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ABSTRACT

Following the standard supervised fine-tuning (SFT) paradigm, in-context learn-
ing (ICL) has become an efficient approach propelled by the recent advancements
in large language models (LLMs), yielding promising performance across various
tasks in few-shot data setups. However, both paradigms are prone to suffer from
the critical problem of overconfidence (i.e., miscalibration), especially in such
limited data setups. In this work, we deliver an in-depth analysis of the behavior
across different choices of learning methods from the perspective of both perfor-
mance and calibration, as well as their interplay. Through extensive controlled
experiments, we find that simultaneous gains for both task performance and cal-
ibration are difficult to achieve, and the miscalibration problem exists across all
learning methods in low-resource setups. To address this challenging trade-off be-
tween performance and calibration, we then study the potential of self-ensembling
techniques applied at different modeling stages (e.g., variations of in-context ex-
amples or variations in prompts or different ensembling strategies). We justify
the feasibility of self-ensembling on SFT in addition to ICL, to make the predic-
tions more calibrated and have comparable or even better performance. Our work
sheds light on which learning paradigm to choose and how to enhance both task
performance and calibration of LLMs.

1 INTRODUCTION

Among different learning paradigms with large language models (LLMs) (Radford et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022; OpenAI, 2023), Supervised Fine-Tuning (SFT) and
In-Context Learning (ICL) have emerged as predominant methodologies (Raffel et al., 2020; Dong
et al., 2022), demonstrating commendable efficacy across many tasks. Min et al. (2022) and Chen
et al. (2022) introduce the in-context examples into training phrase, which we call supervised in-
context learning (SICL). However, when the demonstrations, as a strong inductive bias, get com-
bined with SFT, it has been shown that LLMs become more likely to fall into the problem of over-
confidence (Desai & Durrett, 2020; Jiang et al., 2021) when specializing a (general-purpose) model;
the predicted confidence distribution of ICL may be miscalibrated due to the bias in in-context ex-
amples (Fei et al., 2023). Through our extensive experiments in this work, we observe that both
paradigms, SFT and ICL, suffer from the problem of miscalibration in low-resource scenarios.

The important challenges of overconfidence and miscalibration, particularly in scenarios marked by
limited data availability, underscore the need for a nuanced understanding of these paradigms. How-
ever, most of the previous work (Mosbach et al., 2023; Sun et al., 2023) only focuses on comparing
solely the performance of SFT and ICL on out-of-distribution (OOD) data, targeting general-purpose
LLMs. Here, we instead focus on studying task-specialized language models, where the behavior
of different paradigms’ in-task performance along with their calibration remains an open research
question. In addition, considering the possible issue of overconfidence and miscalibration, we pose
and study another crucial research question: is it possible to ensure both in-task performance and
well-calibrated LM behavior at the same time?
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Is the sentence hate, neutral or support?
<SENTENCE>

ZSL ICL SFT SICL

Variation 1 Variation 2 Variation n
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(a) Having the predictions with different variations to
the input, we run self-ensembling on a single model
to obtain final predictions and their confidence.
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(b) The confidence histograms and reliability dia-
grams of SICL (left) and self-ensembled SICL with
max probability (right) on SST5.

Figure 1: Illustration of the self-ensembled learning methods.

To address the above challenges, in this work we first investigate the performance and calibration
of different model-tuning and ICL methods in limited data setups, based on which then explore
the application of the self-ensembling method. Our contributions can be summarized as follows:
1) We deliver a comprehensive empirical study with different choices of learning methods across
a variety of tasks in limited data scenarios. 2) We show the task-dependent relationship between
in-task performance and calibration of LLMs and provide practical guidelines for the choice of
learning paradigms (§3). 3) We investigate and justify the feasibility of the self-ensembling method
in enhancing both the performance and calibration of LLMs (§3). We release the code at: https:
//github.com/cambridgeltl/ensembled-sicl.

2 METHODOLOGY

In this paper, we analyze and compare four different learning paradigms in low-resource scenar-
ios: zero-shot learning (ZSL),1 in-context learning (ICL), supervised fine-tuning (SFT) and super-
vised in-context learning (SICL), depending on whether the input contains in-context examples and
whether the model’s parameters are fixed. With classification tasks in focus, we briefly describe each
paradigm in Appendix A.1. For these learning paradigms, there are two points that create possible
variations that can be used for ensembling: 1) variation in the selection of in-context examples (for
ICL and SICL), and 2) variation in the chosen prompt (for all the paradigms). Previous work focuses
on 1) selecting a better combination of in-context examples (Su et al., 2023) for the model or 2) gen-
erating an optimal prompting template (Zhou et al., 2023). On the other side, how the variation
of multiple demonstration combinations and prompting templates influences the model behavior is
still unexplored. Furthermore, we can 3) ‘self-ensemble’ the model based on different ensembling
strategies. We now introduce all these variants.

Variation of Ensembling Components. a) Variation of In-Context Examples (Var-IC): For ICL
and SICL, IC examples and their ordering [fp(xIC), yIC ] create variations in the model inputs with
a fixed template fp, while not impacting the test pair fp(x) ∼ y. This allows us to create various
in-context example combinations as different inputs to a single model and obtain different ensemble
components. b) Variation of Prompting Templates (Var-Prompt): Different prompting templates
have shown high variance in task performance (Mishra et al., 2022). By changing the wording in the
templates fp, we can also create variations even with the same input to the model. For each input x,
we randomly select a prompting template f ′

p from a set of available prompting template candidates.
In ICL and SICL, the same template is also applied to the in-context examples, formatting the final
input as [f ′

p(x1), y1; ...; f
′
p(xM ), yM , f ′

p(x)]. This makes it applicable not only to ICL and SICL, but
also to ZSL and SFT as well. c) Variation of Both (Var-Both): When we create a set of ensembling
components, we can also combine these two variations.

