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ABSTRACT

Personalized federated learning (PFL) mitigates the notorious data heterogeneity
issue in generic federated learning (GFL) by assuming that client models only
need to fit on local datasets individually. However, real-world FL clients may meet
with test data from other distributions. To endow clients with the ability to handle
other datasets, we theoretically formulate a new problem named as Selective FL
(SFL), bridging the GFL and PFL together. To practically solve SFL, we design a
general effective framework named as Hot-Pluggable Federated Learning (HPFL).
In HPFL, clients firstly learn a global shared feature extractor. Next, with the frozen
feature extractor, multiple personalized plug-in modules are individually learned
based on the local data and saved in a modular store on the server. In inference
stage, an accurate selection algorithm allows clients to choose and download
suitable plug-in modules from the modular store to achieve the high generalization
performance on target data distribution. We conduct comprehensive experiments
and ablation studies following common FL settings including four datasets and
three neural networks, showing that HPFL significantly outperforms advanced FL
algorithms. Additionally, we empirically show the remarkable potential of HPFL
to resolve other practical FL problems like continual federated learning and discuss
its possible applications in one-shot FL, anarchic FL and an FL plug-in market.

1 INTRODUCTION

Federated Learning (FL) is an effective framework that lets multiple users or organizations to
collaboratively train a machine learning model with data privacy protection. The generic FL (Brendan
McMahan et al., 2016) (GFL) was first proposed to obtain a global model (GM) performing well on
test data from all clients. However, the performance of the classic FL algorithm FedAvg (Brendan
McMahan et al., 2016) suffers from the client drift caused by the data heterogeneity (Kairouz et al.,
2019), i.e. different data distributions on clients.

Table 1: Test accuracy of PMs on generic FL (GFL-PM,
G-P) and personalized FL (PFL-PM, P-P) test settings,
with ResNet-18 trained on CIFAR-10 dataset.

Algorithm FedAvg FedPer FedRep FedRoD

Test Settings G-P P-P G-P P-P G-P P-P G-P P-P

Accuracy 81.5 92.5 74.1 95.8 85.1 95.6 85.3 94.3

To tackle the data heterogeneity problem, per-
sonalized FL (Collins et al., 2021; Chen & Chao,
2021) (PFL) is proposed with assuming that
clients only need to perform well on its local
test data. Usually, the distribution of local test
data is similar to that of its local training data.
Thus, PFL usually distinguishes its local models
from the GM, and personalizes local models to better adapt to its training data while absorbing
knowledge from the global training data. On the local test data, personalized models (PMs) in PFL
(PFL-PM) significantly outperform the GM learned by GFL (GFL-GM) (Chen & Chao, 2021).

However, in real-world scenarios, FL users may meet with test data which has different distribution
from local training data (Liu et al., 2020; Luo et al., 2019; Hsu et al., 2020), instead similar one ever
appeared in other clients . For example, when one is having a trip traveling abroad, weather app
on their phone may collect entirely different temperatures from what it used to. Though prediction
for the future temperature may be difficult solely with the forecast model trained before, there are
users whose model trained on the local temperature which happens to possess similar pattern (if not
identical) with the temperature the traveler is trying to predict. We offer more examples showing the
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Figure 1: The framework of HPFL. HPFL splits the model into a backbone that learns general representations
of all datasets and personalized ”plug-in” modules. During inference, clients choose a suitable plug-in module
with respect to the test data to complete the inference. New clients in federated continual learning or other
scenarios can directly train and contribute new plug-ins without harming the backbone performance.

real scenes of our setting named GFL-PM, in Appendix F.1. In GFL-PM setting, the test set every
client encounters comes from local test data of other clients, whose distribution is the same as that
of clients’ local training data. In these realistic cases, classic PFL algorithms may not be suitable
anymore, as the personalized client models cannot generalize well on other test data. We conduct an
experiment to illustrate this. We train PMs with advanced PFL algorithms FedPer (Arivazhagan et al.,
2019b), FedRep (Collins et al., 2021) and FedRoD (Chen & Chao, 2021), and test their performances
on global and local test data. As Table 1 shows, PMs performs well when they are only required
to deal with local test data (PFL-PM), but their performances significantly collapse when meeting
with global test data (GFL-PM), i.e. clients equally meet with the test data from all clients. This
performance degradation of PMs in GFL scenario leads to a practical and fundamental questions:

Is it possible for FL clients to achieve the generalization performance in GFL as high as PFL?

To answer this question, we theoretically formulate a new problem called Selective FL (SFL), bridging
the GFL and PFL together. Both GFL and PFL can be seen as the special case of the SFL. Its core idea
is to let clients select and inference with suitable personalized models (PMs) according to incoming
test data. Thus, we give an affirmative answer to the above question. However, the naive solution to
SFL faces privacy concerns and large system overheads. To this end, we propose a general effective
framework named Hot-Pluggable Federated Learning (HPFL) to solve SFL practically.

As shown in Figure 1, HPFL splits the model into two parts: a backbone module (also called feature
extractor) and a “plug-in” module. The training process consists of two stages: backbone and plug-in
training. When training the backbone, clients exploit GFL algorithms to help them learn a general
representation of all datasets. Then, each client individually trains a “plug-in” based on the outputs
from the shared backbone with PFL algorithms. All trained “plug-ins” will be uploaded and saved in
a “plug-in” store on the server. During inference, clients could download a suitable “plug-in” from
the server with respect to the test data, then “plug” it on the backbone to complete the inference.

We summarize our contributions as follows: (1) We identify a substantial gap between GFL and PFL.
Then we formulate a new problem SFL to bridge them together to address this performance gap
(Section 3); (2) We propose a general efficient and effective framework, HPFL, which practically
solves the SFL problem (Section 4); (3) We conduct comprehensive experiments and ablation studies
on four datasets and three neural networks to show the effectiveness of HPFL (Section 5); (4) we
show the remarkable potential of HPFL in federated continual learning (Section 5.4) and discuss
possible applications of HPFL in one-shot FL, anarchic FL and an FL plug-in market (Section 7).

2 RELATED WORKS

Generitic Federated Learning. The convergence problem of FL with high non-IID data distribution
has always been a vital problem in improving the performance of models trained with FL. To resolve
this problem, FedProx (Li et al., 2020b) and MOON (Li et al., 2021b) propose to add regularization
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terms to mitigate the negative effect caused by data heterogeneity. Some methods modify uploaded
gradients to alleviate the dissimilarity (Wang et al., 2020; Karimireddy et al., 2019). Some works
share intermediate features (Jeong et al., 2018; Hao et al., 2021) or extra data (Tang et al., 2022) to
reduce client drift. Different from these works, we attempt to enhance the GFL performance with
personalized models.

Personalized Federated Learning. PFL exploits personalizing client models to better suit local
heterogeneous training data. Meta-learning (Fallah et al., 2020), knowledge distillation (Yu et al.,
2020b; Li & Wang, 2019), adaptive regularization and model mixtures (Hanzely & Richtárik, 2020;
Dinh et al., 2020; Deng et al., 2020) are used to enhance personal knowledge learning of models.
Some works like LG-FEDAVG (Liang et al., 2020) and LotteryFL (Li et al., 2021a) allow clients
to learn different PM structures. FedRep (Collins et al., 2021) and FedRoD (Chen & Chao, 2021)
propose to learn a global feature extractor and personalized classifiers. All of these works only
consider PMs in PFL settings, i.e. in test time, local PMs only meet test data distribution similar
to training distribution. Instead, we excavate the potential of PMs to solve problems in GFL. With
divergent purposes, HPFL and those methods train and use these personalized models in quite
different way. Unlike those PFL methods, clients can still perform well when meeting unseen test
data distribution in HPFL.

Test-time adaptation & domain adaptation methods in FL. There exist some works (Peng et al.,
2019; Liu et al., 2021) that generalize a federated model trained on multiple source domains to unseen
target domains. FedTHE (Jiang & Lin, 2023) discussed test-time distribution shift of PMs, which is
similar to our problem setting. These methods enhance federated models by better training schemes.
Different from them, HPFL is the first FL framework that selects flexible PMs to achieve this goal,
which is orthogonal to existing works. Due to the limited space, we leave a more detailed discussion
of the literature review in Appendix A.

3 SELECTIVE FL: IMPLEMENTING GENERIC FL FROM PERSONALIZED FL

3.1 GENERIC FL
The GFL aims to make M clients collaboratively learn a global model parameterized as θ. Each
client has its local data distribution Dm. Thus, the local objective function Lm(θ) on client m is also
different. The global optimization object of GFL is defined as:

min
θ∈Rd

LG(θ) :=

M∑
m=1

pmLm(θ) :=

M∑
m=1

pmEξm∼Dmℓ(f(θ, ξm), ξm), (1)

where ξm ∼ Dm is the data sampled from Dm, f(θ, ξm) is the prediction, d is the number of model
parameters, pm > 0 and

∑M
m=1 pm = 1. Usually, pm = nm

N , where nm denotes the number of client
m’s samples and N =

∑M
m=1 nm. GM refers to the model obtained from optimizing GFL.

3.2 PERSONALIZED FL
Different from the object function of GFL, the PFL aims to learn multiple personalized models which
fit well on different datasets individually: (Li & Wang, 2019; Chen & Chao, 2021; Li et al., 2021c):

min
Ω,θ1,...,θM

LP (Ω, θ1, ..., θM ) :=

M∑
m=1

pmEξm∼Dmℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM ), (2)

where R is a regularizer (Chen & Chao, 2021) that varies with different algorithms, Ω is used to
collaborate clients. We call each obtained locally personalized model θm as PM.

3.3 WHEN PM MEETS GFL
In practice, PMs of clients may meet test data from other clients. Therefore, the learned PMs
θ1, ..., θM need to perform well on all local data D1, ...,DM . We formulate the corresponding
optimization goal with PMs in GFL scenario (GFL-PM) is:

min
Ω,θ1,...,θM

LP−G(Ω, θ1, ..., θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dmℓ(f(θi, ξm), ξm) +R(Ω, θ1, ..., θM ), (3)

which can be seen as a combination of GFL (Eq. 1) and PFL (Eq. 2): each PM is optimized to
minimize the ℓ on all Dm, m ∈ 1, ...,M . When not personalize θi on Di, Eq. 3 is reduced to GFL .
And if each client’s PM only needs to perform well on its local data, Eq. 3 turns into PFL.

3



Under review as a conference paper at ICLR 2024

One may think that there is no need to endow PMs with global generalization performance because one
can optimize GFL to obtain a GM that generalizes well on all local datasets {Dm,m ∈ {1, ...,M}}.
However, theoretically and empirically, optimization of GM is difficult (Karimireddy et al., 2019;
Woodworth et al., 2020) under communication cost and data heterogeneity constraints. Additionally,
PMs’ performance on local test data (PM on PFL) is usually significantly better than that of GM on
global test data (GM on GFL) (Chen & Chao, 2021; Collins et al., 2021).

