Neighborhood Gradient Clustering: An Efficient Decentralized Learning
Method for Non-IID Data

Sai Aparna Aketi ! Sangamesh Kodge "' Kaushik Roy '

Abstract

Decentralized learning algorithms enable the
training of deep learning models over large dis-
tributed datasets, without the need for a central
server. In practical scenarios, the distributed
datasets can have significantly different data dis-
tributions across the agents. In this paper, we pro-
pose Neighborhood Gradient Clustering (NGC), a
novel decentralized learning algorithm to improve
decentralized learning over non-IID data. Specif-
ically, the proposed method replaces the local
gradients of the model with the weighted mean of
self-gradients, model-variant cross-gradients, and
data-variant cross-gradients. Model-variant cross-
gradients are derivatives of the received neighbors’
model parameters with respect to the local dataset
- computed locally. Data-variant cross-gradients
are derivatives of the local model with respect to
its neighbors’ datasets - received through commu-
nication. We demonstrate the efficiency of NGC
over non-IID data sampled from various vision
datasets. Our experiments demonstrate that the
proposed method either remains competitive or
outperforms (by up to 6%) the existing state-of-
the-art (SoTA) with significantly less compute
and memory requirements.

1. Introduction

Decentralized machine learning is a branch of distributed
learning which focuses on learning from data distributed
across multiple agents/devices. Unlike Federated learning
(Konecny et al., 2016), these algorithms assume that the
agents are connected peer to peer without a central server.
It has been demonstrated that decentralized learning algo-
rithms (Lian et al., 2017) can perform comparably to central-

“Equal contribution 'Electrical and Computer Engineering,
Purdue University, West Lafayette, Indiana, USA. Correspondence
to: Sai Aparna Aketi <saketi@purdue.edu>.

Federated Learning and Analytics in Practice Workshop at the
40™ International Conference on Machine Learning, Honolulu,
Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the author(s).

ized algorithms on benchmark vision datasets. (Lian et al.,
2017) present Decentralised Parallel Stochastic Gradient De-
scent (D-PSGD) by combining SGD with gossip averaging
algorithm (Xiao & Boyd, 2004). Further, the authors analyt-
ically show that the convergence rate of D-PSGD is similar
to its centralized counterpart (Dean et al., 2012). (Balu
et al., 2021) propose and analyze Decentralized Momentum
Stochastic Gradient Descent (DMSGD) which introduces
momentum to D-PSGD. (Assran et al., 2019) introduce
Stochastic Gradient Push (SGP) which extends D-PSGD to
directed and time-varying graphs.

The key assumption to achieve state-of-the-art performance
by all the above-mentioned algorithms is that the data is in-
dependent and identically distributed (IID) across the agents.
This assumption does not hold in most of the real-world ap-
plications as the data distributions across the agents are sig-
nificantly different (non-1ID) based on the user pool (Hsieh
et al., 2020). There are only a few works that try to bridge
the performance gap between IID and non-IID data for a de-
centralized setup. Note that, we mainly focus on a common
type of non-1ID data, widely used in prior works (Tang et al.,
2018; Lin et al., 2021; Esfandiari et al., 2021): a skewed
distribution of data labels across agents. (Tang et al., 2018)
proposed D? algorithm that extends D-PSGD to non-1ID
data. However, the algorithm was demonstrated on only a
basic LeNet model and is not scalable to deeper models with
normalization layers. (Lin et al., 2021) replace local momen-
tum with Quasi-Global Momentum (QGM) and improve
the test performance by 1 — 20%. But the improvement in
accuracy is only 1 — 2% in case of highly skewed data as
shown in (Aketi et al., 2022). Most recently, (Esfandiari
et al., 2021) proposed Cross-Gradient Aggregation (CGA)
and a compressed version of CGA (CompCGA), claiming
state-of-the-art performance for decentralized learning algo-
rithms over completely non-IID data. CGA and CompCGA
require a very slow quadratic programming step (Goldfarb
& Idnani, 1983) after every iteration for gradient projection
which is both compute and memory intensive. This work
focuses on the following question: Can we improve the per-
formance of decentralized learning over non-IID data with
minimal compute and memory overhead?

In this paper, we propose Neighborhood Gradient Clus-
tering (NGC) to handle non-1ID data in peer-to-peer de-

Neighborhood Gradient Clustering

centralized learning setups. Firstly, we classify the gradi-
ents available at each agent into three types, namely self-
gradients, model-variant cross-gradients, and data-variant
cross-gradients (see Section 3). The data-variant cross-
gradients are obtained through an additional round of com-
munication. Finally, the local gradients are replaced with the
weighted average of the self- and cross-gradients. The pro-
posed technique has two rounds of communication at every
iteration to send model parameters and data-variant cross-
gradients which incurs 2 communication cost compared to
traditional decentralized algorithms (D-PSGD). To reduce
the communication overhead, we propose the compressed
version of NGC (CompNGC) by compressing the additional
round of cross-gradient communication. We validate the
performance of the proposed algorithm on various datasets,
models, and graphs and achieve superior performance over
non-IID data compared to the current state-of-the-art ap-
proach.

