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Abstract

There is a growing concern that the recent progress made in
Al, especially regarding the predictive competence of deep
learning models, will be undermined by a failure to properly
explain their operation and outputs. In response to this dis-
quiet, counterfactual explanations have become very popular
in eXplainable Al (XAI) due to their asserted computational,
psychological, and legal benefits. In contrast however, semi-
factuals (which appear to be equally useful) have surpris-
ingly received no attention. Most counterfactual methods ad-
dress tabular rather than image data, partly because the non-
discrete nature of images makes good counterfactuals diffi-
cult to define; indeed, generating plausible counterfactual im-
ages which lie on the data manifold is also problematic. This
paper advances a novel method for generating plausible coun-
terfactuals and semi-factuals for black-box CNN classifiers
doing computer vision. The present method, called Plausl-
ble Exceptionality-based Contrastive Explanations (PIECE),
modifies all “exceptional” features in a test image to be “nor-
mal” from the perspective of the counterfactual class, to gen-
erate plausible counterfactual images. Two controlled exper-
iments compare this method to others in the literature, show-
ing that PIECE generates highly plausible counterfactuals
(and the best semi-factuals) on several benchmark measures.

Introduction

In the last few years, emerging issues around the the inter-
pretability of machine learning models have elicited a ma-
jor, on-going response from government (Gunning 2017),
industry (Pichai 2018), and academia (Miller 2019) on eX-
plainable AI (XAI) (Guidotti et al. 2018; Adadi and Berrada
2018). As opaque, black-box deep learning models are in-
creasingly being used in the “real world” for high-stakes de-
cision making (e.g., medicine and law), there is a pressing
need to give end-users some insight into how these models
achieve their predictions. In this paper, we advance a new
technique for XAl using counterfactual and semi-factual ex-
planations, applied to deep learning models [i.e., convolu-
tional neural networks (CNNs)]. Recently, the topic of “con-
trastive explanations” has received considerable interest in
Al (Miller 2018; Wachter, Mittelstadt, and Russell 2017),
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Figure 1: Alternative Explanations: From a given sample
test image, PIECE can generate synthetic counterfactual (in
a different class) and semi-factual images (within the same
class) that are meaningful modifications in the pixel-space,
and fall within the data distribution.

but it tends to focus on counterfactual rather than semi-
factual explanation strategies. Counterfactuals have received
this attention because they appear to offer computational,
psychological, and legal advantages over other explanation
strategies; advantages that also appear to accrue to semi-
factual explanations (see next section for a review). The
code needed to reproduce our algorithm may be found at
https://github.com/EoinKenny/AAATI-2021.

Contrastive Explanation

Clarifying what constitutes an “explanation” has been an
issue for Al, as much as it has been for philosophy and
psychology. Here, we follow the proposal that explanations
are “contrastive” to convey important causal information
about the to-be-explained item (Miller 2019). Contrastive
explanation is often identified with counterfactual explana-
tion (Wachter, Mittelstadt, and Russell 2017), where fea-
tures that change the original outcome are used to explain
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Figure 2: A Semi-Factual Explanation in Smart Agriculture: A farmer does not understand the Al Decision Support System’s
advice on fertilizer-use in the coming month and asks for an explanation. The Al uses a semi-factual explanation to justify the
advice and convince the user it is correct about using less fertilizer than the farmer expected to use. The result is an actionable
insight that saves the farmer money, improves environmental sustainability, and bolsters trust in the system.

what might have been (e.g., if Hitler had been killed in
a Munich street riot in 1930, WWII would not have hap-
pened). However, there are other types of contrastive expla-
nation that have received a lot less attention: including, semi-
factuals (McCloy and Byrne 2002), pre-factuals (Sanna
1996), and bi-factuals (Miller 2018). Here, we explore semi-
factuals which explain how certain features can change with-
out changing the original outcome (e.g., even if Hitler had
been killed in 1930, WWII would still have happened). We
propose an new algorithm for counterfactual explanation,
that also can generate semi-factual explanations [what (Nu-
gent, Doyle, and Cunningham 2009) called a-fortiori rea-
soning]. The former involves contrasting explanations that
modify the current outcome of a test instance (e.g., the
model’s prediction changes to another class), whilst the lat-
ter involves a contrasting explanation that leaves the out-
come intact (i.e., the model’s prediction is not significantly
changed in the explanation generated). Here we consider
each of these alternative explanation strategies, in turn.

Counterfactual Explanation

To understand what makes counterfactuals important, con-
sider the difference between factual and counterfactual ex-
planations. An Al loan application system could explain
its decision factually saying “You were refused because a
previous customer with your profile asked for this amount,
and was also refused” (Kenny and Keane 2019; Keane and
Kenny 2019; Kenny et al. 2020). In contrast, a counterfac-
tual explanation could say “If you applied for a slightly
lower amount, you would have been accepted”. The pro-
ponents of counterfactual explanations argue that they have
distinctive computational, psychological, and legal bene-
fits. Computationally, counterfactuals provide explanations
without having to “open the black box” (McGrath et al.
2018). Psychologically, counterfactuals elicit spontaneous,
causal thinking in people, thus making explanations that use
them more engaging (Byrne 2019; Miller 2019). Legally, it
is argued that counterfactual explanations are GDPR com-
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pliant (Wachter, Mittelstadt, and Russell 2017).

