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Abstract

Large Language Models (LLMs) excel at pro-001
ducing fluent text yet remain prone to gener-002
ating harmful or biased outputs, largely due003
to their opaque, “black-box” nature. Exist-004
ing mitigation strategies, such as reinforcement005
learning from human feedback (RLHF) and006
instruction tuning, can reduce these risks but007
often demand extensive retraining and may not008
generalize. An alternative approach leverages009
sparse autoencoders (SAEs) to extract disentan-010
gled, interpretable representations from LLM011
activations, enabling the detection of specific012
semantic attributes without modifying the base013
model. In this work, we extend the Sparse014
Conditioned Autoencoder (SCAR) framework015
(Härle et al., 2024) to enable multi-attribute016
detection and steering. Our approach disen-017
tangles multiple semantic features—such as018
toxicity and style—in a unified latent space,019
providing granular, real-time control without020
compromising textual quality. Experimental re-021
sults demonstrate that our multi-feature exten-022
sion maintains the interpretability, safety, and023
quality of the original single-attribute SCAR024
while offering enhanced flexibility by allowing025
simultaneous control over multiple semantic026
attributes. Furthermore, evaluations under both027
black-box and white-box adversarial attack sce-028
narios reveal that our approach remains robust,029
reinforcing its potential as a reliable and adapt-030
able safety mechanism for LLMs.031

1 Introduction032

Large language models (LLMs) have revolution-033

ized natural language processing by generating flu-034

ent and contextually appropriate text. However,035

their “black-box” nature often makes them suscep-036

tible to producing toxic, biased, or otherwise harm-037

ful content—a risk that has spurred a rich line of038

research into methods for controlling undesirable039

behavior.040

In this work, we extend the SCAR framework041

by developing a multi-feature latent conditioning042

approach that enables simultaneous detection and 043

steering of several key semantic attributes. Our 044

contributions are threefold: (1) We propose a novel 045

training strategy that conditions multiple latent di- 046

mensions in a pre-trained LLM using sparse au- 047

toencoders and disentanglement constraints; (2) We 048

demonstrate through extensive experiments that our 049

method achieves flexible, fine-grained control over 050

diverse attributes without compromising overall 051

generation quality; and (3) We demonstrate the ro- 052

bustness of our multi-feature steered model against 053

adversarial jailbreak attacks in both white-box and 054

black-box settings. This work thus represents a 055

significant step toward more controllable, inter- 056

pretable, and safer large language models. 057

2 Related Work 058

Early approaches to mitigating these risks have 059

primarily focused on techniques such as reinforce- 060

ment learning from human feedback (RLHF) and 061

instruction tuning. For instance, RLHF methods 062

(Ziegler et al., 2020; Ouyang et al., 2022) fine-tune 063

models using human-annotated data so that their 064

outputs better align with ethical and performance 065

standards, while instruction tuning trains models on 066

datasets enriched with explicit directives. Although 067

effective in many cases, these methods require ex- 068

tensive retraining or fine-tuning, are computation- 069

ally expensive, and tend to impose static guardrails 070

that may not generalize well to diverse contexts. 071

An alternative and promising strategy leverages 072

sparse autoencoders (SAEs) to extract interpretable, 073

disentangled representations from LLM activations. 074

SAEs work by reconstructing high-dimensional ac- 075

tivation vectors using a low-dimensional, sparsely 076

activated code. This sparse coding approach not 077

only yields representations that are more inter- 078

pretable—as demonstrated by Gao et al. (2024) 079

and Cunningham et al. (2023)—but also provides 080

a mechanism for detecting specific semantic at- 081
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tributes (e.g., toxicity) without altering the original082

