
Tree Variational Autoencoders

Laura Manduchi * 1 Moritz Vandenhirtz * 1 Alain Ryser 1 Julia Vogt 1

Abstract
We propose a new generative hierarchical clus-
tering model that learns a flexible tree-based pos-
terior distribution over latent variables. The pro-
posed Tree Variational Autoencoder (TreeVAE)
hierarchically divides samples according to their
intrinsic characteristics, shedding light on hidden
structures in the data. It adapts its architecture to
discover the optimal tree for encoding dependen-
cies between latent variables, improving genera-
tive performance. We show that TreeVAE uncov-
ers underlying clusters in the data and finds mean-
ingful hierarchical relations between the different
groups on several datasets. Due to its generative
nature, TreeVAE can generate new samples from
the discovered clusters via conditional sampling.

1. Introduction
Discovering structure and hierarchies in the data has been a
long-standing goal in machine learning (Jordan & Mitchell,
2015; Bishop, 2006; Bengio et al., 2012). Our work ad-
vances the state-of-the-art in structured VAEs by combining
the complementary strengths of hierarchical clustering and
deep generative models. We propose TreeVAE, a novel
tree-based generative model that encodes hierarchical de-
pendencies between latent variables. We propose a training
procedure to learn the optimal tree structure to model the
posterior distribution of latent variables. An example of a
tree learned by TreeVAE is depicted in Fig. 1. Each edge
and each split are encoded by neural networks, while the
circles depict latent variables. Each sample is associated
with a probability distribution over paths. The resulting tree
thus organizes the data into an interpretable hierarchical
structure in an unsupervised fashion, optimizing the amount
of shared information between samples. In CIFAR-10, for
example, the method divides the vehicles and animals into
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two different subtrees and similar groups (such as planes
and ships) share common ancestors.

Our main contributions are as follows: (i) We propose a
novel, deep probabilistic approach to hierarchical cluster-
ing that learns the optimal generative binary tree to mimic
the hierarchies present in the data. (ii) We provide a thor-
ough empirical assessment of the proposed approach. In
particular, we show that (a) TreeVAE achieves superior hier-
archical clustering performance compared to related work
on deep hierarchical clustering, (b) it discovers meaningful
patterns in the data and their hierarchical relationships, and
(c) TreeVAE achieves a more competitive log-likelihood
lower bound compared to VAE and LadderVAE, its non-
hierarchical and sequential counterparts, respectively.

2. TreeVAE
We propose TreeVAE, a novel deep generative model that
learns a flexible tree-based posterior distribution over la-
tent variables. Each sample travels through the tree from
root to leaf in a probabilistic manner as TreeVAE learns
sample-specific probability distributions of paths. As a re-
sult, the data is divided in a hierarchical fashion, with more
refined concepts for deeper nodes in the tree. The proposed
graphical model is depicted in Fig. 2. The inference and
generative model share the same top-down tree structure,
permitting interaction between the bottom-up and top-down
architecture, similar to Sønderby et al. (2016).

2.1. Model Formulation

Given H , the maximum depth of the tree, and given a
dataset X , the model is defined by three components that
are learned during training:

• the global structure of the binary tree T , which speci-
fies the set of nodes V = {0, . . . , V }, the set of leaves
L, where L ⊂ V, and the set of edges E .

• the sample-specific latent embeddings z={z0, . . ., zV},
which are random variables assigned to each node.

• the sample-specific decisions c = {c0, . . . , cV−|L|},
which are Bernoulli random variables indicating the
probability of going to the left child of the underlying
node. They take values ci ∈ {0, 1} for i ∈ V \ L, with
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Figure 1: The hierarchical structure discovered by TreeVAE on the CIFAR-10 dataset. We display random subsets of images
that are probabilistically assigned to each leaf of the tree.
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Figure 2: The proposed inference (left) and generative
(right) model for TreeVAE. Circles are stochastic variables
while diamonds are deterministic. The global topology of
the tree is learned during training.

ci = 0 if the left child is selected. A decision path Pl

indicates the path from root 0 to leaf l, e.g., in Fig. 2
P5 = {0, 1, 4, 5}.

The tree structure is shared across the entire dataset and
is learned iteratively by growing the tree node-wise. The
latent embeddings and the decision paths, on the other hand,
are learned using variational inference by conditioning the
model on the current tree structure.

2.2. Generative Model

The generative process of TreeVAE for a given T is de-
picted in Fig. 2 (right). The generation of a new sam-
ple x starts from the root. First, the latent embedding
of the root node z0 is sampled from a standard Gaussian
pθ (z0) = N (z0 | 0, I). Then, given the sampled z0, the
decision of going to the left or the right node is sampled
from a Bernoulli distribution p(c0 | z0) = Ber(rp,0(z0)),
where {rp ,i | i ∈ V\L} are functions parametrized by neu-
ral networks defined as routers, and cause the splits in Fig. 2.
The subscript p is used to indicate the parameters of the gen-
erative model. The latent embedding of the selected child,
let us assume it is z1, is then sampled from a Gaussian
distribution pθ(z1 | z0) = N

(
z1 | µp,1 (z0) , σ

2
p,1 (z0)

)
,

where {µp,i, σp,i | i ∈ V \ {0}} are functions parametrized
by neural networks defined as transformations. They are

indicated by the top-down arrows in Fig. 2. This process
continues until a leaf is reached.

Let us define the set of latent variables selected by the path
Pl, which goes from the root to the leaf l, as zPl

= {zi | i ∈
Pl}, the parent node of the node i as pa(i), and p(cpa(i)→i |
zpa(i)) the probability of going from pa(i) to i. Note that
the path Pl defines the sequence of decisions. The prior
probability of the latent embeddings and the path given the
tree T can be summarized as

pθ(zPl
,Pl)

= p(z0)
∏

i∈Pl\{0}

p(cpa(i)→i | zpa(i))p(zi | zpa(i)). (1)

Finally, x is sampled from a distribution that is conditioned
on the selected leaf l:

pθ(x | zPl
,Pl) = N

(
x | µx,l (zl) , σ

2
x,l (zl)

)
, (2)

where zPl
is the set of latent variables selected by the path

and {µx,l, σx,l | l ∈ L} are functions parametrized by leaf-
specific neural networks defined as decoders.