Semi-Factual Explanation

Similar arguments can be also be made for the benefits of
semi-factuals. In everyday discourse, people typically begin
a semi-factual explanation with the words “Even if...”. So, an
Al loan system using semi-factuals might say “Even if you
had double your current salary, your loan would still have
been refused”. In some respects, semi-factual explanations
appear to have advantages over other explanation types.

Firstly, semi-factual explanations make a prediction seem
incontestable and more correct than a factual explana-
tion (Nugent, Doyle, and Cunningham 2009; Byrne 2019).
As such, these explanations could be much more convincing;
for example, in a SmartAg decision-support system [e.g.,
(Kenny et al. 2020)], a semi-factual explanation could help
convince a user to trust the system whilst also imparting im-
portant causal information regarding the prediction. Specif-
ically, a farmer could be told “Even if you used twice as
much fertilizer last month, the crop yield would still have
been the same” (see Fig. 2), leading to better farm manage-
ment and environmental sustainability (Sutton et al. 2011;
Kenny et al. 2019).

Secondly, semi-factuals typically work by modifying a
single feature in the explanation. Counterfactuals often re-
quire multiple feature changes to enable the explanation
to cross a decision boundary (to change the outcome).
This difference is important because it is generally agreed
that sparse explanations (with fewer feature-differences) are
more comprehensible (Keane and Smyth 2020). So semi-
factual explanations produced by an Al system are much
more likely to be interpretable than counterfactual ones.

Thirdly, semi-factuals appear to have the advantage of
decreasing negative emotions in people by comparison to
counterfactuals (McCloy and Byrne 2002), which may give
them a role in explanations conveying bad news (e.g., loan
rejections or illness diagnoses). The semi-factual tells you
there is nothing you could have done to change a bad out-



come, whereas the counterfactual potentially blames you for
not having done something (e.g., “even if you lived healthily
you would still have gotten ill” versus “if you had a healthier
lifestyle, you would not have gotten ill”).

Semi-factuals have been researched for decades in philos-
ophy (Goodman 1983; Bennett 1982; Barker 1991) and psy-
chology (Boninger, Gleicher, and Strathman 1994; Santa-
maria, Espino, and Byrne 2005; Macbeth and Razumiejczyk
2019; McCloy and Byrne 2002). However, in Al, semi-
factual explanations have been largely ignored, even though
they can offer good justifications for predictions whilst con-
veying relevant causal explanatory information (see Fig. 1-
3). The closest work we have found in the Al literature, is
that on a-fortiori reasoning (Nugent, Doyle, and Cunning-
ham 2009; Zurek 2012) where it has been found to bet-
ter convince people of a classifier’s correctness in compari-
son to factual (i.e., nearest neighbor) explanations (e.g., see
Fig. 3). Apart from these two studies, we have not found any
other work in Al that explores semi-factual explanation. In
a-fortiori reasoning one argues that since situation x it true,
situation y must be true also. For example, such reasoning
might state “Britain cannot afford a space programme, ergo,
neither can India”. A semi-factual version of this example
would state, “Even if India was as wealthy as Britain, they
still couldn’t afford a space program”. Computationally, we
see these situations as being interchangeable.

Lastly, having argued for the positive aspects of semi-
factuals, it should be said there may be negative ones. Semi-
factuals can make a prediction seem incontestable (Byrne
2019), and appear to be highly effective in convincing peo-
ple about AI systems (Nugent, Doyle, and Cunningham
2009). Hence, there is concern that they could be misused
to mislead users and engender “inappropriate trust” in a sys-
tem. So there are ethical issues that need to be flagged (see
our Ethics Statement at the end of this paper).

Related Work

Most post-hoc explanation-by-example research on counter-
factuals has focused on discrete data such as tabular datasets
[e.g., see McGrath et al. 2018)]. These methods aim to gen-
erate minimally-different counterfactual instances that can
plausibly explain test instances [i.e., instances from a “pos-
sible world” (Pawelczyk, Broelemann, and Kasneci 2020)].!
These counterfactual explanation techniques can be divided
into “blind perturbation” and “experience-guided” meth-
ods (Keane and Smyth 2020). Blind perturbation methods
generate candidate counterfactual explanations by perturb-
ing feature values of the test instance to find minimally-
different instances from a different/opposing class [e.g.,
(Wachter, Mittelstadt, and Russell 2017)], using distance
metrics to select “close” instances. Experience-guided meth-
ods rely more directly on the training data by justifying
counterfactual selection using training instances (Laugel
et al. 2019), analyzing features of the training data (Mc-
Grath et al. 2018), or by directly adapting training in-

'There is a literature using Causal Bayesian Networks to as-
sess fairness of Al systems (Pearl 2000). This is a different use of
counterfactuals for another aspect of XAl
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stances (Keane and Smyth 2020). At present, it is unclear
which works best, as there is no agreed standard for com-
putational evaluation, and few papers perform user evalua-
tions [but see (Dodge et al. 2019; Lucic, Haned, and de Rijke
2020)]. With respect to semi-factual explanations, there is
one highly relevant paper, using case-based reasoning for a-
fortiori reasoning (Nugent, Doyle, and Cunningham 2009),
but it focuses solely on tabular data.