1In the context of ZSL and later ICL there is no actual ’learning’ taking the place, and the model simply
reacts to the provided prompt, but we have chosen the term ZSL for consistency with previous literature.
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Metrics Methods SST-2 RTE ANLI SST-5 NLU++ Manifestos Hate Speech

Performance

ZSL 94.67 86.64 52.30 42.00 29.20 14.50 37.08
ICL 95.220.12 88.450 52.170.47 37.590.23 40.110.09 13.010.19 40.090.08
SFT 95.610.20 88.810.29 61.631.68 46.272.09 79.980.59 35.761.23 58.011.01
SICL 95.630.29 88.570.45 63.900.14 47.121.93 80.760.31 37.551.61 59.481.79

ECE

ZSL 0.907 0.809 0.356 0.142 0.231 0.432 0.318
ICL 0.9150.001 0.8150.003 0.3510.005 0.1830.002 0.1290.000 0.4760.002 0.2710.002
SFT 0.9410.011 0.8420.002 0.3160.023 0.4030.032 0.0110.001 0.2010.072 0.3540.036
SICL 0.9450.013 0.8760.003 0.2800.011 0.3600.025 0.0020.001 0.2140.038 0.1930.113

Table 1: Results for different learning methods across all 7 datasets. We report the average of 3
independent runs with different random seeds; variance is reported in the subscript. Numbers in
bold represent the best performance and calibration score per dataset. The datasets ‘seen’ by Flan-
T5 at pretraining are labeled in italic.

Self-Ensembling Strategy. For each variant, we obtain the predicted results ŷ and the confidence
p̂ for each component. The next step involves ensembling the predictions over K different com-
ponents. We experiment with three (self-) ensembling strategies to compare their impact on both
performance and calibration.

Majority Vote: We select the predicted results that have the highest accumulated probability across
K variants as the ensembling predictions. The accumulated probability Pacc for the predicted label
li is defined as Pacc(ŷ = li) =

∑K
k=1 Pk(ŷk = li)I(ŷk = li). We pick the variants that have the

same prediction as the ensembling prediction and average the probability distribution of the selected
components Pens(y|x) = 1

K′

∑K′

k=1 Pk(y|x) where K ′ is the number of selected variants.

Mean Probability: We average the predicted probability distribution of K variants and use the
prediction that has the largest probability in the averaged distribution as the ensemble result ˆyens =

argmax
j

Pens(yj |x), where Pens(y|x) is described as Pens(y|x) = 1
K

∑K
k=1 Pk(y|x).

Max Probability: For each possible value in the output space, we find the maximum probability of
the predicted values across K variants and use this as the prediction’s probability P ′(ŷ = li|x) =
max(Pj(ŷ = li|x), j ∈ [1,K]). Because the probability is obtained from different components, the
summation of these probabilities is not guaranteed to be 1. Therefore, we apply the normalization
on the new probability distribution: Pens(y|x) = Norm(P ′(y|x)). The ensemble prediction is
determined as the ŷ that has the highest probability after the ensembling step.

Estimating Calibration. Beyond task performance of all the possible variants, we estimate the
calibration of the model’s predictions (as a proxy towards model confidence) by using Expected
Calibration Error (ECE) (Guo et al., 2017), the details of which are further introduced in Appendix
A.5. We also report the negative log-likelihood (NLL) (Hastie et al., 2001) and information entropy
(IE) as supplementary metrics of model’s (lack of) confidence in Table 7 in Appendix B.1.

3 RESULTS AND DISCUSSIONS

We consider 7 classification datasets that cover a range of label numbers and scenarios and use
Flan-T5large (Chung et al., 2022) as the main model in the experiments. Detailed training setups are
provided in Appendix A.3 and A.4, with prompting templates in Appendix D.1 and D.2.

Comparison between Learning Methods. In Table 1, we find that learning methods perform
differently depending on the datasets and we divide the tasks into different families depending on
their observed behavior. ICL demonstrates comparable performance to SFT/SICL on SST-2 and
RTE, while tuning on these datasets with SFT/SICL yields increased ECE with no substantial in-task
performance improvement. Conversely, tasks such as intent detection (NLU++), Manifestos, and
Hate speech, show noticeable performance enhancement and better calibration by using SFT/SICL.
We suspect the divergent behaviors are possibly due to data contamination of FLAN training corpus
(Longpre et al., 2023) wherein ZSL and ICL exhibit similar performances with SFT and SICL on
training datasets labeled as seen (e.g., SST-2, RTE).2

2We corroborate findings from other concurrent work on data contamination (Zhu et al., 2023; Deng et al.,
2023) that also reports the unfair practice of evaluations on seen datasets.
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Systems
Manifestos

Macro F1 ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 14.50 ↑ 0.79 0.432 ↓ 0.170
+ Var-Prompt 14.50 13.69 12.93 15.29 ↑ 0.79 0.432 0.262 0.335 0.437 ↓ 0.170
ICL 13.01 ↑ 0.68 0.476 ↓ 0.283
+ Var-IC 13.01 13.50 13.46 13.69 ↑ 0.68 0.476 0.415 0.465 0.469 ↓ 0.061
+ Var-Prompt 13.01 13.25 11.67 11.53 ↑ 0.24 0.476 0.268 0.366 0.472 ↓ 0.208
+ Var-Both 13.01 11.19 11.50 11.21 ↓ 1.51 0.476 0.193 0.354 0.480 ↓ 0.283
FT 35.76 ↑ 0.73 0.201 ↓ 0.134
+ Var-Prompt 35.39 36.49 35.66 34.91 ↑ 1.10 0.144 0.066 0.105 0.135 ↓ 0.077
SupICL 37.55 ↑ 0.06 0.214 ↓ 0.090
+ Var-IC 37.55 36.57 37.35 37.61 ↑ 0.06 0.214 0.179 0.210 0.215 ↓ 0.035
+ Var-Prompt 37.04 37.14 37.25 36.77 ↑ 0.21 0.229 0.139 0.191 0.219 ↓ 0.090
+ Var-Both 37.04 36.67 37.15 37.50 ↑ 0.46 0.229 0.124 0.192 0.230 ↓ 0.105

Table 2: Results of self-ensembling with different variations (selection). We mark the cells of
baseline systems without self-ensembling in grey. Numbers in bold represents the best values for
each learning method. ∆ calculates the difference of performance and calibration error between the
original results (Ori.) and the best self-ensembled results. We refer the readers to Appendix B.2 for
full self-ensembling results.

Choice of Learning Methods. Given the comparison of the performances and calibration on dif-
ferent datasets, we suggest that the choice of learning methods should be task-dependent. The
experiments and analysis indicate that unseen datasets obtain better performance and more trust-
worthy results with supervised tuning methods. For the seen datasets, ICL combined with other
‘tweaks’ such as model calibration can be a better choice, since the supervised tuning methods are
more likely to make the model over-confident and less trustworthy. This is further justified that with
Batch Calibration (Zhou et al., 2024) ICL performs on par or even better than SICL across all the
(possibly) seen data but is still not comparable to those of either SICL or SFT for unseen datasets
(Table 7 in Appendix B.1).