2.3. Inference Model

The inference model is described by the variational posterior
distribution of both the latent embeddings and the paths. It
follows a similar structure as in the prior probability defined
in (1), with the difference that the probability of the root
and of the decisions are now conditioned on the sample x:

q(zPl
,Pl | x)

= q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)). (3)

To compute the variational probability of the latent embed-
dings q(z0 | x) and q(zi | zpa(i)), where

q(z0 | x) = N
(
z0 | µq,0(x), σ

2
q,0(x)

)
(4)

qϕ
(
zi | zpa(i)

)
= N

(
zi | µq,i

(
zpa(i))

)
, σ2

q,i

(
zpa(i)))

))
∀i ∈ Pl,

(5)
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we follow a similar approach to the one proposed by
Sønderby et al. (2016). Note that we use the subscript
q to indicate the parameters of the inference model.
First, a deterministic bottom-up pass computes the node-
specific approximate likelihood contributions

dh = MLP (dh+1) (6)

µ̂q,i = Linear
(
ddepth(i)

)
, i ∈ V (7)

σ̂2
q,i = Softplus

(
Linear

(
ddepth(i)

))
, i ∈ V, (8)

where dH is parametrized by a domain-specific neural
network defined as encoder, and MLP(dh) for h ∈
{1, . . . ,H}, indicated by the bottom-up arrows in Fig. 2,
are neural networks, shared among the parameter predictors,
µ̂q,i, σ̂

2
q,i, of the same depth. They are characterized by the

same architecture as the transformations defined in Sec.2.2.
A stochastic downward pass then recursively computes the
approximate posteriors defined as

σq,i =
1

σ̂−2
q,i + σ−2

p,i

, µq,i =
µ̂q,iσ̂

−2
q,i + µp,iσ

−2
p,i

σ̂−2
q,i + σ−2

p,i

, (9)

where all operations are performed elementwise. Finally,
the variational distributions of the decisions q(ci | x) are
defined as

q(ci | x) = q(ci | ddepth(i)) = Ber(rq,i(ddepth(i))), (10)

where {rq,i | i ∈ V \ L} are functions parametrized by neu-
ral networks and are characterized by the same architecture
as the routers of the generative model defined in Sec.2.2.

2.4. Evidence Lower Bound

The likelihood of the data conditioned on the tree structure
T is defined as

p(x | T ) =
∑
l∈L

∫
zPl

p(x, zPl
,Pl) (11)

=
∑
l∈L

∫
zPl

pθ(zPl
,Pl)pθ(x | zPl

,Pl). (12)

We use variational inference to derive the Evidence Lower
Bound (ELBO) of the log-likelihood:

L(x | T ) := Eq(zPl
,Pl|x)[log p(x | zPl

,Pl)]

−KL (q (zPl
,Pl | x)∥p (zPl

,Pl)) .
(13)

where the variational posterior q (zPl
,Pl | x) is defined

in Section 2.3. The first component of the ELBO is the
reconstruction term:

Lrec = Eq(zPl
,Pl|x)[log p(x | zPl

,Pl)] (14)

≈ 1

M

M∑
m=1

∑
l∈L

P (l; c)

× logN(x | µx,l(z
(m)
l ), σ2

x,l(z
(m)
l )),

(15)

where Pi for i ∈ V is the path from root to node i, P (i; c) is
the probability of reaching node i, which is the product over
the probabilities of the decisions in the path until i, z(m)

l

are the Monte Carlo (MC) samples, and M the number of
the MC samples. Intuitively, the reconstruction loss is the
sum of the leaf-wise reconstruction losses weighted by the
probabilities of reaching the respective leaf. Note that here
we sum over all possible paths in the tree, which is equal to
the number of leaves.

The second term of (13) is the Kullback–Leibler divergence
(KL) between the prior and the variational posterior of the
tree. It can be written as a sum of the KLroot, the KLnodes,
and the KLdecisions:

KLroot = KL(q(z0 | x)∥p(z0)), (16)

KLnodes ≈
1

M

M∑
m=1

∑
i∈V\{0}

P (i; c)

×KL(q(z
(m)
i | pa(z(m)

i ))∥p(z(m)
i | pa(z(m)

i ))),

(17)

KLdecisions ≈
1

M

M∑
m=1

∑
i∈V\L

P (i; c)

×
∑

ci∈{0,1}

q(ci | x) log

(
q(ci | x)

p(ci | z(m)
i )

)
,

(18)

where M is the number of MC samples. We refer to Ap-
pendix A for the full derivation. The KLroot is the KL
between the standard Gaussian prior p(z0) and the varia-
tional posterior of the root q(z0 | x), thus enforcing the
root to be compact. The KLnodes is the sum of the node-
specific KLs weighted by the probability of reaching their
node i: P (i; c). The node-specific KL of node i is the KL
between the two Gaussians q(zi | pa(zi)), p(zi | pa(zi)).
Finally, the last term, KLdecisions, is the weighted sum of
all the KLs of the decisions, which are Bernoulli random
variables, KL(q(ci | x) | p(ci | zi))) =

∑
ci∈{0,1} q(ci |

x) log
(

q(ci|x)
p(ci|zi))

)
. The hierarchical specification of the bi-

nary tree allows encoding expressive models while retaining
the computational efficiency of fully factorized models.

2.5. Growing The Tree

In the previous sections, we discussed the variational objec-
tive to learn the parameters of the model given T . To learn
the structure of the binary tree T we follow an incremen-
tal approach. TreeVAE starts by training a tree composed
of a root and two leaves for Nt epochs by maximising the
ELBO. Once the model converges, a leaf is selected, and
two children are attached. The selection criteria can be de-
termined by e.g. the reconstruction loss or the ELBO. In
our experiments, we selected the leaves with the maximum
number of samples to retain balanced clusters. The resulting
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sub-tree is then trained and the process is repeated until
the tree reaches its maximum capacity or until a predefined
maximum number of leaves is met. The entire model is then
fine-tuned for Nf epochs by unfreezing all weights. During
fine-tuning, the tree is pruned by removing empty branches.
For a schematic overview, we refer to Appendix A.3.

3. Results
We evaluate the clustering and generative performance of
TreeVAE by setting the number of leaves to the true number
of clusters and compute accuracy (ACC) and normalized
mutual information (NMI). In terms of generative perfor-
mance, we compute the approximated true log-likelihood
and the reconstruction loss (15). We compare the generative
performance of TreeVAE to the VAE (Rezende et al., 2014;
Kingma & Welling, 2014), its non-hierarchical counterpart,
and the LadderVAE (Sønderby et al., 2016), its sequential
counterpart. We compare TreeVAE to non-generative hierar-
chical clustering baselines: Ward’s agglomerative clustering
(Agg) (Ward, 1963; Murtagh & Legendre, 2014), and the
DeepECT (Mautz et al., 2020). We propose two additional
baselines, where we perform Ward’s clustering on the latent
space of the VAE and of the last layer of the LadderVAE. For
details on the experimental setup, we refer to Appendix D.

