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Abstract
Query expansion, pivotal in search engines,001
enhances representation of user information002
needs with additional terms. While existing003
methods expand queries using retrieved or gen-004
erated contextual documents, each approach005
has notable limitations. Retrieval-based meth-006
ods often fail to accurately capture search007
intent, particularly with brief or ambiguous008
queries. Generation-based methods, utiliz-009
ing large language models (LLMs), generally010
lack corpus-specific knowledge and entail high011
fine-tuning costs. To address these gaps, we012
propose a novel zero-shot query expansion013
framework utilizing LLMs for mutual verifi-014
cation. Specifically, we first design a query-015
query-document generation method, leveraging016
LLMs’ zero-shot reasoning ability to produce017
diverse sub-queries and corresponding docu-018
ments. Then, a mutual verification process019
synergizes generated and retrieved documents020
for optimal expansion. Our proposed method021
is fully zero-shot, and extensive experiments022
on three public benchmark datasets are con-023
ducted to demonstrate its effectiveness over ex-024
isting methods. Our code is available online025
at https://anonymous.4open.science/r/MILL-026
AE47 to ease reproduction.027

1 Introduction028

Query expansion is a critical technique in search029

systems, aiming to effectively capture and repre-030

sent users’ information needs (Efthimiadis, 1996).031

Search engines, for instance, employ query expan-032

sion to resolve ambiguities in queries and align033

the vocabulary of queries and documents. Cen-034

tral to this task is the development of contextual035

documents, comprising additional query terms, to036

enhance effectiveness (Azad and Deepak, 2019).037

Specifically, existing research predominantly038

falls into two categories: retrieval-based and039

generation-based methods. Retrieval-based meth-040

ods (Lv and Zhai, 2010; Yan et al., 2003; Li et al.,041

2022) typically construct contextual documents042

from the targeted corpus, assuming that the top- 043

retrieved documents (i.e., pseudo-relevance feed- 044

back (PRF)) are reasonable expansions of a given 045

query. Generation-based methods (Jagerman et al., 046

2023; Mao et al., 2023; Wang et al., 2023) often 047

utilize advanced generative models, such as Large 048

Language Models, as an external knowledge base 049

for producing contextual documents. 050

However, both methods have clear limitations. 051

For retrieval-based methods, it has been observed 052

in practice that the documents retrieved with the 053

original query do not align well with the informa- 054

tion needs, particularly when the original query it- 055

self is brief and ambiguous (Cao et al., 2008; Jager- 056

man et al., 2023). For generation-based methods, 057

directly using off-the-shelf LLMs in a few-shot or 058

zero-shot manner can hardly align the model with a 059

specific corpus (Wang et al., 2023). In contrast, the 060

LLMs could easily generate useless out-of-domain 061

information. 062

To this end, we propose a novel query expan- 063

sion framework based on Large Language Models 064

(LLMs), integrating both retrieved and generated 065

documents to mitigate their respective limitations. 066

First, to improve contextual document generation, 067

we design a query-query-document prompt that 068

leverages an LLM as a zero-shot reasoner to de- 069

compose a query into multiple sub-queries during 070

contextual document generation. This helps the 071

LLM generate diverse contextual information that 072

is more likely to cover the underlying search intent. 073

Next, we propose a mutual verification frame- 074

work that exploits generated and retrieved contex- 075

tual documents for query expansion. To be more 076

specific, we propose to filter out the uninformative 077

generated documents via comparing their relevance 078

with the top-retrieved documents. By doing this, 079

the selected generated documents are intuitively 080

more aligned with the target corpus. Conversely, 081

we also filter out the noisy retrieved documents 082

via comparing their relevance with the generated 083

1

https://anonymous.4open.science/r/MILL-AE47
https://anonymous.4open.science/r/MILL-AE47
https://anonymous.4open.science/r/MILL-AE47


documents. The external contextual knowledge em-084

bedded in the generated documents can facilitate085

the retrieved documents to more accurately reveal086

search intent. We evaluate the proposed method on087

the downstream information retrieval task in a zero-088

shot manner. The results on three public datasets089

demonstrate that our proposed method significantly090

outperforms the state-of-the-art baselines. Overall,091

the contributions can be summarized as follows:092

• We propose a Mutual VerIfication method with093

Large Language model (denoted as MILL), a094

novel framework that combines generated and095

retrieved context for query expansion. MILL096

is able to mitigate the limitations of generated097

and retrieved context, and thus can provide more098

high-quality context for query expansion.099

• To improve the generated contextual documents,100

we design a query-query-document prompting101

method, which elicits richer and more diverse102

knowledge from LLMs to cover the underlying103

search intents and information needs of users.104

• MILL can perform high-quality query expansion105

in a zero-shot manner. We conduct extensive106

experiments on the downstream information re-107

trieval task on three public datasets. The results108

demonstrate that MILL can significantly out-109

perform existing retrieval and generation-based110

methods.111

2 Problem Definition112

Given a user query q, query expansion is to apply a113

function f to expand q with additional contextual114

information: q′ = fθ(q), where θ represents the115

parameters. Using the expanded query q′ should116

be able to achieve better downstream retrieval per-117

formance compared to the original query q. More118

formally, such an objective can be defined as119

argmax
θ

M(q′, R), where q′ = fθ(q). (1)120

where M denotes the evaluation metric of the re-121

trieval performance (e.g., recall, NDCG), and R122

denotes the retrieval model.123

3 Methodology124

In this section, we introduce our proposed query125

expansion method in detail. Specifically, we give126

an overview of MILL in Section 3.1, elaborate the127

query-query-document generation in Section 3.2,128

and introduce the mutual verification framework in129

Section 3.3.130
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Figure 1: Overview of MILL.

3.1 Overview 131

The overall workflow of MILL is depicted in Fig- 132

ure 1, which comprises two steps, i.e., contextual 133

document construction (Figure 1(a)) and mutual 134

verification (Figure 1(b)). In particular, the two 135

steps focus on the diversity and quality of contex- 136

tual documents, respectively. 137

In the contextual document construction stage, 138

we aim to construct diverse sets of contextual doc- 139

uments via both retrieval and generation. To create 140

diverse contextual documents via generation, we 141

propose a query-query-document prompt, which 142

instructs an LLM to generate sub-queries and con- 143

textual documents in a step-by-step manner. This 144

can better leverage the reasoning ability of LLMs 145

that decompose a given query expansion task into 146

multiple sub-tasks, where the generated documents 147

could be more diverse and informative. 148

In the mutual verification stage, we aim to iden- 149

tify those high-quality contextual documents con- 150

structed in the first stage. In particular, the mu- 151

tual verification leverages the strengths of gener- 152

ated documents in implying the search intent and 153

the domain-specific nature of PRF documents, en- 154

abling a reciprocal selection between the two types 155

of contextual documents. As a result, the finalized 156

documents are more high-quality query expansion 157

to be applied in downstream retrieval tasks. 158
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Query: new england coffee

(a) Query2Term

(Output) Gourmet, Roasted, Fresh,  Ground, 
Flavorful,  Dark roast,  Single origin,  Arabica
beans, Small batch, Local

(b) CoT

Write some keywords for the given query

(Output) New England Coffee is a brand that
has been a staple in the Northeast region of
the United States for over a century. Known
for its rich, bold flavors and high-quality
beans, it has become a household name for
coffee lovers. What sets New England Coffee
apart from other brands is its commitment to
sourcing the best beans from around the world
and roasting them in small batches to ensure
the freshest taste. The company prides itself
on its sustainable and ethical practices,
working closely with farmers and
communities to support fair trade and
environmental conservation. This dedication
to quality and responsible sourcing has earned
New England Coffee a loyal following and
has cemented its reputation as a top coffee
brand. Whether you prefer a dark roast,
medium roast, or flavored blend, New
England Coffee has a variety of options to
satisfy any coffee connoisseur's taste buds. 