Nevertheless, despite these task-dependent variations, ECE remains relatively high across all meth-
ods except for intent detection, indicating the problem of miscalibration across all learning methods.

Self-Ensembling Results. Having observed the common miscalibration issues for all learning meth-
ods, we then investigate the feasibility of self-ensembling to improve calibration. In Table 2, with
different learning methods combined with self-ensembling variations, we find that by changing the
in-context example combinations or prompting templates, the best performance of self-ensembling
outperforms the baseline without any ensembling by 0.79. Even though the performance gains seem
marginal, self-ensembling substantially enhances the calibration performance, reducing the mean
ECE value by 43%. We also notice that when self-ensembling over SFT and SICL, the model has
lower ECE scores than ICL, but with much better task performance. This indicates the efficiency
of self-ensembling in making the predictions more trustworthy while maintaining or even improv-
ing the task performance. It also suggests that self-ensembling has the potential to mitigate the
prominent problem of overconfidence in supervised tuning methods (Figure 1b).

Different Variations and Ensembling Strategies. Our results suggest that with ICL, Var-IC yields
more improvements than Var-Prompt, while the latter shows its efficacy with SFT and SICL. We
also find that combining both variations may not necessarily improve the performance but is helpful
in enhancing the trustworthiness. Regarding ensemble strategies, we notice that the majority vote
improves the performance in general, but struggles to reduce the calibration error. Ensembling with
max probability consistently produces the most faithful predictions with promising performances.

4 CONCLUSION

We have provided a comprehensive analysis of the intricate relationship between in-task perfor-
mance and calibration across various learning methods in low-resource scenarios. Our findings illu-
minate the nuances of in-task performance and calibration across different task families, meanwhile
addressing the inherent miscalibration over all learning methods. We have also investigated effec-
tive strategies to enhance both aspects, offering a viable solution through self-ensembling with more
calibrated predictions and comparable or superior task performance. We hope that this study will
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contribute valuable insights into the dynamic landscape of LLMs. These discoveries also offer prac-
tical guidance to practitioners, aiding them in choosing suitable learning paradigms and paving the
way for the development of more reliable and high-performing LLMs across diverse applications.
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A EXPERIMENT SETUP

A.1 LEARNING METHODS DEFINITION

Zero-Shot Learning (ZSL). Given the input x and the prompting template fp, the prediction ŷ from
the LM can be represented as ŷ = argmaxj P(yj |fp(x)), where the parameters of the underlying
LM are fixed. The prompting template fp(x) includes the task instructions and special symbols
which can be replaced by the input x. We attach the prompting templates for different classification
tasks in Appendix D.

In-Context Learning (ICL). Similar to ZSL, instead of only feeding the input x to the model, we
first prepend M in-context examples (IC) (also called demonstrations) [fp(x1), y1; ...; fp(xM ), yM ]
to the input x. The examples are retrieved from the pool of examples R follow-
ing (random or non-random) selection strategy. The prediction is then defined as ŷ =
argmaxj P(yj |[fp(xIC), yIC ], fp(x)).

Supervised Fine-Tuning (SFT). As mentioned, ZSL and ICL are inference-only paradigms treating
the LM as a black box. On the other hand, FT first trains the model on the training set following
the input format fp(x) from ZSL. Note that here we use SFT to refer to instruction-style fine-tuning
with a prompting template. Inference with the tuned model P ′ is then conducted in the same way
as with ZSL. Both during training and inference, we can use different prompting templates to create
variations in the model input, which we further elaborate on in §2.

Supervised In-Context Learning (SICL). Based on the propositions from Min et al. (2022) and
Chen et al. (2022), we can also fine-tune the model to directly optimize the in-context learning
objective. For each training step, M in-context examples (x1, y1), ..., (xM , yM ) are selected from
the pool R. We then prepend the selected in-context examples to the input x as before with ICL and
use the concatenation as the final model input, and train the model to generate y. Inference proceeds
in the same way as with ICL, except that we now use the task-tuned model P ′.

A.2 DATASET DETAILS

SST-2. The SST-2 dataset, a widely-used benchmark in sentiment analysis, comprises sentences
from movie reviews annotated with binary sentiment labels (positive or negative). We train the
model with the data randomly sampled from the original training set and report the performance on
the test set. We evaluate the model’s performance based on accuracy.

SST-5. SST-5, an extension of SST-2, enhances sentiment analysis with five classes: very negative,
negative, neutral, positive, and very positive. Derived from movie reviews, this dataset provides
a nuanced perspective on sentiment, allowing models to distinguish fine-grained emotional tones.
With all other practices aligned with SST-2, the results are evaluated with micro f1 and macro f1
scores because it has more than 2 labels.

RTE. Recognizing Textual Entailment is a benchmark dataset assessing the task of determining
logical entailment between pairs of text snippets. Annotated with binary labels indicating entailment
or not, RTE is crucial for evaluating models’ logical reasoning abilities. We report the accuracy in
accordance with other binary classification tasks.

ANLI. Adversarial NLI is a benchmark dataset introducing adversarial examples to challenge mod-
els with nuanced reasoning and complex inferences. With labeled sentence pairs denoting entail-
ment, contradiction, or neutrality, ANLI is crucial for assessing models’ robustness and generaliza-
tion in the face of diverse linguistic challenges. ANLI has three different rounds of contexts, with
later rounds having a better base model, thus being more difficult for the model to distinguish. In
this paper, we conduct the experiments mainly on the first round, which is easier than other rounds,
in order to compare the performance with ICL. Since it is a multiclass classification task, we report
the performance with micro and macro F1 scores. In this paper, we mainly use r1 level data for
experiments.
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Dataset Label number Main Metric Train size
SST-2 2 acc 50
RTE 2 acc 50

ANLI 3 acc 50
SST5 5 macro f1 50

NLU++ 2 micro f1 50
Manifestos 8 macro f1 800
Hate speech 3 macro f1 50

Table 3: Summary of the datasets, main evaluation metric for performance and training data size
used for experiment.

Task Label Verbalizer
SST2 postive, negative
RTE yes, no
ANLI yes, maybe, no
SST5 terrible, bad, neutral, good, great
NLU++ yes,no

Manifestos other, external, democracy, political,
economy, welfare, fabric, group

Hate Speech support, neutral, hate

Table 4: Label verbalizer for different tasks.

