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Abstract

Most of the current learning methodologies and benchmarking datasets in the hypergraph
realm are obtained by lifting procedures from their graph analogs, leading to overshadow-
ing specific characteristics of hypergraphs. This paper attempts to confront some pending
questions in that regard: Q1 Can the concept of homophily play a crucial role in Hyper-
graph Neural Networks (HNNs)? Q2 How do models that employ unique characteristics
of higher-order networks perform compared to lifted models? Q3 Do well-established hy-
pergraph datasets provide a meaningful benchmark for HNNs? To address them, we first
introduce a novel conceptualization of homophily in higher-order networks based on a Mes-
sage Passing (MP) scheme, unifying both the analytical examination and the modeling of
higher-order networks. Further, we investigate some natural strategies for processing higher-
order structures within HNNs (such as keeping hyperedge-dependent node representations
or performing node/hyperedge stochastic samplings), leading us to the most general MP
formulation up to date —MultiSet. Finally, we conduct an extensive set of experiments that
contextualize our proposals.

1 Introduction

Hypergraph learning techniques have multiplied in recent years, demonstrating their effectiveness in pro-
cessing higher-order interactions in numerous fields, spanning from recommender systems (Yu et all [2021}
La Gatta et al., [2022)), to bioinformatics (Zhang et all [2018; Yadati et al.l |2020) and computer vision (Li
et al.} [2022; Xu et al.l [2022)). However, so far, the development of Hypergraph Neural Networks (HNNs) has
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Figure 1: Node Homophily Distribution for CORA-CA (a) and 20Newsgroups (b). The plots depict node
homophily scores computed using Equation 2] at t = 0, t = 1, and ¢ = 10. For each dataset class, points
are sorted in ascending order of homophily and visualized sequentially along the x-axis. Horizontal lines
represent the mean homophily score for each class, with the numbers above indicating the total number of
points in each class.

been largely influenced by the well-established Graph Neural Network (GNN) field. In fact, most of the cur-
rent methodologies and benchmarking datasets in the hypergraph realm are obtained by lifting procedures
from their graph counterparts.

The advancement of hypergraph research has been significantly propelled by drawing inspiration from graph-
based models (Chien et al., 2022} [Feng et all, [2019} Yadati et al., [2019)), but it has simultaneously led to
overshadowing hypergraph network foundations. We argue that it is now the time to address fundamental
questions in order to pave the way for further innovative ideas in the field. In that regard, this study
explores some of these open questions to understand better current HNN architectures and benchmarking
datasets along three axes. Q1 Can the concept of homophily play a crucial role in HNNs, similar to its
significance in graph-based research? Q2 Given that current HNNs are predominantly extensions of GNN
architectures adapted to the hypergraph domain, are these extended methodologies suitable, or should we
explore new strategies tailored specifically for handling hypergraph-based data? Q3 Are existing hypergraph
benchmarking datasets truly meaningful and representative to draw robust conclusions?

To begin with, we explore how the concept of homophily can be characterized in complex, higher-order
networks. Notably, there are many ways of characterizing homophily in hypergraphs —such as the distribution
of node features, the analogous distribution of the labels, or the group connectivity similarity (as already
discussed in [Veldt et al] (2023)). In particular, this work places the node class distribution at the core of
the analysis, and introduces a novel definition of homophily that relies on a Message Passing (MP) scheme.
This enables us to analyze both hypergraph datasets and architecture designs from the same perspective, as
well as to successfully describe model performances (see Section (3 and .

Next, we shift our focus towards the design of hypergraph-specific methodologies that HNNs could benefit
from, no longer relying on lifting strategies. To this end, after examining state-of-the-art HNN architectures,
we first describe the most versatile MP framework up to date, called MultiSet (see Section . Our
formulation, which enables hyperedge-dependent node representations and residual connections, inherently
generalizes most existing HNN frameworks and models, including AllSet (Chien et al. [2022)), UniGCNII
(Huang & Yang| [2021), EDHNN (Wang et al [2023)) and a recently proposed model WHATsNet that allows
for hyperedge-dependent node representations (Choe et all, [2023)).
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Subsequently, to facilitate a comparison between standard lifted hypergraph models and a new
class of hypergraph-specific architectures, in Section we present the realization of a hypergraph
model—MultiSetMixer—that accommodates multiple hyperedge-based node hidden representationsﬂ By
allowing multiple node representations based on hyperedge memberships—meaning the same node is repre-
sented differently depending on the hyperedges it belongs to—this new class of architectures results in an
exponential increase in potential node representations as the number of connections within the hypergraph
network grows. To address this complexity, we propose and evaluate novel connectivity-based mini-batching
strategies tailored to the specific characteristics of hypergraph networks, as detailed in Section .4} These
sampling procedures not only facilitate processing large hyperedges but also give rise to an interesting be-
havior —which we term connectivity-based distribution shift— thoroughly discussed in the paper (see Section

5.3)-

Last but not least, we provide an extensive set of experiments that, driven by the general questions stated
above, aim to gain a better understanding on fundamental aspects of hypergraph representation learning. In
fact, the obtained results not only help us contextualize the proposals introduced in this work but open new
challenges in hypergraph modeling, such as signal oversquashing caused by large hyperedges, which impacts
the performance of all HNNs (see Section or the tendency of HNNs to ignore connectivity for common
benchmark datasets (see Section .