The applicability of the above techniques to image data
remains an open question, largely due to the difference
between discrete (e.g., tabular and text) and non-discrete
domains (i.e., images). In image datasets, a separate lit-
erature examines counterfactuals for adversarial attacks,
rather than generating them for XAI In adversarial at-
tacks, small changes are made (i.e., at the pixel level of
an image) to generate synthetic instances to induce mis-
classifications (Goodfellow, Shlens, and Szegedy 2014).
Typically, these micro-level perturbations are constructed
to be human-undetectable. In XAI however, counterfac-
tual feature changes need to be human-detectable, compre-
hensible, and plausible (see Fig. 3c). With this in mind,
some notable recent work has used variational autoencoders
(VAEs) (Kingma and Welling 2013) and generative adver-
sarial networks (GANSs) (Goodfellow et al. 2014) to produce
counterfactual images with large featural-changes for XAl.
In this literature, the closest related work uses GANs to gen-
erate explanations (Samangouei et al. 2018; Seah et al. 2019;
Singla et al. 2019; Liu et al. 2019), but only one of these
methods is able to offer explanations for pre-trained CNNs
in multi-class classification [(Liu et al. 2019); which we
compare to our method in Expt. 1]. This preference for bi-
nary classification arises partly because choosing a counter-
factual class in multi-class classification is non-trivial, and
optimization to arbitrary classes is susceptible to local min-
ima (as we shall see, PIECE can solve these problems; see
Fig. 6). In addition, none of this previous research has used a
method that modifies exceptional features to generate coun-
terfactual explanations, let alone semi-factuals.

Present Contribution. This paper reports Plauslble
Exceptionality-based Contrastive Explanations (PIECE), a
novel algorithm for generating contrastive explanations for
any CNN (both semi-factuals and counterfactuals specifi-
cally). PIECE automatically models the distributions of la-
tent features to detect “exceptional features” in a test in-
stance, modifying them to be “normal” in explanation gener-
ation. PIECE’s explanation generation process can deal with
multi-class classification, and is applicable to pre-trained
CNNs. Experimental tests show that this method advances
the state-of-the-art for counterfactual explanations in quan-
titative measurements (see Expt. 1). Additionally, PIECE
can generate semi-factual explanations (for the first time in
deep learning) that are better than benchmark techniques
adapted from prior work (see Expt. 2). Alongside our previ-
ous work (Kenny and Keane 2019), we see this as complet-
ing the algorithmic basis for the three main types of “post-
hoc explanations-by-example” (Lipton 2018), namely fac-
tual, counterfactual, and semi-factual.



(a) Factual

[ think the test image is a “1” because it
looks like this “1” in the training data.

(b) Semi-Factual

Even if the test image looked like this, I still
would have thought it was

q9

a“9”.

(c) Counterfactual

If the test image looked like this, I
would have thought it was an “8”.

Test Image Factual Test Image Semi-Factual Test Image Counterfactual Min-Edit
Label: 6 Label: 1 Label: 9 New Prediction: 9 Label: 8 New Prediction: 8 Counterfactual
Prediction: 1 Prediction: 1 Prediction: 9 Prediction: 3 New Prediction: 8

Figure 3: Post-Hoc Factual, Semi-Factual, and Counterfactual Explanations on MNIST: (a) a factual explanation for a mis-
classification of “6” as “1” found using the twin-system approach (Kenny and Keane 2019), (b) a semi-factual explanation
for the correct classification of a “9”, that shows a synthetic instance with meaningful feature changes that would not alter its
classification, and (c) a counterfactual explanation for the misclassification of an “8” as a “3”, that shows a synthetic instance
with meaningful feature changes that would cause the CNN to correct its classification (n.b., for comparison a counterfactual
using the Min-Edit method (see Expt. 1) is shown with its human-undetectable feature-changes).

PlauslIble Exceptionality-based Contrastive
Explanations (PIECE)

Plausibility is a major challenge facing contrastive expla-
nations for XAI (Yang et al. 2020). A good counterfactual
explanation needs to be plausible, informative, and action-
able (Poyiadzi et al. 2020). For example, good counterfac-
tual explanations in a loan application system should not
propose implausible feature-changes (e.g., “If you earned
$1M more, you would get the loan”). For images, plausi-
ble counterfactuals also need to modify human-detectable
features (see Fig. 3c); indeed, some methods can generate
synthetic instances that are not even within the data distri-
bution (Laugel et al. 2019). Accordingly, an explanation-
instance’s proximity to the data distribution is now used as a
proxy for evaluating plausibility (Van Looveren and Klaise
2019; Samangouei et al. 2018), as used here. PIECE uses
an experience-guided approach, exploiting the distributional
properties of the data to help guarantee plausibility.