However, PMs after PFL usually cannot achieve better performance on unseen data distributions
than GM in GFL (Chen & Chao, 2021). FedRoD (Chen & Chao, 2021) simultaneously optimizes
LG and LP , aiming to learn models that perform well both in GFL and PFL. This shares a similar
spirit of optimizing GFL-PM problem (Eq. 3). However, PMs obtained from FedRoD remain a
trade-off between minimizers of PFL and GFL. It is challenging to obtain model parameters that
are both minimizers of GFL and PFL simultaneously. Next, we show that GFL-PM can be naturally
transformed into a Selective FL (SFL) problem (Eq. 5), which involves optimizing PFL and a model
selection problem (Eq. 6 in section 3.4). And the solution of SFL could serve as the minimizer of
both GFL and PFL.

3.4 SELECTIVE FL
Successful personalization on client i means the following equation (Chen & Chao, 2021; Kairouz
et al., 2019; Tan et al., 2022a).

Eξm∼Dmℓ(f(θi, ξm), ξm) ≥ Eξm∼Dmℓ(f(θm, ξm), ξm), i ̸= m, (4)

which means that for any client i, its PM outperforms than all PMs of other clients (Chen & Chao,
2021). Now, we are ready to state the following theorem (proof in Appendix B.1).
Theorem 3.1. With Equation 4 and the PMs obtained from optimizing Equation 2 as:
Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Ω
pfl, θpfl1 , ..., θpflM ).

Remark 3.1. Theorem 3.1 implies that LP−G is lower bounded by the minimum of LP .

Theorem 3.1 inspires us to think about a question: Is it possible to exploit PMs to improve the
generalization performance on the global dataset? Based on Equation 4, the intuitive solution is to
design a new forward function f̂ to make client i generate the same outputs of f(θpflm , ξm) when
meeting data ξm ∼ Dm. Thus, we propose the Selective FL (SFL) problem as the following:

min
H
LS(Θ,H) :=

M∑
m=1

pmEξm∼Dmℓ(f̂(Θ, ξm,H), ξm) (5)

s.t. f̂(Θ, ξm,H) = f(θpfls , ξm), s = S(Θ, ξm,H) (6)

where Θ = {Ωpfl, θpfl1 , ..., θpflM } = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), S is called selection
function that outputs the model index to select (or say “generate”) a model from the PMs based on the
input ξm and the auxiliary information H (We will illustrate what can be the auxiliary information in
Section 4). Now, we can state the following theorem to illustrate that we can solve problem 3 by SFL
(proof in Appendix B.2):

Theorem 3.2. With equation 4, Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ) and the
H∗ that guarantees θpflm = s(Θ, ξm,H), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Θ) = LS(Θ,H∗).

Remark 3.2. Theorem 3.2 shows that if we can accurately select θpflm out from all PMs when meeting
data samples ξm ∼ Dm, the solution of SFL is also the lower bound of GFL-PM (Eq. 3). Therefore,
solving SFL means that clients can achieve a generalization performance in GFL as high as PFL.

4 HPFL: A GENERAL EFFECTIVE FRAMEWORK TO SOLVE SELECTIVE FL

In this section, we will first illustrate that directly selecting PM faces some fatal obstacles, including
the large system overheads and privacy concerns in Section 4.1. Then, we introduce the design of
HPFL in Section 4.2 with the Algorithm 1. Lastly, the selection method is introduced in Section 4.3.

4.1 PROBLEMS OF DIRECTLY SELECTING PM
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Algorithm 1 HPFL.
Initialization: server distributes the initial model θ0

to all clients.
1. Training the complete model θ:
for each round r = 0, 1, · · · , R do

server samples a set of clients Sr ⊆ {1, ...,M}.
server communicates θr to clients m ∈ Sr .
for each client m ∈ Sr in parallel do
Cr+1
m ← LocalTraining(Dm, θr) (GFL) .

end for
θr+1 ← ServerUpdate(Cr+1

m |m ∈ Sr) (GFL).
end for

2. Training personalized plug-in module θρm:
for each client m ∈M in parallel do do

Clients share and freeze the θg ,
Clients design personalized θρm.

Training θρm with object function 7 (PFL).
Obtaining auxiliary informationHm (e.g. noised

features explained in Section 4.3 in detail.)

for plug-in selection.
Upload θρm andHm to server.

end for
Server stores θρm andHm.

HPFL Inference(θg,Dtest):
i← SelectPlugIn(Dtest, θ

g,H).
Get output← ρi ◦ g(ξ|ξ ∼ Dtest).

With PMs Θ = {Ωpfl, θpfl1 , ..., θpflM } =
argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), an intu-
itive idea is to choose PM i based on the sim-
ilarity between its local data Di and the in-
put data ξm ∼ Dm, thus the selection func-
tion 6 is implemented as: s = Sξ(Θ, ξm,H) =
argmini∈M d(Di, ξm), where d(·, ·) is any dis-
tance measure, then do inference as f(θpfls , ξm).
However, accessing data of other clients will
cause privacy concerns. Moreover, communi-
cating the whole model parameter θm is imprac-
tical due to large system overhead, especially
for large language models and many clients.

4.2 DESIGN OF HPFL

Training the complete model θ. First,
with any GFL algorithm , HPFL obtains a

model θ that performs well (not as good as PMs
in PFL) on all client datasets. Thus, the model
θ owns a backbone g that can extract general
features from all client datasets. Due to the lim-
ited space, we chose the classic GFL algorithm
FedAvg (McMahan et al., 2017) in our experi-
ments. Future works can explore other advanced
GFL algorithms to learn a better θ.

Training personalized plug-in module θρm.
Usually, after training, early layers of a model
learn more general features than late lay-
ers (Yosinski et al., 2014; Asano et al., 2020),
which means that early layers can extract useful
features from more datasets than late layers, but late layers are more specific to some particular
datasets. Inspired by this, HPFL decomposes the model as fm = ρ ◦ g for each client m. As shown
in Figure 1, g is a feature extractor, and ρ is a model head that outputs the final model prediction.

Clients can design a new personal plug-in module ρm (or say model head) different from the original
head ρ, based on different computation characteristics. Then, with the frozen general feature extractor
g, each client individually trains personalized ρm on local datasets Dm by optimizing:

min
θρ
m

LP (θm) := Eξm∼Dmℓ(ρm ◦ g(ξm), ξm). (7)

Now, each client obtains a PM fm = ρm◦g, which enhances the generalization performance of ρm◦g
on Dm, which is usually better than original GM f = ρ ◦ g due to the personalization. Thus, the θpflm
in SFL problem 5 can be constructed by θg and θρm, inference becomes as f(θpflm , ξm) = ρm ◦ g(ξm).

Inference and selecting plug-in module. In HPFL, we define some auxiliary information Hm that

will be exploited to select plug-in module and propose specific forms of it in Section 4.3. When
training θρm, Hm are collected by clients and uploaded to the server. Note that as a general framework,
HPFL does not limit the specific form of Hm, which depends on the selection method. In this paper,
We introduce a distance-based selection method in Section 4.3. We discuss and analyze the potential
privacy risk of sharing the plug-ins in Appendix E.1.

4.3 SELECTION METHODS

Decomposing the DL model also helps to avoid accessing the raw data ξm ∼ Dm. With the help of
the shared feature extractor g, we can select the ρm based on the intermediate features hm = g(ξm)
rather than ξm itself. There have been some works that exploit sharing intermediate features to
improve FL (He et al., 2020a; Lin et al., 2020; Luo et al., 2021; Liang et al., 2020).

Distance based methods. Intuitively, now that each ρm is trained based on local features hm, we
only need to compare the similarity between hm and htest = g(ξtest), where ξtest is the data that
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needs testing. Now, the select problem turns from equation 6 into:

Sdist(d, htest, ĥ1, ..., ĥM ) = argmin
m∈M

d(ĥm, htest), (8)

in which ĥm = (hm + κ ∗ ϵ)/(1 + κ), where ϵ ∼ N (µm, σm) is the noise to enhance privacy
protection. The µm and σm are mean and variance of features hm. κ is the coefficient controlling
the relative magnitude between Gaussian noise and the features. Clients receive the noised features
ĥm for plug-in selection. In this selection method, the Hm = ĥm. We discuss the potential privacy
risk of the selection method in Appendix E.2, and testify sharing the noised feature stays safe from
model inversion attack. MMD measures the Hilbert-Schmidt norm between kernel mean embedding
of empirical joint distributions of source and target data (Long et al., 2017). In HPFL, we utilize it to
measure the distance between features that plug-in modules train on and features of test data. Note
that we can also choose other distance measures. Due to page limitation, results of HPFL based on
SVCCA (Raghu et al., 2017) and CKA (Kornblith et al., 2019) are shown in Appendix D. We also
provide an out-of-distribution confidence based selection method and its results in Appendix D.2.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Federated Datasets and Models. We conduct experiments on four commonly used image clas-
sification datasets in FL, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), Fashion-MNIST (Xiao et al., 2017), and Tiny-ImageNet (Le & Yang, 2015), with Latent
Dirichlet Sampling (Dir) partition method (α = 0.1 and 0.05.) to simulate the data heterogeneity
following (He et al., 2020b; Li et al., 2021b; Luo et al., 2021). We also evaluate the scalability of our
proposed methods with different number of clients (M =10 and 100). We train ResNet-18 (He et al.,
2016), MobileNet and a simple-CNN on all datasets. We run all for 1000 communication rounds,
with 1 local epoch in each round. Hyper-parameters and more details are explained in Appendix C.

Baselines and Metrics. We compare HPFL with classic GFL algorithm FedAvg (McMahan et al.,
2017), advanced PFL algorithms including FedPer (Arivazhagan et al., 2019a), FedRep (Collins et al.,
2021), PerFedMask (Setayesh et al., 2023), FedRoD (Chen & Chao, 2021) which is for both GFL and
PFL, and a test-time adaption method FedTHE (Jiang & Lin, 2023). For all algorithms, we validate
the learned global model (GM) on the global test dataset (GFL), and the personalized models (PM)
on the personalized dataset (PFL), also PMs on GFL. Note that PFL only focuses on individually
testing on local datasets instead of all datasets. More details about metrics are stated in Appendix C.

5.2 EXPERIMENT RESULTS

HPFL consistently outperforms baselines in PM on GFL while comparable with classic PFL
methods in classic personalized setting. As shown in Table 2, in GFL-PM setting, HPFL performs
the best in all of methods and most by a large margin, even surpasses accuracies in GFL-GM in most
cases, while baselines perform poorly due to a lack of adaption to the test data. We attribute the
significant performance gain to adaptation to test data implemented with precise plug-in selection,
which we are going to discuss in Section 5.3. It is worth noting that FedTHE also attempts to adapt its
model using test data, but only with the ensemble of its locally personalized and global classifier, thus
not fully utilizes the knowledge of other clients and performs worse than HPFL. In terms of GFL-GM
accuracy, HPFL actually shares the same GM with GFL backbone training method (in our case, i.e.
FedAvg), so its GFL-GM accuracy is exactly the same as that of FedAvg and outperforms the classic
PFL algorithms only focusing on PFL performance like FedPer (Arivazhagan et al., 2019a). As for
PFL-PM accuracy, our proposed method HPFL reports comparable results to the PFL baselines.