Summary of contributions:

e We introduce a novel definition of homophily for hypergraphs, capable of effectively describing HNN
model performances (Q1 and Q3, Sections [3]and [5.2)).

e We present the novel MultiSet framework, which incorporates hyperedge-dependent node repre-
sentations and generalizes most of the existing hypergraph models in the literature (Q2, Section

)

e We explore novel mini-batch sampling strategies for architectures with and without hyperedge-
dependent node classification (Q2, Section [4.3)).

o We perform a large set of experiments assessing benchmarking both datasets and HNN architectures,
as well as connecting the proposed MP homophily with models’ performance (Q1, Q2, Q3, Sections

and .
2 Related Works

Homophily in hypergraphs. Homophily measures are typically defined only for pairwise relationships.
In the context of Graph Neural Networks (GNNs), many of the current models implicitly use the homophily
assumption, which is shown to be crucial for achieving a robust performance with relational data (Zhou
et al.l 2020} |Chien et al.l |2020; [Halcrow et al.l 2020). Nevertheless, despite the pivotal role that homophily
plays in graph representation learning, its hypergraph counterpart mainly remains unexplored. In fact,
to the best of our knowledge, [Veldt et al.| (2023) is the only work that faces the challenge of defining
homophily for higher-order networks. This work introduces a framework in which homophily is quantified
through group interactions, measuring the distribution of classes among hyperedges (see Appendix |G| for a
detailed description). However, their definition of homophily is restricted to uniform hypergraphs —where
all hyperedges have exactly the same size—, which hinders its practical application to a great extent. Clique-
expanded (CE) homophily, as used in [Wang et al.| (2023), is calculated by determining node homophily [Pei
et al.[(2020) on the graph derived from the clique-expanded hypergraph. Thus, CE homophily is not directly
defined on the hypergraph but requires a clique expansion. It is important to note that this expansion is
a non-invertible transformation, which leads to a loss of information. Refer to Appendix [G] for a detailed
explanation of these homophily measures and a comparison with the proposed method.

INote that MultiSetMixer is a simple yet powerful model architecture that serves primarily as a baseline, providing an
example of a model that incorporates and employs the unique characteristics of hypergraph networks.
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Hypergraph Neural Networks. Numerous machine-learning techniques have been developed for hy-
pergraph data processing. A common early approach is transforming hypergraphs into graphs via clique
expansion (CE), where each hyperedge is replaced with edges between all pairs of vertices in the hyperedge,
enabling graph-based algorithm analysis (Agarwal et all, [2006} [Zhou et al., [2006}; [Zhang et all 2018} [Li &]
Milenkovic, [2017).

Hypergraph Neural Networks (HNNs) have also been applied to semi-supervised learning. One early method
extends graph convolution by incorporating the normalized hypergraph Laplacian (Feng et al., [2019)), with
weighted CE as spectral convolution (Dong et al.| [2020). HyperGCN (Yadati et all 2019) uses mediators
for a reduced CE, lowering the number of edges required to represent a hyperedge, and applying spectral
convolution for information diffusion. Hypergraph Convolution and Hypergraph Attention (HCHA) (Bai
introduces modified normalizations and attention weights dependent on node and hyperedge
features.

However, CE can result in the loss of structural information, leading to suboptimal performance (Hein et al.
[2013;|Chien et al., 2022). These models often perform best with shallow architectures, while deeper layers can
cause oversmoothing (Huang & Yang, [2021). Recent work has tried to mitigate oversmoothing with residual
connections but still relies on hypergraph Laplacians and clique expansion (Chen & Zhang), [2022)). Another
method, line expansion (LE), treats vertices and hyperedges equally and models vertex-hyperedge pairs to
induce a homogeneous structure, though both CE and LE demand significant computational resources (Yang

e al, 2020).

Another research line focuses on two-stage message passing: nodes communicate with hyperedges, which
then relay information back to the nodes (Wei et al., 2021; [Yi & Park, 2020; Dong et all [2020} |Arya et al
[2020; Huang & Yang| |2021} [Yadati et al. |2020)). HyperSAGE (Arya et all [2020) exemplifies this approach,
offering improvements over spectral methods but limited by a single learnable transformation and inefficient
computation due to nested loops (Chien et al., 2022).