Fig. 3 illustrates some of PIECE’s plausible contrastive
explanations for a CNN’s classifications on the MNIST
dataset (LeCun, Cortes, and Burges 2010), with a factual
explanation provided for comparison (Kenny et al. 2021).
In Fig. 3c, the test image of an “8” misclassified as a “3”, is
shown alongside its counterfactual explanation, showing the
feature changes that would cause the CNN to classify it as an
“8” (i.e., the cursive stroke making the plausible “8” image).
An implausible counterfactual, generated by a minimal-edit
method (i.e., the Min-Edit method in Expt. 1), is also shown,
with human-undetectable feature-changes that would also
cause the CNN to classify the image as an “8”. Fig 3b shows
a semi-factual, with meaningful changes to the test image
that do not change the CNN’s prediction. That is, even if the
“9” had a very open loop, so it looked more like a “4”, the
CNN would s#ill classify it as a “9”. This type of explanation
has the potential to convince people that the original classi-
fication was definitely correct (Byrne 2019; Nugent, Doyle,
and Cunningham 2009), although that is likely less needed
in a domain such as MNIST were people are mostly experts.
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Finally, though these examples show two explanations for
incorrect predictions (factual and counterfactual), and one
for a correct prediction (semi-factual), these three explana-
tion types may be generated for either predictive outcome.
PIECE generates counterfactuals and semi-factuals by
identifying “exceptional” features in the test image, and then
modifying these to be “normal”. This idea is inspired by
people’s spontaneous use of counterfactuals, specifically the
exceptionality effect, were people change exceptional events
into what would normally have occurred (Byrne 2019; Icard,
Kominsky, and Knobe 2017). For example, when people
are told that “Bill died in a car crash taking an unusual
route home from work™, they typically respond counterfac-
tually, saying “if only he had taken his normal route home,
he might have lived” (Byrne 2016). So, PIECE identifies
feature-values in the test image that are probabilistically-
low in the counterfactual class (i.e., exceptional features)
and modifies them to be their expected values (i.e., normal
features) in that counterfactual class (in order from the low-
est probability feature); by doing this, PIECE shows how the
original test image would have to change to be considered a
good semi-factual or example of the counterfactual class.

The Algorithm: PIECE

PIECE involves two distinct systems, a CNN with predic-
tions to be explained, and a GAN that helps generate coun-
terfactual or semi-factual explanatory images (see Section
S1 of the supplement for model architectures). This algo-
rithm will work with any CNN post-training, provided there
is a GAN trained on the same dataset as the CNN. PIECE has
three main steps: (i) “exceptional” features are identified in
the CNN for a test image from the perspective of the counter-
factual class, (ii) some of these are then modified to be their
expected values, and (iii) the resulting latent-feature repre-
sentation of the explanatory counterfactual is visualized in
the pixel-space using the GAN. To produce semi-factuals,
the algorithm is identical, but the feature modifications in
the second step are stopped prematurely before the model’s
prediction crosses the counterfactual decision boundary.



(a) Identify Exceptional Features

(b) Generate Explanation
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Figure 4: PIECE Counterfactual Explanation for an Incorrect Prediction: (a) After the feature extraction half C' of the CNN
outputs the latent features for image I in layer X (which is the penultimate layer and part of the output linear classifier S),
PIECE identifies the exceptional features for the counterfactual-class “8” in this same layer, these features primarily reside in
the region highlighted by the red box in the test image (and are highlighted in red in layer X). (b) These features in image I are
then modified to be “normal” from the perspective of the “8” counterfactual-class and the explanation is generated (successive

feature-changes to I are shown in the I’ images ).

Setup and Notation. Allow all layers in a CNN up to just
before the penultimate extracted feature layer X be C, and
the output linear classifier S (which includes X; see Fig. 4).
The extracted features from a test image I at layer X will
be denoted as x, this connects to an output SoftMax layer to
give a probability vector Y which predicts a class c. To de-
note that c is the class in Y with the largest probability (i.e.,
the predicted class), Y, will be used. Let the generator in the
GAN be G, and its latent input z. The counterfactuals to a
test image I, in class c, with latent features x, are denoted as
I’, ¢’ and 2’ respectively.

Identify the Counterfactual Class. The initial steps in-
volve locating a given test image [ in G, and then identifying
the counterfactual class ¢’. First, to find the input vector z for
G, such that G(z) ~ I, we solve the following optimization
with gradient descent:

z = argmin||C(G(z0)) — C(D)|5 + [|G(20) — 11I3

Z0

ey

where zy is a sample from the standard normal distribu-
tion. More efficient methods exist to do this involving en-
coders (Zhu et al. 2020; Seah et al. 2019), but Eq. (1) was
sufficient for present purposes. Second, the counterfactual
class ¢’ for I may need to be generated for a prediction were
the classifier is correct or incorrect. When the CNN is incor-
rect in classifying I and the label is known, ¢ can be trivially
selected as being the actual label (e.g., see Fig. 4). However,
when the classifier is correct (or the label is unknown) for 7,
identifying ¢’ becomes non-trivial. We use a novel method
here involving gradient ascent to solve this problem and run:

argmax||S(C(G(2))) — Ye|3 2)

where Y, is binary encoded as all Os, and a 1 for the class
c. During this optimization process, the first time a deci-
sion boundary is crossed, the new class is selected as '
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Whilst hard-coding ¢’ can result in the optimization becom-
ing “stuck” (Liu et al. 2019), the present automated method
has never failed to generate the desired counterfactual in all
of our tests.