Contributions: In summary, we make the following contri-
butions. 1) We propose Neighborhood Gradient Clustering
(NGC) for a decentralized learning setting that utilizes self-
gradients, model-variant cross-gradients, and data-variant
cross-gradients to improve the learning over non-IID data
among agents. 2) We present compressed version of Neigh-
borhood Gradient Clustering (CompNGC) that reduces the
additional round of cross-gradients communication by 32x.
3) Our experiments show that the proposed method outper-
forms the SoTA algorithm by upto 6% (1.62% on average)
with significantly less compute and memory requirements
at iso-communication cost. 4) We also show that when the
weight associated with data-variant cross-gradients is set to
0, NGC performs 2 — 34% better than D-PSGD without any
communication overhead.

2. Background

The main goal of decentralized machine learning is to learn
a global model using the knowledge extracted from the
locally generated and stored data samples across N edge
devices/agents while maintaining privacy constraints. In
particular, we solve the optimization problem of minimizing
global loss function F(z) distributed across N agents as
given in equation. 1.

z€RC

L
min F(z) = N Zfl(a:), n
i=1

and fi(z) = Egiopi [Fi(a;d")] Vi

This is typically achieved by combining stochastic gradient
descent (Bottou, 2010) with global consensus-based gossip
averaging (Xiao & Boyd, 2004). The communication topol-
ogy in this setup is modeled as a graph G = ([NV], E') with
edges {i,j} € F if and only if agents ¢ and j are connected
by a communication link exchanging the messages directly.

We represent V(i) as the neighbors of 4 including itself.
It is assumed that the graph G is strongly connected with
self-loops i.e., there is a path from every agent to every other
agent. The adjacency matrix of the graph G is referred to as
a mixing matrix W where w;; is the weight associated with
the edge {1, j}. Note that, weight 0 indicates the absence of
a direct edge between the agents. We assume that the mix-
ing matrix is doubly-stochastic and symmetric, similar to all
previous works in decentralized learning. For example, in a
undirected ring topology, w;; = % if j € {i — 14,1+ 1}.
Further, the initial models and all the hyperparameters are
synchronized at the beginning of the training. Algorithm. 2
in the appendix describes the flow of D-PSGD with mo-
mentum. The convergence of the Algorithm. 2 assumes the
data distribution across the agents to be Independent and
Identically Distributed (IID).

3. Neighborhood Gradient Clustering

We propose the Neighborhood Gradient Clustering (NGC)
algorithm and a compressed version of NGC which improve
the performance of decentralized learning over non-IID
data. NGC utilizes the concepts of self-gradient and cross-

Algorithm 1 Neighborhood Gradient Clustering (NGC)
Input: Each agent i € [1, N] initializes model weights
xzo), step size 17, momentum coefficient 3, averaging rate

7, mixing matrix W = [wi;]; jeq1,n], NGC mixing weight
a, and I;; are elements of N x IV identity matrix, N (i)
represents neighbors of ¢ including itself.

Each agent simultaneously implements TRAIN() procedure
1. procedure TrRAIN()

2. fork=0,1,...,K —1do

3 gl =V, fi(di;2t) where di ~ D'

4 SENDRECEIVE(z},)

5. for each neighbor j € {N (i) — i} do

6. g = Vafi(dj;x)

7 ifa#0: SENDRECEIVE(gii)

8 end - B
9. 9k = 2 jen |1 — Q)wjigl” + awijg)]
10. vy, = B”Ek—l) — NG,

11. T =l + ol

12. xzk‘-i-l) = f}c +’Yzj6./\f(i)(w’ij 7],;j)${c
13. end

14. return

gradient (Esfandiari et al., 2021). The following are the
definitions of self-gradient and cross-gradient.

Self-Gradient gi' =V, F;(x%;d}): For an agent ¢ with the
local dataset D; and model parameters z°, the self-gradient
is the gradient of the loss function F; with respect to the
model parameters 2, evaluated on mini-batch d’ sampled

Neighborhood Gradient Clustering

from dataset D*. _

Cross-Gradient g} = ¥V, F;j(x};d3): For an agent i with
model parameters x; connected to neighbor j that has local
dataset D7, the cross-gradient is the gradient of the loss func-
tion F; with respect to the model parameters z*, evaluated
on mini-batch d’ sampled from dataset D7.

