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Abstract

Large Language Models (LLMs) excel at pro-
ducing fluent text yet remain prone to gener-
ating harmful or biased outputs, largely due
to their opaque, “black-box™ nature. Exist-
ing mitigation strategies, such as reinforcement
learning from human feedback (RLHF) and
instruction tuning, can reduce these risks but
often demand extensive retraining and may not
generalize. An alternative approach leverages
sparse autoencoders (SAEs) to extract disentan-
gled, interpretable representations from LLM
activations, enabling the detection of specific
semantic attributes without modifying the base
model. In this work, we extend the Sparse
Conditioned Autoencoder (SCAR) framework
(Hérle et al., 2024) to enable multi-attribute
detection and steering. Our approach disen-
tangles multiple semantic features—such as
toxicity and style—in a unified latent space,
providing granular, real-time control without
compromising textual quality. Experimental re-
sults demonstrate that our multi-feature exten-
sion maintains the interpretability, safety, and
quality of the original single-attribute SCAR
while offering enhanced flexibility by allowing
simultaneous control over multiple semantic
attributes. Furthermore, evaluations under both
black-box and white-box adversarial attack sce-
narios reveal that our approach remains robust,
reinforcing its potential as a reliable and adapt-
able safety mechanism for LLMs.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing by generating flu-
ent and contextually appropriate text. However,
their “black-box” nature often makes them suscep-
tible to producing toxic, biased, or otherwise harm-
ful content—a risk that has spurred a rich line of
research into methods for controlling undesirable
behavior.

In this work, we extend the SCAR framework
by developing a multi-feature latent conditioning

approach that enables simultaneous detection and
steering of several key semantic attributes. Our
contributions are threefold: (1) We propose a novel
training strategy that conditions multiple latent di-
mensions in a pre-trained LLM using sparse au-
toencoders and disentanglement constraints; (2) We
demonstrate through extensive experiments that our
method achieves flexible, fine-grained control over
diverse attributes without compromising overall
generation quality; and (3) We demonstrate the ro-
bustness of our multi-feature steered model against
adversarial jailbreak attacks in both white-box and
black-box settings. This work thus represents a
significant step toward more controllable, inter-
pretable, and safer large language models.

2 Related Work

Early approaches to mitigating these risks have
primarily focused on techniques such as reinforce-
ment learning from human feedback (RLHF) and
instruction tuning. For instance, RLHF methods
(Ziegler et al., 2020; Ouyang et al., 2022) fine-tune
models using human-annotated data so that their
outputs better align with ethical and performance
standards, while instruction tuning trains models on
datasets enriched with explicit directives. Although
effective in many cases, these methods require ex-
tensive retraining or fine-tuning, are computation-
ally expensive, and tend to impose static guardrails
that may not generalize well to diverse contexts.
An alternative and promising strategy leverages
sparse autoencoders (SAEs) to extract interpretable,
disentangled representations from LLM activations.
SAEs work by reconstructing high-dimensional ac-
tivation vectors using a low-dimensional, sparsely
activated code. This sparse coding approach not
only yields representations that are more inter-
pretable—as demonstrated by Gao et al. (2024)
and Cunningham et al. (2023)—but also provides
a mechanism for detecting specific semantic at-



tributes (e.g., toxicity) without altering the original
language model.

Building on these ideas, SCAR (Sparse Condi-
tioned Autoencoders for Concept Detection and
Steering in LLMs) introduced a latent conditioning
mechanism that forces a designated latent dimen-
sion to align with a target concept, enabling real-
time detection and steering of harmful outputs dur-
ing inference (Hérle et al., 2024). Although SCAR
presents an elegant solution for single-attribute con-
trol, many practical applications require simultane-
ous regulation of multiple features—such as toxic-
ity, sentiment, and stylistic attributes—to achieve a
more comprehensive safety and quality standard.

3 Sparse Auto Encoder Integration

3.1 Architecture

We follow the SCAR framework, inserting a Sparse
Autoencoder into the LLM pipeline at block D.
Specifically, for each token’s hidden-state activa-
tion X, we compute:

h = Wepe X + bene. (D

Here, Wepe and bep. are the parameters of the
SAE’s encoder. We then apply o, a sparse acti-
vation function, to h:

f =o(h), 2

yielding the activated latent representation. We
pass f into the decoder,

X = Wiec f+ bdec: (3)

where Wy, and bge are the decoder parameters.
During training, the decoder output Z is not used
by the LLM; instead, the original x is used for final
predictions in the dataset creation phase. During
inference, however, we replace x with Z in the
LLM, enabling the model’s output to be steered via
the latent representation.

3.2 Multi-Feature Conditioning

To jointly learn multiple features, we designate m
latent dimensions in h, each corresponding to a
feature j. Formally:

hj < feature j, for j = 1,...,m.