Step 1: Identifying Exceptional Features

Here, when the CNN classifies a test image I as class c,
taking the perspective of the counterfactual class ¢’, we find
exceptional features in by examining their statistical prob-
abilities in the training distributions for ¢’ (see Fig. 5). So,
assuming the use of ReLU activations in X, we can model
each neuron X; for ¢/, as a hurdle model (note each neu-
ron X; will have a hurdle model for each class). A statistical
hurdle model is a two-part process that specifies one process
for zero counts and another process for positive counts. In
this case, we are modelling latent features in X, which use
ReL.U activation functions. Due to the nature of ReLLU, there
will be many zero values, alongside positive ones. As such, a
hurdle model can deal with the resultant data well, were the
probability of the neuron not activating (i.e., a O value) or
activating (i.e., a value > 0) can be modelled as a Bernoulli
distribution (the initial hurdle process), and when the neuron
does activate (the second process), the data can be modelled
as a probability density function (PDF; see Fig. 5). The hur-
dle models are defined as:

p(xi) = (L = 0:)8(2;)(0) + 0 fi(zi), z; 20 (3)
where p(x;) is the probability of the latent feature value x;
for ¢’ in neuron X;, 6; is the probability of the neuron X;
activating for the class ¢’ (i.e., Bernoulli trial success in the
hurdle model), f; is the subsequent PDF modelled for when
x; > 0 (i.e., when the “hurdle” is passed), the constraint
of x; > 0 refers to the ReLLU activations, and 5(11.)(0) is
the Kronecker delta function, returning O for z; > 0, and
1 for x; = 0. Moving forward, X; will signify the random
variable associated with f;.

S.t.
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Training Distribution of ¢’
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Figure 5: Exceptional Feature Modification [Specifically
Eq. (7)]: The second process of two hurdle models is shown
fitted to the data. A high-probability feature value for class
c is shown in red, which also has a very low-probability in
class ¢. Since X; has a negative connection weight to ¢/,
decreasing z; to E[X;] for ¢’ brings the classification closer
to ¢ and hence the generation of a counterfactual. The ini-
tial process (i.e., Bernoulli trial) in of the hurdle model is
omitted here for simplicity.

To model this, z is gathered from all training data into the
latent dataset L (by passing it through C), and considering
the n output classes, we divide L into {L;}_ , where Vz €
L;,S(x) = Y;. Now considering the counterfactual class
data L/, let all data for some neuron X; be {z;}7-, € L.,
where m is the number of instances. If we let tque number
of these m instances where x; # 0 be ¢, the probability
of success 6; in the Bernoulli trail can be modelled as 0; =
q/m, and the probability of failure as 1 —6;. The subsequent
PDF f; from Eq. (3) is modelled with {x };"':1 € Lo,V >
0. Importantly, the hurdle models use what S predicted each
instance to be (rather than the label), because we wish to
model what the CNN has learned, irrespective of whether it
is objectively correct or incorrect.

We found empirically that a hurdle model’s second pro-
cess PDF will typically approximate a Gaussian, Gamma, or
Exponential distribution (see Fig. 5). Hence, we automated
the modelling process by fitting the data with all three dis-
tributions (with and without a fixed location parameter of
0) using maximum likelihood estimation. Then, using the
Kolmogorov-Smirnov test for goodness of fit across all these
distributions, we chose the one of best fit. In all generated
explanations, the average p-value for goodness of fit was p
> 0.3 across all features. With the modelling process fin-
ished, a feature value x; is considered an exceptional feature
x, for the test image [ if:

zi =0[p(l—0;) <a @
x; > 0] p(6;) < « ®)
Glossed, Eq. (4) dictates that it is exceptional if a neuron

X, does not activate, given the probability of it not activat-
ing is less than « for ¢’ typically. Eq.(5) illustrates that it is
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Algorithm 1: Modify exceptional features in x to
produce z’

Input: z: The latent features of the test image [
Input: w: The weight vector connecting X to ¢’
Input: {z.}"_, € x: The exceptional features

(ordered lowest to highest probability)
foreach z. in {z.}!_; € z do

-

2 if w. > 0 and z. discovered with Eq. (4),
Eq. (5), or Eq. (6) then

3 ze + E[X] // Using PDF
‘ modelled for ¢ in Eg. (3)

4 else if w, < 0 and z. discovered with Eq. (5)
or Eq. (7) then

5 Te E[Xe} // Using PDF

modelled for ¢ in Eg. (3)
6 return z (now modified to be z')

exceptional if a neuron activates, given that the probability
of it activating is less than « for ¢’ typically. The other two
exceptional feature events are:
(1—91)+91FZ($1)>1—Q|$Z>0 7
where F; is the cumulative distribution function for f;.
Eq. (6) dictates that, given the neuron has activated, it is ex-
ceptional (i.e., a probability < «) to have such a low activa-
tion value for ¢’. Eq. (7) relays that, given the neuron has ac-
tivated, it is exceptional to have such a high activation value
for ¢’ (i.e., the example in Fig. 5). In defining the « thresh-
old, the statistical hypothesis-testing standard was adopted,
categorizing any feature value which has a probability less
than o = 0.05 as being exceptional in both experiments.

Step 2: Changing the Exceptional to the Expected

The exceptional features {x.}7_; € x (where n is the num-
ber of exceptional features identified) divide into those that
negatively or positively affect the classification of ¢’ in I,
PIECE only modifies the former (see Algorithm 1). Impor-
tantly, features are only modified if they meet the criteria re-
garding their connection weight, and identification process
(i.e., found using Egs. (4)-(7)). Glossed, the algorithm only
modifies the exceptional feature values to their expected val-
ues if doing so brings the CNN closer to modifying the clas-
sification to ¢’. These exceptional features are ordered from
the lowest probability to the highest, as this ordering plays a
key role in semi-factual explanations where the modification
of features is stopped short of the decision boundary.