The NGC algorithm: The flow of the Neighborhood Gra-
dient Clustering (NGC) is shown in Algorithm. 1 and the
form of the algorithm is similar to D-PSGD (Lian et al.,
2017). The main contribution of the proposed NGC al-
gorithm is the local gradient manipulation step (line 9 in
Algorithm. 1). In the k*" iteration of NGC, each agent i
calculates its self-gradient ¢**. Then, agent i’s model param-
eters are transmitted to all other agents (7) in its neighbor-
hood, and the respective cross-gradients are calculated by
the neighbors and transmitted back to agent ¢. At every iter-
ation, each agent i has access to self-gradients (¢%*) and two
sets of cross-gradients: 1) Model-variant cross-gradients:
The derivatives that are computed locally using its local data
on the neighbors’ model parameters (¢7%). 2) Data-variant
cross-gradients: The derivatives (received through commu-
nication) of its model parameters on the neighbors’ dataset
(¢"). Note that each agent i computes and transmits cross-
gradients (¢7?) that act as model-variant cross-gradients for
1 and as data-variant cross-gradients for 5. We then cluster
the gradients into two groups namely: a) Model-variant
cluster {g?"Vj € N (i)} that includes self-gradients and
model-variant cross-gradients, and b) Data-variant clus-
ter {g"Vj € N (i)} that includes self-gradients and data-
variant cross-gradients. The local gradients at each agent
are replaced with the weighted average of the above-defined
cluster means. The mean of the model-variant cluster is
weighted by (1 — «) and the mean of the data-variant clus-
ter is weighed by « where « € [0, 1] is a hyper-parameter
referred to as NGC mixing weight.

The proposed algorithm reduces this variation in the local-
gradients as it is equivalent to adding two bias terms € and
w with weights (1 — «) and « respectively as shown in
Equation. 2 (assume (w;; = 1/m;m = [N (i)])).

~i i 1 i i
Gi=g+(1—a)= {E > (gi’—gk)]
JEN(3)

model variance bias €%,

1 1 .
L P
+ a* {m E m(gk Qk)}

JEN (1)

‘ @)
data variance bias w},
o L i
ho=—x > (VoF(dj;a]) - Vo F(di;a}))
JEN(3)
wh = — % Z (Vo F(d);x},) — Vo F(dj; x},))

JEN ()

The bias term e compensates for the difference in a neighbor-
hood’s self-gradients caused due to variation in the model
parameters across the neighbors. Whereas, the bias term
w compensates for the difference in a neighborhood’s self-
gradients caused due to variation in the data distribution
across the neighbors. We hypothesize and show through
our experiments that the addition of these bias terms to the
local gradients improves the performance of decentralized
learning over non-IID data by accelerating global conver-
gence. Note that if we set a = 0 in the NGC algorithm then
it does not require an additional communication round (no
communication overhead compared to D-PSGD).

The Compressed NGC Algorithm: The NGC algorithm
at every iteration involves two rounds of communication
with the neighbors: 1) communicate the model parameters,
and 2) communicate the cross-gradients. This communica-
tion overhead can be a bottleneck in a resource-constrained
environment. Hence we propose a compressed version of
NGC using Error Feedback SGD (EF-SGD) (Karimireddy
et al., 2019) to compress gradients. The pseudo-code for
CompNGC is shown in Algorithm. 3 in the Appendix.

4. Experiments
In this section, we present the analysis of the following —

Table 1. Test accuracy comparisons for 5-layer CNN trained on
non-IID CIFAR-10 over various graphs.

Method Agents Ring Torus
5 76.00 & 1.44 -

D-PSGD 10 47.68 +3.20 5534 +6.32
20 44854+ 194 50.12 £ 191
5 82.20 + 0.34 -

NGC (ours) 10 67.43 =1.15 73.84 +0.33

(a=0) 20 58.80 +1.30 64.55 +1.16
5 82.20 £ 0.43 -

CGA 10 72.96 +0.40 76.04 £+ 0.62
20 69.88 +0.84 73.21 £0.27
5 83.36 + 0.65 -

NGC (ours) 10 75.34 +0.30 78.53 + 0.56
20 73.36 + 0.88 75.11 + 0.07
5 82.00 £ 0.25 -

CompCGA 10 7141 £0.94 7595+ 041
20 68.15+0.79 71.71 £0.54
5 82.91 £+ 0.21 -

CompNGC (ours) 10 74.36 + 0.42 77.82 + 0.20
20 71.46 + 0.85 73.62 + 0.74

(a) Datasets (Appendix A.3): CIFAR-10, CIFAR-100, Fash-
ion MNIST and Imagenette (Husain, 2018). (b) Model
architectures (Appendix A.4): 5-layer CNN, ResNet-20,
LeNet-5, and MobileNet-V2. (c) Topologies: Ring and
Torus. (d) Number of agents: varying from 5 to 20. Note

Neighborhood Gradient Clustering

Table 2. Test accuracy comparisons for various datasets with non-IID sampling trained over undirected ring topology.