The work of |Chien et al.| (2022)) introduced AllSet, a general framework that describes HNNs through the
composition of two learnable permutation invariant functions, defining a two-step message passing based
mechanism —from nodes to hyperedges, then back from hyperedges to nodes. In particular, AllSet is shown
to generalize most commonly used HNNs, including all clique expansion based (CE) methods, HNN
2019), HNHN (Dong et all, 2020), HCHA 2021)), HyperSAGE (Arya et all 2020) and
HyperGCN (Yadati et al.,|2019). |Chien et al.| (2022) also proposes two novel AllSet-like learnable layers: the
first one ~AllDeepSet— exploits Deep Set (Zaheer et al., 2017), and the second one —~AllSetTransformer— Set
Transformer , both of them achieving state-of-the-art results in the most common hypergraph
benchmarking datasets. Concurrent to AllSet, Huang & Yang| (2021) also aimed at designing a common
framework for graph and hypergraph NNs, and its more advanced UniGCNII method leverages initial residual
connections and identity mappings in the hyperedge-to-node propagation to address over-smoothing issues;
notably, UniGCNII does not fall under the AllSet framework due to these residual connections. Likewise,
the more recent EDHNN model (Wang et al., |2023)) also goes beyond this framework by incorporating
hyperedge-dependent messages from hyperedges to nodes, a step closer to the hyperedge-dependent node
representations that we propose in this work.

Recently, |Choe et al.| (2023) introduced WHATsNet, the first model capable of producing hyperedge-
dependent node representations. In particular, WHATsNet model is a particular instance of the MultiSet
framework introduced in our work (see Section , but its architecture is specifically designed to perform
hyperedge-dependent node classification tasks —where each node has as many labels as the number of hyper-
edges it belongs to. This prevents benchmarking this model in our evaluation, where we focus on standard
node-level classification tasks.

Please refer to Appendix [A] for an extended literature review.
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Notation. A hypergraph is an ordered pair of sets G = (V, ), where V is the set of nodes and & is the set
of hyperedges. Each hyperedge e € £ is a subset of V, i.e., e C V. A hypergraph is a generalization of the
concept of a graph where (hyper)edges can connect more than two nodes. A vertex v and a hyperedge e are
said to be incident if v € e. For each node v, we denote its class by y,,, and we denote by £, = {e € £ : v € e}
the subset of hyperedges in which it is contained. We represent by d, = |&,| the node degree. The set of

classes is represented by C = {cl}lzcz‘1

3 Homophily Metrics in Hypergraphs

In this section, we present a new definition of homophily that employs a two-step message passing scheme
applicable to general, non-uniform hypergraphs, in contrast to the definition by |Veldt et al.[(2023]). In essence,
our definition focuses on capturing hyperedge interconnections by the exchange of information following the
message passing scheme. Following that, we illustrate its applicability in examining higher-order networks
through qualitative analysis. Finally, we demonstrate the applicability of the proposed concept by deriving
a A homophily measure. In Section we show its capability to describe HNNs’ performance. These play
a pivotal role in our attempt to answer the fundamental question Q1 raised in the Introduction.

Message passing homophily. Given a hyperedge e € £, we define the 0-level hyperedge homophily h2(c)
as the fraction of nodes within e that belong to class c, i.e.

Bo(c) = %Zﬂyvzc. (1)

vee

This score describes how homophilic the initial connectivity is with respect to class ¢. Computing the score
for each class ¢; € C generates a categorical distribution for each e € &, i.e. h = [h(co), ..., h(c|c|)]. Using
this information as a starting point, we calculate higher-level homophily measurements for both nodes and
hyperedges through the two-step message passing approach. Formally, we define the t-level homophily score
as

hf;_l = AGG¢ ({hz_l(yv)}eGSv) s (2)
hé(c) = AGGy ({hf;l}veewvﬂ) ’ (3)

where AGGg and AGGy are functions aggregating edge and node homophily scores, respectively (we consider
the mean operator in our implementation). We note that our homophily measure enables the definition of a
score for each node and hyperedge for any neighborhood resolution.

Qualitative analysis. One straightforward way to make use of the message passing homophily measure
is to visualize how the node homophily score dynamically changes, as described in Eq. 2} Figure [T] depicts
this process for non-isolated nodes on CORA-CA and 20NewsGroup datasets (Appendix |G| shows the plots
of the rest of considered datasets, which in turn are described in Section . Looking at CORA-CA (Figure
(a)), we note that there are a significant number of nodes with high 0-level homophily at each class (except
number 6), and this homophily distribution is kept mostly unchanged as we move to the 1-hop neighborhood
(t = 1). Interestingly, the same trend holds even when shifting to the 10-level node homophily —only classes
1 and 6 show a relevant drop in highly homophilic nodes. This suggests the presence of isolated homophilic
subnetworks within the hypergraph. In contrast, 20Newsgroups dataset (Figure [I| (b)) displays relatively
low node homophily scores from the 0-level (specifically for class 2, with a mean value around 0.3). Moving
to t = 1, there is a significant decrease in the homophily scores for every class. Finally, at time step ¢ = 10,
we can observe that all the classes converge to approximately the same homophily values within each class.
This convergence and low homophily scores suggest that the network is highly interconnected.

