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Abstract

The ubiquitous deployment of deep learning systems on resource-constrained
Edge devices is hindered by their high computational complexity coupled with
their fragility to out-of-distribution (OOD) data, especially to naturally occurring
common corruptions. Current solutions rely on the Cloud to train and compress
models before deploying to the Edge. This incurs high energy and latency costs
in transmitting locally acquired field data to the Cloud while also raising privacy
concerns. We propose GEARnn (Growing Efficient, Accurate, and Robust neural
networks) to grow and train robust networks in-situ, i.e., completely on the Edge de-
vice. Starting with a low-complexity initial backbone network, GEARnn employs
One-Shot Growth (OSG) to grow a network satisfying the memory constraints
of the Edge device using clean data, and robustifies the network using Efficient
Robust Augmentation (ERA) to obtain the final network. We demonstrate results
on a NVIDIA Jetson Xavier NX, and analyze the trade-offs between accuracy,
robustness, model size, energy consumption, and training time. Our results demon-
strate the construction of efficient, accurate, and robust networks entirely on an
Edge device.

1 Introduction

The ubiquitous practical deployment of deep neural networks is mainly hindered by their lack
of robustness and high computational cost. Prior art has shown that these deep networks are
extremely fragile to adversarial perturbations [31][8] and out-of-distribution (OOD) data [12][22].
Natural corruptions [12] (a specific type of OOD data) are more commonly encountered at the
Edge where real-time data is being continually acquired, e.g., video sequences acquired by on-board
cameras in autonomous agents (self-driving cars, field robots, drones), which tend to be distorted
by weather and blur. The state-of-the-art defense against these corruptions employs robust data
augmentation [13, 11, 23] which incurs a huge computational cost when implemented on an Edge
device. Fig. 1 indicates that it takes more than 2 days to robustly train a VGG-19 network [29] on a
simple CIFAR-10 dataset when implemented on NVIDIA Jetson Xavier [24] Edge device. Even for a
small 5% VGG-19 network it takes more than a day, thus highlighting the non-trivial nature of the
problem. This is a huge concern because Edge devices are typically battery-powered and such large
training costs reduce their operational life-time.

Traditional solutions for network compression such as pruning [9, 19, 4], quantization [26, 16]
and neural architecture search (NAS) [21, 37] mainly target Edge inference, and are not suited for
Edge training since they start with hard-to-fit over-parameterized networks that require the large
computational resources of the Cloud. However, transmitting local data to the Cloud incurs energy
and latency costs while also raising privacy concerns, thus requiring training to happen fully on the
Edge. Hence we ask the question: Is it possible to design and train compressed robust networks
fully on the Edge? Our proposed solution GEARnn (Growing Efficient, Accurate, and Robust neural
networks) is based on the family of growth algorithms [2, 33, 5, 35] that gradually increase the size
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of an initial backbone network to reach the robust accuracy of a full network but at a fraction of its
size, training complexity, and energy consumption.
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Figure 1: Improvements in robust accuracy, train-
ing time, and model size (area of circles) of our
proposed GEARnn method measured on NVIDIA
Jetson Xavier NX [24] Edge device. Robust ac-
curacy is evaluated on CIFAR-10-C for GEARnn,
full network baselines (VGG-19), and small net-
work baselines (5% VGG-19 networks with same
topology as GEARnn-2). For robust training, we
employ AugMix [13]. GEARnn demonstrates sig-
nificant reduction in training complexity over ro-
bust baselines at similar robust and clean (shown
in Section 6.4) accuracy.

Prior work on network growth [33, 34, 36] do
not consider robustness to common corruptions
since they use clean data during training, while
works that consider robustness train fixed-sized
networks using augmented data [13, 23] with-
out considering the efficiency of robust training.
Hence, in order to grow robust networks effi-
ciently on the Edge, we ask the following ques-
tions: Q1) are compressed networks designed
using growth susceptible to common corrup-
tions? Q2) how to construct growth algorithms
that maximize training efficiency when design-
ing robust networks? Q3) what are the network
topologies generated when growth algorithms
design compressed networks? We answer these
questions by proposing our method GEARnn to
efficiently grow robust networks.