HPFL maintains fairly excellent robustness against non-IID degree. As shown in Table 2, the
accuracy of HPFL is not only highest in GFL-PM, but also increases when the heterogeneity increases
from Dir(0.1) to Dir(0.05) in a similar way as in PFL-PM in some cases. From this phenomenon,
we infer that HPFL exploits local information from clients to ensemble a model in the form of
plug-ins. The server holds these local information in the form of plug-ins instead of fusing these
local knowledge in a single model, thus prevents the original local information from being corrupted
in model aggregation as it occurs in highly heterogeneous data, and maintains a robustness against
non-IID, which is a common issue in Federated Learning.
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Table 2: Experiment results. Noisy coefficient κ=1. §: we focus more on GFL setting. Numbers in ForestGreen
highlight highest values in GFL setting. *: FedAvg fine-tunes the whole model instead of partial model as in
HPFL. Plug-in selection is implemented with MMD. Ep denotes the epoch of fine-tuning.

Clients 10 (sample 50% each round) 100 (5% each round)

Non-IID Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05)

Test Set GFL§ PFL GFL§ PFL GFL§ PFL GFL§ PFL

Method/Model GM PM PM GM PM PM GM PM PM GM PM PM

CIFAR-10

FedAvg Ep = 1∗ 81.5 - 92.5 62.4 - 96.1 73.6 - 90.9 47.9 - 91.5
FedAvg Ep = 10∗ 81.5 - 92.8 62.4 - 92.7 73.6 - 91.6 47.9 - 93.4

FedPer 74.1 40.9 95.8 58.7 27.3 96.4 44.5 20.6 89.7 24.0 14.3 89.9
FedRoD 85.3 41.6 94.3 67.6 26.8 96.9 74.0 20.1 87.4 66.7 15.6 91.2
FedRep 85.1 51.3 95.6 73.2 30.2 85.3 66.5 27.4 89.3 59.2 20.4 89.1

PerFedMask Ep = 5 57.8 23.4 83.1 31.8 15.1 83.1 53.8 15.6 82.1 35.0 12.5 87.6
FedTHE 86.4 51.6 90.6 68.0 32.6 89.2 74.0 41.5 88.3 66.7 43.3 87.9

HPFL Ep = 1 81.5 95.4 95.4 62.4 96.0 96.0 73.6 88.6 94.9 47.9 82.2 93.9
HPFL Ep = 10 81.5 95.7 95.7 62.4 96.3 96.3 73.6 85.7 95.7 47.9 81.8 95.3

FMNIST

FedAvg Ep = 1∗ 86.0 - 98.0 76.1 - 99.1 90.2 - 97.2 86.1 - 97.9
FedAvg Ep = 10∗ 86.0 - 98.2 76.1 - 99.1 90.2 - 97.8 86.1 - 98.4

FedPer 73.5 39.0 87.5 64.1 27.5 99.1 69.0 29.1 95.9 44.8 22.6 96.8
FedRoD 87.4 44.1 98.1 72.5 29.3 98.9 88.9 47.0 98.5 84.8 35.3 98.2
FedRep 87.0 43.0 97.5 74.7 39.5 98.0 88.2 72.4 97.9 84.4 59.6 98.3

PerFedMask Ep = 5 80.1 30.8 95.8 47.6 27.1 96.9 89.3 23.0 93.5 91.9 21.3 96.5
FedTHE 87.3 64.8 94.6 73.6 59.0 97.7 88.6 17.1 93.4 84.8 74.7 95.7

HPFL(MMD) Ep = 1 86.0 98.3 98.3 76.1 99.0 99.1 90.2 97.6 97.9 86.1 81.4 98.1
HPFL(MMD) Ep = 10 86.0 98.4 98.4 76.1 99.1 99.2 90.2 97.9 98.8 86.1 74.1 98.7

CIFAR-100

FedAvg Ep = 1∗ 69.1 - 79.5 65.3 - 77.4 59.7 - 60.0 47.9 - 69.2
FedAvg Ep = 10∗ 69.1 - 72.3 65.3 - 80.9 59.7 - 66.7 47.9 - 75.1

FedPer 38.6 22.5 74.6 33.9 17.8 82.8 13.2 7.0 49.1 4.1 2.7 46.7
FedRoD 69.4 32.5 77.2 67.0 23.6 78.5 52.8 11.2 55.4 48.4 7.3 66.3
FedRep 68.4 42.6 72.4 65.0 37.3 81.2 47.9 18.6 56.5 43.3 14.1 65.3

PerFedMask Ep = 5 47.3 7.0 40.0 49.4 7.0 39.7 41.7 3.8 35.8 42.1 3.6 35.2
FedTHE 69.8 20.5 69.0 66.9 14.2 73.2 53.7 7.9 51.9 48.4 3.6 60.9

HPFL(MMD) Ep = 1 68.6 74.8 83.3 65.3 75.8 87.4 59.7 63.8 81.2 47.9 72.3 84.1
HPFL(MMD) Ep = 10 68.6 72.2 85.7 65.3 73.9 88.8 59.7 55.7 84.1 47.9 70.9 86.4

Tiny-ImageNet-200

FedAvg Ep = 1∗ 56.5 - 69.5 54.9 - 75.3 47.2 - 53.3 42.1 - 58.0
FedAvg Ep = 10∗ 56.5 - 66.8 54.9 - 73.6 47.2 - 67.5 42.1 - 68.9

FedPer 16.3 0.5 0.5 13.4 0.5 0.5 2.4 1.8 23.5 1.3 25.1 1.0
FedRoD 57.5 26.1 68.5 55.3 12.9 52.9 48.6 49.3 9.6 43.7 5.9 53.7
FedRep 56.1 28.7 55.4 54.5 31.8 69.6 46.4 18.6 52.5 40.3 12.8 58.6

PerFedMask Ep = 5 26.9 6.6 35.9 23.2 4.2 31.3 29.9 1.9 23.5 18.7 1.6 32.6
FedTHE 57.5 15.6 60.4 55.3 14.1 71.2 48.6 15.8 55.9 43.7 10.3 56.9

HPFL(MMD) Ep = 1 56.5 51.9 70.8 54.9 58.5 74.7 47.2 50.7 71.3 42.1 47.1 74.7
HPFL(MMD) Ep = 10 56.5 50.9 73.7 54.9 58.8 77.0 47.2 48.0 73.2 42.1 43.9 76.5

Table 3: Results with different architectures.

Architecture Mobilenet Simple-CNN

Method/Model GM PM PM GM PM PM

FedAvg 55.7 - 92.3 64.6 - 85.4
FedPer 53.7 10.0 10.0 44.1 27.6 85.5

FedRoD 76.3 36.1 92.3 67.1 28.8 83.5
FedRep 74.1 35.8 85.0 54.6 10.0 10.0

PerFedMask 13.0 19.0 76.4 31.5 10.0 50.5
FedTHE 76.3 45.4 82.7 67.1 45.1 70.9
HPFL 55.7 92.8 92.8 64.6 87.8 87.8

HPFL has excellent scalability in terms of performance
in accuracy. HPFL adopts a one-client-one-plug method
to better modify final inference models according to the
data distribution of clients’ local data. In this way, HPFL
has inherent ability to allow more clients to come and
go freely in the FL system. From Table 2, we observe
that other PFL methods met with extreme problems when
dealing with the situation that the number of clients was
larger (M=100), with most of the accuracies lower than
30% on CIFAR-10, 20% on CIFAR-100. However, though with a little decay in accuracy, HPFL is
still applicable in the situation where the system included larger number of clients.
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A generalized framework applicable to different model architecture. As a general FL framework,
HPFL can be seamlessly applied to model architectures where parameter decoupling is available. We
deploy it on three different model architectures (ResNet-18, MobileNet (Howard et al., 2017), and a
simple-CNN structure whose architecture is the same as simple-CNN in (Tang et al., 2022)), and
HPFL outperforms baselines we use in the main experiment with all of the architectures, showing that
HPFL can be extensively employed in different FL systems and improve their performance of GFL
and adaptation ability to new clients. Results are in Table 3. Moreover, HPFL can exploit backbones
trained with all kinds of GFL algorithms. An ablation study on GFL methods used to learn feature
extractor of HPFL is demonstrated in Appendix D.6.

Table 4: Accuracy of Different κ

κ 0 1 10 100 1000

Accuracy 95.4 95.4 95.4 95.4 95.4

A win-win deal: Efforts to protect privacy is not contradictory
to the performance of HPFL. In HPFL, clients share auxiliary
information with the server, which may raise privacy concern. To
protect clients from the risk of data breaches during communication
or improper storage on the server, we add noise to the auxiliary
information. However, we surprisingly found that noise will not damage the performance of HPFL
as shown in Table 4. We attribute the robustness toward noise to robust selection method of HPFL,
which we study later in Section 5.3. Results of the model inversion attack against HPFL are shown in
Appendix E.
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Figure 2: Different plug-in layers.

The more flexible the models are, the better? As shown in
Figure 2, the accuracy of HPFL continuously decreases with the
increasing number of plug-in layers, we propose two possible
reasons leading to the phenomenon: (1) local clients’ samples
are not sufficient for training big-scale plugs, resulting severe
overfitting issue, and (2) The selection methods may not be
suitable for middle features. However, according to Table 2,
we believe that fine-tuning larger plug-ins does not lead to such
a performance degradation, because FedAvg fine-tunes on the
whole model without significant performance loss. Therefore,
it is natural to give attention to the potential trouble big plug-ins
may cause in plug-in selection. In Section 5.3, we conduct experiments to testify the speculation that
the performance loss when increasing the plug-in layer is mainly due to the degradation of plug-in
selection. Due to the page limit, we aim to provide an intuitive explanation in Appendix D.1.

5.3 SELECTION ACCURACY

Plug-in selection plays an important role in HPFL, so here we study how it is affected by the magnitude
of noise added on features and the number of plug-in layers. Experiments in this section are carried
out with α=0.1, M=10 on CIFAR-10 dataset, we include the results of additional configurations in
Appendix D.3.

We observed the expected phenomenon conforming to our conjecture in Section 5.2 that it is harder
for selection methods to correctly select plug-ins with more layers. With the increasing number of
plug-in layers, the score map gradually begins to change. However, until it actually start to influence
the result of selection, the performance of HPFL gets unaffected.

Observed from Figure 3, despite the slight variation in the heatmaps of MMD score with the noise
coefficient, selecting plug-in with the lowest MMD score instead of combining plug-ins with MMD
score adds robustness towards noise to HPFL. The accuracy shows in Table 4.

5.4 FEDERATED CONTINUAL LEARNING

Table 5: Results of FCL

Test data GFL

Method/Model GM PM

Naive FCL 69.5 58.4

FCL under HPFL 62.2 80.9

Federated continual learning (FCL) (Yoon et al., 2021) is a new prob-
lem where clients join FL training after initial training. The trained
model must retain previous dataset knowledge and perform well on
data from newly arrived clients. HPFL can address the forgetting
problem of FCL by preserving previous training knowledge in a
personalized plug-in and providing it for client inference as shown
in Table 5. It is an application of HPFL on the temporal scale, where
clients collaboratively learn models that generalize well over time.
We present more details about the experiment and discussion in Appendix D.5.
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Figure 3: Selection score maps with different noise coefficient. Blocks with green anchor mean the
corresponding client selects the plug-in and download it. Blocks with green anchor lying in diagonal
indicate that clients choose plug-ins of themselves when met with their own test data, which conforms
to the aim of selection methods.
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6 LIMITATIONS

Accurate Plug-in Selection. As an initial trial, our proposed plug-in selection methods select sub-
optimal plug-ins in some circumstances as shown in Figure 4, 3, 12 and 9 etc.. Future works may
consider to design more accurately and robust selection methods.