Method Agents Fashion MNIST CIFAR-10 CIFAR-100 Imagenette
(LeNet-5) (ResNet-20) (ResNet-20) (MobileNet-V?2)
D-PSGD 5 86.43 +£0.14 82.13 £ 0.84 44.66 +5.23 47.09 +9.20
10 75.49 4+ 0.32 31.66 £ 6.01 19.03 + 13.27 32.81 £2.18
NGC (ours) 5 88.49 + 0.18 85.88 + 0.58 55.96 + 0.95 60.15 + 2.17
(a=0) 10 82.85 + 0.24 66.02 +2.86 35.34 + 0.32 36.13 +1.97
CGA 5 90.03 4+ 0.39 87.52 +£0.50 56.43 +2.39 72.82 + 1.25
10 87.61 £+ 0.30 7998 +1.23 53.61 £ 1.07 61.97 £ 0.58
NGC (ours) 5 90.61 + 0.18 88.52 +£0.19 56.50 + 3.23 74.49 + 0.93
10 87.24 +£0.23 84.02 +0.44 53.77 + 0.15 64.06 + 1.11
CompCGA 5 90.45 4+ 0.34 86.73 £0.34 55.74 +0.33 72.76 + 0.44
10 81.62 £0.37 73.63 £ 0.55 38.84 £0.54 59.92 +£0.72
CompNGC (ours) 5 90.48 + 0.19 87.56 +0.34 57.51 +0.48 72.91 + 1.06
10 83.38 + 0.39 78.50 + 0.98 43.07 £+ 0.32 61.91 + 2.10

that we use low-resolution (32 x 32) images of the Ima-
genette dataset for the experiments in Table. 2. We consider
an extreme case of label-wise non-IID data where no two
neighboring agents have the same class. We report the
test accuracy of the consensus model averaged over three
randomly chosen seeds. The hyperparameters for all the
experiments are present in Appendix. A.7. We compare the
proposed method with iso-communication baselines. The
experiments on NGC (o = 0) are compared with D-PSGD,
NGC with CGA, and CompNGC with CompCGA. More
details on the experimental setup and communication costs
can be found in Appendix A.l1 and A.6 respectively.

Results: We evaluate variants of NGC and CompNGC and
compare them with respective baselines in Table. 1, for train-
ing 5-layer CNN on CIFAR-10 over various graph sizes and
topologies. Further, we demonstrate the generalizability
of NGC by evaluating it on various image datasets such as
Fashion MNIST, and Imagenette and on challenging datasets
CIFAR-100 in Table. 2. We observe that NGC with o = 0
consistently outperforms D-PSGD in all cases with a sig-
nificant performance gain varying from 2 — 34% with an
average improvement of 13.23%. The experiments show the
superiority of NGC over CGA with a maximum improve-
ment of 6.14% (1.62% on average) and CompNGC over
CompCGA with a maximum gain of 6.28% (2.14% on av-
erage). Finally, through this exhaustive set of experiments,
we demonstrate that the weighted averaging of self- and
cross-gradients can be served as a simple plugin to boost the
performance of decentralized learning over non-1ID data.

Hardware Benefits: The proposed NGC algorithm is su-
perior in terms of memory and compute efficiency while
having equal communication cost as compared to CGA (re-
fer Table. 3 and Appendix. A.5). Since NGC involves a
simple weighted averaging operation, additional memory

to store the cross-gradients is not required. CGA stores
all the cross-gradients in a matrix form for quadratic pro-
gramming projection of the local gradient. Moreover, the
quadratic programming projection step (Goldfarb & Idnani,
1983) in CGA is much more expensive in compute and la-
tency than the weighted averaging step of cross-gradients in
NGC. Our experiments clearly show that NGC is superior to
CGA in terms of test accuracy, memory efficiency, compute
efficiency, and latency.

Table 3. Comparison of communication, memory, and compute
overheads per mini-batch compared to D-PSGD. ms: model size,
N;: number of neighbors, b: floating point precision, Q: compute
for Quadratic Programming, B: compute for Backward Pass.

Method Comm. Memory Compute
CompCGA O(2:MNi) O(Nyms) O(N:B+Q)
NGCa=0 0 0 O(N;B + msN;)
NGC O(msN;) 0 O(N;B + msN;)

5. Conclusion

We propose the Neighborhood Gradient Clustering (NGC)
that improves decentralized learning over non-IID data. Fur-
ther, we present a compressed version of our algorithm
(CompNGC) to reduce the communication overhead associ-
ated with NGC. We empirically validate the performance of
proposed techniques over different models, datasets, graph
sizes, and topologies. Finally, comparisons with the current
state-of-the-art decentralized algorithm over non-IID data
show the superior performance of NGC with significantly
less compute and memory requirements setting the new
state-of-the-art for decentralized learning over non-IID data.

Neighborhood Gradient Clustering

Acknowledgements

This work was supported in part by, the Center for Brain-
inspired Computing (C-BRIC), a DARPA-sponsored JUMP
center, the Semiconductor Research Corporation (SRC),
the National Science Foundation, the DoD Vannevar Bush
Fellowship, and DARPA ShELL.