Hierarchical Clustering Results Table 1 shows the
quantitative hierarchical clustering results. As can be seen,
TreeVAE outperforms the baselines in all datasets. This
suggests that the proposed approach successfully builds an
optimal tree based on the data’s intrinsic characteristics.
Among the different baselines, agglomerative clustering
using Ward’s method (Agg) trained on the last layer of Lad-
derVAE shows competitive performances. To the best of our
knowledge, we are the first to report these results. Notably, it
consistently outperforms VAE + Agg, indicating that the last
layer of LadderVAE captures more cluster information than
the VAE. In Appendix E.1, we show additional experiments
where we assume unknown true number of clusters.

Generative Results In Table 2, we evaluate the gen-
erative performance of TreeVAE. The proposed approach
outperforms the baselines on the majority of datasets, in-
dicating that the proposed ELBO (13) provides a tighter
lower bound of the log-likelihood. The most notable im-
provement appears to be reflected in the reconstruction loss,
showing the advantage of using L cluster-specialized de-
coders. However, this improvement comes at the expense of
a larger neural network architecture and an increase in the
number of parameters. While this requires more computa-
tional resources at training time, during deployment the tree
structure of TreeVAE permits lightweight inference through
conditional sampling, thus matching the inference time of
LadderVAE. Finally, we notice that more complex methods
are prone to overfitting on the 20Newsgroups dataset.

Table 1: Test set hierarchical clustering performances (%) of
TreeVAE compared with baselines. Means and standard de-
viations are computed across 10 runs. The star ”*” indicates
the inclusion of contrastive learning.

Dataset Method ACC NMI

MNIST Agg 69.5± 0.0 71.1± 0.0

VAE + Agg 86.6± 4.9 81.6± 2.0

LadderVAE + Agg 80.3± 5.6 82.0± 2.1

DeepECT 74.9± 6.2 76.7± 4.2

TreeVAE (ours) 90.2± 7.5 90.0± 4.6

Fashion Agg 51.3± 0.0 52.6± 0.0

VAE + Agg 54.9± 4.4 56.1± 3.2

LadderVAE + Agg 55.9± 3.0 60.7± 1.4

DeepECT 51.8± 5.7 57.7± 3.7

TreeVAE (ours) 63.6± 3.3 64.7± 1.4

20Newsgroups Agg 26.1± 0.0 27.5± 0.0

VAE + Agg 15.2± 0.4 11.6± 0.3

LadderVAE + Agg 17.4± 0.9 17.8± 0.6

DeepECT 15.6± 3.0 18.1± 4.1

TreeVAE (ours) 32.8± 2.3 34.4± 1.5

Omniglot-5 Agg 53.2± 0.0 33.3± 0.0

VAE + Agg 52.9± 4.2 34.4± 2.9

LadderVAE + Agg 59.6± 4.9 44.2± 4.7

DeepECT 41.1± 4.2 23.5± 4.3

TreeVAE (ours) 63.9± 7.0 50.0± 5.9

CIFAR-10* VAE + Agg 14.4± 0.2 1.9± 1.7

LadderVAE + Agg 19.3± 0.6 7.4± 0.4

DeepECT 10.3± 0.4 0.2± 0.1

TreeVAE (ours) 53.0± 1.3 41.4± 1.1

Table 2: Test set generative performances of TreeVAE with
10 leaves compared with baselines. Means and standard
deviations are computed across 10 runs.

Dataset Method LL RL

MNIST VAE −101.9± 0.2 87.2± 0.3

LadderVAE −99.9± 0.5 87.8± 0.7

TreeVAE (ours) −92.9± 0.2 80.3± 0.2

Fashion VAE −242.2± 0.2 231.7± 0.5

LadderVAE −239.4± 0.5 231.5± 0.6

TreeVAE (Ours) −234.7± 0.1 226.5± 0.3

20Newsgroups VAE −44.26± 0.01 45.52± 0.03

LadderVAE −44.30± 0.03 43.52± 0.03

TreeVAE (Ours) −51.67± 0.59 45.83± 0.36

Omniglot VAE −115.3± 0.3 101.6± 0.3

LadderVAE −113.1± 0.5 100.7± 0.7

TreeVAE (Ours) −110.4± 0.5 96.9± 0.5

Real-world Imaging Data & Contrastive Learning
Clustering real-world imaging data is extremely difficult
as there are endless possibilities of how the data can be
partitioned. We therefore inject prior information through
augmentations to guide TreeVAE and the baselines to se-
mantically meaningful splits. We regularize the model to
have similar embeddings, as well as paths, for augmented
versions of the same sample. For more details, we refer
to Appendix B. Table 1 (bottom) shows the hierarchical
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Figure 3: Hierarchical structures learned by TreeVAE on Omniglot-5 (left) and Fashion (right). Left: Subtree (a) learns a
hierarchy over Braille and the Indian alphabets, while (b) groups Slavic alphabets. Right: Subtree (a) encodes tops, while (b)
encodes shoes, purses, and pants.

clustering performance of TreeVAE and its baselines, all
employing contrastive learning, on CIFAR-10. We observe
that DeepECT struggles in separating the data as their con-
trastive approach leads to all samples falling into the same
leaf. TreeVAE is able to group the data into contextually
meaningful hierarchies and groups, evident from its superior
performance compared to the baselines.
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Figure 4: Hierarchical structure learned by TreeVAE on
20Newsgroups.

Discovery of Hierarchies In addition to solely clustering
data, TreeVAE is able to discover meaningful hierarchical
relations between the clusters, thus allowing for more in-
sights into the dataset. In the introductory Fig. 1 and in
Fig. 3 we present the hierarchical structures learned by Tree-
VAE on CIFAR-10 (Krizhevsky & Hinton, 2009), Fashion-
MNIST (Xiao et al., 2017), Omniglot-5 (Lake et al., 2015),
and 20Newsgroups (Lang, 1995). In Fig.3 (left), TreeVAE
learns to split alphabets into Indian (Odia and Bengali) and
Slavic (Glagolitic and Cyrillic) subtrees. In Fig. 3 (right)
we additionally display conditional cluster generations from
the leaf-specific decoders. TreeVAE separates the fashion
items into two subtrees, one containing shoes and bags, and

the other containing the tops, which are further refined into
long and short sleeves. In Fig. 4, TreeVAE learns to separate
technological and societal subjects and discovers semanti-
cally meaningful subtrees. In Appendix E we present more
learned trees and how TreeVAE can additionally be used to
sample unconditional generations for all clusters simulta-
neously, where the generations differ across the leaves by
their cluster-specific features, whereas cluster-independent
properties are retained across all generations.