These dedicated neurons are constrained to align
with each feature’s label y; by a condition loss (de-
tailed below). The remaining latent dimensions of
h remain unconstrained and serve for reconstruc-
tion.

4 Training Objective

4.1 Reconstructed Loss

We encourage the SAE to approximate the original
activation z via:

Where & = Wye. f + bgec. The normalization
by ||x||? stabilizes training across a wide range of
activation magnitudes.

4.2 Multi-Feature Conditioned Loss

To ensure each feature dimension h; correlates
with its label y;, we apply a binary cross-entropy
(BCE) on the logit hj. Concretely:

Lcond = Z‘;n:l BCE(U(hj)7 yj)

where o is the standard sigmoid function. If a
label is unknown y; = —1, we mask out that term.
This loss drives neuron h; to be large and positive
when y; ~ 1 and near zero when y; ~ 0.

4.3 Combined Objective

We freeze all LLM parameters and only optimize
SAE parameters Wy, bene . The overall training
loss is,

Ltotal = Lrecon + )\Lcond

where A balances feature conditioning against
reconstruction fidelity. We train using stochastic
gradient descent (e.g., Adam) over the dataset’s
token-level activations.

5 Inference Time Steering

To steer our features, we take our h; latent vector
and scale it by some hyperparameter value «; or
keep it the same otherwise. We express this new
activation f; as:

fi=

Oéj . hj
o(hj)

Where j corresponds to the jth feature we want
to steer and «; is the scaler value we apply to our
h; feature. We then take this new latent vector,
decode it, and add it to the Feed Forward section
of our transformer block.

if 7 corresponds to a concept

otherwise



6 Experiment Setup

To evaluate the Multi-Concept SCAR framework,
we conducted a series of experiments leveraging
the LLaMA-8B model, focusing on its ability to
simultaneously represent and interact with multiple
concepts. The experimental design builds on the
methodology outlined in the SCAR paper, adapting
it to a novel combination of datasets and concept
analyses.

To evaluate the effectiveness of our multi-feature
Sparse Autoencoder (SAE) within the SCAR
framework, we conduct a comparative analysis of
SAE reconstruction loss across different architec-
tures. Specifically, we compare the SAE loss of
our multi-feature SCAR model against the original
SCAR model, which leverages sparse encoding but
does not incorporate multiple contextual dependen-
cies. By analyzing SAE loss, we assess the extent
to which each model effectively reconstructs its
learned representations, providing insight into the
benefits of incorporating multiple features.
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Figure 1: SAE Reconstruction Loss for M-SCAR

In Figure 1, we compare the original activations
from our LLaMA-8B model to those reconstructed
by M-SCAR. The consistently low SAE loss indi-
cates that the sparse autoencoder imposes minimal
distortion on the underlying representations, effec-
tively preserving the model’s capacity and behavior
while enabling multi-concept steering.

To further evaluate the efficacy of our approach
for concept detection, in Figure 2, we plot the
concept score on the y-axis against the test
sentence index on the z-axis, where each index
corresponds to an individual sentence from the set:

Sentences
("Thou art a knave and thou shall speak no more!"
"I will kill you, you worthless piece of trash!"
"And now, dear friend, let us enjoy a pleasant meal."

"But soft, what light through yonder window breaks?"

"You’re an idiot. I hope you suffer!"
"I love the morning sky, it’s so peaceful.")

In our experiments, we focus on two target at-
tributes: toxicity and Shakespearean style. The
evaluation graphs reveal that sentences exhibit-
ing high toxicity consistently yield elevated tox-
icity scores, while those lacking toxic language
score low. Similarly, sentences written in a Shake-
spearean style register high concept scores for that
attribute, in contrast to modern or neutral sentences.
This clear separation across the test samples con-
firms that the SAE not only reconstructs the origi-
nal activations faithfully but also effectively disen-
tangles and isolates the semantic features required
for robust concept detection. These results validate
that our multi-feature SCAR extension successfully
extracts actionable latent signals, forming a robust
basis for downstream steering.

A Warning: Explicit Language!
Multi-Concept SAE Detection: Shakespeare vs. Toxicity
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Figure 2: A bar graph showing, for each sentence index
(sentences are shown in the right-hand side box), two
adjacent concept scores representing the Shakespearean
style and the toxicity style scores, respectively.

