. Each metric is weighted inversely to its average Pearson’s correlation with the

other metrics, i.e.,
1

wi = -
1 R
N-1 Zj;ﬁi T'ij
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where r;; is the correlation between metrics 4 and j, and N is the total number of metrics. This
down-weights highly redundant metrics (e.g., ics, ics_precision, ics_recall) while giving
more influence to complementary metrics such as 1ddt and ips.

The resulting weights can be applied in a weighted loss function to train EMA methods:

N
L(m) = Z w; £(gs(m), ys(m)),
i—1

where £(-) is the loss (e.g., mean squared error) between the predicted score ;(m) and the reference
score y; (m) for metric i.

In practice, this means that highly correlated interface metrics contribute less to the final loss, while
distinct signals such as those from 1ddt or rmsd are emphasized. This weighting ensures that training
focuses on complementary information rather than duplicating signal from redundant metrics.
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Figure S2: Relationships among quality scores. (a) Quality scores correlation. Pairwise correla-
tion between different quality scores. (b) Quality score loadings. Loadings of each quality score on
the first five principal components. (c¢) Variance explained. Variance explained by each principal
component.
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A.5 Relationship between interface contact density and interface quality scores

To assess how protein—protein interface contact density influences the stability of interface quality
scores, we computed the variance of ICS, IPS, and QS_Best across the CASP15 and CASP16
community models for each target and examined their correlation with the native interface contact
density. These datasets were selected because they consist of models from diverse sources for
each target, reflecting the inherent variability in predicting structural models for a protein complex.
Interface contact density was calculated as the ratio of residue-residue contacts to buried surface area
(BSA). Residue pairs were considered in contact if any atoms were within 5.0 A. BSA was computed
using FreeSASA[42] with standard parameters as BSA(A,B) = SASA(chain A) + SASA(chain B) —
SASA(A-B complex) for each chain pair, where SASA(chain) denotes the solvent-accessible surface
area of the isolated chain, and SASA(A-B complex) represents that of the assembled complex. This
difference quantifies the surface area that becomes inaccessible to solvent upon binding, corresponding
to the interface area buried between the two chains. The mean contact density across all chain pairs is
then used to compute the correlation with the variance of interface scores.
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Figure S3: Variance of interface quality scores (ICS, IPS, QS_best) plotted against protein interface
contact density. Weak negative correlations are observed for all three metrics ( r=-0.125 for ICS,
r=-0.126 for IPS, and r=-0.115 for QS_best), indicating little influence of contact density on score
variability.

The relationship between interface contact density and the variance in interface quality scores was
examined (Fig. |S_3'|) All three metrics—ICS, IPS, and QS_Best—showed weak negative correlations
with contact density, with correlation coefficients of r = —0.125 for ICS, r = —0.126 for IPS, and
r = —0.115 for QS_Best. The results indicate a weak inverse relationship between interface contact
density and interface score variability, suggesting that while contact density does have some influence
on the variability of these interface quality scores, its effect is relatively modest.

A.6 Guidance on Applications of Quality Scores
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Global quality scores. TM-score variants (tmscore) are ideal for evaluating global fold accuracy
in tasks such as structure-based function annotation and complex template retrieval, as they capture
overall topology and are widely used in fold recognition benchmarks. RMSD is appropriate for
atomic-level accuracy in applications such as structural refinement or drug binding site validation,
where small positional deviations can impact function.

Local quality scores. Local Distance Difference Test (1ddt) evaluates the accuracy of individual
residue positions relative to their local environment, making it useful for residue-level analyses such
as identifying flexible regions, validating side-chain placements, or assessing the accuracy of binding
pocket geometry.

Interface quality scores. For interface-focused tasks such as docking, binder design, and epitope
mapping, DockQ_Wave (dockq_wave) and Interface Patch Similarity (ips) provide comprehensive
assessments of contact and interface quality. Interface Contact Precision (ics_precision) and
Interface Contact Recall (ics_recall) evaluate the specificity and coverage of predicted contacts.
The QS (global) score (qs_global) measures overall interface accuracy, while the QS (best) score
(gqs_best) highlights the highest-quality interface, which is particularly useful in asymmetric or
functionally focused assemblies.

A.7 Additional Input Features for Structural Models in CASP15_inhouse_dataset and
CASP16_inhouse_dataset

Each structural model in the four datasets in PSBench is stored as a PDB file, which contains
the (x, y, z) coordinates of every atom in the model. In addition, the two in-house datasets
(CASP15_inhouse_dataset and CASP16_inhouse_dataset) and their subsets include the following
extra features for each structural model, which can be leveraged by EMA methods.

* model_type : The type determines whether the model is generated using AlphaFold2 or
AlphaFold3. AlphaFold3-based models are only available for CASP16_inhouse_dataset and
its subset.

» afm_confidence_score : The  AlphaFold2-Multimer  Confidence  score
(afm_confidence_score) determines the confidence score in multimeric protein
structures primarily assessed using ipTM and pTM score. For AlphaFold2 program,
the AFM confidence score is available upon the completition of the prediction, but for
AlphaFold3-based models, since the AFM confidence score is not readily available, it is
obtained by the calculation 0.8 x iptm + 0.2 X ptm.