4. Conclusion
In this paper, we introduced TreeVAE, a new generative
method that leverages a tree-based posterior distribution of
latent variables to capture the hierarchical structures present
in the data. TreeVAE optimizes the balance between shared
and specialized architecture, enhancing the learning and
adaptation capabilities of generative models. Empirically,
we showed that our model offers a substantial improvement
in hierarchical clustering performance compared to the re-
lated work, while also providing a more competitive lower
bound to the log-likelihood of the data. We presented quali-
tatively how the hierarchical structures learned by TreeVAE
enable a more comprehensive understanding of the data,
thereby facilitating enhanced analysis, interpretation, and
decision-making. Our findings highlight the versatility of
the proposed approach, which we believe to hold significant
potential for unsupervised representation learning.

Limitations & Future Work: While deep latent variable
models, such as VAEs, provide a framework for modelling
explicit relationships through graphical structures, they of-
ten exhibit poor performance on synthetic image genera-
tion. However, more complex architectural design (Vahdat
& Kautz, 2020) or recent advancement in diffusion latent
models (Rombach et al., 2021), present potential solutions
to enhance image quality generation, thus striking an opti-
mal balance between generating high-quality images and
capturing meaningful representations.



Tree Variational Autoencoders

References
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A. Evidence Lower Bound
In this section, we provide a closer look at the loss function of TreeVAE. In Appendix A.1 we focus on the derivations
of the Kullback-Leibler divergence term and of the reconstruction term of the Evidence Lower Bound and provide an
interpretable factorization. Furthermore, in Appendix A.2 we address the computational complexity, thus offering an in-depth
understanding of the loss function, its practical implications, and the trade-offs involved in its computation. Finally, in
Appendix A.3 we provide a schematic overview that illustrates the step-by-step process of the TreeVAE growing procedure.

A.1. ELBO Derivations

We hereby derive both terms of the ELBO (13), namely the KL loss, which is the Kullback–Leibler divergence (KL) between
the prior and the variational posterior of TreeVAE, and the reconstruction loss. Let us define Pl as the decision path from
root 0 to leaf l, L is the number of leaves, which is equal to the number of paths in T , zPl

= {zi | i ∈ Pl} the set of latent
variables selected by the path Pl, the parent node of the node i as pa(i), p(cpa(i)→i | zpa(i)) the probability of going from
pa(i) to i. For example, if we consider the path in Fig. 2 (right) we will observe c0 = 0, c1 = 1, and c4 = 0, where ci = 0
means the model selects the left child of node i.

A.1.1. KL LOSS

The KL loss can be expanded using Eq. 1/3:

KL (q (zPl
,Pl | x) ∥p (zPl

,Pl)) (19)

= KL
(
q(z0 | x)

∏
i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

∥∥p(z0) ∏
i∈Pl\{0}

p(cpa(i)→i | zpa(i))p(zi | zpa(i))
) (20)

=
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

× log

(
q(z0 | x)

∏
j∈Pl\{0} q(cpa(j)→j | x)q(zj | zpa(j))

p(z0)
∏

k∈Pl\{0} p(cpa(k)→k | zpa(k))p(zk | zpa(k))

) (21)

=
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(z0 | x)
p(z0)

)
(22)

+
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log

( ∏
j∈Pl\{0}q(cpa(j)→j | x)∏

k∈Pl\{0} p(cpa(k)→k | zpa(k))

)
(23)

+
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log

(∏
j∈Pl\{0} q(zj | zpa(j))∏
k∈Pl\{0} p(zk | zpa(k))

)
. (24)

In the following, we will simplify each of the three terms 22, 23, and 24 separately.
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KL Root The term (22) corresponds to the KL of the root node. We can integrate out all the latent variables zi for i ̸= 0
and all decisions ci. The first term can be then written as follows:

KLroot =
∑
i=1,2

∫
z0

q(z0 | x)q(c0→i | z0) log
(
q(z0 | x)
p(z0)

)
(25)

=

∫
z0

q(z0 | x)

 ∑
i∈{1,2}

q(c0→i | z0)

 log

(
q(z0 | x)
p(z0)

)
(26)

=

∫
z0

q(z0 | x) [q(c0 = 0 | z0) + q(c0 = 1 | z0)] log
(
q(z0 | x)
p(z0)

)
(27)

=

∫
z0

q(z0 | x) log
(
q(z0 | x)
p(z0)

)
= KL (q(z0 | x)∥p(z0)) , (28)

where q(c0 = 0 | z0) + q(c0 = 1 | z0) = 1 and KL (q(z0 | x)∥p(z0)) is the KL between two Gaussians, which can be
computed analytically.

KL Decisions The second term (23) corresponds to the KL of the decisions. We can pull out the product from the log,
yielding

KLdecisions =
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

× log

 ∏
j∈Pl\{0}

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

 (29)

=
∑
l∈L

∫
zPl

∑
j∈Pl\{0}

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(30)

Let us define as Pl∈j all paths that go through node j, as P≤j (denoted as Pj in the main text for brevity) the unique path
that ends in the node j, and as P>j all the possible paths that start from the node j and continue to a leaf l ∈ L. Similarly,
let us define as z≤j all the latent embeddings that are contained in the path from the root to node j and as z>j all the latent
embeddings of the nodes i > j that can be reached from node j.
To factorize the above equation, we first change from a pathwise view to a nodewise view. Instead of summing over all
possible leaves in the tree (

∑
l∈L) and then over each contained node (

∑
j∈Pl\{0}), we sum over all nodes (

∑
j∈V\{0}) and

then over each path that leads through the selected node (
∑

Pl∈j
).

∑
l∈L

∫
zPl

∑
j∈Pl\{0}

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)

=
∑

j∈V\{0}

∑
Pl∈j

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

) (31)

The above can be proved with the following Lemma, where we rewrite
∑

Pl∈j
=
∑

l∈L 1[j ∈ Pl].

Lemma A.1. Given a binary tree T as defined in Section 2.1, composed of a set of nodes V = {0, . . . , V } and leaves
L ⊂ V, where Pl is the decision path from root 0 to leaf l, and zPl

= {zi | i ∈ Pl} the set of latent variables selected by
the path Pl. Then it holds

∑
l∈L

∫
zPl

∑
j∈Pl\{0}

f(j, l, zPl
) =

∑
j∈V\{0}

∑
l∈L

∫
zPl

1[j ∈ Pl]f(j, l, zPl
), (32)
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Proof. The proof is as follows:

∑
j∈V\{0}

∑
l∈L

∫
zPl

1[j ∈ Pl]f(j, l, zPl
) =

∑
j∈V\{0}

∑
l∈L

∫
zPl

f(j, l, zPl
)
∑

i∈Pl\{0}

1[i = j] (33)

=
∑
l∈L

∑
j∈V\{0}

∫
zPl

∑
i∈Pl\{0}

f(j, l, zPl
)1[i = j] (34)

=
∑
l∈L

∑
j∈V\{0}

∫
zPl

∑
i∈Pl\{0}

f(i, l, zPl
)1[i = j] (35)