NLU++. NLU++ is a more challenging benchmark in task-oriented dialogue system with more fine-
grained domain ontologies and sentences with multiple intents. It has two tasks: intent detection
and slot labeling, covering the banking and hotels two domains. In this work, we focus on the
intent detection task, which is a multi-label classification task and we follow the setting from recent
work with state-of-the-art results (Razumovskaia et al., 2023), which formats it as a binary yes/no
classification task. See the cited work for further details. Regarding the data split, 1,000 sentences
from NLU++ were held out for testing and 50 sentences from the leftover 2k+ sentences were sub-
sampled for training.

Manifestos. Manifestos was originally created to collect the manifestos of parties from different
countries. It also includes the analytical variables that indicates the respective categories of the
quasi-sentences. The corpus have 8 domains overall, which are listed as follows: None (of the
below) / Other, External Relations, Freedom and Democracy, Political System, Economy, Welfare
and Quality of Life, Fabric of Society, Social Groups. In this paper, we use the sentences that only
have one golden domain and exclude the ones with multiple labels.

Measuring Hate Speech Corpus. Measuring Hate Speech Corpus, in short Hate speech, contains1
10 constituent ordinal labels and the continuous hate speech score to measure the extent of hate. We
use the hate speech score as indicator of hate speech in this paper. We follow the original division
of approximate hate speech provided by the authors, where ¿ 0.5 is approximately hate speech, ¡ -1
is counter or supportive speech, and -1 to 0.5 is neutral or ambiguous.

We only experiment on the intent detection task in the NLU++ bank domain and for ANLI we
mainly discuss r1 level data. We summarize the training data size, main performance evaluation
metrics, and the number of labels for each dataset in Table 3. We also list the label verbalizers for
all datasets in Table 4.

A.3 ENVIRONMENT SETUP

We mainly use Flan-T5large (783M parameters) as the task models for all the datasets. We also
use Flan-T5xl (2.85B parameters) on some of the task to see whether the findings still hold on the
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larger model. For SFT and SICL, we use LoRA (Hu et al., 2022) to tune Flan-T5xl. Due to the
computational limitations, we can’t obtain the results on all the datasets with Flan-T5xl.

All the experiments are conducted on Cambridge High-Performance Clusters with a single A100
(80G) and a 32-core vCPU. We release the code and the environment dependencies for reproducible
purposes at [URL-ANONYMOUS].

A.4 HYPERPARAMETERS

In order to evaluate the model’s performance and trustworthiness in low-resource scenarios, we
sample a subset of the training set and evaluate it on a fixed set of data as an evaluation and test
set. For Manifestos, because it has 8 classes and is more expertise in specialized domains (politics,
economics and etc.), we use a relatively larger training set to adapt the model to the task itself.
For Hate Speech, we manually sample the training set and test set ourselves since the corpus didn’t
provide the split. We randomly sample 1500 data as the fixed test set and 500 examples as the fixed
evaluation set.

All the main experiments are conducted three times with 0, 21, 42 as the random seeds. We report
the mean values of three runs in the main content.

Across different learning paradigms (ICL and SICL), we concatenate 3 in-context examples in front
of the input for the main experiments.

For supervised fine-tuning methods, we attach the detailed hyperparameters in Table 5 for repro-
ducibility. Because tuning the model in the low-resource setting is prone to over-confidence, in
order to mitigate the problem, we apply the early stopping with the patience of 5.

Regarding the configuration hyper-parameters of PEFT, they are listed in Table 6. Unlisted proper-
ties use the default values in PEFT implementation from huggingface3.

A.5 CALIBRATION MEASUREMENT

Expected Calibration Error (ECE) (Guo et al., 2017) divides the n predicted results based on their
confidence into M bins B1 to BM and then computes a weighted average over the absolute differ-
ence between the accuracy acc(Bm) and mean confidence conf(Bm) of the predictions within each
bin. We set M to 10 in this work.

ÊCE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (1)

ECE measures the difference between the model’s empirical accuracy and its confidence (predicted
probability). The smaller the ECE, the more confident the model prediction would be.

B FULL EXPERIMENT RESULTS

To solidify the empirical findings, in this section, we present full experiment results with more
metrics in addition to the table in the main content for readers’ reference.

B.1 RESULTS OF DIFFERENT LEARNING METHODS

Table 7 shows the full results on all 7 datasets. We report the accuracy, micro f1, and macro f1 as
the performance metrics. We report ECE as the measurement of calibration. We also include NLL
and IE as supplementary uncertainty metrics. We find that on SST-2 and RTE, the model achieves
comparable or even better performance with ZSL and ICL than SFT and SICL. In the meantime, the
predictions have a relatively high ECE, indicating that on these two datasets, the model has the issue
of miscalibration. On ANLI, Manifestos, Hate speech, and NLU++, with SFT and SICL the model
has lower calibration error than ICL and achieves better performance in both performance metrics.

In addition to the original results, we include the Batch Calibration results across all the datasets,
as shown in Table 7. On SST-5 and ANLI, although ZSL and ICL achieve similar micro f1 scores,

3https://huggingface.co/docs/peft/index
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Hyperparameters ICL FT SupICL
SST2

train batch size - 8 8
eval batch size 64 32 32
grad accumulation - 1 1
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - accuracy accuracy

RTE
train batch size - 8 4
eval batch size 64 32 32
grad accumulation - 1 2
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - accuracy accuracy

ANLI
train batch size - 8 4
eval batch size 64 32 32
grad accumulation - 1 2
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - accuracy accuracy

SST5
train batch size - 8 8
eval batch size 64 32 32
grad accumulation - 1 1
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - macro f1 macro f1

NLU++
train batch size - 16 16
eval batch size 64 32 32
grad accumulation - 2 2
learning rate - 5e-5 5e-5
evaluation per steps - 500 500
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - micro f1 micro f1

Manifestos
train batch size - 8 4
eval batch size 32 32 32
grad accumulation - 1 2
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - macro f1 macro f1

Hate speech
train batch size - 8 4
eval batch size 32 32 32
grad accumulation - 1 2
learning rate - 5e-5 5e-5
evaluation per steps - 10 10
max training epochs - 200 200
early stopping patience - 5 5
early stopping metric - macro f1 macro f1

Table 5: Hyper-parameters for each dataset when comparing different learning methods.
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Hyperparameters Values
r 8
lora alpha 32
lora dropout 0.05
target modules q, v

Table 6: Hyper-parameters for PEFT with FlanT5-xl.