A homophily. Rather than measuring homophily in individual discrete timestamps, we next derive A
homophily measure, which offers a dynamic perspective to explore hypernetworks. This measure is based on
the assumption that if the 1-hop neighborhood of a node u € V is predominantly homophilic, then the change
in homophily score between two consecutive timestamps will be small. Conversely, a substantial change in
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Figure 2: Visual representation of the AllSet and MultiSet frameworks.

u’s homophily implies that the node resides in a neighborhood characterized as heterophilic. Specifically, for
each node, we quantify the homophily change after ¢-th step of message passing by computing the difference
between the node homophily at that step from its value at previous one, t — 1. Subsequently, we look at the
proportion of nodes whose homophily difference is below a certain threshold p € R, i.e.

1
t _
A= T > Lt ntt < (4)
vey

As we show in Section [5.2] this dynamic measure becomes a helpful tool to analyze the performance of
HNNs.

4 Methods

Current HNNs aim to generalize GNN concepts to the hypergraph domain, and are specifically focused
on redefining graph-based propagation rules to accommodate higher-order structures. In this regard, the
work of |Chien et al| (2022) introduced a general notation framework, called AllSet, that encompasses most
of currently available HNN layers, including CEGCN/CEGAT, HNN (Feng et all [2019), HNHN
2020), HCHA (Bai et all [2021), HyperGCN (Yadati et al, [2019), as well as AllDeepSet and AllSet-
Transformer presented in the same work (Chien et al., 2022). This section first revisits the original AllSet
formulation, and then introduces a new framework —MultiSet— which extends AllSet by allowing multiple
hyperedge-dependent representations of nodes. Finally, we present a particular realization of an architecture
that takes into account hyperedge dependent-node representations. Then, we open a discussion on the scal-
ability issues of hypergraph architectures and propose a novel mini-batching scheme. In contrast to previous
formulations, our proposed framework and implementation are inspired by hypergraph needs and features,
and motivated by the fundamental question Q2.

4.1 AllSet Propagation Setting
For a given node v € V and hyperedge e € £ in a hypergraph G = (V, ), let :Eq(}t) € R/ and zét) € R? denote
their vector representations at propagation step t. We say that a function f is a multiset function if it is

permutation invariant w.r.t. each of its arguments in turn. Typically, :cE,O) and zéo) are initialized based on

the corresponding node and hyperedge original features, if available. The vectors wq(,o) and zéo) represent the
initial node and hyperedge features, respectively. In this context, the AllSet framework (Chien et al.| [2022)

consists in the following two-step update rule:
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ZétJrl) = fV—>€({$1(f)}u:uEe; zét))7 (5)
S0 — fe (20 e, sl ©

where fy_,¢ and fg_,y are two permutation invariant functions with respect to their first input. Equations
and [0] describe the propagation from nodes to hyperedges and vice versa, respectively. We extend the original
AllSet formulation to accommodate UniGCNII (Huang & Yang, |2021) by modifying the node update rule
(Eq. [6) as follows

2" = feov ({20 }eee,: {21 Fimo): (7)
i.e. allowing residual connections. Again, the only requirement is to be invariant w.r.t. the first input.
Proposition 4.1. UniGCNII (Huang & Yang, |2021) is a special case of AllSet considem'ng@ and @

In the practical implementation of a model, fy_,¢ and fg_,y are parametrized and learnt for each dataset
and task; particular choices of these functions give rise to most of the HNN architectures considered in this

paper (see Appendix [B)).

4.2 MultiSet Framework

In this Section, we introduce our proposed MultiSet framework, which can be seen as an extension of AllSet
where nodes can have multiple co-existing hyperedge—based representations. For a given hyperedge e € £
in a hypergraph G = (V,€), we denote by z((f) € R? its vector representation at step t. For a node v € V,
MultiSet allows for as many representations of the node as the number of hyperedges it belongs to. We

denote by :c,(,t)e € R7 the vector representation of node v in a hyperedge e € &£, at propagation time ¢, and

by X,(f) = {w,(ﬁ)e}eegv the set of all d,, hidden states of that node in the specified time-step. Accordingly, the
hyperedge and node update rules of MultiSet are formulated to accommodate hyperedge—dependent node
representations:

28 = fone (XD uuee; 20), 8)
24D = fev ({2 Yeee, s (XY o), )

where fy_ ¢ and fe_,y are two multiset functions with respect to their first input. After T iterations of
message passing, MultiSet also considers a last readout-based step to obtain a unique final representation
I € R/ for each node from the set of its hyperedge-based representations:

2" = fuov (XM Ho) (10)
where fy_,y is also a multiset function.

As we show in the following propositions (proofs can be found in Appendices and [C.4)), both AllSet
framework and the more recent EDHNN and WHATSNet architectures (Wang et al.l 2023} |Choe et al., [2023)
can be expressed in terms of the general MultiSet notation.

Proposition 4.2. AllSet[3[6, as well as its extension[J{7, are special cases of MultiSet [${HI0
Proposition 4.3. EDHNN (Wang et al, [2025) is a special case of MultiSet .