=
∑
l∈L

∫
zPl

∑
i∈Pl\{0}

f(i, l, zPl
)
∑

j∈V\{0}

1[i = j] (36)

=
∑
l∈L

∫
zPl

∑
i∈Pl\{0}

f(i, l, zPl
) (37)

=
∑
l∈L

∫
zPl

∑
j∈Pl\{0}

f(j, l, zPl
). (38)

Having proven the equality, we can continue with the KL of the decisions as follows:

KLdecisions =∑
j∈V\{0}

∑
Pl∈j

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(39)

=
∑

j∈V\{0}

∑
Pl∈j

∫
zPl

[q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
×

∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))]
(40)

=
∑

j∈V\{0}

∑
P>j

∫
z≤j ,z>j

[q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
×

∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))]
(41)

=
∑

j∈V\{0}

∫
z≤j

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)

×
∑
P>j

∫
z>j

[ ∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))
] (42)

From Eq. 39 to Eq. 40, we split the inner product into the nodes of the paths Pl∈j that are before and after the node j.
From Eq. 40 to Eq. 41, we observe that the sum over all paths going through j can be reduced to the sum over all paths
starting from j, because there is only one path to j, which is specified in the product that comes after.
From Eq. 41 to Eq. 42, we observe that the sum over paths starting from j and integral over z>j concern only the terms of
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the second line. Observe that the term on the second line of Eq. 42 integrates out to 1 and we get

KLdecisions =∑
j∈V\{0}

∫
z≤j

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(43)

=
∑

j∈V\{0}

∫
z<j

∫
zj

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(44)

=
∑

j∈V\{0}

∫
z<j

q(z0 | x)
∏

i∈P<j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)

×
∫
zj

q(cpa(j)→j | x)q(zj | zpa(j))
(45)

=
∑

j∈V\{0}

∫
z<j

q(z0 | x)
∏

i∈P<j\{0}

q(cpa(i)→i | x)q(zi | zpa(i))q(cpa(j)→j | x)

× log

(
q(cpa(j)→j | x)

p(cpa(j)→j | zpa(j))

)
.

(46)

From Eq. 44 to Eq. 45, we single out the term in the product that corresponds to j = i, which is the only term that depends
on
∫
zi

.
From Eq. 45 to Eq. 46, we observe that in the singled-out term,

∫
zj
q(zj | zpa(j)) = 1, which leaves only q(cpa(j)→j | x).

This equation can be rewritten in a more interpretable way. Let us define the probability of reaching node j and observing
zj as

P (j; z, c) = q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)). (47)

Then the KL term of the decisions can be simplified as

KLdecisions =
∑

j∈V\{0}

∫
z<j

P (pa(j); z, c)q(cpa(j)→j | x) log
(

q(cpa(j)→j | x)
p(cpa(j)→j | zpa(j))

)
(48)

=
∑

i∈V\L

∑
k∈{0,1}

∫
z<i

P (i; z, c)q(ci = k | x) log
(
q(ci = k | x)
p(ci = k | zi)

)
. (49)

This term requires Monte Carlo sampling for the expectations over the latent variables z, while we can analytically compute
the sum over all decisions Pl.

KLdecisions =
∑

i∈V\L

∫
z<i

P (i; z, c)

×
[
q(ci = 0) | x) log

(
q(ci = 0 | x)
p(ci = 0 | zi)

)
+ q(ci = 1 | x) log

(
q(ci = 1 | x)
p(ci = 1 | zi)

)] (50)

≈ 1

M

M∑
m=1

∑
i∈V\L

P (i; z(m), c)

×

[
q(ci = 0) | x) log

(
q(ci = 0 | x)

p(ci = 0 | z(m)
i )

)
+ q(ci = 1 | x) log

(
q(ci = 1 | x)

p(ci = 1 | z(m)
i )

)]
,

(51)

where P (i; z(m), c) =
∏

j∈P≤i
q(cpa(j)→j | x) is the probability of reaching node i, defined as P (i; c) in Eq. 15/17/18 for

simplicity.



Tree Variational Autoencoders

KL Nodes Finally, we can analyze the last term of the KL term, which corresponds to the KL of the nodes (24). The
reasoning is similar to the equations above and we will use the same notation. The KL of the nodes can be written as

KLnodes =
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i))

× log

(∏
j∈Pl\{0} q(zj | zpa(j))∏
k∈Pl\{0} p(zk | zpa(k))

) (52)

=
∑
l∈L

∫
zPl

∑
j∈Pl\{0}

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(53)

We now change from a pathwise view to a nodewise view.

=
∑

j∈V\{0}

∑
Pl∈j

∫
z≤j ,z>j

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(54)

=
∑

j∈V\{0}

∫
z≤j

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)

×
∑
P>j

∫
z>j

 ∏
k∈P>j

q(cpa(k)→k | x)q(zk | zpa(k))

 (55)

=
∑

j∈V\{0}

∫
z<j

∫
zj

q(z0 | x)
∏

i∈P≤j\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(56)

=
∑

j∈V\{0}

∫
z<j

∫
zj

P (pa(j); z, c)q(cpa(j)→j | x)q(zj | zpa(j)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(57)

=
∑

j∈V\{0}

∫
z<j

P (pa(j); z, c)q(cpa(j)→j | x)
∫
zj

q(zj | zpa(j)) log
(
q(zj | zpa(j))
p(zj | zpa(j))

)
(58)

=
∑

j∈V\{0}

∫
z<j

P (pa(j); z, c)q(cpa(j)→j | x)KL
(
q(zj | zpa(j)) | p(zj | zpa(j))

)
(59)

≈ 1

M

M∑
m=1

∑
i∈V\{0}

P (pa(i); z(m), c)q(cpa(i)→i | x)

×KL(q(z
(m)
i | pa(z(m)

i ))∥p(z(m)
i | pa(z(m)

i )))

(60)

=
1

M

M∑
m=1

∑
i∈V\{0}

P (i; z(m), c)KL(q(z
(m)
i | pa(z(m)

i ))∥p(z(m)
i | pa(z(m)

i ))), (61)

where P (pa(j); z, c) is defined in Eq. 47 and where P (i; z(m), c) = P (i; c) =
∏

j∈P≤i
q(cpa(j)→j | x) is the probability

of reaching node i.