Training The Feature Extractor. In this work, we only consider using the classic GFL algorithm
FedAvg to train the feature extractor while achieving superior performance. Designing methods to
obtain a better feature extractor will be an important direction to enhance the practicality of HPFL.

7 BROADER IMPACT

Federated continual learning. As shown in Section 5.4, HPFL can effectively tackle the forgetting
problem in FCL, benefit from its ability to losslessly maintain the knowledge learned in a dataset and
recover it when in need. The superiority of HPFL meets the need of FCL: FCL can be regarded as a
distribution shift problem at Federated Learning within the temporal scale since the distribution of
training data shifts as participants of FL change with time.

One-shot FL. Once an average backbone is accessible like a pre-trained model, HPFL is able to
directly train plug-ins in a single communication round and go straight into the inference stage. The
same procedure also applies to the situation where a new client takes part in the FL system.

Anarchic FL. In anarchic FL (Yang et al., 2022), clients can decide to join or quit training at any
time, which severely harms FL convergence. To this end, HPFL naturally allows this kind of working
paradigm. Like one-shot FL, once the backbone is accessible, any aggregation operation is not in
demand for HPFL, so the server does not rely on timely responses of clients and will not be disturbed
by stale model updates. Clients can finish training and uploading plug-ins at any time.

FL plug-in market. HPFL provides the possibility of constructing a more free and transparent model
market, and customers can have better confidence knowing the plug-in they are purchasing is able
to meet their requirements with a fair plug-in selection mechanism. Plug-in providers can obtain
commercial benefits from this market.

8 CONCLUSION

In this paper, we explore how to improve the generalization performance when PMs meet test data
from other clients. We formalize the SFL to bridge the GFL and PFL together. Then, We propose
HPFL to practically solve the SFL. We verify the effectiveness and robustness of HPFL through
comprehensive experiments. And we further experimentally verify the remarkable potential of HPFL
to resolve other practical FL problems like FCL. Future work can consider to explore new plug-in
selection methods, or applying HPFL into more FL related problems.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary.
Federated learning with personalization layers. CoRR, abs/1912.00818, 2019a. URL http:
//arxiv.org/abs/1912.00818.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary.
Federated learning with personalization layers. CoRR, abs/1912.00818, 2019b. URL http:
//arxiv.org/abs/1912.00818.

Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. A critical analysis of self-supervision,
or what we can learn from a single image. In ICLR, 2020.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv e-prints, art.
arXiv:1602.05629, February 2016.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering of
local updates to improve training on non-iid data. arXiv preprint arXiv:2004.11791, 2020.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
image classification. In International Conference on Learning Representations, 2021.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representa-
tions for personalized federated learning. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 2089–2099. PMLR, 18–24 Jul 2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning, 2020.

Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes, 2020.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Sharon Li. Towards unknown-aware learning with
virtual outlier synthesis. In ICLR, 2022. URL https://openreview.net/forum?id=
TW7d65uYu5M.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gra-
dients - how easy is it to break privacy in federated learning? In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 16937–16947. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, pp. 2242–2251. PMLR, 2019.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. pp. 63–77. Springer-Verlag, 2005.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models, 2020.

10

http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
https://openreview.net/forum?id=TW7d65uYu5M
https://openreview.net/forum?id=TW7d65uYu5M
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://proceedings.neurips.cc/paper_files/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf


Under review as a conference paper at ICLR 2024

Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen,
and Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3310–3319, 2021.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. In Advances in Neural Information Processing Systems 34,
2020a.

Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh
Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr. Fedml: A research library and
benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
Neurocomputing, 459:249–289, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16, pp. 76–92. Springer, 2020.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
shifts in the wild. In Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=fmiwLdJCmLS.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-iid private data. NeurIPS, 2018.

Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. arXiv preprint
arXiv:2205.10920, 2022.

Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. In International
Conference on Learning Representations (ICLR), 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. arXiv
preprint arXiv:1910.06378, 2019.

Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training OOD detectors in
their natural habitats. In ICML, Proceedings of Machine Learning Research. PMLR, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

11

https://openreview.net/forum?id=fmiwLdJCmLS
https://openreview.net/forum?id=fmiwLdJCmLS


Under review as a conference paper at ICLR 2024

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3519–3529. PMLR, 09–15 Jun 2019. URL https://
proceedings.mlr.press/v97/kornblith19a.html.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, 2009.

John Langford, Alexander J. Smola, and Martin Zinkevich. Slow learners are fast. In Proceedings
of the 22nd International Conference on Neural Information Processing Systems, NIPS’09, pp.
2331–2339, Red Hook, NY, USA, 2009. Curran Associates Inc. ISBN 9781615679119.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li. Lotteryfl:
Empower edge intelligence with personalized and communication-efficient federated learning. In
2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 68–79, 2021a. doi: 10.1145/3453142.
3492909.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722, 2021b.

Tan Li, Linqi Song, and Christina Fragouli. Federated recommendation system via differential privacy.
arXiv preprint arXiv:2005.06670, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Sys-
tems, volume 2, pp. 429–450, 2020b. URL https://proceedings.mlsys.org/paper/
2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In ICML, 2021c.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. In NeurIPS, 2020.

Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain
generalization on medical image segmentation via episodic learning in continuous frequency space,
2021.

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican Feng, Tianjian
Chen, Han Yu, and Qiang Yang. Fedvision: An online visual object detection platform powered by
federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 13172–13179, 2020.

Zelei Liu, Yuanyuan Chen, Han Yu, Yang Liu, and Lizhen Cui. Gtg-shapley: Efficient and accurate
participant contribution evaluation in federated learning. ACM Trans. Intell. Syst. Technol., 13(4),
may 2022. ISSN 2157-6904.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
adaptation networks. In International conference on machine learning, pp. 2208–2217. PMLR,
2017.

Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang, Yunfeng Huang, Yang Liu, and Qiang Yang.
Real-world image datasets for federated learning. arXiv preprint arXiv:1910.11089, 2019.

12

https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf


Under review as a conference paper at ICLR 2024

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-IID data. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=AFiH_CNnVhS.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Kang Loon Ng, Zichen Chen, Zelei Liu, Han Yu, Yang Liu, and Qiang Yang. A multi-player game
for studying federated learning incentive schemes. In IJCAI International Joint Conference on
Artificial Intelligence, pp. 5279, 2020.

Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial domain adaptation.
In International Conference on Learning Representations, 2019.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singu-
lar vector canonical correlation analysis for deep learning dynamics and interpretability. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive Neural Networks. arXiv e-prints,
art. arXiv:1606.04671, June 2016.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neural
networks and learning systems, 32(8):3710–3722, 2020.

Mehdi Setayesh, Xiaoxiao Li, and Vincent W.S. Wong. Perfedmask: Personalized federated learning
with optimized masking vectors. In Proc. of International Conference on Learning Representations
(ICLR), Kigali, Rwanda, May 2023.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In ICML, 2021.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. arXiv
preprint arXiv:2006.05148, 2020.

Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, and Bryan Kian Hsiang Low. Col-
laborative machine learning with incentive-aware model rewards. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In ICML, Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–17, 2022a.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022b.

Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, and Guodong Long. Is het-
erogeneity notorious? taming heterogeneity to handle test-time shift in federated learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He, Bo Han, and Xiaowen Chu. Virtual
homogeneity learning: Defending against data heterogeneity in federated learning. In ICML,
volume 162 of Proceedings of Machine Learning Research, pp. 21111–21132. PMLR, 17–23 Jul
2022.

13

https://openreview.net/forum?id=AFiH_CNnVhS
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf


Under review as a conference paper at ICLR 2024

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective incon-
sistency problem in heterogeneous federated optimization. In Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 7611–7623, 2020. URL https://proceedings.neurips.
cc/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

Q. Wu, K. He, and X. Chen. Personalized federated learning for intelligent iot applications: A
cloud-edge based framework. IEEE Open Journal of the Computer Society, 1:35–44, 2020. doi:
10.1109/OJCS.2020.2993259.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous Federated Optimization. arXiv e-prints,
pp. arXiv:1903.03934, March 2019.

Haibo Yang, Xin Zhang, Prashant Khanduri, and Jia Liu. Anarchic federated learning. In Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 25331–25363. PMLR, 17–23 Jul 2022.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=Sk7KsfW0-.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual
learning with weighted inter-client transfer. In Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 12073–12086.
PMLR, 18–24 Jul 2021.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems, 2014.

Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang
Yang. A sustainable incentive scheme for federated learning. IEEE Intelligent Systems, 35(4):
58–69, 2020a. doi: 10.1109/MIS.2020.2987774.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local adaptation.
arXiv preprint arXiv:2002.04758, 2020b.

Rongfei Zeng, Chao Zeng, Xingwei Wang, Bo Li, and Xiaowen Chu. Incentive mechanisms in
federated learning and game-theoretical approach. IEEE Network, pp. 1–7, 2022. doi: 10.1109/
MNET.112.2100706.

Nanxuan Zhao, Zhirong Wu, Rynson WH Lau, and Stephen Lin. What makes instance discrimination
good for transfer learning? In International Conference on Learning Representations, 2020.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In ICML. JMLR, 2017.

Yibo Zhou. Rethinking reconstruction autoencoder-based out-of-distribution detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7379–7387, June 2022.

14

https://proceedings.neurips.cc/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/564127c03caab942e503ee6f810f54fd-Paper.pdf
https://openreview.net/forum?id=Sk7KsfW0-


Under review as a conference paper at ICLR 2024

APPENDIX

A MORE RELATED WORK

A.1 GENERIC FEDERATED LEARNING

The convergence problem of FL with high non-IID data distribution has always been an important
problem in improving the performance of models trained with FL. To resolve this problem, Fed-
Prox (Li et al., 2020b) and MOON (Li et al., 2021b) propose to add new model regularization terms
to mitigate the client drift caused by data heterogeneity. There are also some methods modifying the
uploaded gradient to alleviate the dissimilarity of gradients (Wang et al., 2020; Karimireddy et al.,
2019). With a level of privacy protection, some works propose to share intermediate features (Jeong
et al., 2018; Hao et al., 2021) or extra data (Tang et al., 2022; Shin et al., 2020; Lin et al., 2020) to
reduce the gradient variance.

A.2 PERSONALIZED FEDERATED LEARNING

Different from the GFL methods that aim to directly reduce the gradient dissimilarity, PFL exploits
the heterogeneous data to personalize client models to better suit the local training data.

Recently, several works have proposed to apply Model-Agnostic Meta-Learning (Finn et al., 2017) to
Federated Learning for faster adaptation on local training data in clients. The Model-Agnostic Meta-
Learning (Finn et al., 2017) (MAML) aims to meta-learn a global model, which will be broadcasted
to different users to learn a local model adapted to different datasets. Per-FedAvg (Fallah et al., 2020)
makes use of MAML to learn personalized models more efficiently. It first finds an initial global
shared model with second-order gradient information, and then the global model is fine-tuned by
local models with only several iterations to suit the local datasets.