Contributions: We make the following contri-
butions (Fig. 2):

1. To the best of our knowledge, our work
is the first to grow networks robust to
common corruptions. Additionally, we
also consider the training efficiency of
our methods.

2. We answer Q2 by proposing GEARnn
(Growing Efficient Accurate and Ro-
bust neural networks) algorithm (see Fig. 2) that combines One-Shot Growth (OSG) and
Efficient Robust Augmentation (ERA).

3. We answer Q3 by showing that vanilla CNNs have relatively higher output channels in the
initial layers while residual CNNs have a steady zigzag pattern (Section 6.3).

4. We show that GEARnn generated networks shine on all four metrics simultaneously - clean
accuracy, robust accuracy, training efficiency and inference efficiency by implementing them
on a real-life Edge device – the NVIDIA Jetson Xavier NX (Section 6.4).

2 Background and Related Work

Robust Data Augmentation: This is the most commonly used method for addressing corruptions due
to its ease of integration into the training flow and ability to replicate low-level structural distortions.
AugMix [13], PRIME [23] and FourierMix [30] combine chains of stochastic image transforms
and enforce consistency using a suitable loss function to generate an augmented sample from a
clean image. DeepAugment [11] randomly distorts the parameters of an image-to-image network
to generate augmented images. CARDs [4] combines data augmentation [13] and pruning [6] to
find compact robust networks embedded in large over-parameterized networks. Unlike our proposed
GEARnn algorithm, all these techniques significantly increase the complexity over vanilla training,
and are thus inappropriate for Edge deployment.

Growth Techniques: A typical growth algorithm starts with a small initial backbone model whose
size is gradually increased until the desired performance or network topology is reached. Neural
network growth has been previously used in optimization [7], continual learning [27, 17] and in
speeding up the training of large networks [2]. Recent works [5, 36] look at improving growth
training dynamics, growing the width [34], depth [32] or both [33, 35]. However, none of these
methods address the issue of robustness to common corruptions or demonstrate the utility for training
on a resource-constrained Edge setting, which is our focus. Though our work GEARnn builds upon
Firefly [33], it is flexible and can incorporate other growth methods mentioned above.
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3 Notation and Problem Setup
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Figure 2: Proposed approach: GEARnn-1 performs One-Shot Growth
(OSG) on augmented data (Daug) generated by Efficient Robust Aug-
mentation (ERA) using clean data (Din) in a single phase (1-Phase).
GEARnn-2 performs OSG using Din first followed by parametric train-
ing on Daug in two consecutive phases (2-phase). Here LCE and Laug
denote the cross-entropy loss and augmented loss, respectively.

Notation: Let f : Rd →
[C] be a hard classifier
which classifies input x ∈
Rd into one of C classes.
We choose f to be a
convolutional neural net-
work (CNN) with L layers
(depth) and {wl}Ll=1 output
channels (widths). The net-
work f is trained on n sam-
ples (x, y) ∼ Din, where
(x, y) ∈ Rd × [C] and Din
denotes the “in-distribution”
or “clean” data. We denote
nC = n

C as the number
of samples per class. LCE
represents the cross-entropy
loss and Laug = LCE +
λLJSD represents the aug-
mentation loss where LJSD is the Jensen-Shannon divergence loss described in [13].

During inference, f can be exposed to samples from both Din and Dout (“out-of-distribution” or
“corrupted” data). In case of common corruptions, (xout, y) ∼ Dout is obtained by xout = κ(xin, s),
where (xin, y) ∼ Din, κ is a corruption filter and s is the severity level of the corruption. We denote
pe = Pr(ŷ ̸= y) as the classification error at inference where ŷ = f(xtest). When (xtest, y) ∼ Din,
we define (1− pe) as clean accuracy Acln, and when (xtest, y) ∼ Dout, we define (1− pe) as robust
accuracy Arob. The value of pe is determined empirically in this work.

Problem: Our primary objective is to maximize the empirical clean and robust accuracies (Acln and
Arob) while ensuring the network complexity (

∑L
l=1 wl) is small. Along with these two criteria, we

also prioritize reduction in training time (ttr) and training energy consumption (E) on hardware.