(c) Query2Doc

Write some keywords for the given query

(Output) Rationale: It could refer to a specific brand of coffee that
is popular in the New England region. Answer: New England
Coffee is a specific brand of coffee that is known for its various
flavors and high-quality taste. It can be found on their official
website and social media pages, as well as in stores and online
retailers. Reviews from customers generally speak positively about
the taste and quality of the coffee. Comparing prices with other
brands, "New England Coffee" falls within a reasonable price range.
Overall, based on the gathered information, "New England Coffee"
appears to be a popular and well-liked brand of coffee.

(d) Query-Query-Document

1. What is the history of New England Coffee? New England Coffee was founded in 1916 in Boston, Massachusetts.
The company was originally named "The New England Tea and Coffee Company" and primarily sold tea ...
2. What types of coffee does New England Coffee offer? New England Coffee offers a variety of blends, including
traditional blends like Breakfast Blend and French Roast, as well as flavored blends like Hazelnut Creme and
Blueberry Cobbler ...
3. How is New England Coffee sourced and roasted? New England Coffee sources its beans from various regions
across the world, including Central and South America, and Africa ...
4. What makes New England Coffee unique? New England Coffee prides itself on using only the highest quality
beans and roasting them to perfection ...
5. How can I purchase New England Coffee? New England Coffee can be purchased online through the company's
website or various retailers, including grocery stores and specialty shops ...

What sub-queries should be searched to
answer the following query. Please generate
the sub-queries and write passages to answer
these generated queries.

Answer the following query. Give the rationale before answering. Write a passage answer the following query

Figure 2: Query-query-document prompt compared to Query2Term, CoT, and Query2Doc. Query-query-document
instructs the LLM to expand the original query from multiple perspectives by inferring the sub-queries and generating
corresponding contextual documents.

3.2 Query-Query-Document Generation159

Recently, a handful of studies (Wang et al., 2023;160

Jagerman et al., 2023) have explored using Large161

Language Models (LLMs) to expand queries and162

gain initial success. However, most of them use163

a rather simple prompt for document generation,164

e.g., “write a passage that answers the given query”.165

For a brief or ambiguous query that has multiple166

possible intents, the generation results could easily167

miss the real search intent. Motivated by this, we168

design a novel zero-shot prompt, particularly for169

the query expansion task. This method can exploit170

the reasoning ability of LLMs to first decompose171

the original query into multiple sub-queries before172

document generation. This improves generation173

diversity, and the contextual documents are more174

likely to cover the real search intent.175

As shown in Figure 2(d), we use the instruction176

"what sub-queries should be searched to answer177

the following query: {query}." to generate sub-178

queries that further clarify the original query. At179

the same time, we instruct the language model to180

generate contextual documents for each sub-query181

through "I will generate the sub-queries and write182

passages to answer these generated queries." By183

doing this, we finally have multiple sub-queries and184

their corresponding contextual documents, which185

are more likely to cover the user’s search intent.186

Note that the proposed method is zero-shot, which187

can be easily extended to few-shot.188
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Figure 3: Overall of mutual verification.

3.3 Mutual Verification 189

Next, we elaborate on the mutual verification frame- 190

work, where we leverage the aforementioned gen- 191

erated documents and pseudo-relevance documents 192

(i.e., the retrieval-based contextual documents) to 193

improve the overall quality of query expansion. 194

The intuition is to leverage two types of informa- 195

tion to complement each other, which are 1) the 196

corpus-specific domain information of retrieved 197

pseudo-relevance documents, and 2) the generated 198

information of LLM reasoning that is more likely 199

to uncover real search intent. 200

More specifically, the inputs of mutual verifica- 201

tion have two sets of contextual documents: 202

DLLM = {dLLM
n } = LLM(p, q), n ∈ (0, N ] (2) 203

DPRF = {dPRF
k } = Rr(q), k ∈ (0,K] (3) 204

where DLLM represents the N LLM-generated doc- 205

uments with query-query-document prompt (de- 206
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noted as p), and DPRF represents the K documents207