KL terms Using the above factorization, the KL term of the ELBO can be written as

KL (q (z,Pl | x) ∥p (z,Pl)) ≈ KL (q(z0 | x)∥p(z0))

+
1

M

M∑
m=1

∑
i∈V\L

P (i; z(m), c)
∑

ci∈{0,1}

q(ci | x) log

(
q(ci | x)

p(ci | z(m)
i ))

)

+
1

M

M∑
m=1

∑
i∈V\{0}

P (i; z(m), c)KL(q(z
(m)
i | pa(z(m)

i ))∥p(z(m)
i | pa(z(m)

i ))),

(62)

where P (i; z(m), c) = P (i; c) =
∏

j∈P≤i
q(cpa(j)→j | x).
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A.1.2. RECONSTRUCTION LOSS

Finally, to compute the full ELBO, the KL terms are added to the reconstruction loss defined in (15):

Lrec = Eq(zPl
,Pl|x)[log p(x | zPl

,Pl)] (63)

=
∑
l∈L

∫
zPl

q(z0 | x)
∏

i∈Pl\{0}

q(cpa(i)→i | x)q(zi | zpa(i)) log p(x | zPl
,Pl) (64)

≈ 1

M

M∑
m=1

∑
l∈L

P (l; c) logN
(
x | µx,l

(
z
(m)
l

)
, σ2

x,l

(
z
(m)
l

))
, (65)

P (i; c) =
∏

j∈Pi\{0}

q(cpa(j)→j | x) for i ∈ V, (66)

where Pi for i ∈ V is the path from root to node i, P (i; c) is the probability of reaching node i, which is the product over
the probabilities of the decisions in the path until i, z(m)

l are the Monte Carlo (MC) samples, and M the number of the MC
samples. Here, assumptions about the distribution of the inputs are required. For the grayscale datasets such as MNIST,
Fashion-MNIST, and Omniglot, as well as the one-hot-encoded 20Newsgroup, we assume that the inputs are Bernoulli
distributed, such that the resulting reconstruction loss is the binary cross entropy. On the other hand, for the colored dataset
CIFAR-10 we assume that the pixel values are normally distributed, which leads to the mean squared error as loss function,
where we assume that σ = 1.

A.2. Computational Complexity

All terms of the Evidence Lower Bound, Eq. 13, can be computed efficiently and the computational complexity of a single
joint update of the parameters is O(LBV DCp), where L is the number of MC samples, B is the batch size, V is the number
of nodes in the tree, D is the maximum depth of the tree, and Cp is the cost to compute the KL between Gaussians. It should
be noted that the computational complexity is, in practice, reduced to O(LBV Cp), as the term P (i; c) can be computed
dynamically from parent nodes.

A.3. Growing The Tree

d0
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d2

d3
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Step 1 Step 2

Figure 5: The first two steps of the growing process to learn the global structure of the tree during training. Highlighted in
red are the trainable weights. (left) TreeVAE starts by optimizing the ELBO of the tree composed of a root and two leaves.
(right) Upon convergence, a node is selected, z1, and two children are attached. The new sub-tree is then trained for M
epochs by freezing the weights of the rest of the model. For efficiency, the subtree is trained using only the subset of data
that have a high probability (higher than a threshold t) of being assigned to the parent node.

B. Integrating Prior Knowledge
Retrieving semantically meaningful clustering structures of real-world images is extremely challenging, as there are several
underlying factors according to which the data can be clustered. Therefore, it is often crucial to integrate domain knowledge
that guides the model toward desirable cluster assignments. Thus, we propose an extension of TreeVAE where we integrate
recent advances in contrastive learning (Chen et al., 2020; van den Oord et al., 2018; Li et al., 2021), whereby prior
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knowledge on data invariances can be encoded through augmentations. For a batch X with N samples, we randomly
augment every sample twice to obtain the augmented batch X̃ with 2N samples. For all i, j where x̃i and x̃j stem from
the same sample, we compute the NT-Xent (Chen et al., 2020) defined as ℓi,j = − log

exp (si,j/τ)∑2N
k=1 1[k ̸=i] exp (si,k/τ)

, where si,j

denotes the cosine similarity between the representations of x̃i and x̃j , and τ is a temperature parameter. We calculate
ℓi,j for (a) the output of separate projection heads gh(dh), which take as input the bottom-up embeddings dh, and (b) the
probability output of the routers rq,i(dh). Finally, we average these terms and add them to the negative ELBO (13) for the
real-world image experiment.

C. Related Work
We provide a review of relevant work in the domains of deep latent variable models, hierarchical clustering and decision
trees. By doing so, we hope to shed further light on the current state-of-the-art approaches and contribute to a deeper
understanding of the challenges and opportunities that lie in the intersection of hierarchical clustering, decision trees, and
latent variable models.

Deep Latent Variable Models Deep latent variable models automatically learn structure from data by combining the
flexibility of deep neural networks and the statistical foundations of generative models (Mattei & Frellsen, 2018). Variational
autoencoders (VAEs) (Rezende et al., 2014; Kingma & Welling, 2014) are among the most used frameworks (Bae et al., 2023;
Bredell et al., 2023; Nasiri & Bepler, 2022). A variety of works has been proposed to integrate more complex empirical prior
distributions, thus reducing the gap between approximate and true posterior distributions (Ranganath et al., 2015; Webb et al.,
2017; Klushyn et al., 2019). Among these, the most related to our work is the VAE-nCRP (Goyal et al., 2017; Shin et al.,
2019) and the TMC-VAE (Vikram et al., 2018). Both works use Bayesian nonparametric hierarchical clustering priors based
on the nested Chinese restaurant process (nCRP) prior (Blei et al., 2003), and on the time-marginalized coalescent (TMC).
However, even if they allow more flexible prior distributions these models suffer from restrictive posterior distributions
(Kingma et al., 2016).To overcome the above issue, deep hierarchical VAEs (Gregor et al., 2015; Kingma et al., 2016) have
been proposed to employ structured approximate posteriors, which are composed of hierarchies of conditional stochastic
variables that are connected sequentially. Among a variety of proposed methods (Vahdat & Kautz, 2020; Xiao & Bamler,
2023; Falck et al., 2022), Ladder VAE (Sønderby et al., 2016) is most related to TreeVAE. The authors propose to model the
approximate posterior by combining a “bottom-up” recognition distribution with the “top-down” prior. Further extensions
include BIVA (Maaløe et al., 2019), which introduces a bidirectional inference network, and GraphVAE (He et al., 2019),
that integrates a more flexible dependency structure of latent variables. Contrary to the previous approaches, TreeVAE
models a tree-based posterior distribution of latent variable, thus allowing hierarchical clustering of samples.