Step 3: Visualizing the Explanation

Finally, having constructed z’, the explanation is visualized
by solving the following optimization problem with gradient
descent:

®)

and inputting 2’ into G to visualize the explanation I’. For
the computational cost and machine specs involved, see the
supplement Section S3 and S4.

2 = arg min||C(G(2)) — /|



Experiment 1: Counterfactuals

In this experiment, PIECE’s performance is compared
against other known methods for counterfactual explana-
tion generation. The tests compare PIECE against other
sufficiently general methods which are applicable to color
datasets (Liu et al. 2019; Wachter, Mittelstadt, and Russell
2017) [here we use CIFAR-10], and then with the addition of
other relevant works which focused on MNIST (Dhurandhar
et al. 2018; Van Looveren and Klaise 2019). The methods
compared in Expt. 1 are:

PIECE. The present algorithm, using Eq. (8), where all
exceptional features were categorized with o« = 0.05, and
subsequently modified.

Min-Edit. A simple minimal-edit perturbation method
with a direct optimization towards ¢/, where the optimiza-
tion used gradient descent and was immediately stopped
when the decision boundary was crossed, defined by:

2/ = argmin|S(C(G(2))) — Ye||3.

Constrained Min-Edit (C-Min-Edit). A modified ver-
sion of (Liu et al. 2019),2, and inspired by (Wachter,
Mittelstadt, and Russell 2017), this optimized with gradi-
ent descent and stopped when the decision boundary was

crossed, defined as:
2z = argmin max AMIS(C(G(2)) — Yul3 +

d(C(G(2)), ).

Contrastive Explanations Method (CEM). Pertinent
negatives from (Dhurandhar et al. 2018), which are a
form of counterfactual explanation, implemented here us-
ing (Klaise et al. 2020).

Interpretable Counterfactual Explanations Guided by
Prototypes (Proto-CF). The method by (Van Looveren
and Klaise 2019), implemented here using (Klaise et al.
2020).

Hyperparameter choices are presented in Section S2 of
the supplementary material. Although other similar tech-
niques are reported in the literature (Singla et al. 2019;
Samangouei et al. 2018; Seah et al. 2019), they are not ap-
plicable as they cannot explain CNNs which are pre-trained
on multi-class classification problems.

Setup, Test Set, and Evaluation Metrics

For MNIST, a test-set of 163 images classified by the
CNN was used which divided into: (i) correct classifica-
tions (N=60) with six examples per number-class, (ii) close-
correct classifications (N=62), that had an output SoftMax
probability < 0.8, where the CNN “just” got the classifica-
tion right,? and (iii) incorrect classifications (N=41) by the
CNN (i.e., every instance misclassified by the CNN). For

They used the pixel rather than latent-space in d(.). We tested
both but found no significant difference. However, the latent-space
required a smaller \ to find 2/, and was more stable (Russell 2019).

3SoftMax probability is not considered reliable for CNN cer-
tainty, but it gives a baseline (Hendrycks and Gimpel 2016).
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CIFAR-10, the test-set was divided into: (i) correct classi-
fications (N=30) with three examples per class, and (ii) in-
correct classifications (N=30) with three examples per class.
All instances were randomly selected, with the exception of
MNIST’s incorrect classifications, which were not randomly
selected as there was only 41 of them.

To evaluate an explanation’s plausibility, most researchers
use some measure of proximity to the data distribution as
a basic requirement. For example, a person’s income in a
loan application system should not be a negative value in
an explanation, as this is nonsensical and far from the real
distribution. In MNIST, an explanation image should not
have any unusual artifacts, and should, put simply, look like
an actual handwritten digit. These considerations motivate
the evaluation metrics used; that is, the metrics evaluate
how well generated synthetic images resemble the under-
lying distribution. To do this, one related work proposed
IM1 and IM2, which trains multiple autoencoders (AEs)
to test the generated counterfactual’s relative reconstruction
error (Van Looveren and Klaise 2019). However, as there
can be issues interpreting IM2 (Mahajan, Tan, and Sharma
2019), we replaced it with Monte Carlo Dropout (Gal
and Ghahramani 2016) (MC Dropout), a commonly used
method for out-of-distribution detection (Malinin and Gales
2018), with 1000 forward passes. Additionally, we use R%-
Substitutability (Samangouei et al. 2018) which measures
how well generated explanations can substitute for the actual
training data. As there are relatively few explanations gener-
ated compared to the actual training datasets (163 compared
to 60,000), we use k-NN on the pixel space of MNIST, as
the classifier works well with small amounts of training data,
and the centred nature of the MNIST dataset means it per-
forms well normally (i.e., ~ 97% accuracy). In the current
experiment, the measures used were:

MC-Mean. Posterior mean of MC Dropout on the gener-
ated counterfactual image (higher is better).

MC-STD. Posterior standard deviation of MC Dropout
on the generated counterfactual (lower is better).