language model.083

Building on these ideas, SCAR (Sparse Condi-084

tioned Autoencoders for Concept Detection and085

Steering in LLMs) introduced a latent conditioning086

mechanism that forces a designated latent dimen-087

sion to align with a target concept, enabling real-088

time detection and steering of harmful outputs dur-089

ing inference (Härle et al., 2024). Although SCAR090

presents an elegant solution for single-attribute con-091

trol, many practical applications require simultane-092

ous regulation of multiple features—such as toxic-093

ity, sentiment, and stylistic attributes—to achieve a094

more comprehensive safety and quality standard.095

3 Sparse Auto Encoder Integration096

3.1 Architecture097

We follow the SCAR framework, inserting a Sparse098

Autoencoder into the LLM pipeline at block D.099

Specifically, for each token’s hidden-state activa-100

tion x, we compute:101

h = Wenc x+ benc. (1)102

Here, Wenc and benc are the parameters of the103

SAE’s encoder. We then apply σ, a sparse acti-104

vation function, to h:105

f = σ(h), (2)106

yielding the activated latent representation. We107

pass f into the decoder,108

x̄ = Wdec f + bdec, (3)109

where Wdec and bdec are the decoder parameters.110

During training, the decoder output x̄ is not used111

by the LLM; instead, the original x is used for final112

predictions in the dataset creation phase. During113

inference, however, we replace x with x̄ in the114

LLM, enabling the model’s output to be steered via115

the latent representation.116

3.2 Multi-Feature Conditioning117

To jointly learn multiple features, we designate m118

latent dimensions in h, each corresponding to a119

feature j. Formally:120

121

hj ↔ feature j, for j = 1, . . . ,m.122

123

These dedicated neurons are constrained to align124

with each feature’s label yj by a condition loss (de-125

tailed below). The remaining latent dimensions of126

h remain unconstrained and serve for reconstruc-127

tion.128

4 Training Objective 129

4.1 Reconstructed Loss 130

We encourage the SAE to approximate the original 131

activation x via: 132

133

Lrecon = (||x−x̄||2)
(||x||2) , 134

135

Where x̄ = Wdec f + bdec. The normalization 136

by ||x||2 stabilizes training across a wide range of 137

activation magnitudes. 138

4.2 Multi-Feature Conditioned Loss 139

To ensure each feature dimension hj correlates 140

with its label yj , we apply a binary cross-entropy 141

(BCE) on the logit hj . Concretely: 142

143

Lcond = Σm
j=1 BCE(σ(hj), yj) 144

145

where σ is the standard sigmoid function. If a 146

label is unknown yj = −1, we mask out that term. 147

This loss drives neuron hj to be large and positive 148

when yj ≈ 1 and near zero when yj ≈ 0. 149

4.3 Combined Objective 150

We freeze all LLM parameters and only optimize 151

SAE parameters Wenc, benc . The overall training 152

loss is, 153

154

Ltotal = Lrecon + λLcond 155

156

where λ balances feature conditioning against 157

reconstruction fidelity. We train using stochastic 158

gradient descent (e.g., Adam) over the dataset’s 159

token-level activations. 160

5 Inference Time Steering 161

To steer our features, we take our hj latent vector 162

and scale it by some hyperparameter value αj or 163

keep it the same otherwise. We express this new 164

activation fj as: 165

fj =

{
αj · hj if j corresponds to a concept
σ(hj) otherwise

166

167

Where j corresponds to the jth feature we want 168

to steer and αj is the scaler value we apply to our 169

hj feature. We then take this new latent vector, 170

decode it, and add it to the Feed Forward section 171

of our transformer block. 172
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6 Experiment Setup173