C.1. Hierarchical Clustering

Hierarchical clustering algorithms have long been employed in the field of data mining and machine learning to extract
hierarchical structures from data (Sneath, 1957; Ward, 1963; Murtagh & Contreras, 2012). Agglomerative clustering is
among the earliest and most well-known hierarchical clustering algorithms. These methods start with each data point as an
individual cluster and then iteratively merge the closest pairs of clusters, according to a predefined distance metric, until a
stopping criterion is met. While single-linkage and complete-linkage agglomeration clustering are widely used as baselines,
we observe better performance when using the bottom-up strategy proposed by Ward (1963). Ward’s minimum variance
criterion minimizes the total within-cluster variance (Murtagh & Legendre, 2014), thus providing balanced and compact
clusters. In contrast, the Bayesian Hierarchical Clustering (BHC) proposed by Heller & Ghahramani (2005) takes a different
approach by employing hypothesis testing to determine when to merge the clusters. The divisive clustering algorithms, on
the other hand, provide a different strategy to hierarchical clustering. Unlike agglomerative methods, divisive clustering
starts with all data points in a single cluster and recursively splits clusters into smaller ones. The proposed TreeVAE is
an example of a divisive clustering method. Among a variety of proposed methods, the Bisecting-K-means algorithm
(Steinbach et al., 2000; Nistér & Stewénius, 2006) is widely used for its simplicity; it applies k-means with two clusters
recursively. More recent approaches include PERCH (Kobren et al., 2017b), which is a non-greedy, incremental algorithm
that scales to both the number of data points and the number of clusters, GHC (Monath et al., 2019), which leverages
continuous representations of trees in a hyperbolic space and optimizes a differentiable cost function, and RSSCOMP (You
et al., 2015), which explores a subspace clustering method based on an orthogonal matching pursuit. Finally, Deep ECT
(Mautz et al., 2020) proposes a divisive hierarchical embedded clustering method, which jointly optimizes an autoencoder
that compresses the data into an embedded space and a hierarchical clustering layer on top of it. Density-based clustering
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algorithms, such as DBSCAN, belong to a distinct category of clustering techniques. They aim to identify regions in a
dataset where points are densely concentrated and classify outliers as noise (Ester et al., 1996). Campello et al. (2015) build
on this idea to learn a hierarchy based on the distances between datapoints where distance is roughly determined by the
density. However, one limitation of density-based methods lie in their performance when confronted with complex datasets
requiring high-dimensional representations. In such cases, estimating density requires an exponentially growing number of
data points, which leads to scalability issues that TreeVAE does not have.

Decision Trees Decision trees (Breiman et al., 1984) are interpretable, non-parametric supervised learning techniques
commonly employed in classification and regression tasks. They rely on the data itself to build a hierarchical structure. This
is done by recursively partitioning the data into subsets, each of which corresponds to a specific node in the tree. At each
node, a decision rule is generated based on one of the input features that best discriminates the data in that subset. One
of the key advantages of decision trees is their interpretability. The learned tree structure can be easily visualized to get
insights into the data and the model’s decision-making process. Suárez & Lutsko (1999) argue that deterministic splits lead
to overfitting and introduce fuzzy decision trees with probabilistic decisions, implicitly allowing for backpropagation. With
the advancement of neural networks, many works (Rota Bulo & Kontschieder, 2014; Laptev & Buhmann, 2014; Frosst
& Hinton, 2017) leverage MLPs or CNNs for learning a more complex decision rule. However, the input at every node
remains the original features, which limits their performance, as they are unable to learn meaningful representations. Thus,
Tanno et al. (2019) introduces Adaptive Neural Trees (ANT), a method that learns flexible, hierarchical representations
through NNs, hereby facilitating hierarchical separation of task-relevant features. Additionally, ANTs architectures grow
dynamically such that they can adapt to the complexity of the training dataset. At inference time, ANTs allow for lightweight
conditional computation via the most likely path, leading to inbuilt interpretable decision-making.
While decision trees were initially designed with the goal of achieving high predictive performance, they are also
used for many auxiliary goals such as semi-supervised learning (Zharmagambetov & Carreira-Perpiñán, 2022), robust-
ness (Moshkovitz et al., 2021) or interpretability (Souza et al., 2022; Arenas et al., 2022; Pace et al., 2022; Wan et al.,
2021). In the context of interpretability, various approaches have been proposed to enhance accuracy and interpretability.
Wan et al. (2021) introduce Neural-Backed Decision Trees (NBDTs), which improve accuracy by replacing the final layer
of a neural network with a differentiable sequence of decisions to increase its interpretability while retaining predictive
performance. Souza et al. (2022) focus on optimizing the structural parameters of decision trees, introducing the concept
of ”explanation size” as being the expected number of attributes required for prediction to measure interpretability. Pace
et al. (2022) develop the POETREE framework for interpretable policy learning via decision trees in time-varying clinical
decision environments. Arenas et al. (2022) investigate explanations in decision trees, considering both deterministic and
probabilistic approaches and showing the limitations thereof. These works collectively contribute to advancing the use of
decision trees in interpretable machine learning, providing insights into trade-offs, criteria, and frameworks for improving
accuracy and interpretability.
While decision trees are most commonly known for their application in supervised tasks, they can be repurposed to partition
the data space into clusters in an unsupervised way (Liu et al., 2000; Ram & Gray, 2011; Fraiman et al., 2013; Blockeel &
De Raedt, 1998; Basak & Krishnapuram, 2005). Most methods, however, have the downside of not learning meaningful
representations for their splits, such that they are unfit for modelling complex interactions. Therefore, similar to Tanno et al.
(2019) in the supervised setting, in this work, we combine the simplicity and interpretability of clustering decision trees with
the flexibility of NNs.

D. Experimental Setup
Datasets and Metrics: We evaluate the clustering and generative performance of TreeVAE on MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), 20Newsgroups (Lang, 1995), Omniglot (Lake et al., 2015), and Omniglot-5, where only
5 vocabularies (Braille, Glagolitic, Cyrillic, Odia, and Bengali) are selected and used as true labels. We preprocessed the
20Newsgroups data by selecting the top 2, 000 tf-idf words and we reshaped Omniglot to 28×28. We assess the hierarchical
clustering performance by computing dendrogram purity (DP) and leaf purity (LP), as defined by (Kobren et al., 2017a)
using the datasets labels, where we assume the number of true clusters is unknown. We also report standard clustering
metrics, accuracy (ACC) and normalized mutual information (NMI), by setting the number of leaves for TreeVAE and
for the baselines to the true number of clusters. In terms of generative performance, we compute the approximated true
log-likelihood calculated using 1000 importance-weighted samples, together with the reconstruction loss (15). We also
perform a hierarchical clustering experiment on real-world imaging data, namely CIFAR-10, using the contrastive extension
described in Appendix B.
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Baselines: We compare the generative performance of TreeVAE to the VAE (Rezende et al., 2014; Kingma & Welling,
2014), its non-hierarchical counterpart, and the LadderVAE (Sønderby et al., 2016), its sequential counterpart. For a fair
comparison, all methods share the same architecture and hyperparameters whenever possible. We compare TreeVAE to
non-generative hierarchical clustering baselines for which the code was publicly available: Ward’s minimum variance
agglomerative clustering (Agg) (Ward, 1963; Murtagh & Legendre, 2014), and the DeepECT (Mautz et al., 2020). We
propose two additional baselines, where we perform Ward’s agglomerative clustering on the latent space of the VAE (VAE
+ Agg) and of the last layer of the LadderVAE (LadderVAE + Agg). For the contrastive clustering experiment, we apply
a contrastive loss similar to TreeVAE to the VAE and the LadderVAE, while for DeepECT we use the contrastive loss
proposed by the authors.