retrieved by a vanilla PRF method (denoted as Rr),208

e.g., BM25 retrieval. Note that each generated doc-209

ument comprises a series of sub-queries and their210

corresponding passages.211

Next, we aim to rerank the documents in DLLM212

and DPRF. In specific, we first use a off-the-shelf213

dense representation model to compute the repre-214

sentation (i.e., xLLM
n or xPRF

k ) of each document215

(i.e., dLLM
n or dPRF

k ) as216

xLLM
n = Encoder(dLLM

n ), (4)217

xPRF
k = Encoder(dPRF

k ), (5)218

where xLLM
n denotes the vector for n-th generated219

document and xPRF
k denotes the vector for k-th220

pseudo-relevance documents.221

Then, we compute the semantic relevance be-222

tween every pair of dn and dk with cosine similar-223

ity (denoted as sim(·)), and assign a score to every224

document as225

sLLM
n =

∑K

k=1
sim(xLLM

n ,xPRF
k ), (6)226

sPRF
k =

∑N

n=1
sim(xPRF

k ,xLLM
n ). (7)227

Here, we score every generated document dLLM
n228

via aggregating its semantic relevance scores with229

all pseudo-relevance documents. Therefore, the230

score sLLM
n can be interpreted as how well dLLM

n231

is aligned with the target corpus. On the other232

hand, the score sPRF
k can be viewed as how well the233

retrieved document dPRF
k is likely to be a reasonable234

context judged by the reasoning results of LLM.235

Finally, we select the top-scored documents in236

both sets as the final contextual documents as237

DLLM
s = {dLLM

n }, n ∈ {n |sLLM
n ∈ TopN ′(sLLM)},

DPRF
s = {dPRF

k }, k ∈ {k |sPRF
k ∈ TopK ′(sPRF)},

(8)238

where DLLM
s and DPRF

s are the final selected docu-239

ment sets.240

3.4 Query Expansion for Retrieval241

After mutual verification, we integrate the selected242

generated documents and pseudo-relevance docu-243

ments with the original query to perform the final244

retrieval task. In particular, we concatenate them245

as the new query q′ as:246

q′ = concat(q, DPRF
s , DLLM

s ) (9)247

It is worth noting that the proposed query expansion248

method does not need any additional labeled data249

and model fine-tuning. Such a zero-shot method 250

with off-the-shelf LLM and retriever has huge po- 251

tential to be applied in various search systems. 252

4 Experiments 253

4.1 Datasets and Metrics 254

To evaluate the effectiveness of our proposed 255

method, we conduct extensive experiments on the 256

following public datasets: TREC-DL-2020, MS- 257

MARCO and BEIR. 258

• TREC-DL-2020 (Craswell et al., 2021). TREC- 259

DL-20201 is the dataset used in the second year 260

of the popular TREC Deep Learning Track. We 261

choose the passage retrieval task, which contains 262

200 queries and 8.84 million passages. 263

• MSMARCO (Nguyen et al., 2016). MS- 264

MARCO2 is a collection of datasets constructed 265

to advance the development of deep learning in 266

the search field. We choose the passage dataset as 267

our experimental scenario and take the first 100 268

queries from the dev group as the test queries. 269

• BEIR (Thakur et al., 2021). BEIR3 is a hetero- 270

geneous benchmark for comprehensive zero-shot 271

evaluation of methods in various information re- 272

trieval tasks. We select 7 datasets with small test 273

or dev sets from the 18 available datasets. 274

Following previous work (Claveau, 2021; Jager- 275

man et al., 2023; Mao et al., 2023), we use the 276

NDCG@N, MAP@N, Recall@N, and MRR@N 277

as the evaluation metrics, each of which is reported 278

with N ∈ {10, 100, 1000}. 279

4.2 Baselines 280

We conduct comparative experiments with the 281

following baselines, which can be divided into 282

two categories: (1) Traditional query expan- 283

sion methods: Bo1 (Amati and Van Rijs- 284

bergen, 2002), KL (Amati and Van Rijsber- 285

gen, 2002), RM3 (Abdul-Jaleel et al., 2004), 286

and AxiomaticQE (Fang and Zhai, 2006; Yang 287

and Lin, 2019). (2) LLM-based expansion 288

methods: Query2Term, Query2Term-FS (the 289

few-shot version of Query2Term), Query2Term- 290

PRF (PRF document augmented Query2Term), 291

Query2Doc (Wang et al., 2023), Query2Doc-FS, 292

1https://microsoft.github.io/msmarco/TREC-Deep-
Learning-2020

2https://microsoft.github.io/msmarco/
3https://github.com/beir-cellar/beir
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Table 1: Overall comparison on TREC-DL-2020 and MSMARCO. The optimal results are highlighted in bold,
while the suboptimal results are underscored. The results are reported on NDCG@N, AP@N, Recall@N, and
MRR@N with N ∈ {10, 100, 1000}. The improvements are all significant (i.e., two-sided t-test with p < 0.05)
between the optimal and suboptimal results.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

TREC-DL-2020

No expansion 49.36 50.26 59.81 14.27 31.42 35.87 17.61 50.47 75.12 80.21 80.21 80.21

Traditional expansion methods
Bo1 49.47 53.25 63.11 14.79 34.43 39.67 17.74 54.66 79.48 80.83 80.99 80.99
KL 49.27 53.20 63.01 14.68 34.31 39.53 17.66 54.70 79.39 80.83 80.99 80.99

RM3 50.43 54.02 63.47 14.93 35.13 40.22 17.89 55.80 79.94 78.49 78.59 78.59
AxiomaticQE 49.36 50.26 59.81 14.27 31.42 35.87 17.61 50.47 75.12 80.21 80.21 80.21

LLM-based expansion methods
Query2Term 50.12 52.43 62.27 13.12 33.06 38.49 17.39 54.61 79.07 78.74 78.77 78.78

Query2Term-FS 47.80 49.16 60.50 13.33 30.16 35.59 15.82 50.22 78.76 79.38 79.83 79.83
Query2Term-PRF 47.76 48.92 59.57 12.32 29.03 33.70 14.70 49.29 76.68 78.97 79.29 79.29

Query2Doc 61.22 60.13 69.97 19.06 41.31 47.03 21.57 57.58 83.38 88.27 88.44 88.44
Query2Doc-FS 61.45 59.30 69.40 18.94 39.75 45.27 21.65 56.30 82.57 90.32 90.37 90.38

Query2Doc-PRF 55.28 57.60 67.09 17.00 38.21 43.49 19.74 58.50 82.57 84.22 84.49 84.49
CoT 58.39 56.74 67.02 18.15 37.32 42.34 21.51 54.02 80.11 88.02 88.02 88.03

CoT-PRF 60.81 58.41 67.47 19.02 39.27 44.04 21.71 56.84 80.49 89.00 89.00 89.00
MILL 61.79 61.15 71.23 19.05 41.76 48.17 21.61 59.40 85.27 92.61 92.71 92.72

MSMARCO

No expansion 28.69 34.02 36.23 23.56 24.65 24.72 44.50 69.00 86.50 22.65 23.76 23.83

Traditional expansion methods
Bo1 29.18 33.44 35.89 23.61 24.33 24.43 46.50 67.50 86.50 24.07 24.82 24.91
KL 29.20 33.59 36.17 23.93 24.73 24.83 45.50 66.50 86.50 24.39 25.22 25.31

RM3 26.93 32.23 34.34 21.81 22.87 22.94 42.50 67.00 83.50 22.25 23.33 23.41
AxiomaticQE 28.69 34.02 36.23 23.56 24.65 24.72 44.50 69.00 86.50 22.65 23.76 23.83

LLM-based expansion methods
Query2Term 23.28 29.50 32.00 19.74 21.01 21.08 34.17 63.17 83.67 19.91 21.17 21.24

Query2Term-FS 24.26 29.76 32.07 20.41 21.43 21.50 36.33 62.50 81.33 20.78 21.87 21.94
Query2Term-PRF 21.56 27.02 29.26 16.04 17.05 17.12 38.67 64.83 83.33 16.04 17.11 17.17

Query2Doc 25.83 31.31 33.82 20.27 21.33 21.42 43.50 69.00 88.83 20.39 21.50 21.58
Query2Doc-FS 28.23 33.22 35.89 23.10 23.99 24.09 44.67 68.83 89.50 23.00 23.94 24.04

Query2Doc-PRF 25.45 29.99 32.36 20.31 21.25 21.33 41.44 62.50 81.17 20.45 21.35 21.43
CoT 26.13 31.84 34.25 21.38 22.44 22.54 41.00 68.33 86.83 21.47 22.55 22.64

CoT-PRF 28.93 34.17 36.32 23.51 24.52 24.60 46.12 70.87 87.50 23.64 24.69 24.77
MILL 29.99 34.92 37.26 24.01 24.98 25.07 48.67 71.67 89.83 24.02 25.02 25.10