» af3_ranking_score : The AlphaFold3 Ranking score (af3_ranking_score) determines
the ranking score as provided by AlphaFold3 program. It is only available for AlphaFold3
generated models in CASP16_inhouse_dataset.

* iptm : The Interface Predicted Template Modeling score(ipTM) evaluates the accuracy of the
predicted relative positioning of subunits within a protein-protein complex. Scores above 0.8
indicate confident, high-quality predictions, while scores below 0.6 typically reflect failed
predictions. Values between 0.6 and 0.8 fall into an intermediate range, where prediction
quality is uncertain and may vary.

* num_inter_pae : Number of inter-chain predicted aligned errors (<5 A).

* mpDockQ[43]/pDockQ[44] : Multiple-interface predicted DockQ for multimer, or pre-
dicted DockQ (pDockQ) for dimer.
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A.8 CASP15_inhouse_dataset
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Figure S4: Distribution of AFM confidence scores per target in CASP15_inhouse_dataset.

Table S1: Summary of target information and number of models per target in
CASP15_inhouse_dataset. It is worth noting that nine CASP15 targets (H1111, H1114, H1135,
H1137, H1171, H1172, H1185, T11760 and T11920) were excluded because they required alternative
structure prediction approaches, such as template-based modeling, due to their large size or the
limited number of the predicted structures (e.g., less than 30).

Target Stoichiometry  Protein Classification Seq. Length  Total models
H1106 AlBI1 CHAPERONE 236 580
H1129 AlB1 MEMBRANE PROTEIN 1387 145
H1134 AlB1 TOXIN/IMMUNE SYSTEM 543 295
H1140 AlB1 PROTEIN BINDING 351 270
H1141 AlB1 PROTEIN BINDING 346 260
H1142 AlB1 PROTEIN BINDING 347 275
H1143 AlB1 PROTEIN BINDING 350 245
H1144 AlB1 PROTEIN BINDING 341 275
H1151 AlB1 TRANSCRIPTION/Transferase 228 265
H1157 AlB1 OXIDOREDUCTASE 1524 265
H1166 Al1BI1Cl1 Unknown 577 175
H1167 Al1BIC1 Unknown 560 275
H1168 Al1BI1Cl1 Unknown 567 175
T1109%0 A2 Unknown 454 230
T11100 A2 Unknown 454 200
T11130 A2 VIRAL PROTEIN 386 415
T11210 A2 DNA BINDING PROTEIN 762 250
T11230 A2 VIRAL PROTEIN 532 215
T11240 A2 TRANSFERASE 768 200
T11270 A2 Unknown 422 235
T11320 A6 CYTOSOLIC PROTEIN 612 230
T11530 A2 Unknown 598 285
T11600 A2 DNA BINDING PROTEIN 96 275
T1161o0 A2 DNA BINDING PROTEIN 96 275
T11700 A6 HYDROLASE 1908 97
T11730 A3 CELL ADHESION 612 275
T11740 A3 CELL ADHESION 1014 215
T11780 A2 VIRAL PROTEIN 612 275
T11790 A2 VIRAL PROTEIN 522 275
T1181o A3 Unknown 2064 163
T11870 A2 SUGAR BINDING PROTEIN 332 275
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Table S2: Model quality distribution in terms of dockq_wave thresholds (bad: score < 0.23, accept-
able: 0.23 <= score <0.49, good: 0.49 <= score) for CASP15_inhouse_dataset.

target Number of bad models  Number of acceptable models ~ Number of good models
H1106 0 0 580
H1129 145 0 0
H1134 48 231 16
H1140 269 1 0
H1141 260 0 0
H1142 275 0 0
H1143 112 53 80
H1144 260 15 0
H1151 4 0 261
H1157 58 202 5
H1166 0 174 1
H1167 0 215 60
H1168 0 8 167
T1109% 1 189 40
T11100 0 1 199
T11130 9 0 406
T1121o 248 2 0
T11230 95 118 2
T11240 0 53 147
T11270 4 12 219
T11320 230 0 0
T11530 98 2 185
T11600 275 0 0
T11610 275 0 0
T11700 1 25 71
T11730 181 67 27
T11740 54 160 1
T11780 25 116 134
T117% 149 126 0
T11810 162 1 0
T11870 270 4 1
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A.9 CASP15_community_dataset
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Figure S5: CASP15_community_dataset. (a) Model count. Number of models per target in the
dataset. (b) Score Distribution. Box plots of each of six representative quality scores of the models
for each target. (c) Example. Three representative models (worst, average, best) in terms of sum of
the six representative quality scores for a target H1135. Each model with individual chains colored is
superimposed with the true structure in gray.
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Table S3: Summary of target information and the number of models per target in
CASP15_community_dataset.