Proposition 4.4. WHATsNet (Choe et al., |2023) is a special case of MultiSet @-@-@

Figure [2] represents the AllSet and MultiSet layouts. Please notice that to avoid clutter notation at step t

for the MultiSet layout, we omit populating nodes at step t. As shown at the top of the figure, we obtain

Ty et and Loy et which can subsequently be used to update the corresponding hyperedges and nodes.

4.3 Training MultiSet Networks

This section describes a possible realization of a MultiSet layer implementation —which we refer to as Mul-
tiSetMixer model.
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Learning MultiSet layers. Following the mixer-style block designs (Tolstikhin et al.,|2021]) and standard
practice, we use the following MultiSet layer implementation:

z£t+1) = fV—)S({mq(f,)e}u:uEd zét)) (11)
1 1
= > alt), + MLP (LN (II > xg>>> ,
e ’ e ’
vEe vee
ot = fe oy (20 2(1)) (12)

s

U)

= 2t + MLP (LN(m 2)) + 20D,

1
(T) (T)y . (t)
xy ) = foov(Xy) = d, eEs Lye (13)

where MLPs are composed of two fully-connected layers, and LN stands for layer normalization. This
architecture, which we call MultiSetMixer, is based on a mixer-based pooling operation for (i) updating hy-
peredges from its node’s representations, and (7i) generate and update hyperedge-dependent representations
of the nodes.

Proposition 4.5. The functions fyv_¢g, feyv and fy_y defined in MultiSetMizer|11H12 are permutation
invariant. Furthermore, these functions are universal approximators of multiset functions when the size of
the input multiset is finite.

4.4 Mini-batching

The motivation for introducing a new strategy to iterate over hypergraph datasets is twofold. First, current
HNN pipelines face scalability issues when processing datasets with a large number of nodes and hyper-
edges. This problem is particularly pronounced in architectures that allow for hyperedge-dependent node
representations, as each node must be represented multiple times. This scaling challenge becomes significant
as the number of nodes, hyperedges, and hyperedge sizes grow (see Table |8 in the Appendix for relevant
statistics). Second, pooling operations over large sets can lead to signal oversquashing, negatively impacting
the performance of HNNs that do not account for this issue (see Table , as demonstrated by the 20News-
groups dataset, where hyperedges have a median of 537 nodes per hyperedge (see Table E in the Appendix
for detailed statistics).

To address these issues, we propose sampling X mini-batches of a certain size B at each iteration in two steps.
At step 1, we sample B hyperedges from £. The hyperedge sampling over £ can be either uniform or weighted
(e.g. by taking into account hyperedge cardinalities). Then in step 2 L nodes are in turn sampled from each
sampled hyperedge e, padding the hyperedge with L — |e| special padding tokens if |e] < L —consisting of 0
vectors that can be easily discarded in some computations. Overall, the shape of the obtained mini-batch
X is Bx L.

Step 1 is particularly beneficial for hypergraph datasets with a large number of hyperedges, but it can be
skipped when the entire network fits into memory. In Sections and we demonstrate that step 2
(node mini-batching within a hyperedge) is useful for two key reasons: (i) pooling operations over large sets
may lead to signal oversquashing, while pooling over smaller sets helps mitigate this issue, and (ii) node
batching introduces an intriguing effect—what we refer to as connectivity-based distribution shift—which
offers a novel way to leverage connectivity to rebalance the training distribution. Therefore, it can still be
beneficial to use node mini-batching even when the entire hyperedge fits into memory.

When both step I and step 2 are employed, the memory required during the forward pass is B x L x d,
where d is the hidden dimension size. If only step 2 is used, the batch size becomes |€| x L x d, where |€] is
the total number of hyperedges in the hypernetwork. Finally, if no mini-batching is applied, the batch size
is |€] x maxeee |e] X d, where max.c¢ |e| denotes the size of the largest hyperedge. For a detailed empirical
analysis of memory utilization across different datasets and sampling schemes, see Section [5.3} For the
theoretical analysis of the proposed sampling scheme, refer to Appendix [F}
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5 Experimental Results

The questions that we raised in Section[[]have shaped our research, leading to a new definition of higher-order
homophily and unexplored architectural designs that can potentially fit better the properties of hypergraph
networks. In subsequent subsections, we set four questions that follow up from these fundamental inquiries
and can help contextualize the technical contributions of this paper.

Datasets and models. We use the same datasets used in (Chien et al. (2022), which includes Cora,
Citeseer, Pubmed, ModelNet40, NTU2012, 20Newsgroups, Mushroom, ZOO, CORA-CA, and DBLP-CA.
More information about datasets and corresponding statistics are in Appendix We also utilize the
benchmark implementation provided by [Chien et al.|(2022) to conduct the experiments with several models,
including AllDeepSets, AllSetTransformer, EDHNN, UniGCNII, CEGAT, CEGCN, HCHA, HNN, HNHN,
HyperGCN, HAN, and HAN mini-batching. Since the design of these architectures is primarily inspired by
the GNN literature, we refer to them as lifted architectures. Additionally, we consider vanilla MLP applied to
node features and a transformer architecture, as well as MultiSetMixer representing a baseline that employs
hyperedge-dependent node representations and a new MLP baseline leveraging Connectivity Batching (MLP
CB). We refer to Section for more details about all these architectures. All models are optimized using
15 splits with 2 model initializations, resulting in a total of 30 runs; see Appendix [D.] for further details.