Knowledge distillation is also used to promote efficient local adaptation of personalized models (Yu
et al., 2020b). Specifically, a federated teacher model GT and an adapted student model GS are
defined with the same structure. GS is initialized with GT , which has been trained through a common
dataset shared across clients. And GS is trained by local private datasets. However, in this method, the
global model GT won’t get optimized as time goes on. It is more like a local fine-tuning technology
rather than federated learning. Some works (Hanzely & Richtárik, 2020; Dinh et al., 2020; Deng
et al., 2020) utilize some regularization and adaptive model mixture to learn personalized models.
FedMD (Li & Wang, 2019) proposes a federated learning framework based on knowledge distillation
using a shared dataset, on which clients transfer knowledge through mimicking the outputs of other
client models. With knowledge distillation, it allows clients to independently design their own model
architectures with their local private datasets.

In addition to the expected performance of personalized models, there are also works aiming at
addressing the problems personalized models may meet when applied in reality. Ditto (Li et al.,
2021c) adds the regularizer measuring the difference between personalized models and the global
model into the objective functions to guarantee both the fairness and robustness of personalized
models.

Apart from the usability of personalized models, the accessibility of personalized models is also a key
consideration when it comes to real-world applications. Considering the situations where clients have
heterogeneous environments like datasets, hardware, software, and the Internet, there are too many
unpredictable situations in the real world blocking the access of personalized models. To solve these
problems, some works (Wu et al., 2020; Li et al., 2021a) propose to allow clients to learn different
personalized model structures. LotteryFL (Li et al., 2021a) proposes to let clients individually learn
a lottery model, which is a subset of the global model. During the communication, these lottery
models will be shared between servers and clients. Without the requirement of communicating a
global model, this method can significantly reduce the communication cost in its training process.
pFedHN (Shamsian et al., 2021) also makes clients learn a sub-model based on the global model.

Recently, there have also been many works exploring personalizing parts of models instead of the
whole model to improve the performance of personalized models. LG-FedAvg (Liang et al., 2020)
proposes to share the upper layers (model head) in the DNN and personalize the bottom layers (base
model), which will not be averaged during the training. It utilizes personalized base models to output
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different local features in different clients, on which the global model head will be collaboratively
trained through the FedAvg. Conversely, FedRep (Collins et al., 2021) proposes to learn a global
feature extractor and personalized classifiers. FedRoD (Chen & Chao, 2021) proposes a two-predictor
framework in which clients train different model heads to switch between GFL and PFL.

Different from their work, Our framework considers a more challenging FL setting, i.e. every client
may meet with OOD test data from other clients. Moreover, instead of improving the performance of
the model itself, we consider more about how clients collaborate to handle the unpredictable test data.

A.3 INCENTIVE MECHANISM

The purpose of FL collaboration among clients is the improvement of model performance on the
test data. Therefore, it is important to know how much performance gain can be obtained after
FL collaboration (Ghorbani & Zou, 2019; Liu et al., 2022; Sim et al., 2020). Furthermore, there
should be a well-designed incentive mechanism (Ng et al., 2020; Yu et al., 2020a; Zeng et al., 2022)
that motivates clients to join FL. Our modular store essentially provides a market economy to let
clients autonomously choose and download the needed plug module. The higher the generalization
performance of the plug-in module, the more favorable it is. Therefore, the incentive mechanism of
the modular store is naturally connected with the practical benefits of the plug-in module.

A.4 FEDERATED CONTINUAL LEARNING

Continual learning (CL) (Kirkpatrick et al., 2017) is to learn different tasks sequentially. Some former
tasks are inaccessible after training. Thus, when training subsequent tasks, the machine learning
model may forget previous tasks. EWC (Kirkpatrick et al., 2017) finds the model parameters that are
good for both previous and subsequent tasks using the Fisher Information Matrix. Progressive Neural
Network approach (Rusu et al., 2016) is to increasingly construct the model during the training.
Thus, the newly added parameters can learn the new tasks, while the old parameters can remember
the old tasks. DEN (Yoon et al., 2018) dynamically decides the model capacity to learn a compact
overlapping knowledge sharing among tasks.

Federated Continual Learning (FCL) (Yoon et al., 2021) is a new problem where, after FL training
on some clients, there are some other clients that come and join the FL training. The trained model
needs to avoid forgetting the previous dataset while performing well on the later dataset with data
from newly arrived clients. We use a simple example to show that HPFL is naturally suitable to
address the forgetting problem of FCL. Our plug-in can not only be seen as a personalized part of
the model helping clients do inference on test data but also considered as a container preserving
knowledge obtained from training. So it is natural to think we can store the knowledge in the previous
dataset and access it whenever we are in need. In fact, it can be seen as an application of HPFL on
the temporal scale. Most of the works in FL talk about many clients in a single period of time, i.e.
Federated Learning in the spatial scale. FCL itself can be seen as a problem that happens at Federated
Learning within the temporal scale: clients from different times collaboratively learn models that
can generalize well on circumstances varied with time. We experimentally verified the potential of
HPFL to address the forgetting problem of FCL in Section 5.4. Details about that experiment and
more discussion are presented in Appendix D.5.

A.5 ASYNCHRONOUS FL

Asynchronous FL (Async-FL) (Xie et al., 2019) means to ease the constraint of the synchronous
communication mechanism of classic federated optimization schemes (McMahan et al., 2017). In
Async-FL, clients may download the global model from and return gradients to the server at different
times. Thus, the server may receive a stale model update, causing unstable convergence. Such a
staleness problem has long existed in the distributed machine learning area (Langford et al., 2009;
Zheng et al., 2017). Stale updates are usually controlled by some staleness coefficients (Xie et al.,
2019) or compensated by (Zheng et al., 2017) other newer gradients. Anarchic FL (Yang et al.,
2022) can be seen as a more extreme version of Async-FL. In Anarchic FL, clients can decide
to download and upload the models at any time, not controlled by the server at all. To this end,
HPFL naturally allows this kind of working paradigm since once an average backbone, which can
be obtained from pre-trained models or summoning several active clients to train, is accessible, any
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aggregation operation is not in demand for HPFL, so the server doesn’t rely on timely respond of
client and won’t be disturbed by stale model update. Once a plug-in is updated by the client, the
plug-in can be utilized to do inference on appropriate test data without concern that the parameter of
the model will change over time.

A.6 TEST-ADAPTATION & DOMAIN ADAPTATION METHODS IN FL

There also emerge works that aim to adapt or generalize to new unseen clients with seen or unseen
data distribution. FADA (Peng et al., 2019) utilize domain adaptation to tackle with seen target
distribution. However, their method requires target domain data to train an adversarial model and
thus cannot handle the situation where the target domain is unknown. FedDG (Liu et al., 2021) first
proposed a novel setting where a federated model trained on multiple distributed source domains is
required to generalize on unseen target domains. However, these methods all aim to train a unified
global model for adaptation or generalization to new clients. As far as we know, HPFL is the first FL
framework to directly exploit PMs to achieve this goal. FedTHE & FedTHE+ (Jiang & Lin, 2023)
discuss test-time distribution shift, which is similar to our problem setting. However, we narrow
down the category of distribution shift to apply to the GFL setting and perform much better in our
proposed circumstance, while their method mainly aims at dealing with unknown distribution shift.

B PROOF

B.1 LOWER BOUND OF PM WITH GFL

Theorem B.1. With Equation 4 and the PMs obtained from optimizing Equation 2 as:
Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Ω
pfl, θpfl1 , ..., θpflM ).

Proof.

LP−G(Ω, θ1, ..., θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dmℓ(f(θi, ξm), ξm) +R(Ω, θ1, ..., θM )

≥ 1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
ℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM )

=

M∑
m=1

pmEξm∼Dm
ℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM )

≥
M∑

m=1

pmEξm∼Dm
ℓ(f(θpflm , ξm), ξm) +R(Ωpfl, θpfl1 , ..., θpflM )

= LP (Ω
pfl, θpfl1 , ..., θpflM ),

which completes the proof.

B.2 THE EQUIVALENCE BETWEEN SFL AND PFL

Theorem B.2. With Equation 4, Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ) and the
H∗ that guarantees θpflm = s(Θ, ξm,H), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Θ) ≥ LS(Θ,H∗).
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Proof.

LS(Θ,H∗) =

M∑
m=1

pmEξm∼Dm
ℓ(f̂(Θ, ξm,H∗), ξm)

=

M∑
m=1

pmEξm∼Dmℓ(f(θpflm , ξm), ξm)

= LP (Ω
pfl, θpfl1 , ..., θpflM )−R(Ωpfl, θpfl1 , ..., θpflM )

≤ LP (Ω
pfl, θpfl1 , ..., θpflM ),

combining with Theorem 3.1, which completes the proof.

C EXPERIMENT CONFIGURATION

C.1 HARDWARE AND SOFTWARE CONFIGURATION

We conduct experiments using NVIDIA A100 40GB GPU, AMD EPYC 7742 64-Core Processor
Units. The operating system is Ubuntu 20.04.1 LTS. The pytorch version is 1.12.1. The numpy
version is 1.23.2. The cuda version is 12.0.

C.2 CODE AND INSTRUCTIONS FOR REPRODUCIBILITY.

To ensure privacy, the codes and instructions will be uploaded as an anonymous link during the
rebuttal phase.

C.3 IMPLEMENT OF SIMPLIFIED METRICS AND PROOF

The original metric under the GFL-PM setting in classification tasks should be:

Accuracy (Ω, θ1, . . . , θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T (f (θi, ξm) , ξm) (9)

where T (·, ·) is the function judging whether the prediction of the model is the same with the real
label, specifically

T (prediction, sample) = 1(predciton = ysample) (10)

where ysample is the label of sample. f (θi, ξm) is the prediction of the model used in final in-
ference on client i for the sample ξm, the model is parameterized with θi. And our way of de-
termining personalized model using when inferencing on client i is to select from all the plug-
ins, i.e. the PMs obtained from optimizing Equation 2 on local data: Ωpfl, θpfl1 , ..., θpflM =
argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), so we have

θi = θpflCi(ξm,i),m ∈ 1, 2, ...,M (11)

where Ci(ξm, i) is the selection made for client i based on test data ξm and client i. Ci is the selection
algorithm of the client i.

For traditional personalized methods, the clients will only use personalized models trained locally,
i.e.