Implementation Details: While we believe that more complex architectures could have a substantial impact on the
performance of TreeVAE, we choose to employ rather simple settings to validate the proposed approach. We set the
dimension of all latent embeddings z = {z0, . . . , zV } to 8 for MNIST, Fashion, and Omniglot, to 4 for 20Newsgroups, and
to 64 for CIFAR-10. The maximum depth of the tree is set to 6 for all datasets, except 20Newsgroups where we increased
the depth to 7 to capture more clusters. To compute DP and LP, we allow the tree to grow to a maximum of 30 leaves for
20Newsgroups, and 20 for the rest, while for ACC and NMI we fix the number of leaves to the number of true classes. The
transformations consist of one-layer MLPs of size 128 and the routers of two-layers of size 128 for all datasets except for
the real-world imaging data where we slightly increase the MLP complexity to 512. As encoders we use an MLP with 5
layers on the tf-idf vectorized 20Newsgroup, and CNN’s for all others. For MNIST and Fashion-MNIST, we use 3 layers
of 3 × 3 convolutions with stride 2 and a final linear layer on the flattened CNN output to reach the stated embedding
dimensionality. For Omniglot the encoder consists of 4× 4 convolutions with alternating stride 1 and 2 for 6 layers in total,
again with a final linear layer. Lastly, for CIFAR-10, we follow a ResNet (He et al., 2016) inspired approach; 4 layers of
3 × 3 convolutions with stride 1 and residual connections followed by 2D average-pooling of kernel size 3 and stride 2,
again with a final linear layer. The decoders for all datasets are symmetric to the encoders, where the average pooling is
replaced by upsampling. We apply batch normalization followed by LeakyReLU non-linearities after all convolutional and
dense layers. The trees are trained for M = 150 epochs at each growth step, and the final tree is finetuned for Mf = 200
epochs. We anneal the KL terms of the ELBO to reduce the risk of posterior collapse during training. For the real-world
imaging experiment, we set the weight of the contrastive loss to 100.

E. Further Experiments
Here, we provide additional experimental results, including further clustering experiments, hierarchical structures, and
unconditional generation of samples.

E.1. Clustering

In order to measure not only the flat clustering performance, but also evaluate the learned hierarchical structure, we conduct
experiments to compute DP and LP. The results are shown in Table 3

E.2. Discovery of Hierarchies

We show further hierarchical structures learned by TreeVAE on MNIST in Fig. 6/7, Omniglot-50 in Fig. 8, and 20Newsgroups
in Fig. 4. Additionally, the figures that include conditional generations are generated by sampling from the root and following
the most probable path to generate every leaf-specific image.

E.3. Generations

We further show how TreeVAE can be used to sample unconditional generations for all clusters simultaneously for MNIST
in Fig. 9. Differently from the conditional generation, where we follow the path of the tree with the highest probability, here
we follow all paths of the tree regardless of their probabilities. As a result, we generate 10 images, one for every decoder.
These generated samples exhibit distinct characteristics based on their respective cluster-specific features while maintaining
cluster-independent properties across all generated instances.
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Table 3: Test set hierarchical clustering performances (%) of TreeVAE compared with baselines. Means and standard
deviations are computed across 10 runs. The star ”*” indicates the inclusion of contrastive learning.

Dataset Method DP LP

MNIST Agg 63.7± 0.0 78.6± 0.0

VAE + Agg 79.9± 2.2 90.8± 1.4

LadderVAE + Agg 81.6± 3.9 90.9± 2.5

DeepECT 74.6± 5.9 90.7± 3.2

TreeVAE (ours) 87.9± 4.9 96.0± 1.9

Fashion Agg 45.0± 0.0 67.6± 0.0

VAE + Agg 44.3± 2.5 65.9± 2.3

LadderVAE + Agg 49.5± 2.3 67.6± 1.2

DeepECT 44.9± 3.3 67.8± 1.4

TreeVAE (ours) 54.4± 2.4 71.4± 2.0

20Newsgroups Agg 13.1± 0.0 30.8± 0.0

VAE + Agg 7.1± 0.3 18.1± 0.5

LadderVAE + Agg 9.0± 0.2 20.0± 0.7

DeepECT 9.3± 1.8 17.2± 3.8

TreeVAE (ours) 17.5± 1.5 38.4± 1.6

Omniglot-5 Agg 41.4± 0.0 63.7± 0.0

VAE + Agg 46.3± 2.3 68.1± 1.6

LadderVAE + Agg 49.8± 3.9 71.3± 2.0

DeepECT 33.3± 2.5 55.1± 2.8

TreeVAE (ours) 58.8± 4.0 77.7± 3.9

CIFAR-10* VAE + Agg 10.5± 0.1 16.3± 0.2

LadderVAE + Agg 12.8± 0.2 25.4± 0.6

DeepECT 10.0± 0.1 10.3± 0.4

TreeVAE (ours) 35.3± 1.2 53.9± 1.2

Figure 6: Hierarchical structure learned by TreeVAE with ten leaves on MNIST dataset with generated images through
conditional sampling. The right subtree contains rounded digits, while the left subtree contains digits with a straight line.
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Figure 7: Hierarchical structure learned by TreeVAE with 20 leaves on MNIST dataset with generated images through
conditional sampling. The digits are further divided according to style.

Figure 8: Hierarchical structure learned by TreeVAE on the full Omniglot dataset. We display random subsets of images
that are probabilistically assigned to each leaf of the tree. Similar to the results in the main text, we can again find regional
hierarchies in some individual subtrees. For instance, the leftmost subtree seems to find structures in different Indian
alphabets. We can also observe that this subtree seems to cluster smaller characters in its left child, whereas the right child
contains bigger shapes. Another example is the rightmost tree, which seems to encode the more straight shapes of Japanese
writing styles. There, the left child encodes more complex shapes that contain many different strokes, and the right subtree
groups simpler shapes with only a few lines.
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leaf 1 leaf 2 leaf 3 leaf 4 leaf 9leaf 8leaf 7leaf 6leaf 5 leaf 10

Figure 9: Selected unconditional generations of MNIST. One row corresponds to one sample from the root, for which we
depict the visualizations obtained from the 10 leaf-decoders. Each row retains similar properties across the different leaves.
In the first row, all digits are rotated; the second are bold; the third are straight; and the last are squeezed.