Evaluation Metrics SST2 RTE
ZSL ICL SFT SICL ZSL ICL SFT SICL

Performance acc 94.67 95.220.12 95.610.20 95.630.29 86.64 88.450 88.810.29 88.570.45

macro f1 - - - - - - - -
acc 95.50 95.950.19 95.610.20 95.630.29 89.53 90.250.51 89.170.29 87.970.45+ calibrated
macro f1 - - - - - - - -

Trustworthiness
ECE 0.9069 0.91490.0014 0.94080.0113 0.94490.0129 0.8092 0.81500.0030 0.84180.0224 0.87590.0025

NLL 0.1465 0.13470.0006 0.21460.0962 0.27100.1396 0.3438 0.29100.0037 0.44210.2133 1.12340.1133

IE 0.0615 0.05990.0003 0.02150.0149 0.01540.0124 0.0977 0.09750.0002 0.06300.0304 0.01530.0030

+ calibrated ECE 0.7877 0.79610.0016 0.80400.0056 0.80640.0096 0.6831 0.69910.0054 0.70220.0061 0.71110.0045

Evaluation Metrics SST5 ANLI
ZSL ICL SFT SICL ZSL ICL SFT SICL

Performance micro f1 52.58 50.480.15 50.591.38 54.250.46 52.30 52.170.47 61.631.68 63.900.14

macro f1 42.00 37.590.23 46.272.09 47.120.0193 42.07 42.060.39 61.171.76 63.530.43

micro f1 50.05 50.890.86 50.350.50 49.910.21 62.30 61.270.82 62.471.60 64.500.41+ calibrated
macro f1 48.98 49.800.91 50.430.68 49.890.26 61.98 61.150.83 62.361.67 64.460.40

Trustworthiness
ECE 0.1416 0.18330.0020 0.40300.0321 0.36020.0250 0.3555 0.35110.0050 0.31610.0230 0.28030.0108

NLL 1.1762 1.22610.0021 3.19861.4010 2.33900.2827 4.7484 3.89610.0233 2.25990.3255 1.92260.2912

IE 0.1599 0.15220.0001 0.04540.0209 0.04890.0107 0.0945 0.09870.0001 0.05870.0070 0.06630.0113

+ calibrated ECE 0.1010 0.10270.0084 0.07200.0129 0.04560.0035 0.0709 0.04300.0079 0.06260.0145 0.04950.0085

Evaluation Metrics Manifestos Hate speech
ZSL ICL SFT SICL ZSL ICL SFT SICL

Performance micro f1 20.87 19.290.16 37.541.10 38.122.01 39.67 40.180.14 59.670.47 61.332.05

macro f1 14.50 13.010.19 35.761.23 37.551.61 37.08 40.090.08 58.011.01 59.481.79

micro f1 33.63 31.000.37 38.580.46 38.330.33 43.87 45.110.46 59.890.17 59.583.26+ calibrated
macro f1 30.86 29.150.53 37.571.05 37.830.41 40.86 42.360.42 58.060.27 57.813.03

Trustworthiness
ECE 0.4319 0.47600.0018 0.20050.0723 0.21380.0376 0.3175 0.27080.0024 0.35410.0364 0.19280.1131

NLL 3.7344 3.94230.0091 2.07250.1637 2.02640.0751 1.3836 1.21360.0057 4.47202.4332 2.08271.6186

IE 0.1141 0.10060.0001 0.14690.0182 0.14460.0104 1.0112 0.24260.0007 0.03910.0286 0.14470.0963

+ calibrated ECE 0.0356 0.07210.0020 0.04870.0120 0.06540.0043 0.1107 0.11730.0045 0.06460.0274 0.04530.0114

Evaluation Metrics NLU++
ZSL ICL SFT SICL

Performance micro f1 29.2 40.110.09 79.980.59 80.760.31

macro f1 40.26 51.960.04 80.581.00 80.490.12

micro f1 11.18 12.250.02 16.450.72 21.004.78+ calibrated
macro f1 11.35 12.560.05 21.272.05 27.073.58

Trustworthiness
ECE 0.2311 0.12910.0001 0.01120.0007 0.00200.0007

NLL 0.3435 0.21400.0001 0.13050.0348 0.08390.0127

IE 0.2268 0.14190.0001 0.00140.0007 0.00200.0007

+ calibrated ECE 0.4679 0.45590.0001 0.41830.0038 0.40980.0049

Table 7: Full experiment results across 7 datasets with different learning methods. We report the
mean value for 3 runs with different random seeds and list the variance in the subscripts. We color
the Batch Calibration results in grey.

there is still a gap in the original macro f1 scores between ZSL/ICL and SFT/SICL. However, after
applying Batch Calibration, we find that ZSL/ICL has a comparable macro f1 score to SFT/SICL. On
Manifestos, Hate speech, and NLU++, we don’t observe comparable performance between ZSL/ICL
and SFT/SICL either with or without Batch Calibration.

B.2 RESULTS OF SELF-ENSEMBLING

Table 8 shows the self-ensembling results across 4 datasets. We exclude the seen datasets (SST-2
and RTE) for fair evaluation, as well as NLU++ since it’s almost well-calibrated with supervised
tuning. We still include ANLI for comparison even though it is included during pre-training. We
report the mean values of the results with 3 different random seeds (0, 21, 42).
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(c) E-FT(Var-Prompt)
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Figure 2: The confidence histograms and reliability diagrams of SFT and SICL on SST-5 with or
without self-ensembling using max probability.

From the perspective of performance, we find that on SST-5, Manifestos, and Hate speech, self-
ensembled results achieve slightly better performances on average and show positive improvements
with each learning method. On ANLI, we observe no significant improvement in the accuracy of
self-ensembled results and the decreases in performance are trivial as well. However, from the
perspective of calibration, we find that self-ensembling with max probability consistently decreases
the calibration over all settings, as shown in Figure 2. Introducing variations in both in-context
examples and prompting templates yields the lowest calibration error in all experiments.

Among different ensembling methods, we find that majority vote can achieve better performances
sometimes but it doesn’t help to reduce the calibration error or even make it worse. Mean probability
and max probability are able to improve the performance meanwhile reducing the calibration error.
The empirical experiment results suggest that although majority vote as a widely used ensemble
method achieves better performance, it is worth noting that it may deliver unfaithful predictions,
which is not preferred in real application.

C SUPPLEMENTARY RESULTS FOR ABLATIONS

C.1 HOW ABOUT LARGER MODELS?