5.1 How do the lifted models perform in comparison to hypergraph-specific models?

Our first experiment directly targets our fundamental Q2 by assessing the performance of lifted architectures
in comparison with those that leverage unique characteristics of hypergraph networks, such as hyperedge-
dependent node representations and hyperedge-based mini-batching.

Figure [3] shows the average rankings —across all models and datasets— of the top-5 best-performing models
for different training splits, exhibiting that those splits can impact the relative performance among models.
In the main body of this work, we focus our analysis on the 50% split results presented in Table while
the corresponding tables for other scenarios are provided in Appendix [E:4] Table [I] emphasizes MultiSet-
Mixer solid performance, obtaining the highest test accuracy on NTU2012, ModelNet40, and 20Newsgroups
datasets. Notably, MultiSetMixer and MLP CB share similar patterns, and both significantly outperform
all the other architectures on 20Newsgroups, which we further discuss in Section [5.3

In fact, the comparable performance among the rest of HNN models on this dataset suggests that existing
architectures can not account for the dataset connectivity. According to what we observed in the qualita-
tive homophily analysis performed in Section [3] 20Newsgroup is densely interconnected, making it highly
heterophilic as the MP evolves; we argue this presents a challenge for most of current HNNs architectures.
In contrast, CORA-CA exhibits a high degree of homophily within its hyperedges and shows the most sig-
nificant performance gap between HNNs and the baselines. A similar trend is observed for DBLP-CA (see

2Unless otherwise specified, all tables in the main body of the paper use a 50%/25%/25% split between training and testing.
The results are shown as Mean Accuracy Standard Deviation, with the best result highlighted in bold and shaded in grey, and
results within one standard deviation are displayed in blue-shaded boxes.

Table 1: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.

Model | Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
AllDeepSets 77.11 £ 1.00 70.67 £ 1.42 89.04 + 0.45 82.23 + 1.46 91.34 + 0.27 99.96 £ 0.05 86.49 + 1.86 96.70 + 0.25 81.19 + 0.49 89.10 £ 7.00 6.80
AllSetTransformer | 79.54 + 1.02 72.52 £ 0.88 88.74 + 0.51 84.43 + 1.14 91.61 + 0.19 99.95 + 0.05 88.22 + 1.42 98.00 + 0.12 81.59 + 0.59 91.03 + 7.31 3.25
UniGCNIT 78.46 + 1.14 73.05 + 1.48 88.07 & 0.47 83.92 + 1.02 91.56 + 0.18 99.89 + 0.07 88.24 + 1.56 97.84 + 0.16 81.16 + 0.49 89.61 + 8.09 4.75
EDHNN 80.74 + 1.00 7322+ 1.14 89.12 &+ 0.47 85.17 £ 1.02 91.94 + 0.23 99.94 &+ 0.11 88.04 & 1.65 97.70 + 0.19 81.64 + 0.49 89.49 £ 6.99 2.90
CEGAT 76.53 + 1.58 71.58 £+ 1.11 87.11 £ 0.49 77.50 £+ 1.51 88.74 £ 0.31 96.81 + 1.41 82.27 + 1.60 92.79 + 0.44 NA 44.62 £+ 9.18 12.11
CEGCN 77.03 + 1.31 70.87 + 1.19 87.01 £ 0.62 77.55 + 1.65 88.12 £ 0.25 94.91 + 0.44 80.90 + 1.74 90.04 + 0.47 NA 49.23 + 6.81 12.56
HCHA 79.53 + 1.33 72.57 £+ 1.06 86.97 + 0.55 3+ 1.12 91.21 + 0.28 98.94 + 0.54 86.60 + 1.96 94.50 + 0.33 80.75 + 0.53 89.23 + 6.81 7.85
HGNN 79.53 + 1.33 72.24 £ 1.08 86.97 + 0.55 83.45 + 1.22 91.26 + 0.26 98.94 + 0.54 86.71 + 1.48 94.50 + 0.33 80.75 + 0.52 89.23 & 6.81 7.95
HNHN 77.68 £+ 1.08 T3.47 £ 1.36 87.88 & 0.47 78.53 + 1.15 86.73 + 0.40 99.97 + 0.04 88.28 & 1.50 97.84 + 0.15 81.53 + 0.55 89.23 + 7.85 5.55
HyperGCN 74.78 + 1.11 66.06 + 1.58 82.32 + 0.62 7748 + 1.14 86.07 + 3.32 69.51 + 4.98 47.65 + 5.01 46.10 + 7.95 80.84 + 0.49 51.54 £+ 9.88 14.30
HAN 80.73 + 1.37 73.69 £ 0.95  86.34 + 0.61 84.19 + 0.81 91.10 + 0.20 91.33 + 0.91 83.78 + 1.75 93.85 + 0.33 79.67 £ 0.55 80.26 + 6.42 8.90
HAN minibatch 80.24 + 2.17 73.55 = 1.13 85.41 + 2.32 82.04 + 2.56 90.52 + 0.50 93.87 + 1.04 80.62 + 2.00 92.06 + 0.63 79.76 £ 0.56 70.39 £ 11.29 10.60
MultiSetMixer 78.06 £+ 1.24 71.85 £ 1.50 87.19 £ 0.53 82.74 £ 1.23 90.68 + 0.19 99.58 + 0.16 88.90 + 1.30 98.38 £ 0.21  88.57 + 1.96 88.08 & 8.04 6.20
MLP CB 74.06 £+ 1.26 71.93 £+ 1.53 85.83 & 0.51 74.39 £+ 1.40 84.91 + 0.44 99.93 £ 0.08 85.43 + 1.51 96.41 + 0.32 86.13 + 2.82 81.61 + 10.98 10.30
MLP 73.27 £+ 1.09 72.07 £+ 1.65 87.13 + 0.49 73.27 £+ 1.09 84.77 + 0.41 99.91 + 0.08 79.70 £ 1.56 95.31 + 0.28 80.93 + 0.59 85.13 & 6.90 11.50
Transformer 74.15 £ 1.17 71.82 £ 1.51 87.37 + 0.49 73.61 £ 1.55 85.26 % 0.38 99.95 £ 0.08 82.88 + 1.93 96.29 + 0.29 81.17 + 0.54 88.72 & 10.25 9.85
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Figure 3: Average rankings at different training percentages, with the overall average performance shown on
the right. The error bars indicate the standard deviation of the average rankings across multiple datasets.