NN-Dist. The distance of the counterfactual’s latent rep-
resentation at layer X from the nearest training instance
measured with the Lo norm [i.e., the closest “possible
world” (Wachter, Mittelstadt, and Russell 2017)].

IM1. From (Van Looveren and Klaise 2019), an AE is
trained on class ¢ (i.e., AE,) and ¢ (i.e., AE./) to com-

— I=AE, ()13
pute IM1 = I"—AE.(IN]32 °

sidered better.

where a lower score is con-

Optim. Time. Time taken to optimize each image.

Substitutability (R%-Sub). Inspired by (Samangouei
et al. 2018), the method’s generated counterfactuals are
fit to a k-NN classifier (in pixel space) which predicts the
MNIST test set. The original training set gives ~ 97%
accuracy with k-NN, if a method produces half that accu-
racy, its R%-Sub score is 50% (a higher score is consid-
ered better, as it can replace the training data).



2*Method  MC Mean MC STD NN-Dist M1 Optim. Time  R%-Sub
#1  #2  #1 #2 #1 #2 #1 #2 #1 #2 #1
Min-Edit 052 061 024 0.13 1.02 148 091 1.17 1.84 00.75 42.87
C-Min-Edit 050 045 025 0.14 1.03 150 093 121 341 48.06 40.33
Proto-CF 053 N/A 023 NA 102 NA 128 NA 8489 NA 34.75
CEM 062 N/A 022 NA 099 NA 113 NA 9137 NA 43.87
PIECE 099 096 0.02 002 041 117 072 1.15 2636 8551 69.32

Table 1: The average performance over the test-sets of the five counterfactual explanation methods for dataset #1 (MNIST) and
dataset #2 (CIFAR-10) in Expt. 1, where the best results are highlighted in bold. R%-Sub is tested on MNIST only.

Results and Discussion

PIECE generates counterfactual explanations with better re-
sults on all plausiblity metrics (see Table 1); a statistical
analysis using the Anderson-Darling test (AD) showed these
values to be reliably different on all metrics, AD > 22,
p < .001 (except for IM1 on CIFAR-10). PIECE gener-
ates much more visibly plausible counterfactual explana-
tions than Min-Edit (e.g., see Fig. 6 and Fig. 7). Notably,
Proto-CF/CEM were the only methods that failed to find a
counterfactual explanation for 20/25 images out of a total
of 163 on MNIST, respectively. Interestingly, for all results
on MNIST, a plot of the NN-Dist measure against the MC-
Mean/MC-STD scores show a significant linear relationship
r = -0.8/0.82. So, the more a generated counterfactual is
grounded in the training data, the more likely it is to be plau-
sible [as (Laugel et al. 2019) argued; see Section S5 of the
supplementary material for these plots]. In addition, though
PIECE is not the fastest method, its optimization time can
be significantly reduced without loss of plausibility by ei-
ther reducing the number of epochs or utilizing a GPU.
Lastly, whilst allowing Min-Edit (or C-Min-Edit) to opti-
mize until the SoftMax probability approaches 1.0 may ap-

SoftMax Probability ~ P(8) <0.5 p(8)>0.95

(A) PIECE

(B) Min-Edit
(Fully Converged)

Label: 8
Prediction: 3

Counterfactual:
Prediction: 8

Figure 6: PIECE Versus Min-Edit: (A) By changing excep-
tional features to expected statistical values PIECE keeps
within the data distribution to make a plausible explanation.
(B) By contrast, the Min-Edit method, when fully converged
(i.e., which takes it far over the decision boundary), goes
out-of-distribution to make a less plausible explanation de-
spite the CNN having a high confidence (i.e., p(8) > 0.95).
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pear to be a simple remedy to improve plausibility (as it opti-
mizes beyond the decision boundary), we found it is not reli-
able. Specifically, we illustrate the potential pitfalls of doing
so in Fig. 6, were it fails to generate a plausible explanation.
This is largely due to its reliance on a “blind perturbation”
approach that optimizes towards a specific class with no con-
straints. In contrast, PIECE modifies exceptional features to
expected statistical values, leaving all others intact, helping
to avoid such implausible outputs.

Experiment 2: Semi-Factuals

(Nugent, Doyle, and Cunningham 2009) argued that semi-
factual explanations (they called it a-fortiori reasoning)
should involve the largest possible feature modifications
without changing classification (e.g., “Even if you trebled
your salary, you would still not get the loan”). However,
they did not consider semi-factuals for image datasets, or
perform controlled experiments. As such, a new evaluation
method is needed to measure “good semi-factuals” in terms
of how far the generated semi-factual instance is from the
test instance, without crossing the decision boundary into
¢’. To accomplish this in an image domain, we use the L,
distance between the test image and synthetic explanatory
semi-factual in the pixel-space (n.b., the greater the distance
the better the method). In the present experiment, PIECE is
only compared to the minimal-edit methods from Expt. 1

« €

L= ]
Test Image PIECE Min-Edit
Counterfactual Counterfactual

Label: Plane

Prediction: Plane New Prediction: Bird | New Prediction: Bird

Figure 7: PIECE’s Counterfactual Explanations on CIFAR-
10: PIECE explains the prediction by contrasting the query
with a counterfactual image. Glossed, the explanation reads
1 think the query is a plane because in order to be something
else (e.g., a bird ) it would have to look like this. The less
plausible Min-Edit explanation is shown for comparison.
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Figure 8: Expt. 2 Results: (a) the Ly pixel-space change between the test- and semi-factual images for the three methods on
two datasets, (b) the same L; metric for the three methods under progressive proportions of feature-changes on MNIST, (c) the
plausibility measures for PIECE, under the same progressive proportions of feature-changes on MNIST.