References

Aketi, S. A., Kodge, S., and Roy, K. Low precision
decentralized distributed training over iid and non-iid
data. Neural Networks, 2022. ISSN 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2022.08.032.

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochas-
tic gradient push for distributed deep learning. In Inter-
national Conference on Machine Learning, pp. 344-353.
PMLR, 2019.

Balu, A., Jiang, Z., Tan, S. Y., Hedge, C., Lee, Y. M., and
Sarkar, S. Decentralized deep learning using momentum-
accelerated consensus. In ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3675-3679. IEEE, 2021.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT 2010,
pp. 177-186. Springer, 2010.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
et al. Large scale distributed deep networks. Advances in
neural information processing systems, 25, 2012.

Esfandiari, Y., Tan, S. Y., Jiang, Z., Balu, A., Herron, E.,
Hegde, C., and Sarkar, S. Cross-gradient aggregation
for decentralized learning from non-iid data. In Interna-
tional Conference on Machine Learning, pp. 3036-3046.
PMLR, 2021.

Goldfarb, D. and Idnani, A. A numerically stable dual
method for solving strictly convex quadratic programs.
Mathematical programming, 27(1):1-33, 1983.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,

pp. 770-778, 2016.

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. The
non-IID data quagmire of decentralized machine learning.
In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 4387—4398. PMLR, 13-18
Jul 2020.

Husain, H. Imagenette - a subset of 10 eas-
ily classified classes from the imagenet dataset.
https.//github.com/fastai/imagenette, 2018.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. In International Conference on Machine
Learning, pp. 3252-3261. PMLR, 2019.

Kone¢ny, J., McMahan, H. B., Ramage, D., and Richtarik,
P. Federated optimization: Distributed machine learning
for on-device intelligence. 2016.

Krizhevsky, A., Nair, V., and Hinton, G. Ci-
far (canadian institute for advanced research).
http://www.cs.toronto.edu/ kriz/cifar.html, 2014.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W.,
and Liu, J. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized
parallel stochastic gradient descent. Advances in Neural
Information Processing Systems, 30, 2017.

Lin, T., Karimireddy, S. P,, Stich, S., and Jaggi, M. Quasi-
global momentum: Accelerating decentralized deep learn-
ing on heterogeneous data. In Proceedings of the 38th
International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp.
6654-6665. PMLR, 18-24 Jul 2021.

Liu, H., Brock, A., Simonyan, K., and Le, Q. Evolving
normalization-activation layers. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 33, pp. 13539-13550. Curran Associates, Inc., 2020.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520,
2018.

Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. d?: De-
centralized training over decentralized data. In Interna-
tional Conference on Machine Learning, pp. 4848—4856.
PMLR, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xiao, L. and Boyd, S. Fast linear iterations for distributed
averaging. Systems & Control Letters, 53(1):65-78, 2004.

Neighborhood Gradient Clustering

A. Appendix
A.1. Decentralized Learning Setup

The traditional decentralized learning algorithm (d-psgd) is described as Algorithm. 2. For the decentralized setup, we use
an undirected ring and undirected torus graph topologies with a uniform mixing matrix. The undirected ring topology for
any graph size has 3 peers per agent including itself and each edge has a weight of % The undirected torus topology with 10
agents has 4 peers per agent including itself and each edge has a weight of %. The undirected torus topology 20 agents have
5 peers per agent including itself and each edge has a weight of % We consider an extreme case of non-1ID distribution
where no two neighboring agents have the same class. This is referred to as complete label-wise skew or 100% label-wise
non-IIDness (Hsieh et al., 2020). In particular, for a 10-class dataset such as CIFAR-10 - each agent in a 5-agent system has
data from 2 distinct classes, and each agent in a 10 agents system has data from a unique class. For a 20 agent system two
agents that are maximally apart share the samples belonging to a class.

Algorithm 2 Decentralized Peer-to-Peer Training (D-PSGD with momentum)

Input: Each agent i € [1, N| initializes model weights xéo), step size 7, averaging rate -y, mixing matrix W = [wi;l; je[1,n]»
and I;; are elements of N x NV identity matrix.

Each agent simultaneously implements the TRAIN() procedure
1. procedure TrRAIN()
2. fork=0,1,...,K —1do

3 d}:ﬁ ~ D! .

4 9. = Vafi(dy; zf)

S, vl = By — 00l

6. Tl =xl + ol

7 SENDRECEIVE(Z?,)

8 Thany = Tp +7 Djeniy(wij — Lij) * T,
9. end

10. return

A.2. CompNGC Algorithm

The section presents the pseudocode for Compressed NGC in Algorithm 3

A.3. Datasets

In this section, we give a brief description of the datasets used in our experiments. We use a diverse set of datasets each
originating from a different distribution of images to show the generalizability of the proposed techniques.