Table 9 shows the results on SST-5 and Hate speech with different learning methods using Flan-T5xl.
With ZSL and ICL, we observe that xl version model has larger calibration errors than Flan-T5large
model on possibly seen datasets (SST-2 and SST-5), whereas on unseen datasets (Hate speech and
Manifestos) it shows lower ECE. Regarding the performances, the xl model shows better perfor-
mances on unseen datasets than the large version model but doesn’t guarantee better performances
on seen datasets. After tuning the model with SFT or SICL, we find that the calibration errors are
reduced across all tasks, which is different from Flan-T5large. Due to the computation constraint, we
leave the discrepancy in the behaviors of different-sized models to future work.

Table 10 shows the self-ensembled results using Flan-T5xl on SST-5 and Hate speech. We find
that both the performances and calibration errors get better with self-ensembling, justifying the
feasibility and extensibility of self-ensembling on larger models. Compared with Flan-T5large, the
self-ensembled xl model yields much lower calibration errors with SFT and SICL on both tasks.

We also surprisingly find that the self-ensembling method can improve both the performance and
calibration on the task that Batch Calibration finds struggling. On Hate speech, after applying Batch
Calibration, we witnessed an improvement in calibration along with a drop in performance. How-
ever, when we apply self-ensembling, the predictions yield better performance and much lower
calibration errors at the same time. This indicates the potential of self-ensembled language models
in producing better and more reliable predictions.
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Systems
SST5

Macro F1 ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 42.00 ↑ 4.79 0.1416 ↓ 0.0634
+ Var-Prompt 42.00 46.79 45.70 44.82 ↑ 4.79 0.1416 0.0782 0.1132 0.1374 ↓ 0.0634
ICL 37.59 ↑ 0.16 0.1833 ↓ 0.0911
+ Var-IC 37.59 37.75 37.33 37.26 ↑ 0.16 0.1833 0.1198 0.1749 0.1857 ↓ 0.0635
+ Var-Prompt 37.59 37.13 36.52 36.83 ↓ 0.46 0.1833 0.1363 0.1838 0.2025 ↓ 0.0470
+ Var-Both 37.59 33.82 35.33 35.78 ↓ 1.81 0.1833 0.0955 0.1832 0.2107 ↓ 0.0911
FT 46.27 ↑ 2.08 0.4030 ↓ 0.1022
+ Var-Prompt 48.11 47.43 48.35 48.33 ↑ 0.24 0.3960 0.3008 0.3466 0.3973 ↓ 0.0952
SupICL 47.12 ↑ 0.79 0.3602 ↓ 0.2402
+ Var-IC 47.12 47.30 47.37 47.31 ↑ 0.25 0.3602 0.2755 0.3428 0.3615 ↓ 0.0847
+ Var-Prompt 47.99 47.70 47.88 47.91 ↓ 0.08 0.2714 0.1698 0.2342 0.2801 ↓ 0.1016
+ Var-Both 47.99 47.18 47.56 47.54 ↓ 0.43 0.2714 0.1200 0.2296 0.2791 ↓ 0.1514

Systems
Manifestos

Macro F1 ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 14.50 ↑ 0.79 0.4319 ↓ 0.1699
+ Var-Prompt 14.50 13.69 12.93 15.29 ↑ 0.79 0.4319 0.2620 0.3349 0.4374 ↓ 0.1699
ICL 13.01 ↑ 0.68 0.4760 ↓ 0.2828
+ Var-IC 13.01 13.50 13.46 13.69 ↑ 0.68 0.4760 0.4146 0.4645 0.4689 ↓ 0.0614
+ Var-Prompt 13.01 13.25 11.67 11.53 ↑ 0.24 0.4760 0.2682 0.3661 0.4718 ↓ 0.2078
+ Var-Both 13.01 11.19 11.50 11.21 ↓ 1.51 0.4760 0.1932 0.3537 0.4796 ↓ 0.2828
FT 35.76 ↑ 0.73 0.2005 ↓ 0.1343
+ Var-Prompt 35.39 36.49 35.66 34.91 ↑ 1.10 0.1435 0.0662 0.1049 0.1352 ↓ 0.0773
SupICL 37.55 ↑ 0.06 0.2138 ↓ 0.0902
+ Var-IC 37.55 36.57 37.35 37.61 ↑ 0.06 0.2138 0.1789 0.2096 0.2152 ↓ 0.0349
+ Var-Prompt 37.04 37.14 37.25 36.77 ↑ 0.21 0.2285 0.1388 0.1912 0.2190 ↓ 0.0897
+ Var-Both 37.04 36.67 37.15 37.50 ↑ 0.46 0.2285 0.1236 0.1918 0.2303 ↓ 0.1049

Systems
Hate Speech

Macro F1 ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 37.08 ↓ 0.13 0.3175 ↓ 0.0489
+ Var-Prompt 37.08 36.54 36.95 36.95 ↓ 0.13 0.3175 0.2686 0.3024 0.3200 ↓ 0.0489
ICL 40.09 ↑ 1.10 0.2708 ↓ 0.1112
+ Var-IC 40.09 40.01 39.98 40.49 ↑ 0.40 0.2708 0.2332 0.2668 0.2694 ↓ 0.0376
+ Var-Prompt 40.09 41.03 41.19 41.05 ↑ 1.10 0.2708 0.1944 0.2359 0.2745 ↓ 0.0764
+ Var-Both 40.09 39.68 40.30 40.49 ↑ 0.40 0.2708 0.1596 0.2366 0.2776 ↓ 0.1112
FT 58.01 ↓ 0.82 0.3541 ↓ 0.1155
+ Var-Prompt 55.92 57.16 57.17 57.19 ↑ 1.27 0.3502 0.2386 0.2899 0.3448 ↓ 0.1116
SupICL 59.48 ↑ 0.74 0.1928 ↓ 0.0777
+ Var-IC 59.48 59.98 59.82 59.83 ↑ 0.50 0.1928 0.1413 0.1789 0.1905 ↓ 0.0515
+ Var-Prompt 58.66 59.96 60.10 59.86 ↑ 1.44 0.2507 0.1648 0.2111 0.2457 ↓ 0.0859
+ Var-Both 58.66 60.12 60.22 59.97 ↑ 1.56 0.2507 0.1151 0.2057 0.2455 ↓ 0.1356