node homophily plot in Appendix [G]). Please refer to Section for more experiments on the impact of
connectivity.

Finally, we highlight the strong overall performance of the non-inductive baselines (MLP, MLP CB) across
most datasets. Notably, HNN architectures significantly outperform them in only 3 out of 10 cases (Cora,
CORA-CA, DBLP-CA). This fact showcases that, so far, features are being more representative than con-
nectivity in most considered hypergraph datasets —a relevant insight for Q3.

5.2 When are HNNs exploiting the connectivity?

® ModelNet40 A DBLP-CA B CORA-CA v Citeseer + Cora 4 NTU2012 4 20Newsgroups ® Pubmed

= EDHNN . MultiSetMixer ) AllSetTransformer )
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Figure 4: Joint visualization of rank dependencies, showing Norm. Acc. versus A Homophily (Eq. [4|at step
t =1and p = 0.1) and CE Homophily (Wang et al., [2023). Norm. Acc. (Eq. is assessed for various
instances of model A (specified in column titles), with model B being MLP CB. Both axes represent rank
values, with lower values indicating better metrics. Arrows denote the rank shift in homophily between CE
homophily and A homophily for each dataset.

Motivated by the previous observation of the general results, in this section, we investigate when HNN
models actually take advantage of the inductive bias provided by the message-passing scheme. To do so,
we first propose a way to capture the influence of the bias in the downstream task performance —in an
attempt to decouple it from the impact of just the dataset features—, and then investigate if the datasets’
homophily scores are able to account for the resulting observations. We argue this study provides a valuable
contribution to questions Q2 and Q3.
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In order to quantitatively assess the impact of inductive bias, we compare the results of HNNs —i.e., model
A—, with those of another architecture that does not leverage the connectivity —i.e. a non-inductive baseline,
model B. Specifically, we measure the difference between the accuracy of model A (accy) and B (accp)
(Table [2| shows the computed differences considering MLP and MLP CB as baselines). The real-world
datasets employed in this study span diverse domains and, as depicted in Table[T] this implies considerable
variations in performance values across datasets. In order to mitigate such variability, we introduce the
following normalized accuracy relative to accg:

Norm. Acc. = (accq — acep)/(100 — acep). (14)

Table 2: Difference in Accuracy between Model A and Model B; they represent, respectively, models with
and without inductive bias.