Target Stoichiometry Protein Classification Seq. Length  Total models
H1106  AIBI1 CHAPERONE 236 308
H1111 A9B9C9 PROTEIN TRANSPORT 8460 232
H1114  A4B8C8 OXIDOREDUCTASE 7988 275
H1129  AIBI MEMBRANE PROTEIN 1387 299
H1134  AIBI1 TOXIN/IMMUNE SYSTEM 543 319
H1135  A9B3 STRUCTURAL PROTEIN 1830 309
H1137  AIBICIDIE1F1G2H1I1 MEMBRANE PROTEIN 4592 203
H1140  AIBI PROTEIN BINDING 351 319
H1141  AIBI1 PROTEIN BINDING 346 312
H1142  AIBI PROTEIN BINDING 347 288
H1143  AIBI1 PROTEIN BINDING 350 306
H1144 AlBI PROTEIN BINDING 341 313
H1151  AIBI1 TRANSCRIPTION/Transferase 228 316
H1157  AlBI OXIDOREDUCTASE 1524 304
H1166  AIBICI1 Unknown 577 291
H1167  Al1BI1ClI Unknown 560 306
H1168  AIBICI1 Unknown 567 303
H1171 A6B1 HYDROLASE 1956 282
H1172  A6B2 HYDROLASE 2004 278
H1185  AIBICIDI DNA BINDING PROTEIN 1334 254
T11090 A2 Unknown 454 243
T11100 A2 Unknown 454 241
T11130 A2 VIRAL PROTEIN 386 233
T1121o A2 DNA BINDING PROTEIN 762 231
T11230 A2 VIRAL PROTEIN 532 242
T11240 A2 TRANSFERASE 768 270
T11270 A2 Unknown 422 279
T11320 A6 CYTOSOLIC PROTEIN 612 224
T11530 A2 Unknown 598 229
T11600 A2 DNA BINDING PROTEIN 96 261
T116lo A2 DNA BINDING PROTEIN 96 266
T11700 A6 HYDROLASE 1908 258
T11730 A3 CELL ADHESION 612 286
T11740 A3 CELL ADHESION 1014 281
T11760 A8 UNKNOWN FUNCTION 1360 254
T11780 A2 VIRAL PROTEIN 612 267
T11790 A2 VIRAL PROTEIN 522 267
T1181o A3 Unknown 2064 283
T11870 A2 SUGAR BINDING PROTEIN 332 295
T11920 Al0 DNA BINDING PROTEIN 4180 215
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Table S4: Model quality distribution in terms of dockq_wave thresholds (bad: score < 0.23, accept-
able: 0.23 <= score < 0.49, good: 0.49 <= score) for CASP15_community_dataset.

Target Number of bad models  Number of acceptable models ~ Number of good models

H1106 40 6 262
H1111 11 72 146
H1114 20 15 238
H1129 286 3 10
H1134 70 164 85
H1135 40 247 22
H1137 59 99 45
H1140 311 6 2
H1141 300 1 11
H1142 287 1 0
H1143 129 40 137
H1144 292 12 9
H1151 54 12 250
H1157 48 222 34
H1166 16 224 51
H1167 19 201 86
H1168 18 39 246
H1171 24 89 169
H1172 27 207 44
H1185 16 11 227
T11090 37 187 19
T11100 10 14 217
T11130 25 7 201
T1121o 217 14 0
T11230 155 78 9
T11240 15 18 237
T11270 8 8 263
T11320 9 7 208
T11530 68 16 145
T11600 260 0 1
T116lo0 259 4 3
T11700 27 61 170
T11730 133 114 39
T11740 44 234 3
T11760 254 0 0
T11780 41 106 120
T1179 171 86 10
T11810 258 25 0
T11870 272 5 18
T11920 25 16 174
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A.10 CASP16_inhouse_dataset
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Figure S6: CASP16_inhouse_dataset. (a) Model count. Number of models per target in the dataset.
(b) Score Distribution. Box plots of each of six representative quality scores of the models for
each target. (c) Example. Three representative models (worst, average, best) in terms of sum of the
six representative quality scores for a target T12350. Each model with individual chains colored is
superimposed with the true structure in gray.
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Figure S7: Distribution of AFM confidence scores of the structural models per

CASP16_inhouse_dataset.
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Table S5: Summary of target information and number of models per target in
CASP16_inhouse_dataset. It is worth noting that the length of three CASP16 targets (H1217,
H1227, and H1272) exceeded the limit (about 5,000 residues) of running AlphaFold and required
other structure prediction techniques such as template-based modeling. To make this dataset include
only structural models generated by AlphaFold, they are excluded.

Target Stoichiometry  Protein Classification Seq. Length  Total models
H1202 A2B2 SIGNALING PROTEIN 380 72185
H1204 A2B2C2 OXYGEN TRANSPORT 858 22110
H1208 AlB1 Unknown 646 72200
H1213 A1BICIDIEl  Unknown 1373 3200
H1215 AlB1 Unknown 369 78410
H1220 Al1B4 Unknown 2515 1150
H1222 Al1BI1Cl1 Unknown 485 64600
H1223 Al1BI1Cl1 Unknown 486 64800
H1225 Al1BI1Cl1 Unknown 483 64799
H1232 A2B2 VIRAL PROTEIN 924 20090
H1233 A2B2C2 VIRAL PROTEIN/IMMUNE SYSTEM 1316 5700
H1236 A3B6 VIRUS 1929 1178
H1244 A2B2C2 Unknown 850 13000
H1245 AlB1 Unknown 317 69200
H1258 A1B2 Unknown 3092 1423
H1265 A9B18 Unknown 3924 2152
H1267 A2B2 Unknown 1852 6050
T12010 A2 SIGNALING PROTEIN 420 65020
T12060 A2 VIRAL PROTEIN 474 60205
T12180 A2 Unknown 2328 949
T1219vlo Al10 Unknown 320 58000
T12340 A3 VIRUS 1239 5600
T12350 A6 VIRUS 690 11900
T12370 A4 Unknown 1952 1970
T12400 A3 Unknown 1959 2125
T1249vlo A3 Unknown 1464 3450
T1249v20 A3 Unknown 1464 3450
T12570 A3 Unknown 3789 712
T1259%0 A3 Unknown 729 3350
T1269vlo A2 PROTEIN FIBRIL 2820 2025
T12700 A6 Unknown 2622 4278
T12920 A2 Unknown 392 50800
T1294vio A2 Unknown 428 51300
T1294v20 A2 Unknown 428 51300
T12950 A8 Unknown 3752 7369
T12980 A2 Unknown 684 63000
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Table S6: Model quality distribution in terms of dockq_wave scores (bad: score < 0.23, acceptable:
0.23 <= score < 0.49, good: 0.49 <= score) for CASP16_inhouse_dataset.