Query2Doc-PRF, CoT (Jagerman et al., 2023),293

CoT-PRF. The details of baselines and the prompts294

used in this paper are introduced in Appendix A.1295

and Appendix A.2. Besides, to conduct a fair com-296

parison for the LLM-based baselines, we generate297

3 expanded queries for each baseline and concate-298

nate them as the final expansion result.299

4.3 Implementation Details300

We implement MILL and the baselines with PyTer-301

rier (Macdonald and Tonellotto, 2020), a Python302

library helps conduct information retrieval exper-303

iments. For the BM25 retriever, we use the de-304

fault parameters (b = 0.75, k1 = 1.2, k3 = 8.0)305

provided by PyTerrier. For MILL and all the306

LLM-based baselines, we use the text-davinci-003307

API (Brown et al., 2020) provided by OpenAI308

to generate contextual documents. The genera-309

tion parameters are set as temperature = 0.7 and310

top_p = 1. We use the text-embedding-ada-002311

provided by OpenAI as the text encoder, where the312

length of the returned vector is 1536. For other313

hyperparameters, we set the selection number of314

generated documents and PRF documents as 3, and 315

the number of candidates as 5. Besides, consider- 316

ing the verbose nature of the contextual documents, 317

we follow the approach suggested in paper (Wang 318

et al., 2023) that the expanded query involves 5 319

samplings of the original query to emphasize its 320

significance. 321

4.4 Main Results 322

Tables 1 and 2 show the experimental results. The 323

full results for the 7 selected datasets in BEIR are 324

listed in Appendix A.3. We can draw the following 325

key findings: 326

• Traditional query expansion methods exhibit pos- 327

itive effects for retrieval, while these carefully de- 328

signed methods are outperformed by Query2Doc 329

and CoT variants by a large margin. This implies 330

that LLM-based methods are more promising for 331

the query expansion task. 332

• Among LLM-based methods, CoT and 333

Query2Doc variants are more effective than 334

Query2Term variants. The reason could 335
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Table 2: Overall comparison on 7 datasets in BEIR. The optimal results are highlighted in bold, while the suboptimal
results are underscored. Full results including other evaluation metrics are listed in Appendix A.3. The improvements
are all significant (i.e., two-sided t-test with p < 0.05) between the optimal and suboptimal results.

Datasets TREC-COVID TOUCHE SCIFACT NFCORPUS DBPEDIA FIQA-2018 SCIDOCS

NDCG@1000

No expansion 42.04 55.32 70.27 30.02 38.70 35.28 25.14

Traditional expansion methods
Bo1 44.73 56.62 68.34 37.01 39.05 34.97 26.14
KL 44.88 56.72 67.83 37.18 38.87 35.12 26.15

RM3 44.54 55.79 65.28 37.27 38.11 33.14 25.91
AxiomaticQE 42.06 55.32 70.28 30.02 38.70 35.28 25.14

LLM-based expansion methods
Query2Term 45.09 52.95 69.57 33.82 33.51 32.12 25.11

Query2Term-FS 44.86 57.1 71.39 38.57 39.36 35.78 26.18
Query2Term-PRF 42.94 53.72 60.79 38.21 34.83 31.50 24.97

Query2Doc 45.41 60.32 71.19 38.76 44.79 37.63 27.40
Query2Doc-FS 44.39 59.99 71.89 38.09 45.11 37.96 27.18

Query2Doc-PRF 47.97 56.84 67.82 39.41 39.85 34.09 26.16
CoT 46.93 60.77 71.63 38.88 43.05 37.28 27.50

CoT-PRF 46.55 59.03 73.65 39.84 40.43 38.04 26.23
MILL 51.17 61.29 74.14 41.75 46.39 39.23 28.36

Recall@1000

No expansion 40.52 85.05 97.00 36.06 63.61 77.42 55.04

Traditional expansion methods
Bo1 43.64 86.00 97.67 54.38 64.90 79.18 57.47
KL 43.63 86.14 97.67 54.79 64.71 78.84 57.38

RM3 43.71 85.79 97.67 56.12 64.37 78.82 57.88
AxiomaticQE 40.53 85.05 97.00 36.06 63.61 77.42 55.04

LLM-based expansion methods
Query2Term 43.67 77.24 99.00 58.82 58.90 78.22 60.00

Query2Term-FS 43.89 85.33 98.33 61.72 65.67 81.84 60.15
Query2Term-PRF 41.99 83.29 97.50 60.55 61.11 76.31 59.25

Query2Doc 43.71 84.08 99.00 61.09 70.29 82.72 61.63
Query2Doc-FS 42.80 83.95 99.33 59.55 70.04 83.46 61.33

Query2Doc-PRF 46.20 83.5 99.00 62.50 66.41 79.14 59.50
CoT 45.01 84.42 98.67 60.63 69.24 83.56 60.90

CoT-PRF 44.93 84.37 98.67 59.87 66.06 82.14 58.72
MILL 49.33 84.99 99.67 64.95 71.13 84.23 61.86

be that generated documents contain more336

contextualized information than discrete337

keywords.338

• Using pseudo-relevance documents and few-shot339

examples as instructions in LLM-based meth-340

ods does not necessarily yield positive gains.341

For instance, Query2Doc-PRF is worse than342

Query2Doc in TREC-DL-2020 and MSMARCO.343

This shows that the query expansion task is non-344

trivial to be aligned to a specific corpus with345

straightforward prompting techniques.346

• MILL is more effective than all the baselines in347

general. Despite the MRR@10 on MSMARCO,348

MILL achieves either the best or the second best349

performance on all metrics and datasets in Tables350

1 and 2. It is also worth noting that MILL is351

a zero-shot method that is more applicable in352

various real-world applications.353

4.5 Ablation Study354

We design the following variants of MILL to con-355

duct the ablation study:356

• w/o QQD: In contextual document generation, 357

we replace the query-query-document prompt 358

with a vanilla query-to-document prompt, i.e, 359

“Write a passage answer the following query: 360

{query}”. 361

• w/o Pseudo-relevance Document Selection 362

(PDS): We directly use K ′ top-retrieved docu- 363

ments of the original query as DPRF
s , without 364

reranking and selection using generated docu- 365

ments DLLM. 366

• w/o Generated Document Selection (GDS): We 367

directly use N ′ generation documents as DLLM
s , 368

without reranking and selection using pseudo- 369

relevance documents DPRF. 370

Table 3 shows the results of the ablation study on 371

TREC-DL-2020, where we can draw the following 372

conclusions: (1) MILL is better than w/o QQD, 373

which demonstrates the effectiveness of our pro- 374

posed query-query-document prompt. This shows 375

that query-query-document prompt can effectively 376

leverage the reasoning capabilities of LLMs, as- 377

sisting LLMs to reveal more diverse and specific 378

search intent. (2) MILL is superior to both w/o 379
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Figure 4: Varying the number of candidate and selected documents.

Table 3: Ablation results on TREC-DL-2020.