To evaluate the Multi-Concept SCAR framework,174

we conducted a series of experiments leveraging175

the LLaMA-8B model, focusing on its ability to176

simultaneously represent and interact with multiple177

concepts. The experimental design builds on the178

methodology outlined in the SCAR paper, adapting179

it to a novel combination of datasets and concept180

analyses.181

To evaluate the effectiveness of our multi-feature182

Sparse Autoencoder (SAE) within the SCAR183

framework, we conduct a comparative analysis of184

SAE reconstruction loss across different architec-185

tures. Specifically, we compare the SAE loss of186

our multi-feature SCAR model against the original187

SCAR model, which leverages sparse encoding but188

does not incorporate multiple contextual dependen-189

cies. By analyzing SAE loss, we assess the extent190

to which each model effectively reconstructs its191

learned representations, providing insight into the192

benefits of incorporating multiple features.193

Figure 1: SAE Reconstruction Loss for M-SCAR

In Figure 1, we compare the original activations194

from our LLaMA-8B model to those reconstructed195

by M-SCAR. The consistently low SAE loss indi-196

cates that the sparse autoencoder imposes minimal197

distortion on the underlying representations, effec-198

tively preserving the model’s capacity and behavior199

while enabling multi-concept steering.200

To further evaluate the efficacy of our approach201

for concept detection, in Figure 2, we plot the202

concept score on the y-axis against the test203

sentence index on the x-axis, where each index204

corresponds to an individual sentence from the set:205

206

207

208

Sentences 209

⟨"Thou art a knave and thou shall speak no more!"
"I will kill you, you worthless piece of trash!"
"And now, dear friend, let us enjoy a pleasant meal."
"But soft, what light through yonder window breaks?"
"You’re an idiot. I hope you suffer!"
"I love the morning sky, it’s so peaceful."⟩

210

In our experiments, we focus on two target at- 211

tributes: toxicity and Shakespearean style. The 212

evaluation graphs reveal that sentences exhibit- 213

ing high toxicity consistently yield elevated tox- 214

icity scores, while those lacking toxic language 215

score low. Similarly, sentences written in a Shake- 216

spearean style register high concept scores for that 217

attribute, in contrast to modern or neutral sentences. 218

This clear separation across the test samples con- 219

firms that the SAE not only reconstructs the origi- 220

nal activations faithfully but also effectively disen- 221

tangles and isolates the semantic features required 222

for robust concept detection. These results validate 223

that our multi-feature SCAR extension successfully 224

extracts actionable latent signals, forming a robust 225

basis for downstream steering. 226

Figure 2: A bar graph showing, for each sentence index
(sentences are shown in the right-hand side box), two
adjacent concept scores representing the Shakespearean
style and the toxicity style scores, respectively.

As jailbreak attacks on LLMs become increas- 227

ingly sophisticated, assessing model robustness 228

against these adversarial techniques is essential. 229

Recent works (Zou et al., 2023; Chao et al., 2024) 230

have demonstrated that aligned language models 231

are vulnerable to prompt injections, adversarial 232

rephrasings, and automated attack strategies that 233

can bypass safety mechanisms. We further inves- 234

tigate whether our M-SCAR model can curb the 235

impact of state-of-the-art jailbreaking methods. We 236

evaluated the resilience of our model using a set 237

of benchmarked adversarial prompting techniques 238

from (Zou et al., 2023; Chao et al., 2024). For 239
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each method, we measured the model’s toxicity240

score under both normal and jailbroken conditions,241

comparing our M-SCAR model against a baseline242

model.243

Figure 3: Model toxicity under normal and jailbro-
ken prompts for two concepts. The baseline model
exhibits a significant increase in toxicity under adversar-
ial prompting (0.85), whereas M-SCAR reduces this to
0.45, demonstrating its robustness.