Ci(ξm, i) = i (12)

substitute Equation 12 into Equation 11, we have

θi = θpflCi(ξm,i) = θpfli (13)
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then substitute Equation 13 into Equation 9, we have

Accuracy (Ω, θ1, . . . , θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T (f (θi, ξm) , ξm)

=
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θpfli , ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
i=1

M∑
m=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

M

M∑
i=1

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

MN

M∑
i=1

M∑
m=1

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

MN

M∑
i=1

N∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

M

M∑
i=1

EξD∼D[T
(
f
(
θpfli , ξD

)
, ξD

)
]︸ ︷︷ ︸

accuracy of PM in client i on global data

(14)

Equation 14 represents the averaged accuracy of all personalized models on the global dataset, so
we can calculate the averaged accuracy of all personalized models on the global dataset as the metrics
of simplified metrics instead of original complicated metrics 9; while for our proposed methods
HPFL, because all clients have same selection method C

Ci(ξm, i) = argmax
n

g (ξn, ξm) = C(ξm) (15)

the origin metric turns into

Accuracy (Ω, θ1, . . . , θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θargmaxn g(ξn,ξm), ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θpflC(ξm), ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
i=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

M

M∑
i=1

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

MN

M∑
i=1

M∑
m=1

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

N

M∑
m=1

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)
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=

M∑
m=1

pmEξm∼DmT
(
f
(
θpflC(ξm), ξj

)
, ξj

)
=

M∑
i=1

pi Eξi∼Di
T
(
f
(
θpflC(ξi)

, ξj

)
, ξj

)
︸ ︷︷ ︸

accuracy of PM selected by client i on its own data

, (16)

Equation 16 represents the averaged accuracy of clients testing on their own personalized dataset
with models equipped with their selected plug-ins based on their own data, weighted with number of
samples in data on clients. With these simplification of metrics, we can more efficiently test GFL-PM
performance of both the traditional personalized methods (FedPer, FedRoD, FedRep) and HPFL.

C.4 HYPER-PARAMETERS

We use SGD without momentum as the optimizer for all experiments, with a batch size of 128 and
weight decay of 0.0001. The learning rate is set as 0.1 for both the training of the global model
and the fine-tuning on local datasets. The main results shown in Tabel 2 are conducted with 1-layer
plug-ins (i.e. only classifier).

Special hyperparameters of some baseline methods are :

FedRep: Local personalize epoch is set as 1.

PerFedMask: The partition percent of validation is 0.1, personalized fine-tuning epoch Ep after
calculating mask is set as 5 as the official implementation did.

FedTHE: We follow the official implementation: the smoothing factor of test history descriptor main-
tained by the Exponential Moving Average (EMA) α equals 0.1; the smoothing factor interpolating
the test feature and the test history descriptor β equals 0.3.

FedSAM: We follow the official implementation: the parameters for SAM minimizers ρ = 0.1 ,
η = 0.

C.5 EXTRA EXPLANATION ON EXPERIMENT

Due to the limited space of the main text, we show a more detailed explanation of the experiment in
this section.

For the construction of the personalized test dataset, to make the training data and test data of a
client have the same distribution following the settings of most PFL methods (Collins et al., 2021),
we count the number of samples Strain(c,m) in each class c of training data of client m and split
test data of that clients in that distribution (which means client m have Strain(c,m)∑N

m=1

∑C
c=1 Strain(c,m)

×∑M
m=1

∑C
c=1 Stest(c,m) test samples in class c, here C denotes the number of classes in overall

dataset, M denotes the number of clients in the FL system), Figure 5 and Figure 6 shows that the
data partition of training data and test data are almost identical as expected in PFL.

To report the best result of all baseline methods, we report the accuracy of their best inference
global model on global data during the whole training process. For our method, we also use the best
inference model as the backbone of HPFL for fair comparison.

D EXTRA EXPERIMENT RESULTS

Due to the limited space of the main text, we show more experiment results in this section.

D.1 MORE RESULTS ABOUT DIFFERENT NUMBER OF LAYERS OF PLUG-IN

In this part, we are trying to explain why the selection method degrades when the number of plug-in
layers increases in an intuitive way. We propose two possible ways leading to the degradation: (1)
selection methods can’t handle the large dimension of features that vastly increases when the number
of plug-in layers increases, as shown in Table 6. (2) A larger number of plug-in layers means we are
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Figure 5: Data partitioning on CIFAR-10 (α=0.1)
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Figure 6: Data partitioning on CIFAR-10 (α=0.05)

using features extracted with more shallow layers, and these features tend to be more local, which
may not be so helpful for the selection method to assess the similarity of the distributions they are
sampled from. For further study, we may conduct experiments to testify these two conjectures. Once
the conjectures are testified, we will try to find ways to solve these two problems. However, despite
the difficulty of choosing, large plug-ins also multiply the computation time and resources needed in
training them, the network bandwidth required to transmit them, and so on. As a result, large plug-ins
are generally not good options in HPFL from our perspective.

We also explore selection with different numbers of layers of plug-ins in different settings, like
α=0.05, M=10 on CIFAR-10. Figure 4 and Figure 7 show that with the number of plug-in layers
going up, the selection becomes more difficult and unstable as we claimed before.

Table 6: # feature dimensions versus # plug-ins layers on CIFAR-10.

# plug-ins layers 1 3 4 5 6

# feature dimensions 512 512×4×4
(8,192)

256×8×8
(16,384)

128×16×16
(32,768)

64×32×32
(131,072)

D.2 MORE RESULTS ABOUT SELECTION METHOD (SVCCA, CKA, OOD)

SVCCA and CKA. SVCCA (Raghu et al., 2017) exploits singular value decomposition and canonical
correlation analysis to compare the features learned by different DNNs. CKA (Kornblith et al., 2019)
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Figure 7: Selection score maps with different number of plug-in layers on CIFAR-10 (α = 0.05)

utilizes the normalized HSIC (Gretton et al., 2005) to measure the similarity. CKA is invariant to the
invertible linear transformation. Thus, it can measure meaningful similarities between representations
of high dimension (Kornblith et al., 2019).

OOD detection based methods. Out-of-distribution (OOD) detection aims to find out whether the
test data is OOD or not. Current OOD detection methods includes the norm of gradients (Huang
et al., 2021), distance-based methods (Sun et al., 2022), reconstruction based methods (Zhou, 2022),
classifier based methods (Katz-Samuels et al., 2022; Du et al., 2022). Intuitively, if the test data
is OOD to one plug-in, we can discard this plug-in. Thus, based on this insight, we train an OOD
classifier τm for each plug-in ρm. Each OOD classifier will output an OOD confidence τm(htest).
Lower τm(htest), less possible that htest is OOD to the plug-in ρm. Then, the select problem turns
from Equation 6 into:

SOOD(htest, τ1, ..., τM ) = argmin
i∈M

τi(htest). (17)

The τm is trained during the process of optimizing ρm. On each client m, we generate random noise
ϵ ∼ N (0, µϵ) as the OOD data, the hm is seen as the in-distribution (ID) data. OOD data has label 1,
and ID data has label 0. We use a linear classifier as the OOD classifier τm whose input dimension is
same with hm and the output dimension is 1. For OOD data, we hope the τm outputs 1. We use the
cross-entropy loss to train the OOD classifier. Different from the distance based methods, the OOD
detection based method does not need to communication the processed hidden features ĥm, which
significantly increases the privacy security.

We show the results of our previous attempts using SVCCA, CKA, and OOD as the selection methods
in this section. The overall training and inference process is the same as mentioned in Section 4.
When implementing SVCCA in M=100, we encountered the problem that the number of samples in
a client was not enough for SVCCA, which required at least Ncomponent components. To deal with
it, we change the number of components used to calculate SVCCA similarity between the noised
features of training data and the features of test data to min(min(num_sample), Ncomponent). From
Table 7 and Figure 8, it is easy to conclude that SVCCA, CKA (with 4 kinds of kernel), OOD all
failed to select correct plug-ins. Take HPFL based on OOD detection as an example, OOD classifiers
failed to give good predictions on whether test data is OOD or not for plug-ins because in federated
learning, it is difficult to get OOD data as negative samples when training locally, which will cause
OOD classifiers only see in-distribution(ID) data. We tried to solve this problem by generating
random images as OOD data to train the OOD classifiers. It is easy to see this method did not work
as shown in Figure 8. Therefore, it is difficult to tell whether there is an appropriate way to train
OOD classifiers to determine whether OOD detection can be utilized in HPFL. There we propose a
possible way to train OOD classifiers: after clients upload the noised features of training data to the
server, it is possible to utilize these features to train a good OOD classifier and select plug-ins using
these classifiers. We take this as a future direction in exploring more selection methods that can be
used in HPFL.

D.3 MORE RESULTS ABOUT SELECTION ACCURACY

In this part, we take a closer look at the selection accuracy using MMD by visualizing all the selection
situation on CIFAR-10, FMNIST, CIFAR-100, with three settings {α=0.1, M=10}, {α=0.05, M=10},
{α=0.1, M=100} as arrange from left to right in Figure 9, 10, 11. The colors of the blocks denote the
MMD scores, where red represents a relatively high score, and blue represents a relatively low score.
The green box on the block(i,j) implies that client i is choosing plug-in j with minimal MMD score
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Table 7: Experiment results of HPFL using SVCCA, CKA and OOD. Noisy coefficient κ=1, FedAvg
is fine-tuned with the whole model instead of only part of model as in HPFL.

Clients 10 100

Non-IID Dir(0.1) Dir(0.05) Dir(0.1)

Test Set GFL PFL GFL PFL GFL PFL

Method/Model GM PM PM GM PM PM GM PM PM

CIFAR-10

HPFL(SVCCA) Ep = 1 81.5 62.8 95.4 62.4 32.7 96.0 73.6 61.0 95.0
HPFL(SVCCA) Ep = 10 81.5 62.5 95.8 62.4 34.7 96.3 73.6 47.0 95.7

HPFL(Linear-CKA) Ep = 1 81.5 56.1 95.4 62.4 55.2 96.0 73.6 70.5 95.0
HPFL(Linear-CKA) Ep = 10 81.5 55.1 95.8 62.4 44.6 96.3 73.6 60.3 95.7

HPFL(RBF-CKA) Ep = 1 81.5 61.0 95.4 62.4 55.2 96.0 73.6 70.7 95.0
HPFL(RBF-CKA) Ep = 10 81.5 55.9 95.8 62.4 44.6 96.3 73.6 59.9 95.7

HPFL(Linear − CKAdebias) Ep = 1 81.5 63.9 95.4 62.4 47.2 96.0 73.6 66.3 95.0
HPFL(Linear − CKAdebias) Ep = 10 81.5 59.0 95.8 62.4 37.7 96.3 73.6 53.0 95.7

HPFL(RBF − CKAdebias) Ep = 1 81.5 61.0 95.4 62.4 35.0 96.0 73.6 68.4 95.0
HPFL(RBF − CKAdebias) Ep = 10 81.5 56.7 95.8 62.4 40.2 96.3 73.6 55.7 95.7

HPFL(OOD) Ep = 1 81.5 66.3 95.4 62.4 54.4 96.0 73.6 64.0 95.0
HPFL(OOD) Ep = 10 81.5 16.0 95.8 62.4 3.9 96.3 73.6 27.9 95.7

FMNIST

HPFL(SVCCA) Ep = 1 86.0 61.8 98.3 76.1 41.7 99.0 90.2 90.0 97.9
HPFL(SVCCA) Ep = 10 86.0 49.7 98.4 76.1 49.3 99.2 90.2 87.7 98.8

HPFL(Linear-CKA) Ep = 1 86.0 67.6 98.3 76.1 73.2 99.0 90.2 89.1 97.9
HPFL(Linear-CKA) Ep = 10 86.0 62.0 98.4 76.1 65.5 99.2 90.2 88.6 98.8

HPFL(RBF-CKA) Ep = 1 86.0 67.6 98.3 76.1 73.0 99.0 90.2 89.4 97.9
HPFL(RBF-CKA) Ep = 10 86.0 63.3 98.4 76.1 65.5 99.2 90.2 88.7 98.8