Metrics w/o QQD w/o PDS w/o GDS MILL

NDCG
@100 59.89 60.29 59.60 61.15

@1000 69.46 70.27 69.73 71.23

AP
@100 41.56 41.56 41.33 41.76

@1000 47.39 47.75 47.37 48.17

Recall
@100 58.55 58.76 59.29 59.40

@1000 83.98 85.15 84.51 85.27

MRR
@100 87.69 89.23 88.97 92.71

@1000 87.69 89.23 88.98 92.72

PDS and w/o GDS, which verifies the effectiveness380

of the mutual verification. By mutually selecting381

the generated and pseudo-relevance documents, it382

effectively mitigates the corpus unalignment prob-383

lem of LLMs and compensates for the inaccurate384

search intent of conventional pseudo-relevance doc-385

uments. (3) We can also find that w/o PDS per-386

forms better than w/o GDS. This indicates that the387

selection of high-quality generated documents has388

more performance gain for query expansion.389

4.6 Varying the Number of Documents390

In the aforementioned experiments, the default391

number of candidate (i.e., both generated and re-392

trieved) documents is set to K = N = 5, and393

the number of final selected documents is set to394

K ′ = N ′ = 3. In this subsection, we vary the395

number of candidates and selected documents and396

report the performance of MILL on TREC-COVID,397

w.r.t. Recall@1000 and MRR@1000. More details398

and results can be found in Appendix A.4.399

From Figure 4, we have observations: (1) More400

selected pseudo-relevance documents decreases401

MRR@1000 dramatically. This shows that more402

selected pseudo-relevance documents usually bring403

more noise to query expansion. In contrast, the404

generated documents are rather robust, where more405

selections does not significantly undermines the406

performance. (2) When we introduce more candi-407

date documents, the mutual verification framework408

is able to effectively select pseudo-relevance docu-409

ments, where both Recall@100 and MRR@1000 410

increase. This shows that LLM-generated docu- 411

ments are very useful for filtering out noisy pseudo- 412

relevance documents. On the other hand, more gen- 413

erated candidate documents does not bring further 414

performance gain, when the number of selected 415

documents is fixed. 416

4.7 Case Study 417

We show an illustrative example in Table 4, which 418

contains the original query, the pseudo-relevance 419

document, the LLM-generated document, and the 420

ground truth (i.e., the human labeled relevant docu- 421

ment). Those words of ground truth passage that 422

appear in the pseudo-relevance document is high- 423

lighted in bold, and those in the generated doc- 424

uments of different sub-queries are marked with 425

different colors. We can see that the generated doc- 426

ument is able to provide more useful information 427

for identifying the ground truth passage. 428

5 Related Work 429

5.1 Query Expansion 430

Query expansion is a prevalent technique in search 431

platforms, which restructures the original query 432

to more accurately express search intent and en- 433

hance the alignment with corpus (Bhogal et al., 434

2007; Carpineto and Romano, 2012; Efthimiadis, 435

1996). Early studies employed lexical knowl- 436

edge bases (Qiu and Frei, 1993; Voorhees, 1994) 437

or Pseudo-relevance Feedback (PRF) (Amati and 438

Van Rijsbergen, 2002; Robertson, 1990; Rocchio Jr, 439

1971; Lv and Zhai, 2010; Yan et al., 2003; Li et al., 440

2022) for expanding the query with additional in- 441

formation. PRF documents can conveniently sup- 442

plement information for any query, but they also 443

encounter the issue of misalignment with the origi- 444

nal query (Jagerman et al., 2023). 445

Recently, Large Language Models (LLMs) have 446

also been applied to the task of query expansion. 447

In particular, Query2Doc (Wang et al., 2023) pro- 448
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Table 4: A query expansion example from the TREC-DL-2020 dataset using MILL.

Query What is a nonconformity earth science

Expanded query Pseudo-relevance document: There are three types of unconformities(below): angular unconformity, nonconformity, and
disconformity. Anangular unconformity (left) is an erosional surface separating steeply dipping rock layers below from
gently dipping layers above. Unconformity is the general term for missing pages of Earth history.
LLM-generated document: 1. What is the definition of a nonconformity in earth science? A nonconformity in earth
science refers to a type of unconformity, which is a break in the geologic record where layers of rock are missing.
Specifically, a nonconformity is where sedimentary rocks are deposited on top of igneous or metamorphic rocks. 2. How
are nonconformities formed inearth science? Nonconformities are formed throughthe process of erosion, where layers
of rock are gradually wornaway. This exposes the underlying igneous or metamorphic rocks, which are then covered
by new sedimentary rocks over time. 3. What are the different types of nonconformities in earth science? There are
three main types of nonconformities: angular, nonconformity, and disconformity. Angular nonconformities occur when
sedimentary rocks are deposited at an angle on top of tilted or folded igneous or metamorphic rocks. Nonconformities
occur when sedimentary rocks are deposited on top of eroded igneous ormetamorphic rocks. Disconformities occur
when there is a gap in the sedimentary rock layers, indicating a period of erosion or non-deposition. 4. What are some
examples of nonconformities found in the Earth’s geology? One well-known example of a nonconformity is the Grand
Canyon in Arizona, USA. The sedimentary layers seen in the canyon were deposited on top of tilted and folded igneous
and metamorphic rocks, indicating a long history of erosion and deposition.

Ground Truth Nonconformities are unconformities that separate igneous or metamorphic rocks from overlying sedimentary rocks.
They usually indicate that along period of erosion occurred prior to deposition of the sediments (several km of erosion
necessary). They are a feature of stratified rocks, and are therefore usually found in sediments (but may also occur in
stratified volcanics). They are surfaces between two rock bodies that constitute a substantial break (hiatus) in the geologic
record (sometimes people say inaccurately that time is missing). Nonconformity. When igneous or metamorphic rocks are
eroded and then covered by younger sedimentary rocks, the contact is called a nonconformity. One of the most famous
of these is found in the Grand Canyon, where the oldest sedimentary rocks are more than a billion years younger than the
1.6 billion-year-old metamorphic rocks on which they rest.

poses a query-document prompt framework, lever-449

aging the semantic understanding and generative450

capabilities of LLMs to extend the original query.451

Another recent study (Jagerman et al., 2023) ap-452

plies LLMs directly for query expansion across453

multiple datasets, finding that employing the chain454

of thoughts (CoT) (Wei et al., 2022b) approach455

achieves the best results. Moreover, LLMCS (Mao456

et al., 2023) applies LLMs for query expansion457

in conversational search, constructing the context458

search intents as a prompt and combining the chain459

of thoughts and self-consistency techniques to en-460

hance search performance. In our paper, we focus461

on alleviating the limitations of both PRF-based462

and generation-based method. We propose a query-463

query-document generation method and a mutual464

verification framework to effective leverage both465

retrieved and generated contextual documents.466

5.2 Large Language Models467

Large Language Models (LLMs) have strong and468

robust abilities in language understanding and gen-469

eration (Zhao et al., 2023; Kojima et al., 2022;470

Huang et al., 2022; Wang et al., 2022), especially471

with increased model parameters (Zhao et al., 2023;472

Jagerman et al., 2023; Wei et al., 2022a). LLMs473

have the instruction-following ability (Longpre474

et al., 2023; Wei et al., 2021) and can be boasted475

through a few contexts (Min et al., 2022; Dong476

et al., 2022), enhancing the performance of LLMs477

in downstream specific tasks. Moreover, these 478

methods are straightforward and effective, for they 479

require minimal human effort to provide instruc- 480

tions or in-context examples but reach good results. 481

For example, Flan-T5 (Chung et al., 2022) achieves 482

remarkable results in various NLP downstream 483

tasks by instruction tuning the base model. Re- 484

cently, many studies (Wei et al., 2022b; Besta et al., 485

2023; Yao et al., 2023; Wang et al., 2022) explored 486

the reasoning capabilities of LLMs and discovered 487

that LLMs are powerful zero-shot reasoners. Chain 488

of thoughts (Wei et al., 2022b) (CoT) prompts 489

LLMs to think step by step to activate reasoning ca- 490

pabilities in LLMs. Self-consistency (Wang et al., 491

2022) runs multiple CoT and takes a voting mecha- 492

nism to enhance reasoning accuracy. 493

6 Conclusion 494

In this paper, we propose a novel zero-shot Large 495

Language Models (LLMs) based framework for 496

query expansion. First, we design a query-query- 497

document prompt scheme that allows LLMs to gen- 498

erate diverse contextual documents via zero-shot 499

reasoning. Next, we introduce a mutual verification 500

method that allows retrieved and generated contex- 501

tual documents to complement each other as query 502

expansion. The experimental results show that our 503

method is superior to the state-of-the-art baselines 504

on three public datasets. 505
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7 Limitations506