CIFAR-10: CIFAR-10 (Krizhevsky et al., 2014) is an image classification dataset with 10 classes. The image samples are
colored (3 input channels) and have a resolution of 32 x 32. There are 50, 000 training samples with 5000 samples per class
and 10, 000 test samples with 1000 samples per class.

CIFAR-100: CIFAR-100 (Krizhevsky et al., 2014) is an image classification dataset with 100 classes. The image samples
are colored (3 input channels) and have a resolution of 32 x 32. There are 50, 000 training samples with 500 samples per
class and 10, 000 test samples with 100 samples per class. CIFAR-100 classification is a harder task compared to CIFAR-10
as it has 100 classes with very less samples per class to learn from.

Fashion MNIST: Fashion MNIST (Xiao et al., 2017) is an image classification dataset with 10 classes. The image samples
are in greyscale (1 input channel) and have a resolution of 28 x 28. There are 60, 000 training samples with 6000 samples
per class and 10, 000 test samples with 1000 samples per class.

Imagenette: Imagenette (Husain, 2018) is a 10-class subset of the ImageNet dataset. The image samples are colored (3
input channels) and have a resolution of 224 x 224. There are 9469 training samples with roughly 950 samples per class
and 3925 test samples. We conduct our experiments on a resized low resolution of 32 x 32

Neighborhood Gradient Clustering

Algorithm 3 Compressed Neighborhood Gradient Clustering (CompNGC)
Input: Each agent i € [1, N] initializes model weights xfo), step size 7, averaging rate vy, dimension of the gradient d,

mixing matrix W = [wy;]; je1, 5], NGC mixing weight o, and I;; are elements of N x N identity matrix.

Each agent simultaneously implements the TRAIN() procedure
1. procedure TRAIN()

2. fork=0,1,...,K —1do

3. di~Di

4 g = Vafildia})

5. pi=gf el)

6. o = (llpg ll1/d)sgn(p™)

7. €hr1 =Di — 5,?

8. SENDRECEIVE(2},)

9. for each neighbor j € {N (i) — i} do

10. 9 = Vafi(d;xy)

11. pf; =gy + e

12. 0" = (llpy Il /d)sgn(p’*)

13. €y = D) — O

14. if « £ 0do

15. SENDRECEIVE((S?)

16. end

17. end - B
18. gr=(1—a)= Eje./\/(i) wj; * 07 + o * ZjeN(i) wij x 6
19. v = B(_1y = N9},

20. T =al +

21. Tiper) = T+ 7 X jeny (Wi — Lig) * 2
22. end

23. return

A.4. Network Architecture

We replace ReLU+BatchNorm layers of all the model architectures with EvoNorm-SO (Liu et al., 2020) as it was shown to
be better suited for decentralized learning over non-IID distributions (Lin et al., 2021).

5 layer CNN: The 5-layer CNN consists of 4 convolutional with EvoNorm-SO (Liu et al., 2020) as activation-normalization
layer, 3 max-pooling layers, and one linear layer. In particular, it has 2 convolutional layers with 32 filters, a max pooling
layer, then 2 more convolutional layers with 64 filters each followed by another max pooling layer and a dense layer with
512 units. It has a total of 76 K trainable parameters.

ResNet-20: For ResNet-20 (He et al., 2016), we use the standard architecture with 0.27M trainable parameters except that
BatchNorm+ReLU layers are replaced by EvoNorm-S0.

LeNet-5: For LeNet-5 (LeCun et al., 1998), we use the standard architecture with 61, 706 trainable parameters.

MobileNet-V2: We use the the standard MobileNet-V2 (Sandler et al., 2018) architecture used for CIFAR dataset with
2.3M parameters except that BatchNorm+ReLU layers are replaced by EvoNorm-SO0.

A.5. Resource Comparison

The communication cost, memory overhead, and compute overhead for various decentralized algorithms are shown in
Table. 3. The D-PSGD algorithm requires each agent to communicate model parameters of size m4 with all the /V; neighbors
for the gossip averaging step and hence has a communication cost of O(msN;). In the case of NGC and CGA, there is an
additional communication round for sharing data-variant cross gradients apart from sharing model parameters for the gossip
averaging step. So, both these techniques incur a communication cost of O(2mN;) and therefore an overhead of O(msN;)
compared to D-PSGD. CompNGC compresses the additional round of communication involved with NGC from b bits to 1

Neighborhood Gradient Clustering

bit. This reduces the communication overhead from O(m,N;) to O(%)

CGA algorithm stores all the received data-variant cross-gradients in the form of a matrix for the quadratic projection step.
Hence, CGA has a memory overhead of O(mN;) compared to D-PSGD. NGC does not require any additional memory as
it averages the received data-variant cross-gradients into the self-gradient buffer. The compressed version of NGC requires
an additional memory of O(m,NV;) to store the error variables ej; (refer Algorith. 3). CompCGA also needs to store error
variables along with the projection matrix of compressed gradients. Therefore, CompCGA has a memory overhead of
O(msN; + %) Note that memory overhead depends on the type of graph topology and model architecture but not on
the size of the graph. The memory overhead for different model architectures trained on undirected ring topology is shown
in Table. 4

Table 4. Memory overheads for various methods trained on different model architectures with CIFAR-10 dataset over undirected ring
topology with 2 neighbors per agent.