HPFL(Linear − CKAdebias) Ep = 1 86.0 66.6 98.3 76.1 44.7 99.0 90.2 89.9 97.9
HPFL(Linear − CKAdebias) Ep = 10 86.0 51.8 98.4 76.1 37.7 99.2 90.2 88.3 98.8

HPFL(RBF − CKAdebias) Ep = 1 86.0 61.2 98.3 76.1 50.7 99.0 90.2 89.9 97.9
HPFL(RBF − CKAdebias) Ep = 10 86.0 51.8 98.4 76.1 27.9 99.2 90.2 87.6 98.8

HPFL(OOD) Ep = 1 86.0 83.9 98.3 76.1 73.6 99.0 90.2 87.2 97.9
HPFL(OOD) Ep = 10 86.0 42.7 98.4 76.1 37.5 99.2 90.2 88.4 98.8

CIFAR-100

HPFL(SVCCA) Ep = 1 68.6 68.2 83.3 65.3 68.2 87.4 59.7 51.8 81.2
HPFL(SVCCA) Ep = 10 68.6 55.2 85.7 65.3 55.2 88.8 59.7 39.9 84.1

HPFL(Linear-CKA) Ep = 1 68.6 63.4 83.3 65.3 63.4 87.4 59.7 51.0 81.2
HPFL(Linear-CKA) Ep = 10 68.6 55.0 85.7 65.3 55.0 88.8 59.7 40.0 84.1

HPFL(RBF-CKA) Ep = 1 68.6 64.1 83.3 65.3 64.1 87.4 59.7 51.4 81.2
HPFL(RBF-CKA) Ep = 10 68.6 50.9 85.7 65.3 50.9 88.8 59.7 38.8 84.1

HPFL(Linear − CKAdebias) Ep = 1 68.6 62.8 83.3 65.3 62.8 87.4 59.7 50.7 81.2
HPFL(Linear − CKAdebias) Ep = 10 68.6 52.6 85.7 65.3 52.6 88.8 59.7 38.8 84.1

HPFL(RBF − CKAdebias) Ep = 1 68.6 62.9 83.3 65.3 62.9 87.4 59.7 50.8 81.2
HPFL(RBF − CKAdebias) Ep = 10 68.6 55.9 85.7 65.3 55.9 88.8 59.7 38.4 84.1

HPFL(OOD) Ep = 1 68.6 63.5 83.3 65.3 63.5 87.4 59.7 49.5 81.2
HPFL(OOD) Ep = 10 68.6 66.7 85.7 65.3 66.7 88.8 59.7 46.5 84.1

for local test data. MMD always helps clients select plug-in trained on the client itself (the green
boxes denoting final choice of plug-ins all lie on the diagonal of score heatmap) when α=0.1, M=10
and α=0.05, M=10 in CIFAR-10 and FMNIST as shown in Figure 9, Figure 10. When it comes to a
FL system with more clients, like M=100, even though there is some clients choosing inappropriate
plug-ins, most of them can still choose plug-ins trained on their own data. However, When conducted
on a more heterogeneous dataset CIFAR-100, judging which plug-ins to choose becomes a more
difficult task, which can be easily observed in Figure 11, as the increasing number of green boxes
not located on the diagonal is indicating worse plug-ins selection. Additionally, the score map of
CIFAR-100 is overall much whiter than the score map of CIFAR-10 and FMNIST, denoting that the
scores of different plug-ins are close to each other and is more challenging to choose from when
MMD encountered with CIFAR-100. Thus, how to improve selection methods used in HPFL is a
crucial problem when met with more heterogeneous data together with fewer samples on each client,
and will be important for future work.
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Figure 8: Selection score maps of SVCCA, CKA, OOD on CIFAR-10 (α = 0.1)
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Figure 11: Selection score maps on CIFAR-100
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D.4 MORE RESULTS ABOUT NOISE

When using the HPFL methods based on MMD, it is required that the distribution of local features, or
local features dealt with noise is transmitted together with the plug-in trained in the client, so that the
other clients are able to select appropriate plug-ins based on these information. However, transmitting
raw features is faced with the risk of data leakage when met with inversion attacks. In order to
better protect privacy safety, we tried to add Gaussian noise generated with the distribution of local
features to the origin features, surprisingly found that adding noise according to the distribution of
the features not damage the performance, according to Table 8. Further study may transmit Gaussian
noise generated with the distribution of the local features instead of the noised features. In fact, when
κ reaches a high value like 1000 in Figure 3, the noised features can be approximately considered to
degenerate into the Gaussian noise. From Table 8, Figure 3 and Figure 12, we can observe increasing
κ to a large value doesn’t hurt much performance of HPFL. Therefore, we will explore using pure
Gaussian noise generated with the distribution of the local features to replace the noised features to
better protect privacy in the future.

Table 8: Accuracy of Different noise coefficient κ on CIFAR-10.

Noise coefficient κ 0 1 10 100 1000

Fine-tune epoch Etune 1 10 1 10 1 10 1 10 1 10

α = 0.1,M = 10

Accuracy 95.4 95.7 95.4 95.7 95.4 95.7 95.4 95.7 95.4 95.7

α = 0.05,M = 10

Accuracy 96.0 96.3 96.0 96.3 73.7 74.0 71.1 70.5 71.1 70.5

α = 0.1,M = 100

Accuracy 95.4 92.0 95.4 95.7 95.4 95.7 95.4 95.7 95.4 95.7
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Figure 12: Selection score maps with different noise coefficient on CIFAR-10 (α=0.05, M=10)
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Figure 13: Selection score maps with different noise coefficient on CIFAR-10 (α=0.1, M=100)

D.5 EXPERIMENT ABOUT FEDERATED CONTINUAL LEARNING

With the increasing real applications of Federated Learning, Federated Continual Learning (FCL) has
attracted the attention of researchers. In this part, we conduct an experiment to display the potential
of HPFL to solve catastrophic forgetting met in FCL. We first displayed the catastrophic forgetting
issue in naive FCL. Then we utilized HPFL to solve this problem. Suppose we had 10 clients in
the FL system. We first trained 500 epochs on client 0-4 with FedAvg, and then we trained another
500 epochs on client 5-9. We trained the backbone of HPFL and the global model of naive FCL
in Nvidia V100 GPU and the rest of the experiment on Nvidia A100. For naive FCL, We had to
adjust the learning rate to 0.05 when training on client 5-9 during 500-1000 epoch in case of training
divergence. For FCL under HPFL, we froze the backbone of the model after training 500 epochs
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on client 0-4 and training 5 plug-ins on client 0-4 for 1 epoch, respectively. Then we kept training
on client 5-9 with the invariant backbone, after another 500 epochs, we trained 5 plug-ins on client
5-9, respectively. From Table 9, we observe that the accuracy of naive FCL significantly drops from
78.6 to 52.8, showing that training on clients 5-9 during 500-1000 rounds makes the global model
severely forget the knowledge about clients 0-4. We show a promising way of using HPFL to mitigate
this problem. When met with a new task, HPFL allows clients to quickly adapt to their local data
by fine-tuning only a few epochs and uploading the plug-in to the server, like what happened at the
500 round in our experiment. After training in some new tasks, it is about time to conduct inference
on all clients, we train plug-ins on new tasks, as we do on clients 5-9 in our experiment, and select
plug-ins for every client. In that case, we are able to select and download the plug-ins better suited
for test data with similar distribution, instead of having no choice but to use a global model having
forgotten the knowledge of previous tasks. As is shown in Table 9, our experiment shows HPFL can
significantly outperform naive FCL in GFL and mitigate the catastrophic forgetting issue in FCL.

Table 9: catastrophic forgetting issue in Naive FCL.

Algorithm Naive FCL (500R) Naive FCL (1000R)

Test data data from Client 0-4

Method/Model GM

Accuracy 78.6 52.8 (↓ 25.8)

D.6 MORE RESULTS ABOUT BACKBONE TRAINING METHODS

As long as the used GFL methods are able to train a strong general feature extractor, HPFL is able
to utilize the feature extractor to train the personalized plug-ins and extract features. We conduct
experiments using FedRoD to testify HPFL’s compatibility with other GFL methods. The results are
given in Table 10. Number of clients equal M = 10, local fine-tuning epoch Ep = 10, local datasets
are partitioned in Dir(0.1). Other settings remain the same as the main experiments in Table 2.

Table 10: Ablation study of backbone training methods.

Clients 10 (sample 50% each round)

Non-IID Dir(0.1)

Test Setting GFL-PM

Method HPFL(FedAvg) HPFL(FedRoD)

CIFAR-10

CIFAR-10
GFL-GM 81.5 85.3 (↑ 3.8)

GFL-PM 95.7 96.0 (↑ 0.3)

PFL-PM 95.7 96.0 (↑ 0.3)

FMNIST

FMNIST
GFL-GM 86.0 87.9 (↑ 1.9)

GFL-PM 98.4 98.4 (↑ 0)

PFL-PM 98.4 98.4 (↑ 0)

CIFAR-100

CIFAR-100
GFL-GM 68.6 69.9 (↑ 1.3)

GFL-PM 72.2 68.5 (↓ 3.7)

PFL-PM 85.7 85.5 (↓ 0.2)

Tiny-ImageNet-200

Tiny-ImageNet-200
GFL-GM 56.5 57.4 (↑ 0.9)

GFL-PM 50.9 56.0 (↑ 5.1)

PFL-PM 73.7 74.7 (↑ 1.0)
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From the overall performance of HPFL(FedRoD), we can see that HPFL using FedRoD as its
backbone training method is comparable to that using FedAvg, which confirms HPFL is compatible
with the GFL methods other than FedAvg. We also observe an interesting fact that even if FedRoD
shows excellent performance in GFL-GM (surpasses FedAvg in many datasets and settings), fine-
tuning the backbone trained with it is not advantageous as shown in PFL-PM (only comparable with
fine-tuning on the backbone trained with FedAvg). From this phenomenon, we presume the advantage
of FedRoD in GFL-GM should mainly be attributed to its global head trained with a class-balanced
loss instead of its backbone.

E DISCUSSION ON PRIVACY PROBLEM

As HPFL requires local clients to share auxiliary information on local data and plug-ins to help
inference, it may raise concern about data privacy of HPFL. We attempt to analyze the risk of privacy
leakage in HPFL respectively from sharing auxiliary information and plug-ins.

E.1 PRIVACY RISKS OF SHARING PLUG-INS

In HPFL, we ask local clients to upload part of their personalized models to the server, which means
every personalized model is possibly accessible to all clients. This potential sharing with other
clients will raise concerns about the risk of privacy leakage. However, in classic Federated Learning
algorithms like FedAvg, there also exists similar behavior of sharing global model, and it is difficult
to recover training samples from the final model shared over the whole FL system. Instead, research
shows that it is possible to recover training data of clients from gradients transmitted to the server
(Geiping et al., 2020), which will not happen in HPFL except for the training period of the backbone
model, which is able to be solved with regular privacy protect techniques like differential privacy
(DP) which is widely used to protect potential privacy risks of GFL algorithms, and not a special
problem of HPFL. Even extreme concern on potential privacy risk of storing plug-ins in the server can
be solved by only requesting plug-ins after selection as described in Appendix F.2, clients providing
the plug-ins can ask the server to delete the plug-ins after sending the plug-ins to the clients in need.