One limitation of our work is the retrieval efficiency.507

On one hand, during retrieval, MILL needs to per-508

form multiple autoregressive generations for each509

query based on the query-query-document prompt,510

and then use mutual verification methods with PRF511

documents to obtain selected documents. On the512

other hand, the extended length of the query in-513

creases the time required to search the inverted514

index. To address the issue of multi-round autore-515

gressive generation, N generated documents can516

be produced in parallel, which will improve gener-517

ation efficiency. Regarding the issue of extended518

query length, we can further utilize simple rule-519

based filtering methods (e.g., deleting words with520

limited semantic information or truncating docu-521

ments with word counts) to compress the query.522
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A Appendix707

A.1 Baselines708

There are two groups of baseline methods in our709

experiments: traditional query expansion methods710

and LLM-based expansion methods.711

Traditional query expansion methods712

• Bo1 (Amati and Van Rijsbergen, 2002). The713

Bose-Einstein 1 (Bo1) weighting approach is a714

method that reconstructs the query based on the715

frequency of terms found in the feedback docu-716

ments associated with each query.717

• KL (Amati and Van Rijsbergen, 2002). This718

method rewrites the queries similar to Bo1 but719

based on Kullback Leibler divergence.720

• RM3 (Abdul-Jaleel et al., 2004). A method721

used for query expansion in information retrieval,722

which finds the most relevant terms to the query723

by using the top-ranked documents returned from724

the initial query and adds these terms to the orig-725

inal query to create an expanded query.726

• AxiomaticQE (Fang and Zhai, 2006; Yang and727

Lin, 2019). Axiomatic query expansion (Ax-728

iomaticQE) rewrites and expands the origin query729

by axiomatic semantic term matching.730

LLM-based expansion methods731

• Query2Term. It uses LLMs to generate related732

terms to the origin query in a zero-shot manner.733

The zero-shot prompts only contain task instruc-734

tions and the original query.735

• Query2Term-FS. The few-shot version of736

Query2Term. The few-shot prompts are built737

upon zero-shot prompts by adding a few ex-738

amples. In particular, Query2Term-FS expands739

upon Query2Term by incorporating additional740

sets of query-keywords examples.741

• Query2Term-PRF. It uses the top-3 documents742

retrieved by the original query as context informa-743

tion to instruct the LLMs to expand the original744

query.745

• Query2Doc. The zero-shot version of query2doc746

(Wang et al., 2023), whose structure is similar to747

Query2Term. It uses LLMs to generate related748

passages to the origin query.749

• Query2Doc-FS. The few-shot version of 750

query2doc (Wang et al., 2023). The prompt struc- 751

ture is similar to Query2Term-FS. 752

• Query2Doc-PRF. It constructs the prompt with 753

pseudo-relevance feedback in a zero-shot manner 754

based on Query2Doc-ZS, like the Query2Term- 755

PRF. 756

• CoT. Chain-of-Thought (CoT) (Jagerman et al., 757

2023) instructs LLMs to generate text step by 758

step, providing a detailed thought process before 759

generating the final answer. 760

• CoT-PRF. A pseudo-relevance feedback based 761

version of CoT similar to Query2Term-PRF. 762

A.2 Prompts 763

In this subsection, we will detail the prompts we 764

used in the experiments. 765

Figure 5 shows the prompts for the variants of 766

Query2Term. The core prompt is "Write some 767

keywords for the given query: {query}." 768

Table 5: Prompts for Query2Term and its variants.

Method Prompt

Query2Term Write some keywords for the given query: {query}

Query2Term-FS

Write some keywords for the given query:

Context:
query:{query1}
keywords:{keywords1}
query:{query2}
keywords: {keywords2}
query: {query3}
keywords:{keywords3}

query: {query}
keywords:

Query2Term-PRF

Write some keywords for the given query:

Context:
{PRF doc 1}
{PRF doc 2}
{PRF doc 3}

query: {query}
keywords:

Figure 6 shows the prompts for the Query2Doc 769

variants. The main prompts are the sentence: 770

"Write a passage answer the following query: 771

{query}." 772

For the CoT and its variants, their prompts are 773

in Figure 7. The prompts ask LLMs to give the 774

rationale before answering. 775

A.3 More Results on BEIR 776

In this section, we list the full results for the 7 777

selected datasets from BEIR. Specifically, they 778
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Table 6: Prompts for Query2Doc and its variants.

Method Prompt

Query2Doc Write a passage answer the following query: {query}

Query2Doc-FS

Write a passage answer the following query:

Context:
query:{query1}
passage:{passage1}
query:{query2}
passage: {passage2}
query: {query3}
passage:{passage3}

query: {query}
passage:

Query2Doc-PRF

Write a passage answer the following query:

Context:
{PRF doc 1}
{PRF doc 2}
{PRF doc 3}

query: {query}
passage:

Table 7: Prompts for CoT and its variants.

Method Prompt

CoT
Answer the following query: {query}
Give the rationale before answering.

CoT-PRF

Answer the following query:

Context:
{PRF doc 1}
{PRF doc 2}
{PRF doc 3}

query: {query}
Give the rationale before answering.

are TREC-COVID, TOUCHE, SCIFACT, NFCOR-779

PUS, DBPEDIA, FIQA-2018, and SCIDOCS. The780

optimal results are highlighted in bold, while the781

suboptimal results are underscored. The results are782

reported on NDCG@N, AP@N, Recall@N, and783

MRR@N with N (10, 100, 1000)784

A.4 More Results for Experiments with785

Various Numbers of Documents786

In this subsection, we will supplement the results787

on other metrics for the experiments with various788

numbers of documents. We use the gpt-3.5-turbo-789

instruct API provided by OpenAI to conduct these790

experiments.791

The experiments concerning the number of se-792

lected documents are shown in Figure 5. When the793

number of selected generated documents changes,794

the number of candidate generated documents re-795

mains 15, and the number of PRF candidate docu-796

ments and the number of selected PRF documents797

remain 5 and 3. When the number of selected798

PRF documents changes, the number of candidate799

PRF documents remains 15, and the number of 800

generated candidate documents and the number of 801

selected generated documents remain 5 and 3. We 802

can find that the trends of selected PRF documents 803

in NDCG, AP, and Recall are consistent, yet con- 804

trary to that of MRR. This is due to the fact that 805

NDCG, AP, and Recall are more comprehensive in- 806

dicators, whereas MRR only considers the ranking 807

of the topmost relevant document retrieved. 808

In the experiments regarding the number of can- 809

didate documents, as shown in Figure 6, we can 810

observe a similar trend across different metrics: as 811

the number of generated document candidates in- 812

creases, the metrics remain relatively stable. How- 813

ever, with an increase in the number of PRF doc- 814

ument candidates, there is a noticeable growth in 815

the metrics. This suggests that a specific number 816

of generated documents, such as 5, can almost en- 817

tirely cover the additional information provided 818

by the generation process to aid in understanding 819

the search intent of the original query. Meanwhile, 820

PRF documents, derived from searches based on 821

the original query, suggest that more PRF docu- 822

ment candidates can cover a wider range of possible 823

search intents, thereby enhancing the effectiveness 824

of query expansion. 825
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Table 8: Overall experimental results on TREC-COVID.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

TREC-COVID

No expansion 62.59 47.41 42.04 1.46 8.16 19.79 1.74 11.91 40.52 83.37 83.37 83.37