Architecture | CGA | NGC | CompCGA | CompNGC
(MB) | (MB) MB) (MB)

5layer CNN | 0.58 0 0.58 0.60

ResNet-20 | 2.28 0 2.28 2.15

Table 5. Communication costs per agent in GBs for experiments in Table 1

Method Agents Ring Torus
D-PSGD 5 17.75 -
and 10 8.92 13.38
NGCa=0 20 4.50 6.60
CGA 5 35.48 -
and 10 17.81 26.72
NGC 20 8.98 17.95
CompCGA 5 18.31 -
and 10 9.20 13.79

CompNGC 20 4.64 9.28

The computation of the cross-gradients (in both CGA and NGC algorithms) requires /N; forward and backward passes
through the deep learning model at each agent. This is reflected as O(3 N, F'P) in the compute overhead in Table. 3. We
assume that the computing effort required for the backward pass is twice that of the forward pass. CGA algorithm involves
quadratic programming projection step (Goldfarb & Idnani, 1983) to update the local gradients. Quadratic programming
solver (quadprog) uses Goldfarb/Idnani dual algorithm. CGA uses quadratic programming to solve the following (Equation 3
-see Equation 5a in (Esfandiari et al., 2021)) optimization problem in an iterative manner:

: L 7 mr T ~T
w =u GG G
min 2u u+g U 3)
s.t. u>0

where, G is the matrix containing cross-gradients, g is the self-gradient, and the optimal gradient direction ¢g* in terms of the
optimal solution of the above equation u* is g* = GTu* + g. The above optimization takes multiple iterations, resulting
in compute and time complexity of polynomial(degree> 2) order. In contrast, NGC involves a simple averaging step that
requires O(m,N;) addition operations.

A.6. Communication Cost:

In this section we present the communication cost per agent in terms of Gigabytes of data transferred during the entire
training process (refer Tables. 5 and 6. The D-PSGD and NGC with o = 0 have the lowest communication cost (1X).
We emphasize that NGC with a = 0 outperforms D-PSGD in decentralized learning over label-wise non-IID data for the
same communication cost. NGC and CGA have 2x communication overhead compared to D-PSGD where as CompNGC

https://pypi.org/project/quadprog/

Neighborhood Gradient Clustering

and CompCGA have 1.03x communication overhead compared to D-PSGD. The compressed version of NGC and CGA
compresses the second round of cross-gradient communication to 1 bit. We assume the full-precision cross-gradients to be
of 32-bit precision and hence the CompNGC reduces the communication cost by 32x compared to NGC.

Table 6. Communication costs per agent in GBs for experiments in Table 2

Method Agents Fashion MNIST CIFAR-10 CIFAR-100 Imagenette
(LeNet-5) (ResNet-20) (ResNet-20) (MobileNet-V2)

D-PSGD and 5 17.25 127.19 103.74 103.12
NGCa =0 10 8.61 63.84 51.89 51.60
CGA and 5 34.50 254.27 207.47 206.23
NGC (ours) 10 17.23 127.59 103.79 103.19
CompCGA and 5 17.79 131.16 106.98 106.34
CompNGC (ours) 10 8.88 65.84 53.52 53.21

A.7. Hyper-parameters

All the experiments were run for three randomly chosen seeds. We decay the step size by 10x after 50% and 75% of the
training, unless mentioned otherwise.

Table 7. Hyper-parameters used for CIFAR-10 with non-IID data using 5-layer CNN model architecture presented in Table 1

Agents Ring Torus
Method (n) (. B.1.7) (. B.1.7)
5 (—,0.0,0.1,1.0) —
D-PSGD 10 (—,0.0,0.1,1.0) (—,0.0,0.1,1.0)
20 (—,0.0,0.1,1.0) (—,0.0,0.1,1.0)
5 (0.0,0.0,0.1,1.0) —
NGC (ours) 10 (0.0,0.0,0.1,1.0)0 (0.0,0.0,0.1,1.0)
(a=0) 20 (0.0,0.0,0.1,1.0) (0.0,0.0,0.1,1.0)
5 (—=,0.9,0.01,0.1) —
CGA 10 (-,0.9,0.01,0.5) (-,0.9,0.01,0.1)
20 (-,0.9,0.01,0.5) (-,0.9,0.01,0.1)
5 (1.0,0.9,0.01,0.1) —
NGC (ours) 10 (1.0,0.9,0.01,0.5) (1.0,0.9,0.01,0.1)
20 (1.0,0.9,0.01,0.5) (1.0,0.9,0.01,0.1)
5 (—,0.9,0.01,0.1) —
CompCGA 10 (-,0.9,0.01,0.5) (—,0.9,0.01,0.1)
20 (-,0.9,0.01,0.5) (-,0.9,0.01,0.1)
5 (1.0,0.9,0.01,0.1) —
CompNGC (ours) 10 (1.0,0.9,0.01,0.5) (1.0,0.9,0.01,0.1)
20 (1.0,0.9,0.01,0.5) (1.0,0.9,0.01,0.1)