4 Growing Efficient Accurate and Robust Neural Networks (GEARnn)

As shown in Fig. 2, two flavors of GEARnn algorithms are proposed – GEARnn-1 and GEARnn-2.
While GEARnn-1 leverages the 1-Phase (joint growth and robust training) training, GEARnn-2
employs the 2-Phase (sequential growth and robust training) approach. Both flavors incorporate One-
Shot Growth (OSG) and Efficient Robust Augmentation (ERA) in different ways. In this section, we
describe OSG and ERA. The full description of the GEARnn algorithms can be found in Appendix F.

4.1 One-Shot Growth (OSG)

One-Shot Growth (OSG) employs labeled data to perform a single growth step sandwiched between
two training stages. The initial backbone f0 is first trained for E1 epochs. The resulting network f1 is
grown over Eg epochs to obtain the grown network fg, i.e., fg = G(f1|γ,D,L, Eg), where G is the
growth technique which is nominally Firefly [33] in our work. The final network f2 is obtained by
training fg over E2 epochs.

The growth technique G is described below:

fg = argmin
f

L(f,D|f1)

s.t. f ∈ ∂(f1, ϵ)

C(f) ≤ (1 + γ) C(f1)

(1)

where ∂(f1, ϵ) represents the growth neighbourhood for topology search, C(f) =
∑L

l=1 wl represents
the complexity estimate of network f and γ denotes the growth ratio. The neighbourhood ∂(f1, ϵ) is
expanded in two ways - splitting and growing new neurons - as described in [33, 34].
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Figure 3: OSG takes in labeled data (D) and backbone network f0, and performs a training step,
a growth step, and a training step in sequence to generate network f2. The 2-tuple (L, E) = (loss
function, number of epochs) employed in each step.

4.2 Efficient Robust Augmentation (ERA)
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Figure 4: ERA takes in clean data (Din) as input and
applies a set of stochastic transforms to generate aug-
mented data (Daug).

Efficient Robust Augmentation (ERA) em-
ploys clean data (Din) to generate aug-
mented data (Daug) in an efficient man-
ner. The clean sample x (where (x, y) ∼
Din) is passed through a set of transforms
a1, a2, ..., adj

to obtain the transformed
sample Aj(x), which is then combined
linearly with the clean sample to give
the augmented sample xaug

j . We concate-
nate (J − 1) such augmented samples
{xaug

j }
J−1
j=1 along with the clean sample to

obtain our Efficient Robust Augmentation
R((x, y)|T ).

Aj(x) = a1 ◦ a2 ◦ ... ◦ adj
(x)

xaug
j = px+ (1− p)Aj(x)

R((x, y)|T ) = ({xaug
1 ,...,xaug

J−1,x}, y) =⇒ Daug := R(Din|T )
where ai ∼ Unif(T ), p ∼ β(1, 1), dj ∼ Unif({1, ..., D}), j ∈ {1, ..., J − 1}

(2)

where T denotes the set of transforms (from AugMix [13]), β and Unif represent the beta and
uniform distributions, respectively. The width (W ), depth (D) and JSD samples (J) for the stochastic
transforms in the augmentation are chosen as (W,D, J) = (1, 3, 4). In GEARnn-2, grown network
f2 (see Fig. 3) obtained using clean data OSG is trained for Er epochs using Daug generated by ERA.
5 Experimental Setup
For comprehensive details of the experimental setup, please refer to Appendix A.

Table 1: GEARnn hyperparameters for different networks
and datasets.

Dataset γ Small GEARnn-1 GEARnn-2
Mob. VGG Res. E E1 E2 E1 E2 Er

CIFAR-10 1.8 0.9 0.6 160 40 40 40 40 40
CIFAR-100 2.0 1.5 0.8 160 50 50 40 40 50

Tiny ImageNet 2.0 1.5 0.8 160 50 50 40 40 50

Hardware: For the server-based
experiments, we use one NVIDIA
Quadro RTX 6000 GPU (“Quadro”).
For the Edge-based experiments, we
use the NVIDIA Jetson Xavier NX
[24] (“Jetson”).