E.2 PRIVACY RISKS OF SHARING AUXILIARY INFORMATION

Since HPFL asks clients to share auxiliary information with the server, once data breach happens in
the communication period between clients and the server or the information is not properly kept in the
server, The leaked information may lead to attacks, such as feature inversion attacks. Here we resorted
image reconstruction by feature inversion method in (Zhao et al., 2020) to check whether the raw
image can be reconstructed by inverting the representation through the pretrained global backbone
model parameters, exploring whether data privacy will be threatened if both auxiliary information
and backbone model is leaked. Experiments are conducted on CIFAR-10 with a ResNet-18 trained
on CIFAR-10 under the Federated Learning setting used in our main experiments. As we can see in
Figure 14, if we use raw features as the auxiliary information, real pictures can be easily recovered
by feature inversion methods. To handle this risk of privacy leakage, here we propose three ways to
prevent the problem: (1) add noise to the features; (2) use the averaged feature to select the plug-ins;
(3) use model-based selection methods like OOD.

Raw image A Raw image B Reconstructed image A Reconstructed image B

Figure 14: Image reconstructed from raw features

Adding noise to transmitted information is often practiced in the Federated Learning called
Differential Privacy(DP), which is utilized to protect gradient against Differential attacks. Inspired
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by DP, we attempt to add noise to the transmitted auxiliary information, and below we use the same
recovery method to recover the original image from the noised features. We show some recovery
results with the noised features in Figure 15, as noise coefficient κ increases, the reconstructed image
is less similar to the raw images, especially when κ = 1 as in our main experiment, actually the
reconstructed images are hard to tell any information about the raw images. If there is still concern in
this situation, the clients can increase the noise coefficient κ to a higher level with the risk of lowering
performance.

Raw image κ=0 κ=1 κ=10 κ=100 κ=1000

Figure 15: Image reconstructed from the noised features, κ is noise coefficient denoting the scale of
noise added on raw features, the bigger κ is, the larger noise is added on the features transmitted to
select plug-ins.

Using the averaged feature to select the plug-ins is a practical way of protecting privacy as practiced
in (Luo et al., 2021), inspired by their work, we attempted to select plug-ins with the average of all
features on local clients. However, we assumed that simply averaging all features leads to the lack of
information to select plug-ins properly, thus degrades the performance of HPFL. Therefore, we tried
to divide the features into groups and take the average in every group. With enough samples in every
group, we can prevent privacy leakage as presented in Figure 16 and maintain a good performance as
shown in Table 11.

Raw images Reconstructed image

Figure 16: Image reconstructed from the averaged feature, every group is composed by raw features
of 10 raw images

Table 11: Accuracy of Different average group on CIFAR-10.

# of raw features in every group 3 10

Ep 1 10 1 10

α = 0.1,M = 10

Accuracy 81.5 80.1 76.8 79.1

α = 0.05,M = 10

Accuracy 96.0 96.1 87.6 86.1

α = 0.1,M = 100

Accuracy 81.4 83.8 76.8 75.3

Utilizing model-based selection methods like OOD to select the plug-ins, due to these methods
avoid sharing direct information about raw data or features, they are exposed to less risk of data
leakage. It is more difficult for the attacker to attack the clients with the model parameters than
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with the data information due to less information contained in it, which can be proved by the data
processing inequality (McMahan et al., 2017).

F REAL-WORLD APPLICATION

F.1 REAL-WORLD GM-PFL

To better illustrate the GFL-PM setting we propose and demonstrate its importance, we give some
examples exhibiting the significance of our proposed set-up below:

Case 1: Some clients may have insufficient computing resources or local training data to fine-tune a
deep learning model in a cross-device setting. In these situations, training distribution can be regarded
as an empty set ∅. In this way, the client cannot get a personalized model by locally fine-tuning the
global model. In traditional GFL and PFL setting, the client has no choice but to adopt the global
model and endure the lack of personalization. This problem is caused by the mismatch of training
data distribution and test data distribution, as assumed in our proposed set-up, and is solvable with
our proposed method HPFL by exploiting personalized plug-ins from other clients.

Case 2: A car with a personalized automated driving system (ADS) has driven out of the previous
city it used to be. It requires to personalize on geometric data from the present city it is now in
for improving the performance of the ADS in this new city. Classic GFL and PFL in this situation
leave the ADS no option but to collect the geometric data and personalize on it after the collection
completes, and accept the temporary performance loss using the previous personalized model before
finishing the new personalization, since the distribution of test data has greatly changed. It’s another
example where the discrepancy between training data (geometric data from the previous city) and
test data (geometric data from the present city) threatens the availability of FL systems. While with
our proposed method designed to solve the problem, the ADS can attempt to access the plug-ins from
car owners living in the present city.

Case 3: Imagine a person is traveling from a high latitude area to an equatorial region, and the
recommender system on their phone is supported by federated learning. If the recommender system
uses the personalized model trained when in the high latitude area, it will continue to prompt thick
down jackets for the person, which is clearly an unexpected and unreasonable recommendation. With
our method, one can get the same recommendation as the local people with plug-ins on their phones
without time to fine-tune the model again.

F.2 SCALABILITY ISSUES OF HPFL AND THEIR SOLUTIONS

F.2.1 POTENTIAL SCALABILITY PROBLEM OF SHARING PLUG-INS

For plug-ins: In fact, HPFL can be applied to both cross-device and cross-silo setting, with a
slight modification in cross-device setting where the number of clients is overwhelmingly large.
We introduce the methods to enhance the scalability problem of HPFL as follows: To handle the
massive plug-ins needed to be stored in the server, the server can cluster the plug-ins with client-
cluster methods in a similar way as done in IFCA (Ghosh et al., 2020), CFL (Sattler et al., 2020),
FL+HC (Briggs et al., 2020), and so on. Then the server aggregates the plug-ins in the same clusters
to keep a controllable number of plug-ins, like in O(1) or O(logM), where M denotes the number
of clients. The server can significantly reduce the number of plug-ins in this way, thus increase the
scalability of our method. A simpler method is enough for solving the issue of the massive plug-ins:
as our selection method doesn’t require the presence of plug-ins, clients may not upload the plug-ins
after training. Instead, the server can request the appropriate plug-in from the corresponding client
after calculating the selection scores. Considering the common issue in cross-client setting, FL
systems may encounter client dropout (Li et al., 2020a; Kairouz et al., 2021; Tan et al., 2022b). In
a situation where the client with the most appropriate plug-in is out of connection, the server may
attempt to request plug-ins one by one with the selection score. To avoid downloading all plug-ins
and training features to clients, if the number of clients grows to a large number, clients can choose
to add noise to their local test features and send the noised test features to the server to select the
plug-ins. In this way, each client can get the exact plug-in they need without the need to download
all the plug-ins and the noised training features, which will cause a great communication cost with
a great number of clients in the FL. We conduct experiments to test the feasibility of this method
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against the communication and storage burden of HPFL in FL systems with plenty of clients. The
result are shown in Table 12.

Table 12: Experiment results of sharing noised test feature. §: we focus more on GFL setting. Numbers
in ForestGreen highlight highest values in GFL setting. Ep denotes the epoch of fine-tuning. Other hyper-
paramters follows the experiments in Table 2.

Clients 10 (sample 50% each round) 100 (5% each round)

Non-IID Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05)

Test Set GFL§ PFL GFL§ PFL GFL§ PFL GFL§ PFL

Method/Model GM PM PM GM PM PM GM PM PM GM PM PM

CIFAR-10

HPFL(ĥtest) Ep = 1 81.5 95.4 95.4 62.4 96.0 96.0 73.6 91.7 94.9 47.9 85.2 93.9
HPFL(ĥtest) Ep = 10 81.5 95.7 95.7 62.4 96.3 96.3 73.6 90.3 95.7 47.9 85.2 95.3

FMNIST

HPFL(ĥtest) Ep = 1 86.0 98.3 98.3 76.1 99.1 99.1 90.2 97.9 97.9 86.1 95.3 98.1
HPFL(ĥtest) Ep = 10 86.0 98.4 98.4 76.1 99.2 99.2 90.2 98.6 98.8 86.1 94.0 98.7

CIFAR-100

HPFL(ĥtest) Ep = 1 68.6 75.7 83.3 65.3 78.8 87.4 59.7 67.5 81.2 47.9 72.7 84.1
HPFL(ĥtest) Ep = 10 68.6 69.5 85.7 65.3 78.0 88.9 59.7 63.8 84.1 47.9 75.5 86.4

Tiny-ImageNet-200

HPFL(ĥtest) Ep = 1 56.5 51.8 70.8 54.9 55.5 74.7 47.2 58.6 71.3 42.1 59.2 74.7
HPFL(ĥtest) Ep = 10 56.5 47.4 73.7 54.9 50.3 77.0 47.2 57.7 73.2 42.1 57.8 76.5

F.2.2 ONLINE INFERENCE OF HPFL

Our method is designed to infer in batches, online test-time adaptation where test samples arrive one
by one is not our main application scenario (Hoi et al., 2021; Jiang & Lin, 2022; Tan et al., 2023).
Selecting plug-ins for every sample may incur expensive computation costs. However, when met
with a similar situation and the computation costs are unavoidable, clients can give up downloading
plug-ins. Similar to method stated in Appendix F.2.1, following instructions free clients from the
storage burden brought by downloading plug-ins and corresponding training features for every sample:
simply send the noised test feature to the server; let the server select the appropriate plug-in; then infer
at the server side; and finally return the inference result back to the client. In this way, communication
and latency issues with online inference can be solved with slight modifications in our proposed
method.

30


	Introduction
	Related Works
	Selective FL: Implementing Generic FL from Personalized FL
	Generic FL
	Personalized FL
	When PM Meets GFL
	Selective FL

	HPFL: A general effective framework to solve Selective FL
	Problems of Directly Selecting PM
	Design of HPFL
	Selection Methods

	Experiments
	Experiment Setup
	Experiment Results
	Selection Accuracy
	Federated Continual Learning

	Limitations
	Broader Impact
	Conclusion
	More Related work
	Generic Federated Learning
	Personalized Federated Learning
	Incentive Mechanism
	Federated Continual Learning
	Asynchronous FL
	test-adaptation & domain adaptation methods in FL

	Proof
	Lower bound of PM with GFL
	The equivalence between SFL and PFL

	Experiment Configuration
	Hardware and Software Configuration
	Code and Instructions for reproducibility.
	Implement of simplified metrics and proof
	Hyper-parameters
	Extra explanation on Experiment

	Extra Experiment Results
	More results about Different number of layers of Plug-in
	More results about selection method (SVCCA, CKA, OOD)
	More results about selection accuracy
	More results about noise
	Experiment about Federated Continual Learning
	More results about Backbone Training Methods

	Discussion on Privacy Problem
	Privacy Risks of Sharing Plug-ins
	Privacy Risks of Sharing Auxiliary Information

	Real-world Application
	Real-world GM-PFL
	Scalability Issues of HPFL and Their Solutions
	potential scalability problem of sharing plug-ins
	Online Inference of HPFL