Target Number of bad models ~ Number of acceptable models ~ Number of good models
H1202 0 448 71737
H1204 144 12112 9854
H1208 0 1135 71065
H1213 100 9 3091
H1215 77215 1024 171
H1220 16 505 629
H1222 0 25083 39517
H1223 84 47480 17236
H1225 20 46979 17800
H1232 26 18138 1926
H1233 2 883 4815
H1236 258 920 0
H1244 1 400 12599
H1245 66839 1682 679
H1258 252 1171 0
H1265 1279 873 0
H1267 1 6038 11
T12010 34545 1227 29248
T12060 0 1441 58764
T12180 949 0 0
T1219v1o 25852 19207 12941
T12340 5063 527 10
T12350 5260 4097 2543
T12370 2 29 1939
T12400 80 2009 36
T1249vlo 803 2261 386
T1249v20 3255 183 12
T12570 352 360 0
T125% 0 19 3331
T1269vlo 626 178 1221
T12700 108 965 3205
T12920 0 509 50291
T129%4v1o 0 0 51300
T1294v20 0 0 51300
T12950 3668 3701 0
T12980 1204 48835 12961
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A.11 CASP16_community_dataset
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Figure S9: CASP16_community_dataset. (a) Model count. Number of models per target in the
dataset. (b) Score Distribution. Box plots of each of six representative quality scores of the models
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Table S7:
CASP16_community_dataset.

Summary of target information and number of models per target for

Target Stoichiometry Protein Classification Seq. Length  Total models
H1202 A2B2 SIGNALING PROTEIN 380 375
H1204 A2B2C2 OXYGEN TRANSPORT 858 367
H1208 AlB1 Unknown 646 370
H1213 A1BICIDIEI Unknown 1373 352
H1215 AlB1 Unknown 369 374
H1217 A2B2C2D2E2F2 Unknown 5878 319
H1220 Al1B4 Unknown 2515 353
H1222 Al1BI1Cl1 Unknown 485 376
H1223 Al1BI1Cl1 Unknown 486 373
H1225 Al1BICl1 Unknown 483 377
H1227 A1B6 Unknown 5689 286
H1232 A2B2 VIRAL PROTEIN 924 363
H1233 A2B2C2 VIRAL PROTEIN/IMMUNE SYSTEM 1316 343
H1236 A3B6 VIRUS 1929 347
H1244 A2B2C2 Unknown 850 360
H1245 AlBI Unknown 317 372
H1258 Al1B2 Unknown 3092 317
H1265 A9B18 Unknown 3924 299
H1267 A2B2 Unknown 1852 366
H1272 A1BICIDIEIF1G1H1I1 MEMBRANE PROTEIN 6879 253
T12010 A2 SIGNALING PROTEIN 420 361
T12060 A2 VIRAL PROTEIN 474 357
T12180 A2 Unknown 2328 337
T1219vlo Al10 Unknown 320 166
T12340 A3 VIRUS 1239 360
T12350 A6 VIRUS 690 361
T12370 A4 Unknown 1952 344
T12400 A3 Unknown 1959 348
T1249vlo A3 Unknown 1464 346
T1249v20 A3 Unknown 1464 352
T12570 A3 Unknown 3789 301
T12590 A3 Unknown 729 372
T1269vlo A2 PROTEIN FIBRIL 2820 182
T12700 A6 Unknown 2622 338
T12920 A2 Unknown 392 293
T1294vio A2 Unknown 428 287
T1294v20 A2 Unknown 428 271
T12950 A8 Unknown 3752 255
T12980 A2 Unknown 684 331
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Table S8: Model quality distribution based on dockq_wave scores (bad: score < 0.23, acceptable:
0.23 <= score < 0.49, good: 0.49 <= score) for CASP16_community_dataset.

