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Abstract

We propose a strategy that encourages filter reuse to decrease the total number of learned
parameters and to enable training on small dataset efficiently. We also highlight on one
of our recent publication (Al Chanti et al., 2021), which handles foreground/background
class imbalance by learning adaptively how to penalize False Positives and False Negative
pixels, resulting in a faster convergence and better performance. We validate our method
on low limb muscle segmentation using volumetric ultrasound.
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1. Introduction

One major challenge in medical image segmentation is properly training Convolutional
Neural Networks (CNNs) when annotated data (i) is limited, which reduces the network
generalization performances, (ii) suffers from class imbalance, which makes network predic-
tions biased towards the non-organ class and (iii) has complex image texture and resolution
such as those coming from Ultrasound (US) data (Duque et al., 2020), which makes fea-
ture extraction and representation harder. In this paper, we focus on the class imbalance
solution proposed in our recent publication (Al Chanti et al., 2021) and based on the para-
metric Tversky loss function. Additionally, we argue that dealing with limited amount of
annotated data and complex image textures can be addressed by learning a deep network
with a reduced number of learned parameters by reusing learned filters and dilate them at
different rates, which are parameter free yet extract multi-scale and contextual features.

2. Method and Materials

Shared dilated filters: We design a 3D fully convolutional network for volumetric data
with an architecture adapted from the 3D Seg-Net-FS (Al Chanti et al., 2021) but with
important modifications. Our network is composed of a 3D encoder that includes five 3D
convolutional layers. Each layer is constructed as represented in Fig. 1 where learned filters
are reused with dilation to capture image context and not learned as in (Chen et al., 2017).
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Figure 1: Extracting multi-scale and contextual features (Fig. (a)) with less learnable pa-
rameters. Similar to Atrous convolution, we adapted similar setting for dilating
the filters (Fig. b). However, our approach encourage filters reuse to enhance pat-
tern detection in the image context and to learn minimal number of parameters.
The total number of learned parameters for the first encoder layer are 120 instead
of 480 in the typical setting with learned dilated filters (Chen et al., 2017).

Each layer is composed consecutively of 4, 8, 16, 32, 64 learned filters. Each layer produces
16, 32, 64, 128, 256 feature maps. The 3D decoder uses similar setup as the 3D encoder with
the difference that the 3D max-pooling operation is replaced by 3D up-sampling operation.
The final layer from the 3D Decoder is passed to an output layer with softmax activation
to produce the volumetric segmentation maps. The total number of parameters resulted
from this model is only 1,031,606 while if we replaced our reused layers with typical atrous
convolution with learned filters, the total number of parameters becomes 4,123,826.
Learned Tversky loss for class imbalance: let ŷ and y be the set of predicted and
ground truth binary labels respectively. A typical Dice loss function weights false positive
(FP) and false negative (FN) voxels equally, which causes the learning process to get trapped
in local minima of the loss function, yielding predictions that are strongly biased towards the
background. As a result, the foreground region is often partially detected. Hence, weighting
FNs more than FPs is crucial. We propose to parameterize the Tversky Index (Eq. (1)) to
include two learnable parameters α and β that control the magnitude of penalties for FPs
and FNs instead of tuning them manually. Our loss function is 1 − TI.

TI(ŷ,y, α, β) =

∑N
i ŷ0iy0i∑N

i ŷ0iy0i + α
∑N

i ŷ0iy1i + β
∑N

i ŷ1iy0i

(1)

ŷ0i is the probability of voxel i being a foreground of a target muscle and ŷ1i is the probabil-
ity of voxel i being a background. The same applies to y0i and y1i respectively. Typically,
we start with α and β equal to 0.5, which reduces Eq. (1) to dice loss. Then, α and β
gradually change their values, such that they always sum up to 1. In order to guarantee
that α+ β = 1, we apply a softmax function to generate a probability distribution.
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Figure 2: Models behaviour over 1000 epochs over the validation set. (a) learning curve.
(b) DSC. (c) precision-recall curve. (d) Tversky learned penalization parameters.

3. Experimental Results

Data: A 3D US recordings of low limb muscle for 44 participants are used. Each recording
filling a voxel grid of 512 × 512 × 1443 ± (49 × 38 × 207), and having the annotations
of the Gastrocnemius Medialis (GM), the Gastrocnemius Lateralis (GL), and the Soleus
(SOL) muscles. Data description available in (Duque et al., 2020) and (Al Chanti et al.,
2021). Experimental Setting: we measure the model behaviour with filter reuse strategy
and with learned dilated filters along with dice and parametric Tversky losses. Results:
Fig. 2(a) shows that a faster convergence is achieved when using parametric Tversky loss
function. Fig. 2(b) shows that a better Dice Similarity Coefficient (DSC) score is obtained
when using filter reuse strategy, especially when trained using parametric Tversky loss.
Fig. 2(c) shows the advantages of parametric Tversky loss as it permit a trade-off between
the precision and the recall to provide a better segmentation maps. It can be observed that
dice loss totally fail as it has low precision and high recall. Fig. 2(d) shows the gradual
update of the values alpha and beta during the learning process. We reported 81% abd
76% of DSC scores over the test set using a model with filter reuse strategy with tversky
loss and with dice loss respectively. Then we reported 68% and 49% of DSC scores using a
model with learned dilated filters with Tversky loss and with dice loss respectively.
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