Figure 3 presents the results of our jailbreak eval-244

uation. The baseline model exhibits a drastic in-245

crease in toxicity when subjected to adversarial246

prompts, highlighting its vulnerability to SOTA247

jailbreaking techniques. In contrast, our M-SCAR248

model successfully mitigates these effects, reduc-249

ing the toxicity score from 0.85 to 0.45 under jail-250

break conditions. These results suggest that multi-251

concept latent steering via SAEs provides a promis-252

ing direction for enhancing LLM robustness against253

adversarial attacks.254

7 Conclusion / Limitations255

In this paper, we introduced a multi-concept ex-256

tension of the Sparse Conditioned Autoencoder257

(SCAR) framework, enabling simultaneous detec-258

tion and steering of multiple semantic attributes259

within LLMs. Unlike traditional methods such260

as RLHF and instruction tuning—which often re-261

quire expensive model retraining—our approach262

minimally modifies existing LLMs by inserting263

and training an external sparse autoencoder layer.264

This architecture preserves the core model’s expres-265

sive capacity while disentangling key semantic di-266

mensions (like toxicity and style) into interpretable267

latent features that can be dynamically scaled or268

suppressed during inference. Our extensive ex-269

periments demonstrated that this multi-feature de-270

sign not only preserves text quality and maintains271

fine-grained control, but also introduces strong re- 272

silience against both white-box and black-box ad- 273

versarial “jailbreak” prompts. 274

Although our experiments focused on disentan- 275

gling and steering two attributes (toxicity and style), 276

the multi-concept SCAR framework naturally ex- 277

tends to higher-dimensional settings. We envision 278

several directions for future research. First, a sys- 279

tematic assessment is needed to determine the up- 280

per bound on the number of concepts (n) that can 281

be reliably disentangled before sparse autoencoder 282

performance degrades. Characterizing where (and 283

why) such a falloff occurs will inform architectural 284

and training enhancements for handling a larger 285

palette of user-defined attributes. Second, more so- 286

phisticated adversarial methodologies can be incor- 287

porated to further stress-test the model’s robustness, 288

including automated or adaptive attack strategies 289

that target multiple latent dimensions simultane- 290

ously. Finally, integrating multi-concept SCAR 291

with complementary alignment techniques—such 292

as selective fine-tuning or reward-modeling—may 293

offer an even stronger composite defense against 294

both accidental and adversarial misuse of LLMs. 295
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A SCAR MSE Loss and Delta Loss331

In this appendix, we provide additional details on332

the loss functions employed in the SCAR frame-333

work, namely the Mean Squared Error (MSE) loss334

used for activation reconstruction and the Delta335

loss that enforces latent space disentanglement.336

A.1 SCAR MSE Loss337

The reconstruction loss in SCAR is computed as the338

Mean Squared Error (MSE) between the original339

activations a and the reconstructed activations â.340

Formally, the loss is defined as:341

LMSE =
1

N

N∑
i=1

(ai − âi)
2, (4)342

where N is the number of activation elements. This343

loss encourages the sparse autoencoder to capture344

and accurately reconstruct the high-dimensional345

activations using a low-dimensional, sparsely acti-346

vated code. The accurate reconstruction of these347

activations is critical for preserving the semantic348

information necessary for downstream concept de-349

tection and steering.350

In our experiments, we evaluated the reconstruc-351

tion performance over 10 batches and obtained an352

average MSE of approximately 0.0015. This low353

error indicates that the model is able to effectively354

reconstruct the activations while maintaining the355

semantic fidelity required for concept detection.356

A.2 Discussion357

In our experiments comparing the multi-feature358

SCAR with its single-feature counterpart, we ob-359

served that the multi-feature model exhibits a360

higher reconstruction MSE. This increased loss361

is not a shortcoming, but rather an expected trade-362

off: while the single-feature SCAR can focus on363

accurately reconstructing activations for one spe-364

cific attribute, our multi-feature approach must cap-365

ture a richer and more complex representation to366

support simultaneous detection and control of mul-367

tiple semantic attributes. Thus, the higher recon-368

struction loss in the multi-feature SCAR reflects369

Figure 4: Reconstruction MSE across 10 batches, show-
ing an average MSE of approximately 0.0015.

the additional complexity required to manage sev- 370

eral features at once, and is a necessary cost for 371

achieving more comprehensive and flexible con- 372

trol. Future work will explore methods to mitigate 373

this increased error while retaining the benefits of 374

multi-attribute handling. 375
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