Target Number of bad models Number of acceptable models Number of good models
H1202 2 37 336
H1204 21 176 170
H1208 31 15 324
H1213 33 16 303
HI1215 333 12 29
H1217 1 13 305
H1220 13 174 166
H1222 2 102 272
H1223 0 239 134
H1225 0 289 88
H1227 5 86 195
H1232 25 263 75
H1233 12 35 296
H1236 86 255 6
H1244 39 15 306
H1245 204 104 64
H1258 53 262 2
H1265 208 86 5
H1267 31 331 4
H1272 69 33 151
T12010 64 8 289
T12060 27 30 300
T12180 286 43 8
T1219vlo 32 52 82
T12340 194 162 4
T12350 52 238 71
T12370 16 19 309
T12400 22 321 5
T1249v1o 170 160 16
T1249v20 303 46 3
T12570 85 112 104
T125%0 11 9 352
T1269vlo 94 28 60
T12700 22 57 259
T12920 4 11 278
T1294vlo 4 3 280
T1294v20 12 3 256
T12950 117 138 0
T12980 26 194 111
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A.12 Multimer_7_2024_8 2025_dataset
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Figure S10: Distribution of residue count per target in Multimer_7_2024_8_2025_dataset.
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Figure S11: Violin plot of distribution of average quality scores of the structural models per target in
Multimer_7_2024_8 2025_dataset.
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Figure S12: Density of AlphaFold-Multimer-style (AFM) confidence scores of the structural models
per target in Multimer_7_2024_8_2025_dataset.
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Figure S13: Density of AlphaFold3 (AF3) ranking scores of the structural models per target in
Multimer_7_2024_8 2025_dataset.

A.13 CASP15_inhouse_TOPS_dataset and CASP16_inhouse_TOP5_dataset

CASP15_inhouse_TOPS5_dataset and CASP16_inhouse_ TOPS5_dataset are the subset of
CASP15_inhouse_dataset and CASP16_inhouse_dataset respectively. Each contains only top 5
models for each target predicted by each of dozens of AlphaFold-based predictors in our MULTI-
COM protein structure prediction system during CASP15 or CASP16, even though each predictor
might generate many (e.g., hundreds of) models. These two subsets were used to train and evaluate
GATE-AFM. The number of models per target in each of these two subsets is given in the Table [S9]
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Table S9: Summary of the CASP15 and CASP16 in-house TOPS datasets.

CASP15_inhouse_TOP5_dataset | CASP16_inhouse_TOP5_dataset
Target | Total Models Target | Total Models
H1106 290 H1202 390
H1129 65 H1204 350
H1134 150 H1208 380
H1140 130 H1213 300
H1141 125 H1215 355
H1142 125 H1220 101
H1143 115 H1222 345
H1144 125 H1223 345
H1151 120 H1225 345
H1157 115 H1232 250
H1166 75 H1233 255
H1167 85 H1236 100
H1168 75 H1244 330
T11090 115 H1245 360
T11100 100 H1258 90
T11130 210 H1265 77
T11210 120 H1267 385
T11230 110 T12010 345
T11240 100 T12060 325
T11270 120 T12180 35
T11320 115 T1219vlo 305
T11530 130 T12340 325
T11600 125 T12350 295
T11610 125 T12370 275
T11700 45 T12400 155
T11730 125 T12570 73
T11740 95 T1259%0 305
T11780 125 T1269v1o 185
T1179 125 T12700 290
T11810 65 T12920 270
T11870 125 T12950 230
T12980 325

A.14 Analysis of Potential Bias from AlphaFold-Dominated Model Generation

An issue for PSBench is the potential bias introduced by the dominance of AlphaFold in
model generation. Although the two community datasets (CASP15_community_dataset and
CASP16_community_dataset) contain models from a variety of predictors, the majority of their
models still originated from AlphaFold. The other three datasets in PSBench consist of AlphaFold-
generated models only. This reflects the current landscape of protein structure prediction but may
bias benchmark outcomes toward AlphaFold-specific characteristics.

To assess this bias, we compared TM-score distributions between the CASP community datasets
(23,841 models from AlphaFold and non-AlphaFold predictors) and the AlphaFold-only in-house
datasets. Community datasets exhibited a lower average TM-score (0.7166 vs. 0.7873) and a higher
standard deviation (0.2394 vs. 0.2160), indicating slightly reduced average quality and greater
variability compared to AlphaFold-only models.

We further examined the impact of this bias on EMA performance. Specifically, we
compared GATE (trained on CASPI15_community_dataset) and GATE-AFM (trained on
CASP15_inhouse_TOP5_dataset) on the CASP16_inhouse_TOP5_dataset, which represents high-
confidence AlphaFold predictions. As shown in Table GATE-AFM outperformed GATE in
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Spearman’s correlation, loss, and AUROC for both TM-score and DockQ_Wave, while GATE
achieved slightly higher Pearson’s correlation on TM-score.

These results suggest that the training dataset composition can affect EMA generalization performance.
We therefore caution users to consider model-generation bias when interpreting benchmark outcomes.
We plan to incorporate models from emerging prediction methods in future PSBench releases to
mitigate this bias.

Table S10: Performance of GATE-AFM and GATE on the CASP16_inhouse_TOP5_dataset. Metrics
include Pearson’s correlation (Corr’), Spearman’s correlation (Corrd), ranking loss, and AUROC
(75" percentile cutoff) reported separately for TM-score and DockQ_wave. Bold values indicate
better performance.