Traditional expansion methods
Bo1 64.82 49.50 44.73 1.56 8.80 22.01 1.77 12.48 43.64 86.62 86.77 86.77
KL 65.80 49.93 44.88 1.59 8.90 22.26 1.79 12.51 43.63 86.62 86.79 86.79

RM3 64.05 48.50 44.54 1.55 8.62 21.87 1.78 11.22 43.71 82.96 83.06 83.06
AxiomaticQE 62.74 47.45 42.06 1.47 8.17 19.81 1.74 11.91 40.53 84.37 84.37 84.37

LLM-based expansion methods
Query2Term 66.81 50.15 45.09 1.65 8.95 22.10 1.86 12.40 43.67 83.33 83.43 83.43

Query2Term-FS 64.39 49.71 44.86 1.58 8.75 21.72 1.82 12.42 43.89 85.00 85.05 85.05
Query2Term-PRF 61.80 47.34 42.94 1.53 8.28 20.84 1.75 11.69 41.99 84.55 84.55 84.55

Query2Doc 69.00 50.82 45.41 1.73 9.32 22.36 1.95 12.63 43.71 86.21 86.39 86.39
Query2Doc-FS 68.40 49.67 44.39 1.70 8.79 21.57 1.91 12.15 42.80 69.32 89.38 89.38

Query2Doc-PRF 71.32 54.58 47.97 1.75 10.14 24.71 2.02 13.55 46.20 84.56 84.69 84.69
CoT 72.58 52.99 46.93 1.85 9.89 23.63 2.04 13.15 45.01 88.06 88.17 88.17

CoT-PRF 68.58 52.37 46.55 1.75 9.56 23.42 2.00 13.04 44.93 89.25 89.25 89.25
MILL 73.05 58.06 51.17 1.91 11.40 27.76 2.11 14.65 49.33 89.63 89.63 89.63

Table 9: Overall experimental results on TOUCHE.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

Touche

No expansion 34.28 45.48 55.32 13.06 20.96 22.47 20.69 54.92 85.05 62.28 62.71 62.71

Traditional expansion methods
Bo1 35.62 46.98 56.62 14.19 22.19 23.69 21.35 56.47 86.00 63.54 64.07 64.07
KL 35.52 46.96 56.72 14.00 22.18 23.68 20.99 56.78 86.14 63.98 64.51 64.51

RM3 34.66 46.54 55.79 13.72 22.00 23.42 22.03 57.79 85.79 56.73 57.09 57.09
AxiomaticQE 34.28 45.48 55.32 13.06 20.96 22.47 20.69 54.92 85.05 62.28 62.71 62.71

LLM-based expansion methods
Query2Term 34.51 44.05 52.95 13.11 19.88 21.13 20.05 49.98 77.24 65.60 66.13 66.14

Query2Term-FS 35.10 47.93 57.10 14.97 23.28 24.66 21.71 57.88 85.33 57.71 58.23 58.23
Query2Term-PRF 31.83 44.19 53.72 12.60 19.78 21.22 20.16 53.83 83.29 54.77 55.45 55.45

Query2Doc 42.36 51.12 60.32 17.44 25.51 26.91 23.80 56.10 84.08 75.63 75.97 75.97
Query2Doc-FS 40.71 51.30 59.99 16.91 25.72 27.02 23.01 57.46 83.95 70.84 71.06 71.06

Query2Doc-PRF 37.21 47.43 56.84 14.78 22.39 23.81 21.11 54.30 83.50 69.59 69.95 69.97
CoT 41.91 51.57 60.77 17.28 25.61 27.03 23.18 56.42 84.42 75.00 75.09 75.09

CoT-PRF 39.33 50.08 59.03 16.66 24.54 25.93 23.30 57.10 84.37 69.45 69.58 69.58
MILL 43.22 53.05 61.29 17.12 26.31 27.68 24.43 59.55 84.99 74.01 74.01 74.01

Table 10: Overall experimental results on SCIFACT.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

SCIFACT

No expansion 67.22 69.66 70.27 62.11 62.67 62.70 81.43 92.27 97.00 63.24 63.66 63.68

Traditional expansion methods
Bo1 65.14 67.63 68.34 59.30 59.92 59.95 81.59 92.20 97.67 60.42 60.87 60.89
KL 64.68 67.08 67.83 58.69 59.28 59.31 81.59 91.87 97.67 59.76 60.18 60.21

RM3 62.22 64.54 65.28 55.45 55.97 55.99 81.34 91.93 97.67 56.24 56.58 56.61
AxiomaticQE 67.22 69.66 70.28 62.11 62.68 62.70 81.43 92.27 97.00 63.24 63.66 63.68

LLM-based expansion methods
Query2Term 66.13 68.87 69.57 60.54 61.18 61.21 81.70 93.73 99.00 61.60 62.14 62.16

Query2Term-FS 68.34 70.71 71.39 62.92 63.50 63.54 83.32 93.47 98.33 64.13 64.60 64.62
Query2Term-PRF 57.67 59.91 60.79 49.72 50.22 50.25 80.46 90.90 97.50 50.58 50.93 50.96

Query2Doc 67.92 70.60 71.19 62.59 63.24 63.27 82.82 94.43 99.00 63.81 64.34 64.36
Query2Doc-FS 68.61 71.39 71.89 63.37 64.02 64.04 83.17 95.43 99.33 64.55 65.07 65.08

Query2Doc-PRF 64.53 66.96 67.82 58.60 59.15 59.19 81.31 92.53 99.00 59.74 60.12 60.15
CoT 68.58 71.13 71.63 63.30 63.87 63.89 83.03 94.77 98.67 64.77 65.18 65.19

CoT-PRF 70.98 72.95 73.65 66.20 66.64 66.67 84.56 93.27 98.67 67.09 67.47 67.49
MILL 71.37 73.47 74.14 66.34 66.85 66.88 85.24 94.50 99.67 67.69 68.07 68.09
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Table 11: Overall experimental results on NFCORPUS.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

NFCORPUS

No expansion 32.22 27.29 30.02 12.08 14.36 14.89 14.78 24.38 36.06 53.44 53.82 53.83

Traditional expansion methods
Bo1 33.49 30.21 37.01 12.73 15.98 17.09 16.26 29.71 54.38 52.74 53.24 53.28
KL 33.56 30.22 37.18 12.73 15.89 17.01 16.3 29.61 54.79 53.49 53.99 54.03

RM3 33.41 30.31 37.27 12.36 15.68 16.8 16.82 30.46 56.12 52.35 52.81 52.85
AxiomaticQE 32.22 27.29 30.02 12.08 14.36 14.89 14.78 24.38 36.06 53.44 53.82 53.83

LLM-based expansion methods
Query2Term 25.79 24.94 33.82 8.3 10.89 12.04 12.29 27.27 58.82 44.79 45.63 45.68

Query2Term-FS 31.92 30.66 38.57 11.24 14.63 15.91 15.38 32.83 61.72 52.99 53.68 53.71
Query2Term-PRF 32.14 29.92 38.21 11.92 15.01 16.29 16.78 31.63 60.55 49.27 49.83 49.87

Query2Doc 33.47 30.41 38.76 12.54 15.31 16.54 16.68 30.96 61.09 54.61 55.19 55.23
Query2Doc-FS 33.41 30.1 38.09 12.59 15.32 16.45 16.27 30.22 59.55 54.08 54.64 54.7