As jailbreak attacks on LLLMs become increas-
ingly sophisticated, assessing model robustness
against these adversarial techniques is essential.
Recent works (Zou et al., 2023; Chao et al., 2024)
have demonstrated that aligned language models
are vulnerable to prompt injections, adversarial
rephrasings, and automated attack strategies that
can bypass safety mechanisms. We further inves-
tigate whether our M-SCAR model can curb the
impact of state-of-the-art jailbreaking methods. We
evaluated the resilience of our model using a set
of benchmarked adversarial prompting techniques
from (Zou et al., 2023; Chao et al., 2024). For



each method, we measured the model’s toxicity
score under both normal and jailbroken conditions,
comparing our M-SCAR model against a baseline
model.
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Figure 3: Model toxicity under normal and jailbro-
ken prompts for two concepts. The baseline model
exhibits a significant increase in toxicity under adversar-
ial prompting (0.85), whereas M-SCAR reduces this to
0.45, demonstrating its robustness.

Figure 3 presents the results of our jailbreak eval-
uation. The baseline model exhibits a drastic in-
crease in toxicity when subjected to adversarial
prompts, highlighting its vulnerability to SOTA
jailbreaking techniques. In contrast, our M-SCAR
model successfully mitigates these effects, reduc-
ing the toxicity score from 0.85 to 0.45 under jail-
break conditions. These results suggest that multi-
concept latent steering via SAEs provides a promis-
ing direction for enhancing LLM robustness against
adversarial attacks.

7 Conclusion / Limitations

In this paper, we introduced a multi-concept ex-
tension of the Sparse Conditioned Autoencoder
(SCAR) framework, enabling simultaneous detec-
tion and steering of multiple semantic attributes
within LLMs. Unlike traditional methods such
as RLHF and instruction tuning—which often re-
quire expensive model retraining—our approach
minimally modifies existing LLMs by inserting
and training an external sparse autoencoder layer.
This architecture preserves the core model’s expres-
sive capacity while disentangling key semantic di-
mensions (like toxicity and style) into interpretable
latent features that can be dynamically scaled or
suppressed during inference. Our extensive ex-
periments demonstrated that this multi-feature de-
sign not only preserves text quality and maintains

fine-grained control, but also introduces strong re-
silience against both white-box and black-box ad-
versarial “jailbreak” prompts.

Although our experiments focused on disentan-
¢gling and steering two attributes (toxicity and style),
the multi-concept SCAR framework naturally ex-
tends to higher-dimensional settings. We envision
several directions for future research. First, a sys-
tematic assessment is needed to determine the up-
per bound on the number of concepts (n) that can
be reliably disentangled before sparse autoencoder
performance degrades. Characterizing where (and
why) such a falloff occurs will inform architectural
and training enhancements for handling a larger
palette of user-defined attributes. Second, more so-
phisticated adversarial methodologies can be incor-
porated to further stress-test the model’s robustness,
including automated or adaptive attack strategies
that target multiple latent dimensions simultane-
ously. Finally, integrating multi-concept SCAR
with complementary alignment techniques—such
as selective fine-tuning or reward-modeling—may
offer an even stronger composite defense against
both accidental and adversarial misuse of LLMs.
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A SCAR MSE Loss and Delta Loss

In this appendix, we provide additional details on
the loss functions employed in the SCAR frame-
work, namely the Mean Squared Error (MSE) loss
used for activation reconstruction and the Delta
loss that enforces latent space disentanglement.

A.1 SCAR MSE Loss

The reconstruction loss in SCAR is computed as the
Mean Squared Error (MSE) between the original
activations a and the reconstructed activations a.
Formally, the loss is defined as:

N
1 .
Lvse = ~ ;(ai —a;)?, “4)
1=

where IV is the number of activation elements. This
loss encourages the sparse autoencoder to capture
and accurately reconstruct the high-dimensional
activations using a low-dimensional, sparsely acti-
vated code. The accurate reconstruction of these
activations is critical for preserving the semantic
information necessary for downstream concept de-
tection and steering.

In our experiments, we evaluated the reconstruc-
tion performance over 10 batches and obtained an
average MSE of approximately 0.0015. This low
error indicates that the model is able to effectively
reconstruct the activations while maintaining the
semantic fidelity required for concept detection.

A.2 Discussion

In our experiments comparing the multi-feature
SCAR with its single-feature counterpart, we ob-
served that the multi-feature model exhibits a
higher reconstruction MSE. This increased loss
is not a shortcoming, but rather an expected trade-
off: while the single-feature SCAR can focus on
accurately reconstructing activations for one spe-
cific attribute, our multi-feature approach must cap-
ture a richer and more complex representation to
support simultaneous detection and control of mul-
tiple semantic attributes. Thus, the higher recon-
struction loss in the multi-feature SCAR reflects
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Figure 4: Reconstruction MSE across 10 batches, show-
ing an average MSE of approximately 0.0015.

the additional complexity required to manage sev-
eral features at once, and is a necessary cost for
achieving more comprehensive and flexible con-
trol. Future work will explore methods to mitigate
this increased error while retaining the benefits of
multi-attribute handling.
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