TM-score DockQ_wave
Corr’ 1 Corr1 Loss| AUROC?T Cor®t Corr®t Loss] AUROC T

GATE-AFM  0.372 0.283  0.102 0.658 0.431 0.322  0.138 0.662
GATE 0.408 0.277  0.133 0.647 0.380 0.300  0.163 0.648

Method

B Experimental Design

B.1 Standard EMA Methods in PSBench

PSBench includes six standard EMA methods that are publicly available. They serve as baseline
methods for comparison with new EMA methods. Below is a brief overview of each method and its
availability:

* AlphaFold2-Multimer Confidence score (AFM Confidence)[10]: AlphaFold2-Multimer
provides self-estimated accuracy estimates for its predicted structures using a confidence
score that is computed as a weighted sum of ipTM (interface predicted TM-score) and pTM
(predicted TM-score), specifically: 0.8 * ipTM + 0.2 * pTM. This score serves as a single-
model EMA method and a strong baseline for datasets generated by AlphaFold2-Multimer
or AlphaFold3.

* GATE[18]: A multi-model EMA approach that leverages graph transformers applied
to pairwise similarity graphs derived from input models. GATE combines both single-
model and multi-model quality scores from individual models with comparative geometric
similarities between models, enabling it to effectively predict the global structural accuracy
(e.g., TM-score) of complex structural models. Source code is available at: https://
github.com/BioinfoMachineLearning/gate. GATE-AFM: An enhanced variant of
GATE by using AlphaFold2-Multimer features as additional node features. It can be used if
such features are available.

* DProQA[31]: A single-model EMA method based on a Gated Graph Transformer architec-
ture that modulates local neighborhood interactions. It is specifically designed to estimate
the interface quality of protein complex models (e.g., DockQ scores) by leveraging a K-
nearest neighbor (K-NN) graph representation of the complex structure. Source code is
available at: https://github.com/jianlin-cheng/DProQA.

* VoroMQA-dark, VoroIF-GNN-score, VorolF-GNN-pCAD-score[38]]: A set of single-
model EMA methods that utilize the VorolF-GNN framework (Voronoi Interface Graph Neu-
ral Network) to assess protein complex interface quality. These methods operate on Voronoi
tessellation-based atomic contact areas, capturing geometric and topological features of
the interface. Source code is available at: https://github.com/kliment-olechnovic/
ftdmpl

* GCPNet-EMA[39]: An EMA extension of GCPNet (Geometry-Complete Perceptron
Network), a deep graph neural network that constructs a 3D graph representation from
the atomic point cloud of a protein structure. It predicts both per-residue and per-model
structural accuracy estimates, such as local and global IDDT. Although GCPNet-EMA is
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originally trained on tertiary protein structures (e.g., single-chain models), it can be directly
applied to evaluate the accuracy of protein complex structures. Source code is available at:
https://github.com/BioinfoMachineLearning/GCPNet-EMA,

* Average Pairwise Similarity Score (PSS)[40]]: A multi-model EMA method that eval-
uates each predicted complex by computing the average pairwise TM-score between
it and all other models in the structural pool using MMalign. This simple yet ef-
fective consensus-based approach serves as a strong baseline for estimating the qual-
ity of the protein complex model. Source code is available at: https://github,
com/BioinfoMachineLearning/MULTICOM_qa, with a simplified implementation avail-
able at: https://github.com/BioinfoMachineLearning/gate/blob/main/gate/
feature/mmalign_pairwise.py.

It is worth noting that during benchmarking, the quality scores predicted by DProQA, VoroMQA and
VoroIF-GNN, and GCPNet-EMA were normalized by multiplying the raw score by the ratio of the
model length to the native structure length. This normalization penalizes shorter decoys, ensuring that
the scores more accurately reflect both the completeness and the accuracy of the predicted models
relative to the native structures.

B.2 The Details of Training and Validating GATE

GATE and GATE-AFM were first trained, validated, and tested on the CASP15 datasets (i.e.,
CASP15_community_dataset or CASP15_inhouse_dataset) respectively and then were blindly
evaluated on unseen targets in the CASP16 datasets (i.e., CASP16_community_dataset or
CASP16_inhouse_dataset) during the CASP16 competition from May to August, 2024.

Graph construction and architecture. To predict the quality scores for a set of complex structural
models of a protein, GATE and GATE-AFM construct a pairwise model similarity graph in which
each node represents a model, and an edge is formed between two nodes if the TM-score between the
corresponding models exceeds 0.5. Each node is annotated with both single-model quality scores
(e.g., ICPS, EnQA, DProQA, VoroMQA) and aggregated pairwise similarity scores (e.g., TM-score,
QS-score, DockQ, CAD-score). For GATE-AFM, additional AlphaFold2-Multimer—specific features
(confidence scores, ipTM, inter-chain predicted alignment errors, mpDockQ) are incorporated as node
features. Edge features encode the pairwise similarity scores between connected models, including
TM-score, QS-score, DockQ, and CAD-score.

From each full graph, 2,000-3,000 subgraphs are sampled, each containing up to 50 nodes. Within
a subgraph, node and edge features are embedded, updated through graph transformer layers with
multi-head attention and feed-forward networks, and passed through a multilayer perceptron (MLP)
to predict a quality score for each node. The models are trained with a weighted loss combining a
pointwise mean squared error (MSE) term (predicted vs. true scores) and a pairwise loss term (mean
absolute error between predicted and true differences of model pairs). The pointwise loss weight was
fixed at 1, while the pairwise loss weight was tuned as a hyperparameter.