Metrics: Clean accuracy Acln(%), ro-
bust accuracy Arob(%), number of
floating-point parameters (Size (%)),
wall-clock training time ttr (in minutes), per-sample wall-clock inference time tinf (in seconds) and
energy consumption E (in Joule) are used as the metrics.

Baselines: In the absence of prior work on robust growth, we propose our own baselines Small (Din)
and Small (Daug), both of which use 160 training epochs to be consistent with [4]. They are networks
with the same size and topology as the final GEARnn-2 network trained with random initialization on
clean data and augmented data, respectively. Their corresponding full (original) network versions are
called Full (Din) and Full (Daug). The rationale for this baseline choice is explained in Appendix A.
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6 Main Results
6.1 Q1: Corruption Robustness of Growth Networks

Table 2: Comparing robustness and training cost
for different growth methods and the full network
for VGG-19 and CIFAR-10 on Quadro.

Growth Size(%) Acln(%) Arob(%) ttr (min) E (kJ)Steps

1 5.5 92.14 70.04 23 163
2 5.5 92.18 70.22 27 138
3 5.3 91.84 69.84 28 145
4 5.3 91.91 70.07 31 224

Full (Din) 100 93.06 72.36 45 469

Table 2 compares different growth methods with
the full network when trained for 160 epochs on
clean CIFAR-10 data using VGG-19. We find that
even though growth networks have ∼5% size of
the full VGG-19 model, they are able to achieve
similar accuracy and robustness but at a much
lower training and inference cost. We observe that
the accuracies drop and training costs increase as
the growth steps rise, thus stopping us from going
beyond 4 growth steps. Table 2 shows why com-
pression techniques like pruning or quantization
are not appropriate baselines for our work since they require expensive training of the full network
to be done on the Edge. Unlike what was found in [14, 20] for pruning, we find that the compact
networks obtained by growth have similar robustness to the full network. However, there is still a
drop in their robust accuracy compared to clean accuracy, and in the next section we look at how to
robustify these growth networks using data augmentation.
6.2 Q2: One-Shot vs. Multi-Shot Growth & 1-Phase vs. 2-Phase
Since GEARnn employs OSG (One-Shot Growth) for growing networks, it begs the question if we
are missing anything if multiple growth steps (m-Shot Growth) were to be permitted. To answer
this question, we compare the clean and robust accuracies along with training time and energy for
different growth steps in Table 3. All m-Shot Growth methods start with the same initial backbone
f0 (1.4% of full model size) and perform growth to reach f2 (5% of full model size) using different
growth ratios.

Table 3: Comparison of training complexities and accuracies for
different growth methods implemented for VGG-19 and CIFAR-
10 on Jetson with 80 epochs during growth.

Growth GEARnn-1 GEARnn-2
Steps Acln(%) Arob(%) ttr (min) E (kJ) Acln(%) Arob(%) ttr (min) E (kJ)

1 90.94 82.25 652 207 92.07 83.45 596 155
2 90.01 81.92 640 191 91.94 83.34 593 157
3 89.73 80.86 653 194 91.79 83.05 624 177
4 89.90 81.08 845 223 91.65 82.75 645 173

Table 3 indicates that OSG is
comparable or better than the
other m-Shot Growth methods
in all the metrics. This result can
be attributed to the lower training
overhead of growth stage in OSG
compared to the m-Shot Growth
methods. For each growth step,
GEARnn-2 is better than the cor-
responding GEARnn-1 solution on all the metrics (and red highlights the best solution across the
table). Thus, Table 3 clearly highlights that 2-Phase approach using One-Shot Growth is the best
combination to grow robust networks efficiently on the Edge.
6.3 Q3: Network Topologies generated by Growth
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Figure 5: Average output channels vs. layer index for CIFAR-10 on Quadro is shown. Plot (a) looks
at the impact of network architecture and highlights the non-uniform growth pattern in plain CNNs
versus steady zigzag pattern in residual CNNs. Plots (b) and (c) indicate that modifying the number of
growth epochs (Eg) or performing 1-Phase robust growth does not affect the topology pattern much.