Systems
ANLI

Acc ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 52.30 ↓ 0.60 0.3555 ↓ 0.0133
+ Var-Prompt 52.30 51.70 51.60 51.60 ↓ 0.60 0.3555 0.3422 0.3603 0.3640 ↓ 0.0133
ICL 52.17 ↓ 0.01 0.3511 ↓ 0.0204
+ Var-IC 52.17 52.10 52.10 52.10 ↓ 0.07 0.3511 0.3347 0.3506 0.3521 ↓ 0.0164
+ Var-Prompt 52.17 52.03 52.07 52.16 ↓ 0.01 0.3511 0.3375 0.3490 0.3506 ↓ 0.0136
+ Var-Both 52.17 51.70 51.80 51.80 ↓ 0.37 0.3511 0.3307 0.3510 0.3544 ↓ 0.0204
FT 61.63 ↓ 0.07 0.3161 ↓ 0.0271
+ Var-Prompt 61.53 61.56 61.37 61.37 ↑ 0.03 0.3160 0.2890 0.3101 0.3184 ↓ 0.0270
SupICL 63.90 ↑ 0.47 0.2803 ↓ 0.0303
+ Var-IC 63.90 63.87 63.73 63.83 ↓ 0.03 0.2803 0.2293 0.2740 0.2839 ↓ 0.0510
+ Var-Prompt 63.97 64.33 64.37 64.37 ↑ 0.40 0.3022 0.2736 0.2917 0.3004 ↓ 0.0286
+ Var-Both 63.97 63.90 64.33 64.37 ↑ 0.40 0.3022 0.2500 0.2853 0.3009 ↓ 0.0522

Table 8: Full results of self-ensembling with different variations. We mark the cells of baseline
systems without self-ensembling and their results in grey. Numbers in bold represents the best
metric values for each learning method. ∆ calculates the difference of performance and calibration
error between the original results (Ori.) and the best self-ensembled results, where green means
better results and red means worse results. We run all the experiments above 3 times if possible and
show the mean values.
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Evaluation Metrics SST2 SST5
ZSL ICL SFT SICL ZSL ICL SFT SICL

Performance acc 96.38 96.810.12 96.810.04 96.890.05 52.76 50.590.13 52.930.28 53.470.87

macro f1 - - - - 38.01 31.280.32 44.650.58 43.911.04

acc 96.87 97.000.03 96.780.05 96.920.08 50.59 52.010.15 51.830.26 51.950.04+ calibrated
macro f1 - - - - 49.33 50.850.18 51.000.38 51.070.08

Trustworthiness ECE 0.9291 0.93690.0001 0.93400.0011 0.93800.0003 0.2309 0.30650.0018 0.16890.0093 0.17440.0076

+ calibrated ECE 0.7937 0.80000.0002 0.79300.0001 0.79880.0008 0.0925 0.11170.0014 0.10700.0049 0.10670.0014

Evaluation Metrics Manifestos Hate Speech
ZSL ICL SFT SICL ZSL ICL SFT SICL

Performance micro f1 28.37 31.370.18 37.040.29 38.250.44 54.33 52.840.06 64.440.51 62.780.58

macro f1 21.71 25.350.22 33.710.62 35.550.41 47.15 46.490.54 61.720.40 60.270.31

micro f1 37.38 37.960.36 38.750.35 38.830.85 46.60 47.490.33 61.072.57 56.360.64+ calibrated
macro f1 35.26 35.990.35 36.170.37 36.960.59 43.65 44.780.35 59.232.38 54.800.66

Trustworthiness ECE 0.4514 0.38390.0027 0.11160.0258 0.10660.0153 0.2309 0.19350.0015 0.10470.0446 0.07130.0063

+ calibrated ECE 0.0402 0.03820.0067 0.04470.0063 0.03350.0070 0.0956 0.10760.0017 0.02970.0127 0.04740.0040

Table 9: Experiment results with different learning methods using FlanT5-xl. We report the mean
value for 3 runs with different random seeds and list the variance in the subscripts. We color the
Batch Calibration results in grey.

Systems
SST5

Macro F1 ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 38.01 ↑ 5.53 0.2309 ↓ 0.0898
+ Var-Prompt 38.01 43.54 41.80 42.65 ↑ 5.53 0.2309 0.1411 0.1971 0.2210 ↓ 0.0898
ICL 31.28 ↑ 3.95 0.3065 ↓ 0.1171
+ Var-IC 31.28 30.57 30.85 30.91 ↓ 0.37 0.3065 0.2653 0.3035 0.3070 ↓ 0.0412
+ Var-Prompt 31.28 34.75 34.71 34.77 ↑ 3.49 0.3065 0.2358 0.2714 0.2798 ↓ 0.0707
+ Var-Both 31.28 35.23 33.75 33.51 ↑ 3.95 0.3065 0.1894 0.2730 0.2846 ↓ 0.1171
FT 44.65 ↑ 3.33 0.1689 ↓ 0.0730
+ Var-Prompt 47.06 47.98 47.15 47.01 ↑ 0.92 0.1656 0.0959 0.1425 0.1660 ↓ 0.0697
SupICL 43.91 ↑ 1.26 0.1744 ↓ 0.0740
+ Var-IC 43.91 43.91 44.05 44.00 ↑ 0.14 0.1744 0.1376 0.1738 0.1742 ↓ 0.0368
+ Var-Prompt 44.21 44.79 44.69 44.78 ↑ 0.58 0.1688 0.1278 0.1536 0.1666 ↓ 0.0410
+ Var-Both 44.21 45.17 44.60 44.41 ↑ 0.96 0.1688 0.1004 0.1488 0.1638 ↓ 0.0684

Systems
Hate Speech

Macro F1 ECE
Ori. Max Mean Majority ∆ Ori. Max Mean Majority ∆

ZSL 47.15 ↑ 0.59 0.2309 ↓ 0.0508
+ Var-Prompt 47.15 46.57 47.30 47.74 ↑ 0.59 0.2309 0.1801 0.2041 0.2194 ↓ 0.0508
ICL 46.49 ↑ 1.09 0.1935 ↓ 0.1052
+ Var-IC 46.49 47.03 46.94 46.74 ↑ 0.54 0.1935 0.1301 0.1800 0.1901 ↓ 0.0634
+ Var-Prompt 46.49 47.44 47.06 47.57 ↑ 1.08 0.1935 0.1257 0.1625 0.1836 ↓ 0.0678
+ Var-Both 46.49 47.45 46.80 46.68 ↑ 1.09 0.1935 0.0883 0.1581 0.1867 ↓ 0.1052
FT 61.72 ↓ 0.72 0.1074 ↓ 0.0572
+ Var-Prompt 60.04 60.71 61.00 60.86 ↑ 0.96 0.0873 0.0502 0.0719 0.0887 ↓ 0.0371
SupICL 60.27 ↑ 1.84 0.0713 ↓ 0.0437
+ Var-IC 60.27 60.88 60.72 60.68 ↑ 0.61 0.0713 0.0424 0.0636 0.0729 ↓ 0.0289
+ Var-Prompt 60.37 60.97 61.50 61.45 ↑ 1.13 0.0883 0.0427 0.0649 0.0793 ↓ 0.0456
+ Var-Both 60.37 61.69 62.11 61.74 ↑ 1.74 0.0833 0.0276 0.0588 0.0816 ↓ 0.0557