Training protocol. GATE was trained and validated on the CASP15_community_dataset, which
comprises 10,935 models of 40 protein targets, plus 187 models from another target (T11150) whose
native structure is not publicly available. For the 10,935 models, usalign_tmscore was used as labels.
For T11150, TM-scores were obtained from the CASP15 website. CASP15_community_dataset was
partitioned into training, validation, and test sets using 10-fold cross-validation split by targets. For
each target, 2,000 subgraphs were sampled, leading to 8,000-10,000 subgraphs per subset. Eight
folds were used for training, one for validation, and one for testing, iterating across all folds. The
fold assignments are listed in Table [STT} Hyperparameter search space is shown in Table [ST2]

GATE-AFM. GATE-AFM was trained using the same cross-validation protocol and graph construc-
tion process as GATE, but on the CASP15_inhouse_TOPS5_dataset (31 protein complex targets).
To augment the data, 3,000 subgraphs per target were sampled. The only difference from GATE
is that GATE-AFM incorporates AlphaFold2-Multimer—specific features as additional node fea-
tures. TM-score labels were generated with an older version of the in-house TM-score script
(tmscore_usalign_aligned_v0), which was later updated in CASP16 to correct minor alignment issues.
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The updated version is included in PSBench, but the original scores remain available in the dataset to
support reproducibility. The fold assignments are listed in Table

Table S11: Targets assigned to each fold in the CASP15_community_dataset for training GATE.

Fold Targets

Fold0 HI1135,T11270, T11610, T11320, H1144
Fold1 H1151, T11530, H1171, H1114
Fold2 T11700, H1166, T11760, H1134
Fold3 HI1111, H1106, T11090, T11210
Fold4 T11740, T11150, H1172, H1143
Fold5 H1137, H1142, T11920, H1140
Fold6 T11870, T11810, T11790, T11780
Fold7 H1168, T11730, T11600, H1167
FoldS§ T11130, H1185, T11230, H1157
Fold9 T11100, H1141, T11240, H1129

Table S12: Hyperparameter search space explored during model fine-tuning.

Hyperparameter Candidate Values
Number of attention heads 4,8

Number of graph transformer layers 2,3, 4,5

Dropout rate 0.1,0.2,0.3,04, 0.5

MLP dropout rate 0.1,0.2,0.3,04, 0.5
Hidden dimension 16, 32, 64

Weight of the pairwise MSE loss auto, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Optimizer AdamW, SGD

Learning rate le-5, 5e-5, le-4, 5e-4, 1e-3
Weight decay 0.01, 0.05

Layer normalization False, True

Batch size 256, 400, 512

Table S13: Targets assigned to each fold in the CASP15_inhouse_dataset for training GATE-AFM.
Fold Targets

Fold0 TI11270, T11610, T11320, T11740
Foldl TI11600, H1106, H1134

Fold2 TI11730, T11780, T11100

Fold3 TI11700, H1142, H1140

Fold4 TI11790, T11870, T11530

Fold5 TI11230,H1151, T11810

Fold6 Tl1121o, T11130, H1144

Fold7 HI1167, T11240, H1157

Fold8 HI1168, H1143, H1166

Fold9 HI1141, T11090, H1129

B.3 Computational Requirements for Training on PSBench

The computational cost of training EMA methods on the full PSBench dataset depends heavily on how
structural models are used as inputs. For single-model EMA methods, where each model is processed
independently, training time scales linearly with the number of models (e.g., 10,942 models in the
CASP15_community_dataset). In contrast, multi-model methods such as GATE construct a pairwise
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model similarity graph for each target using all available models, which introduces quadratic or
higher time complexity with respect to the number of models per target. However, once the similarity
graph is constructed, extracting subgraphs and using them for training is considerably faster. Under
this setup, GATE was trained using a single NVIDIA A100 GPU (80 GB) and required approximately
2 minutes per epoch. Researchers with smaller GPU memory may still train on PSBench by applying
subgraph sampling or filtering strategies (e.g., using top-ranked models per target).

B.4 Threshold Selection for AUROC Evaluation

In the main experiments, we used the 75th percentile of the ground-truth scores (i.e., CASP official
scores) for each target to define "high-quality" models in a relative sense. This percentile-based
threshold adapts to the difficulty of individual targets and ensures balanced positive/negative class
distribution for AUROC calculations across targets.

To assess the impact of threshold choice, we additionally evaluated AUROC using fixed cutoffs that
are commonly used in the field. Specifically, we applied TM-score > 0.5 and DockQ_Wave > 0.49
to define high-quality models. Table [ST4]presents the performance of the EMA methods in PSBench
under both percentile-based and fixed-threshold definitions on the CASP16_inhouse_TOPS_dataset.
Under the fixed thresholds, GATE-AFM achieved AUROC scores of 0.635 (TM-score) and 0.684
(DockQ_Wave), which is ranked second among all the methods.

Statistical significance was assessed using a one-sided Wilcoxon signed-rank test comparing GATE-
AFM with each baseline method. As indicated in Table[S14] results marked with an asterisk (*) denote
significant differences (p < 0.05). Under the fixed-threshold setting, GATE-AFM maintained strong
performance and significantly outperformed most baseline methods, including AFM-Confidence,
VorolF-GNN, VoroIF-GNN-pCAD, and DProQA, across both TM-score and DockQ_Wave metrics.
These results demonstrate that GATE-AFM remains one of the top-performing and statistically
robust EMA methods, with consistent relative ranking and performance patterns regardless of the
thresholding strategy.