In this section, we look at the growth topology patterns ({wl}Ll=1) as a function of layer index
l. Specifically, we investigate these patterns in the simple setting of OSG (Din) implemented on
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Table 4: Comparison of accuracy, robustness, and efficiency between the baselines and GEARnn
for VGG-19 using CIFAR-10, CIFAR-100 and Tiny ImageNet on Quadro. See Fig. 6 for robustness
comparison between Small (Daug) and GEARnn-2 at similar training cost.
Architecture CIFAR-10 CIFAR-100 Tiny ImageNet

(full model Method Size Accuracy Training Size Accuracy Training Size Accuracy Training
size) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ)

Small (Din) 5 92.69 70.57↓ 31 241 9 68.07 41.24↓ 38 335 9 53.9 17.78 ↓ 218 2040
Full (Din) 100 93.06 72.36↓ 45 469 100 69.97 42.49↓ 46 433 100 56.89 21.46↓ 274 2740

VGG-19 Small (Daug) 5 93.08 85.73 215 1140 9 70.01 56.94 219 927 9 55.51 30.01 668 7120
Full (Daug) 100 93.43 86.50 197 950 100 70.39 58.14 194 985 100 54.40 31.32 795 9460

(20M) GEARnn-1 5 91.25 82.86 86 552 9 65.73 52.68 111 779 9 54.38 28.56 428 4220
GEARnn-2 5 92.18 83.77 53 298 9 68.44 54.31 65 566 9 56.19 29.79 357 3219

Table 5: Comparison of accuracy, robustness, inference efficiency, and training efficiency between the
baselines and GEARnn for CIFAR-10 and CIFAR-100 using VGG-19 on Jetson. Due to computational
limitations, the results for Tiny ImageNet are excluded for Jetson.

CIFAR-10 CIFAR-100

Method Accuracy Inference Training Accuracy Inference Training
Acln(%) Arob(%) Size% tinf(ms) ttr(min) E(kJ) Acln(%) Arob(%) Size% tinf(ms) ttr(min) E(kJ)

Small (Din) 92.97 71.08↓ 5 1.0 533 128 67.92 40.49↓ 9 1.4 714 187
Full (Din) 92.32 72.53↓ 100 2.4 1124 268 69.69 43.01↓ 100 2.4 1117 309

Small (Daug) 93.36 85.73 5 1.0 1543 522 70.07 56.68 9 1.4 2016 678
Full (Daug) 92.92 86.06 100 2.4 3219 937 68.81 57.86 100 2.4 3199 1043
GEARnn-1 90.94 82.25 5 1.2 652 207 62.89 49.63 9 1.5 936 281
GEARnn-2 92.07 83.45 5 1.0 596 155 67.59 53.64 9 1.4 884 328

CIFAR-10 for (E1, E2) = (40, 40) and an initial backbone f0 with {wl}Ll=1 = 45. The bar plots
represent the mean width (E[wl]) across four random seeds.

Backbone architecture: For plain CNNs like VGG-19 [29] - the initial layers have higher number
of convolutional filters compared to the final layers. This correlates well with the observations
seen in quantization [28] where the initial layers require higher precision compared to the final
layers. However, in case of residual networks like ResNet-18, the pattern is oscillating as shown
in Fig. 5a. The invariance in depth can be attributed to the direct gradient flow facilitated by the
shortcut connections which makes each residual block act independently of the depth.

Data and Growth Epochs: The above experiments were performed for a single growth epoch
(Eg = 1) on clean data. The effect of Eg = 50 and using ERA data for growth (GEARnn-1) is shown
in Fig. 5b and Fig. 5c. The topology pattern in both cases remains similar to OSG (Din) Eg = 1.
6.4 Results across Network Architectures, Datasets and Devices
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Figure 6: GEARnn-2 achieves
higher robustness at the
same training time, for VGG-
19/CIFAR-100 on Quadro.

Table 4 and Table 5 show that GEARnn-2 achieves comparable ac-
curacies while being consistently better in terms of training time
and training energy consumption over the robust baselines for
VGG-19 (other network architecture results are in Appendix B)
across all datasets and devices. Specifically, the average reduction
in training time (energy consumption) is 3.0× (2.6×) for Quadro
and 4.5× (4.6×) for Jetson compared to Full (Daug). Further-
more, we find GEARnn-1 is inferior to GEARnn-2 on all the four
metrics thereby indicating the efficacy of the 2-Phase approach.