Query2Doc-PRF 33.82 31.23 39.41 12.64 16.17 17.44 16.97 32.7 62.5 51.26 51.72 51.77
CoT 34.52 30.68 38.88 12.95 15.78 16.93 16.88 29.53 60.63 56.23 56.64 56.69

CoT-PRF 35.76 31.93 39.84 13.95 16.9 18.09 18.13 31.76 59.87 55.65 56.05 56.09
MILL 36.79 33.02 41.75 13.81 17.18 18.56 18.21 32.42 64.95 58.35 58.86 58.91

Table 12: Overall experimental results on DBPEDIA.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

DBPEDIA

No expansion 26.59 32.45 38.7 11.59 17.71 18.89 17.2 42.15 63.61 51.7 52.37 52.39

Traditional expansion methods
Bo1 26.59 32.59 39.05 11.65 18.03 19.24 17.32 42.67 64.9 50.47 51.17 51.2
KL 26.42 32.44 38.87 11.52 17.89 19.09 17.27 42.62 64.71 50.01 50.84 50.86

RM3 25.47 31.81 38.11 10.88 17.4 18.6 17.05 42.92 64.37 46.6 47.28 47.31
AxiomaticQE 26.59 32.45 38.7 11.59 17.71 18.89 17.2 42.15 63.61 51.7 52.37 52.39

LLM-based expansion methods
Query2Term 22.1 26.59 33.51 9.16 13.54 14.54 14.11 34.63 58.9 46.54 47.16 47.2

Query2Term-FS 26.46 31.9 39.36 11.87 17.04 18.29 17.67 41.59 65.67 53.5 54.16 54.19
Query2Term-PRF 23.39 27.85 34.83 9.98 14.79 15.96 16.1 37.15 61.11 45.37 46.03 46.07

Query2Doc 32.31 37.72 44.79 14.27 20.65 21.97 20.13 46.37 70.29 61.82 62.32 62.34
Query2Doc-FS 32.87 37.99 45.11 14.65 20.86 22.16 19.65 45.85 70.04 63.35 63.82 63.84

Query2Doc-PRF 27.43 33.22 39.85 11.53 18.11 19.34 18.74 44.23 66.41 52.58 53.26 53.28
CoT 29.96 36.01 43.05 13.29 19.42 20.7 19.22 45.76 69.24 57.68 58.3 58.32

CoT-PRF 28.17 33.66 40.43 12.26 18.49 19.75 18.15 43.43 66.06 52.95 53.59 53.6
MILL 34.33 39.71 46.39 15.65 22.89 24.28 21.32 48.86 71.13 64.09 64.53 64.55

Table 13: Overall experimental results on FIQA-2018.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

FIQA-2018

No expansion 25.26 31.74 35.28 19.40 20.86 21.04 30.97 55.92 77.42 31.03 32.11 32.18

Traditional expansion methods
Bo1 24.36 31.21 34.97 18.71 20.30 20.49 30.21 56.25 79.18 29.37 30.51 30.58
KL 24.75 31.40 35.12 18.99 20.52 20.72 30.88 56.21 78.84 29.77 30.84 30.92

RM3 22.8 29.23 33.14 16.85 18.32 18.51 30.37 54.82 78.82 26.47 27.55 27.63
AxiomaticQE 25.26 31.76 35.28 19.40 20.87 21.04 30.97 56.00 77.42 31.03 32.11 32.18

LLM-based expansion methods
Query2Term 21.72 28.1 32.12 16.15 17.45 17.65 28.42 54.12 78.22 25.82 26.83 26.91

Query2Term-FS 24.83 31.95 35.78 18.90 20.49 20.68 30.50 58.45 81.84 30.57 31.61 31.68
Query2Term-PRF 21.56 27.43 31.50 16.29 17.55 17.73 27.47 50.78 76.31 25.32 26.21 26.29

Query2Doc 27.00 33.92 37.63 20.46 22.15 22.34 34.26 60.11 82.72 32.64 33.73 33.78
Query2Doc-FS 27.23 34.46 37.96 20.37 22.15 22.33 34.80 61.94 83.46 33.14 34.23 34.29

Query2Doc-PRF 23.51 30.26 34.09 17.91 19.39 19.57 28.99 55.33 79.14 29.18 30.19 30.27
CoT 26.69 33.78 37.28 19.8 21.48 21.65 34.88 62.34 83.56 32.12 33.16 33.22

CoT-PRF 27.78 34.30 38.04 21.45 23.06 23.24 34.50 59.26 82.14 33.25 34.21 34.29
MILL 28.42 35.63 39.23 21.89 23.61 23.80 34.63 62.46 84.23 34.94 35.99 36.05
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Table 14: Overall experimental results on SCIDOCS.

Metrics
NDCG AP Recall MRR

@10 @100 @1000 @10 @100 @1000 @10 @100 @1000 @10 @100 @1000

SCIDOCS

No expansion 14.71 20.91 25.14 8.36 9.73 9.94 15.84 34.48 55.04 25.37 26.41 26.48

Traditional expansion methods
Bo1 15.10 21.82 26.14 8.73 10.29 10.51 16.43 36.39 57.47 25.31 26.41 26.48
KL 15.10 21.81 26.15 8.75 10.31 10.54 16.37 36.24 57.38 25.43 26.54 26.61

RM3 14.56 21.49 25.91 8.41 10.05 10.28 15.79 36.24 57.88 24.46 25.63 25.70
AxiomaticQE 14.71 20.91 25.14 8.36 9.73 9.94 15.84 34.48 55.04 25.37 26.41 26.48

LLM-based expansion methods
Query2Term 13.04 20.02 25.11 7.32 8.84 9.10 14.30 35.08 60.00 22.34 23.66 23.73

Query2Term-FS 14.16 21.25 26.18 8.07 9.68 9.94 15.26 36.21 60.15 24.31 25.54 25.62
Query2Term-PRF 13.10 20.13 24.97 7.49 9.12 9.37 14.84 35.56 59.25 20.54 21.84 21.91

Query2Doc 15.09 22.63 27.40 8.57 10.34 10.59 16.13 38.31 61.63 26.21 27.49 27.55
Query2Doc-FS 15.06 22.35 27.18 8.43 10.16 10.43 16.49 37.94 61.33 25.83 27.01 27.08

Query2Doc-PRF 14.30 21.50 26.16 8.21 9.96 10.21 15.70 36.78 59.50 23.84 25.03 25.11
CoT 15.54 22.77 27.50 8.90 10.58 10.84 16.65 37.96 60.90 26.81 28.07 28.13

CoT-PRF 14.71 21.66 26.23 8.44 10.10 10.34 16.05 36.50 58.72 24.77 25.91 25.98
MILL 16.38 23.73 28.36 9.50 11.23 11.48 17.49 39.28 61.86 28.10 29.25 29.31
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Figure 5: Hyperparameter analysis on the number of document selections. The x-axis denotes the number of
document selected, and the y-axis represents the metrics values (NDCG@1000, AP@1000, Recall@1000, and
MRR@1000).
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Figure 6: Hyperparameter analysis on the number of document candidates. The x-axis denotes the number of
document candidates, and the y-axis represents the metrics values (NDCG@1000, AP@1000, Recall@1000, and
MRR@1000).
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