Table S14: AUROC values of different EMA methods under 75th percentile and fixed threshold
(0.5 and 0.49) definitions for TM-score and DockQ_Wave on CASP16_inhouse_TOP5_dataset.
Significant difference (p < 0.05) between GATE-AFM and other methods based on the one-sided
Wilcoxon signed-rank test is marked with *.

Methods TM-score DockQ_Wave
75th pct. 0.5 cutoff  75th pct.  0.49 cutoff

GATE-AFM 0.658 0.635 0.662 0.684
AFM-Confidence 0.597* 0.585%* 0.593%* 0.673
PSS 0.647 0.650 0.645 0.685
GCPNet-EMA 0.643 0.606* 0.648 0.672
VoroMQA-dark 0.609 0.570%* 0.622 0.588*
VorolF-GNN-pCAD  0.589* 0.541* 0.615 0.570*
VoroIF-GNN 0.599* 0.565%* 0.622 0.601*
DProQA 0.569* 0.543* 0.587* 0.618

B.5 Failure Mode Analysis

To better understand the limitations of EMA methods, we examined failed cases (targets) with large
prediction errors from GATE-AFM. Two recurring failure modes were identified.

For targets like H1202 and T12060, EMA methods show high MAE (mean average error) despite the
predicted models being generally good and similar. In these cases, GATE-AFM preserves relative
rankings (low ranking loss) but underestimates absolute TM-scores, indicating a calibration issue. Its
focus on pairwise relationships can compress score predictions, reducing absolute accuracy.
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In contrast, H1265 includes only low-quality, diverse models with no resemblance to the native
structure. Here, structural similarity among poor models misleads GATE-AFM, causing TM-score
overestimation due to an uninformative similarity graph.

These cases reveal two distinct failure modes: score compression in high-quality model sets and
misleading graph structures in poor-quality sets. By comparison, targets like HI215 and H1223, with
varied and well-formed models, show low MAE and strong performance.

B.6 Ranking of EMA predictors on the CASP16_community_dataset based on Z-scores

To assess the overall performance of EMA predictors on the CASP16_community_dataset, we
ranked the 38 EMA predictors based on cumulative positive Z-scores. For each target, the Z-scores
for the predictors were computed separately for the four evaluation metrics (Pearson’s correlation,
Spearman’s correlation, ranking loss, and AUROC) based on TM-score. The z-score for a predictor
for a target is equal to the original score minus the average score of all the predictors divided by the
standard deviation. When calculating total Z-scores for each predictor, only positive Z-scores for
each target were accumulated to emphasize strong performances.

In this ranking, MULTICOM_GATE achieved third place with a total Z-score of 95.7, closely
following ModFOLDdock?2 (96.9) and MULTICOM_LLM (105.4).

Top EMA Predictors by Total Z-scores (Pearson's correlation + Spearman's Correlation + Ranking Loss + AUROC)
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Figure S14: CASP16_community_dataset results. Stacked bar plot showing the cumulative positive
Z-scores across all CASP16 community targets for the participated EMA predictors. Contributions
from four performance metrics (Pearson’s correlation, Spearman’s correlation, ranking loss, and
AUROC) are stacked to highlight the overall performance. EMA predictors are ranked by their total
Z-scores. MULTICOM_GATE is colored in red.

B.7 Runtime and Memory Usage of EMA Methods

We compared the runtime and memory usage of representative EMA methods in PSBench on the
computer system described in Appendix[C.I] For GATE-AFM and GATE, the inference time after
generating quality features for each model using external EMA methods is reported. Information
for AFM-Confidence is not included since its estimates are generated alongside AlphaFold model
predictions and are not obtained through a separate inference step.
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Table [ST3] summarizes the results. Multi-model EMA methods such as GATE, GATE-AFM, and
PSS generally provide higher predictive accuracy but require more memory and longer runtimes.
In contrast, single-model methods such as GCPNet-EMA and DProQA are more lightweight but
typically achieve lower accuracy. VoroMQAs were run on CPU in our experiments and therefore
required longer runtimes compared to GCPNet-EMA or DProQA.

Table S15: Peak memory usage and runtime of EMA methods in PSBench.

EMA Method CPU Mem (GB) GPU Mem (GB) Runtime (min)
GATE-AFM (inference) 100.9 11.9 12.98
GATE (inference) 100.1 12.0 31.04
PSS 0.53 N/A 18.88
GCPNet-EMA 0.53 0.64 11.13
VoroMQAs (CPU) 0.53 N/A 19.28
DProQA 0.53 2.63 4.72

C System Requirements

C.1 Environment for benchmarking EMA methods with PSBench and labeling model
datasets

The generation of model quality scores and the evaluation of baseline EMA methods were performed
on a computing server with the following specifications:

¢ Operating System: CentOS Linux
» CPU: AMD EPYC 7552, 3.2 GHz, 48 cores
* RAM: 50 GB

* GPU: NVIDIA A100, 80 GB (not required for quality score annotation, only needed to run
some EMA methods)

C.2 Environment for training and validating GATE

The training and validation of the GATE and GATE-AFM were conducted on a high-performance
computing system with the following configuration:

* Operating System: CentOS Linux

* CPU: AMD EPYC 7552, 3.2 GHz, 48 cores
* RAM: 500 GB

* GPU: NVIDIA A100, 80 GB
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