A key reason underlying GEARnn-2’s training efficiency is the
reduction in the number of robust training epochs Er made possi-
ble by the OSG initialization in Phase-1. Fig. 6 shows that for the
same training time, GEARnn-2 provides better robustness than
Small (Daug) and GEARnn-1. Similar results obtained for CIFAR-
10 and other network architectures is shown in Appendix E.

7 Conclusion
We addressed the problem of growing robust networks efficiently on Edge devices. Specifically,
we concluded that a 2-Phase approach with distinct clean growth and robust training phases is
significantly more efficient than a 1-Phase approach which employs augmented data for growth. We
encapsulated this result into the GEARnn algorithm and experimentally demonstrated its benefits
on a real-life Edge device. An interesting and non-trivial extension of our work would be to use
unlabeled data for growing efficient and robust networks.
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Appendix / Supplemental material
A Training Setup
Datasets and Architectures: All results are shown on CIFAR-10 and CIFAR-100 [18] (Din) datasets.
CIFAR-10-C and CIFAR-100-C [12] (Dout) are used to benchmark corruption robustness. CNN
architectures MobileNet-V1[15], VGG-19[29], ResNet-18[10] are employed to demonstrate results.

Hyperparameters: The setup for growth and robust augmentation follows closely with what is
described in Firefly [33] and AugMix [13], respectively. The parametric training is done for 160
epochs using a batch-size of 128 and an initial learning rate of 0.1. The learning rate scheduler decays
by 0.1 at half and three-fourths of the total number of epochs. We use the Swish loss function for
MobileNet-V1 as used in [33], while employing ReLU for the other two networks. Instead of using
three fully-connected layers at the end of VGG-19, we use only one as done in [33]. Stochastic
Gradient Descent (SGD) optimizer is used with momentum 0.9 and weight decay 10−4. As for
the standard growth process, we use a Root Mean Square Propagation (RMSprop) optimizer with
momentum 0.9, alpha 0.1 and initial learning rate of 9 × 10−5. The number of workers is chosen
as 4. For ERA, (W,D, J) = (1, 3, 4) is picked. The augmentation transforms T are same as that of
AugMix [13]. As specified in AugMix, we also do not use any augmentations which are directly
present in the corrupted test dataset.

In case of OSG, the initial backbone f0 is chosen as a network with wl = 45 for all l = {1, ..., L}
and is thus extremely small. The number of randomly initialized neurons at each growth stage is 70.
The growth ratio and epochs used at each stage is shown in Table 1. We ensure that E2 of GEARnn-1
and Er of GEARnn-2 are same for a fair comparison.

Jetson Training: The two changes to the GEARnn algorithm when implementing on NVIDIA Jetson
Xavier are - one we use j = 3 instead of j = 4, and two, we allow only 40 randomly initialized new
neurons per layer in the growth step (as compared to 70 in [33]). These measures are taken to stay
within the memory constraints of the Edge device. We also reduce the batch size (and learning rate)
appropriately in case the above measures are insufficient.

Metrics: Clean accuracy Acln(%) measured on clean test data Din, and robust accuracy Arob(%)
measured on corrupted test data Dout, are used as accuracy metrics (both computed using Robust-
Bench [3]). The number of floating-point parameters (model size), number of floating-point operations
(FLOPs) per inference, wall-clock training time ttr (in minutes), per-sample wall-clock inference time
tinf (in seconds), average power consumption Pavg (in Watt) and energy consumption E (in Joule)
are used as the efficiency metrics. Size (%) represents the fraction of the full model size. In case of
growth algorithms, training times include both the time taken for training and growth. The power is
measured from the Quadro and Jetson using Nvidia-SMI [25] and Jetson Stats [1], respectively, and
the energy E is computed by summing the power values polled every second.