(i.e., Min-Edit and C-Min-Edit), as the other methods (i.e.,
CEM and Proto-CF) cannot generate semi-factuals. To thor-
oughly evaluate all methods, three distinct tests were car-
ried out (see Fig. 8). First, a max-edit run was performed on
a set of test images, where each of the three methods pro-
duced their “best semi-factual”. Specifically, Min-Edit and
C-Min-Edit were allowed optimize until the next step would
push them over the decision boundary into ¢/, and PIECE
followed its normal protocol, but stopped Algorithm 1 when
the next exceptional feature modification to x would alter
the CNN classification such that S(z) # Y.. Second, the
performance of the methods, on the same test set, for dif-
ferent proportions of feature changes were recorded. Specif-
ically, PIECE modifies 25%, 50%, 75%, and 100% of the
exceptional-features from the first test, whilst the min-edit
methods were allowed to optimize to the same distance as
PIECE (measured using Lo distance) in the latent-space for
each of these four distances. This second test allows us to
view the full spectrum of results. Third, plausibility mea-
sures were applied to PIECE’s explanations in the second
test for a full profile of its operation.

Setup, Test-Set, and Evaluation Metrics

PIECE was run as in Expt. 1, with the counterfactual class
¢’ being selected in the same way, and with all exceptional
features being identified using oo = 0.05. For full details on
hyperparameter choices see Section S2 of the supplemen-
tary material. A test set of 90 test images were used (i.e.,
the “correct” set from MNIST and the “correct” set from
CIFAR-10 in Expt. 1), with the plausibility of PIECE being
evaluated using the same metrics from Expt. 1 (but we add
IM2 since it has not been tested on semi-factuals). The semi-
factual’s goodness was measured using the L pixel distance
between the test image and the semi-factual image gener-
ated, the larger this distance, the better the semi-factual.

Results and Discussion

Fig. 8 shows the results of the first comparative tests of
semi-factual explanations in XAl First, PIECE produces the
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best semi-factuals on both datasets, with significantly higher
L, distance scores than the min-edit methods (see Fig. 8a;
AD > 2.5, p < .029 for MNIST, AD >11.75, p < .001
for CIFAR-10). Second, upon a closer examination of the
MNIST results, all methods produce better semi-factuals at
every distance measured (see Fig. 8b), but PIECE’s semi-
factuals are significantly better at every distance tested (AD
> 3.3, p < .015). Third, when different plausibility mea-
sures are applied to progressive incremental changes of the
exceptional features by PIECE on MNIST, there are signif-
icant changes across some (i.e., MC-Mean, MC-STD, and
NN-Dist), but not all measures (i.e., IM1/IM2), perhaps sug-
gesting the former metrics are more sensitive than the latter
(see Fig. 8c). Notably, like Expt. 1, there is a clear trade-off
between plausibility (measured in MC-Dropout measures),
and NN-Dist. Additionally, as semi-factuals get better (with
larger changes in the pixel space), they may sacrifice some
plausibility. Note that CIFAR-10 is omitted from Fig. 8b/c
to aid presentation, but similar results were found on both
datasets.

Conclusion

A novel method, PlausIble Exceptionality-based Contrastive
Explanations (PIECE), has been proposed that produces
plausible counterfactuals to provide post-hoc explanations
for a CNN’s classifications. Competitive tests have shown
that PIECE adds significantly to the collection of tools cur-
rently proposed to solve this XAl problem. Future work will
extend this effort to more complex image datasets. In addi-
tion, another obvious direction would be to use recent ad-
vances in text and tabular generative models to extend the
framework into these domains, alongside pursuing semi-
factual explanations more extensively, as there remains a
rich, substantial, untapped research area involving them.
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A major aim of explainable Al research is to create tech-
niques and task scenarios that support people in making
fairness, accountability, and trust judgements about Al sys-
tems. The present work is part of this research effort. By
providing people with counterfactual/semi-factual explana-
tions, there is a risk of revealing “too much” about how a
system operates (e.g., they potentially convey exactly how
a proprietary algorithm works). Notably, the balance of this
risk is more on the side of the algorithm-proprietors than
on algorithm-users, which may be where we want it to be
in the interests of fairness and accountability. Indeed, these
methods have the potential to reveal biases in datasets and
algorithms as they reveal how data is being used to make
predictions. The psychological evidence shows that coun-
terfactual and semi-factual explanations elicit spontaneous
causal thinking in people; hence, they may have the benefit
of reducing the passive use of Al technologies, enabling bet-
ter human-in-the-loop systems, where people have appropri-
ate (rather than inappropriate) trust. However, semi-factual
explanations may have the potential to convince people than
an algorithm is more correct in its decisions than it actually
is; if this is true, semi-factuals could engender inappropriate
trust on the part of end-users in a poorly-performing system.
At present, this is only an hypothesis. However, it is a valid
concern and one which warrants further study both compu-
tationally and psychologically.
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