Table 10: Results of self-ensembling with different variations using FlanT5-xl. For simplicity, we
omit the variance of 3 runs and only show the mean values. The notations follow previous patterns.
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D PROMPTING TEMPLATES

D.1 PROMPTING TEMPLATES FOR MAIN EXPERIMENTS

We provide the prompting templates for different datasets when comparing learning methods as
follows.

SST-2

Classify this sentence’s sentiment into ’positive’ or ’negative’: <
SENTENCE>
<LABEL>

RTE

Does Sentence1 entails Sentence2?
Sentence1: <SENTENCE1>
SENTENCE2: <SENTENCE2>
<LABEL>

ANLI

Does the premise entails the hypothesis?
Premise: <PREMISE>
Hypothesis: <HYPOTHESIS>
<LABEL>

SST-5

Classify this sentence’s sentiment into "terrible", "bad", "neutral",
"good" or "great": <SENTENCE>
<LABEL>

NLU++

Here is a sentence: ’<SENTENCE>’
Try to answer this question if possible with ’yes’ or ’no’: ’<QUESTION>’
<LABEL>

Manifestos

Which category about US society does the sentence belong to from "other",
"external relations", "freedom and democracy", "political system",
"economy", "welfare and quality of life", "fabric of society", "social
groups": <SENTENCE>
<LABEL>

Hate Speech

Classify this sentence’s sentiment into "hate", "neutral" or "support": <
SENTENCE>
<LABEL>

D.2 PROMPTING TEMPLATES FOR Var-Prompt

Below show the various templates for prompt cycling. All the prompting templates are manually
written without specific crafting.

16



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

ANLI

Does the premise entails the hypothesis?
Premise: <PREMISE>
Hypothesis: <HYPOTHESIS>
<LABEL>

Premise: <PREMISE>
Hypothesis: <HYPOTHESIS>
Given the premise, is the hypothesis entailed?
<LABEL>

Is the hypothesis entailed by the premise?
Premise: <PREMISE>
Hypothesis: <HYPOTHESIS>
<LABEL>

### Instruction: Determine whether the hypothesis is entailed by the
premise.
Premise: <PREMISE>
Hypothesis: <HYPOTHESIS>
<LABEL>

SST-5

Classify this sentence’s sentiment into "terrible", "bad", "neutral",
"good" or "great": <SENTENCE>
<LABEL>

<SENTENCE>
is this sentence ’great’, ’good’, ’neutral’, ’bad’ or ’terrible’?
<LABEL>

<SENTENCE>
Among "terrible", "bad", "neutral", "good" or "great", the sentence’s
sentiment is
<LABEL>

### Instruction: Classify the input sentence’s sentiment into into
"terrible", "bad", "neutral", "good" or "great".
Input: <SENTENCE>
### Response: <LABEL>

Manifestos

Which category about US society does the sentence belong to from
"other", "external relations", "freedom and democracy", "political
system", "economy", "welfare and quality of life", "fabric of society",
"social groups": <SENTENCE>
<LABEL>

<SENTENCE>
Which category about US society does the sentence belong to?
<LABEL>

<SENTENCE>
Among "other", "external", "democracy", "political", "economy",
"welfare", "fabric", "group", the sentence’s US societal category is
<LABEL>
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### Instruction: Classify the input sentence’s US societal category
into "other", "external", "democracy", "political", "economy",
"welfare", "fabric", "group".
Input: <SENTENCE>
### Response: <LABEL>

Hate Speech

Classify this sentence’s sentiment into "hate", "neutral" or
"support": <SENTENCE>
<LABEL>

<SENTENCE>
Is the sentence hate, neutral or support?
<LABEL>

<SENTENCE>
Among "hate", "neutral" or "support", the sentence’s sentiment
is <LABEL>

### Instruction: What’s the sentiment of input sentence among "hate",
"neutral" or "support"?
Input: <SENTENCE>
### Response: <LABEL>

D.3 PROMPTING TEMPLATES FOR Var-Prompt IN ABLATION STUDIES

We use ChatGPT to generate paraphrased prompting templates for Var-Prompt. The instruction we
give to ChatGPT is as follows.

Paraphrase the provided templates and keep the keywords in <> in the
meantime. Show me 5 different paraphrased results.

The template is:
<TEMPLATE>

We paraphrase the prompting templates for SST-5 and Hate Speech datasets and randomly sampled
4 paraphrased candidates. These templates share similar wording and structure with the human-
written templates. We conduct experiments with these 8 templates in total and use max probability
when self-ensembling. We provide the candidates below for reference.

SST-5

<SENTENCE>\nThe sentiment expressed by <SENTENCE> falls into the
categories of "terrible," "bad," "neutral," "good," or "great,"
and it is labeled as <LABEL>

Evaluate the sentiment expressed by <SENTENCE>, placing it in
the categories of "terrible," "bad," "neutral," "good," or
"great," and indicate the sentiment as <LABEL>

Evaluate the emotional tone of this statement and categorize it
as "terrible," "bad," "neutral," "good," or "great": <SENTENCE>
<LABEL>

Analyze the emotional inclination of the following statement,
categorizing it as "terrible," "bad," "neutral," "good," or
"great": <SENTENCE>
<LABEL>
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Hate Speech

Assess whether the sentiment in this sentence falls under
"hate," "neutral," or "support": <SENTENCE>
<LABEL>

Appraise the sentiment expressed in this sentence and assign it
to one of the categories: "hate," "neutral," or "support"
: <SENTENCE>
<LABEL>

Categorize the sentiment of <SENTENCE> as either "hate," "neutral,"
or "support," with the assigned label being <LABEL>.

Determine the emotional tone of <SENTENCE>, categorizing it as
"hate," "neutral," or "support," and mark the sentiment as <LABEL>.
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