Hardware: For the server-based experiments, we use one NVIDIA Quadro RTX 6000 GPU with
24GB RAM, 16.3 TFLOPS peak performance and an Intel Xeon Silver 4214R CPU. This machine is
referred to as “Quadro”. For the Edge-based experiments, we use the NVIDIA Jetson Xavier NX
[24] which has a Volta GPU with 8GB RAM, 21 TOPS peak performance and a Carmel CPU. We
refer to this device as “Jetson”.

Baselines: In the absence of prior work on robust growth, we propose our own baselines Small (Din)
and Small (Daug), both of which use 160 training epochs to be consistent with [4]. They are networks
with the same size and topology as the final GEARnn-2 network (f∗

2p in Fig. 2) initialized randomly
and trained on clean and augmented data (AugMix [13], unless specified otherwise), respectively.

We pick Small (Daug) as the main baseline for a fair comparison with GEARnn as it depicts a typical
private-Edge training scenario. We do not compare with compression techniques since they have
been shown to have worse training efficiency compared to growth [35], and require a robust-trained
full baseline, and this is clearly more expensive than training Small (Daug) (see Fig. 1).
B Results on other Network Architectures
Results for MobileNet-V1 and ResNet-18 on Quadro are shown in Table 6.
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Table 6: Comparison of accuracies, and efficiency between the baselines and GEARnn for MobileNet-
V1 and ResNet-18 using CIFAR-10, CIFAR-100 and Tiny ImageNet on Quadro. See Appendix E for
robustness comparison between Small (Daug) and GEARnn-2 at similar training cost.

Architecture CIFAR-10 CIFAR-100 Tiny ImageNet

(full model Method Size Accuracy Training Size Accuracy Training Size Accuracy Training
size) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ)

Small (Din) 8 92.28 66.31↓ 42 192 8 67.66 39.04↓ 45 274 8 55.13 18.48 ↓ 262 2030
Full (Din) 100 92.72 70.12↓ 31 145 100 68.31 43.39↓ 32 158 100 57.55 20.97↓ 175 1450

MobileNetV1 Small (Daug) 8 92.90 83.21 211 1130 8 68.88 54.95 212 1330 8 56.46 28.17 765 7200
Full (Daug) 100 92.76 85.61 232 1070 100 65.41 53.89 228 1070 100 55.20 31.54 565 4330

(3M) GEARnn-1 7 90.64 80.71 88 379 8 65.07 51.46 93 651 8 54.57 27.46 506 4410
GEARnn-2 8 91.35 81.96 56 270 8 67.95 53.28 72 432 8 56.16 28.56 429 3565

Small (Din) 6 93.34 68.85↓ 61 546 7 68.74 40.83↓ 67 490 7 54.72 18.11 ↓ 381 3390
Full (Din) 100 94.46 72.74↓ 86 818 100 74.75 47.15↓ 77 761 100 62.52 22.95↓ 484 6010

ResNet-18 Small (Daug) 6 94.18 86.50 217 1730 7 71.97 57.30 219 1250 7 54.5 25.74 1103 12400
Full (Daug) 100 94.76 88.25 223 2140 100 73.70 61.74 219 2220 100 60.76 33.67 1429 17100

(12M) GEARnn-1 6 92.36 83.86 108 747 8 69.15 55.62 142 1020 7 53.17 24.93 898 9100
GEARnn-2 6 93.14 84.45 77 567 7 70.94 56.54 97 905 7 54.79 26.64 649 7270

C Ablation study
Impact of different GEARnn components are highlighted in Fig. 7 to show the efficacy of the choice.
The training loss curves in Fig. 8 indicate why GEARnn-2 achieves good robustness efficiently.

Figure 7: Impact of GEARnn components for
CIFAR-100 using VGG-19 on Quadro.

Phase-1 Phase-2 Arob(%) ttr(min) E (kJ)
vanilla OSG AugMix ERA

✓ 38.72 18 161
✓ 38.01 16 118

✓ 46.50 62 385
✓ 46.13 46 406

✓ ✓ 53.74 79 534
✓ ✓ 54.31 64 515
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Figure 8: Comparison of losses for 2-
Phase (GEARnn-2) and 1-Phase (rest)
approaches. It highlights that GEARnn-
2 loss converges to the minimum faster
than the other approaches.