Hyper-parameters for CIFAR-10 on 5 layer CNN: All the experiments that involve 5layer CNN model (Table. 1) have
stopping criteria set to 100 epochs. We decay the step size by 10x in multiple steps at 50" and 75" epoch. Table 7 presents
the «, 3, 1, and -y corresponding to the NGC mixing weight, momentum, step size, and gossip averaging rate. For all the
experiments, we use a mini-batch size of 32 per agent. The stopping criteria is a fixed number of epochs. We have used
Nesterov momentum of 0.9 for all CGA and NGC experiments whereas D-PSGD and NGC with o = 0 have no momentum.

Hyper-parameters for CIFAR-10 on ResNet-20: All the experiments for the CIFAR-10 dataset trained on ResNet-20
architectures (Table. 2) have stopping criteria set to 200 epochs. We decay the step size by 10x in multiple steps at 100"
and 150" epoch. Table 8 presents the c, 3, 17, and 7y corresponding to the ngc mixing weight, momentum, step size, and
gossip averaging rate. For all the experiments, we use a mini-batch size of 32 per agent.

Neighborhood Gradient Clustering

Table 8. Hyper-parameters used for CIFAR-10 with non-IID data using ResNet architecture presented in Table 2

Method Agents (a, B, 1, 7Y)
5 (—,0.0,0.1,1.0)
D-PSGD 10 (—,0.0,0.1,1.0)
NGC (ours) 5 (0.0,0.0,0.1,1.0)
(a=0) 10 (0.0,0.0,0.1,1.0)
5 (=,0.9,0.1,1.0)
CGA 10 (—,0.9,0.1,1.0)
5 (1.0,0.9,0.1,1.0)
NGC (ours) 10 (1.0,0.9,0.1,1.0)
5 (—,0.9,0.01,0.1)
CompCGA 10 (—,0.9,0.01,0.1)

5 (1.0,0.9,0.01,0.1)
CompNGC (ours) 10 (1.0,0.9,0.01,0.1)

Hyper-parameters used for CIFAR-100, Fashion-MNIST and Imagenette: All the experiments in Table. 2 except for
CIFAR-10 have stopping criteria set to 100 epochs. We decay the step size by 10x in multiple steps at 50" and 75" epoch.
Table 9 presents the o, 3, 1, and «y corresponding to the ngc mixing weight, momentum, step size, and gossip averaging rate.
For all the experiments related to Fashion MNIST and Imagenette (low resolution of (32 x 32)), we use a mini-batch size of
32 per agent. For all the experiments related to CIFAR-100, we use a mini-batch size of 20 per agent.

Table 9. Hyper-parameters used for Table. 2

Agents Fashion MNIST CIFAR-100 Imagenette
Method (n) (o, By, 7) (a, B, m,) (o, 8,1,7)
D-PSGD 5 (—,0.0,0.01,1.0) (—,0.0,0.1,1.0) (—,0.0,0.1,1.0)
10 (—,0.0,0.01,1.0) (—,0.0,0.1,1.0) (—,0.0,0.1,1.0)
NGC (ours) 5 (0.0,0.0,0.01,1.0) (0.0,0.0,0.1,1.0) (—,0.0,0.1,1.0)
(a=0) 10 (0.0,0.0,0.01,1.0) (0.0,0.0,0.1,1.0) (—,0.0,0.1,1.0)
CGA 5 (—,0.9,0.01,1.0) (-,0.9,0.1,1.0)0 (0.0,0.0,0.01,0.5)
10 (—,0.9,0.01,1.0) (-,0.9,0.1,0.5) (0.0,0.0,0.01,0.5)
NGC (ours) 5 (1.0,0.9,0.01,1.0) (1.0,0.9,0.1,1.0) (0.0,0.0,0.01,0.5)
10 (1.0,0.9,0.01,1.00 (1.0,0.9,0.1,0.5) (0.0,0.0,0.01,0.5)
CompCGA 5 (-,0.9,0.01,0.1) (-,0.9,0.01,0.1) (0.0,0.0,0.01,0.1)
10 (-,0.9,0.01,0.1) (-,0.9,0.01,0.1) (0.0,0.0,0.01,0.5)
CompNGC (ours) 5 (1.0,0.9,0.01,0.1) (1.0,0.9,0.01,0.1) (0.0,0.0,0.01,0.1)
10 (1.0,0.9,0.01,0.1) (1.0,0.9,0.01,0.1) (0.0,0.0,0.01,0.5)