D Diagnostics of Robust Augmentation Methods

In this section, we investigate which aspects
of the robust augmentation framework de-
scribed in Section 4.2 contribute most to
the robustness while being training efficient.
Table 7 shows different modifications of
the stochastic chains obtained by varying
(W,D, J) values. It can be observed that
the basic version with (W,D, J) = (1, 1, 0)
(uses only standard cross entropy loss with
the label and augmented data as input) has
the least training time, but suffers a signif-
icant drop in Arob compared to standard
AugMix. Crucially, we note that increase
in D and J has more impact on robust-
ness at a lesser training cost compared to
W . For ERA, we pick the modification
with (W,D, J) = (1, 3, 4) as it provides
the highest robustness while simultaneously
reducing training time over AugMix.

Experiment W D J Arob(%) ttr(min)

Basic 1 1 0 77.74 10
+ width 3 1 0 78.51 16
+ depth 1 3 0 80.31 12
+ JSD-3 1 1 3 82.43 20

+ width + depth 3 3 0 80.47 21
+ width + JSD-3 3 1 3 82.27 32
+ depth + JSD-3 1 3 3 83.67 22
+ depth + JSD-2 1 3 2 82.41 13
+ depth + JSD-4 1 3 4 84.10 29

AugMix [13] 3 3 3 84.05 41

Table 7: Impact of training AugMix-variants on the ro-
bust accuracy and training time. Network f2 from OSG
is used as the starting network and Er = 40. All the
methods are implemented for CIFAR-10 and 5% VGG-
19 network on Quadro. W,D, J represent the width,
depth and consistency samples used in the stochastic
chains.
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E Impact of Robust Training Epochs

In Section 6 and Fig. 6 we observed that GEARnn-2 can achieve high robustness even when the
robust training epochs are low. This is due to better initialization provided by OSG. We show the
same results ablated for both VGG-19 and MobileNet-V1 for CIFAR-10 and CIFAR-100 in Fig. 9.
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Figure 9: Plots (a)-(c) are implemented for VGG-19/CIFAR-10, (d)-(f) are for MobileNet-V1/CIFAR-
10, (g)-(i) are for VGG-19/CIFAR-100, and (j)-(l) are for MobileNet-V1/CIFAR-100 on Quadro.
First two plots of each row indicates the robust accuracy as a function of epochs and training time
respectively. The last plot in each row shows the clean accuracy as a function of training time.
GEARnn-2 clearly achieves the best clean and robust accuracy at the same training cost.
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F GEARnn Algorithms

Algorithm 1 GEARnn-1

1: Input: clean training data Din, initial backbone network f0, growth ratio
γ, set of augmentation transforms T , training epochs {E1, Eg, E2}

2: Output: compact and robust model f∗
1p

3: /* Phase-1: OSG */
4: for e = 1, ..., E1 do
5: Daug := R(Din|T ) // ERA
6: f1 ← argmin

f
Laug(f,Daug|f0) // backbone robust training

7: end for
8: fg ← G(f1|γ,Daug,Laug, Eg) // augmented growth
9: for e = 1, ..., E2 do

10: Daug := R(Din|T ) // ERA
11: f2 ← argmin

f
Laug(f,Daug|fg) // grown-network robust training

12: end for
13: f∗

1p ← f2

14: return f∗
1p

Algorithm 2 GEARnn-2

1: Input: clean training data Din, initial backbone network f0, growth ratio
γ, set of augmentation transforms T , training epochs {E1, Eg, E2, Er}

2: Output: compact and robust model f∗
2p

3: /* Phase-1: OSG */
4: for e = 1, ..., E1 do
5: f1 ← argmin

f
LCE(f,Din|f0) // backbone clean training

6: end for
7: fg ← G(f1|γ,Din,LCE, Eg) // clean growth
8: for e = 1, ..., E2 do
9: f2 ← argmin

f
LCE(f,Din|fg) // grown-network clean training

10: end for
11: /* Phase-2: Train */
12: for e = 1, ..., Er do
13: Daug := R(Din|T ) // ERA
14: f∗

2p ← argmin
f

Laug(f,Daug|f2) // grown-network robust training

15: end for
16: return f∗

2p
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