Model A ‘ Model B ‘ Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO
AllDeepSets MLP 3.84 -1.40 1.91 8.96 6.57 0.05 6.79 1.39 0.26 3.97
MLP CB | 3.05 -1.26 3.21 7.84 6.43 3.13 1.06 0.29 -4.94 7.49

AllSet Transformer MLP 6.27 0.45 1.61 11.16 6.84 0.04 8.52 2.69 0.66 5.90
MLP CB | 548 0.59 2.91 10.04 6.70 3.12 2.79 1.59 -4.54 9.42

EDHNN MLP 7.47 1.15 1.99 11.90 717 0.03 8.34 2.39 0.71 4.36
MLP CB | 6.68 1.29 3.29 10.78 7.03 0.01 2.61 1.29 -4.49 7.88

MultiSet Mixer MLP 4.79 -0.22 0.06 9.47 5.91 -0.33 9.20 3.07 7.64 2.95
MLP CB | 4.00 -0.08 1.36 8.35 5.77 -0.35 3.47 1.97 2.44 6.47

Next, we are interested in assessing whether the homophily of the dataset can shed some light on the resulting
normalized accuracy measurements. To that end, we consider two different homophily measures: on the one
hand, our proposed A homophily between the two first steps of the MP (Eq with t =1 and © = 0.1). On
the other hand, Clique Expansion (CE) homophily, calculated over the clique expansion of the hypergraph
following the approach of|Wang et al.| (2023)). Figure illustrates the rank dependency of normalized accuracy
against these two homophily measures, with MLP CB serving as the strongest non-inductive baseline (as
indicated by Table . Additionally, we show the ideal correlation —performance directly proportional to
homophily— with the dashed diagonal, as well as the rank shift in homophily between the two homophily
measures through the arrows. The difference between EDHNN, MultiSetMixer, and AllSetTransformer lies
in the way message passing propagates information (see Section . Mushroom and Zoo datasets were
excluded due to Mushroom’s discriminatory node features and Zoo’s small hypernetwork size.

The comparison between CE homophily and A homophily reveals a notable trend, with A homophily consis-
tently aligning closer, on average, to the middle dashed line —indicating a higher positive correlation between
performance and A homophily level in comparison to CE homophily. Remarkably, across all architectures,
the highest normalized accuracy is consistently distributed across ModelNet40, DBLP-CA, and CORA-CA,
with A homophily ranking them as the top three accordingly. A striking shift in rankings is observed for
the Pubmed dataset, transitioning from the most homophilic under the CE homophily measure to the least
homophilic under A homophily. We associate this to the high percentage of isolated nodes (80.52%, see
Table : while CE homophily scores are largely influenced by them, our proposed measure ignores self-
connections. Additionally, the 20Newsgroup dataset occupies the last positions in both homophily ranks,
aligning with our quantitative analysis findings.

In summary, we show the applicability of A homophily by showing that it exhibits a positive correlation with
respect to the ability of exploiting the connectivity by HNN architectures, significantly stronger than the CE
homophily that is commonly used nowadays. Our findings underscore the crucial role of accurately expressing
homophily in hypergraph networks, entangling with the complexity in capturing higher-order dependencies.
Additionally, please see Appendix for the analysis on how parameter p impacts A homophily.

5.3 What is the impact of the mini-batch sampling?

Next, we examine the role of our proposed mini-batching sampling in explaining the general results shown
in Table [T} and investigate how it influences other models’ performance. These experiments provide valu-
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Figure 5: Class distribution shift induced by mini-batching: ‘Node’ represents the original node class distri-
bution, ‘Step I and 2’ the resulting one after sampling both hyperedges and nodes, and ‘Step 1’ when only
sampling hyperedges.

able insights on Q2. Please refer to Section for a deeper analysis of how hyperedge-dependent node
representations impact HNNs.

Table 3: Mini-batching experiment. Test accuracy in % averaged over 15 splits.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
AllSet Transformer (batched) | 74.34 £ 1.08 69.67 & 1.46 87.75 £ 0.30  75.75 + 1.46 86.06 £ 0.22 99.91 £ 0.05 87.55 4 0.86 96.42 £ 0.17 81.37 4 0.28 93.20 + 5.38 2.70
V| 77.88 £ 0.69 69.51 & 0.87 86.82 £ 0.33 83.12 + 0.89  90.45 + 0.28 99.95 + 0.04  87.64 £ 0.99 97.55 £ 0.17 81.23 + 0.31 90.00 + 4.43 2.40
MultiSetMixer 78.06 + 1.24 71.85 £+ 1.50 87.19 £+ 0.53 82.74 + 1.23 90.68 £ 0.19 99.58 £ 0.16 88.90 & 1.30 98.38 £ 0.21  88.57 £ 1.96 88.08 & 8.04 1.80
HAN i 80.24 £ 2.17 73.55 £ 1.13 8541 + 2.32 82.04 4 2.56 90.52 & 0.50 93.87 £ 1.04 80.62 4 2.00 92.06 £ 0.63 79.76 £ 0.56 70.39 4 11.29 3.10

Class distribution analysis. To evaluate and motivate the potential of the proposed mini-batching sam-
pling, we investigate the reason behind both (i) the superior performance of MultiSetMixer and MLP CB on
20NewsGroup, NTU2012, ModelNet40, and (7) their poor performance on Pubmed. Framing mini-batching
from the connectivity perspective presents a challenge that conceals significant potential for improvement
(Teney et al., 2023). It is important to note that connectivity, by definition, describes relationships among
the nodes, implying that some parts of the dataset might interconnect more densely, creating some sort of
hubs within the network. Thus, mini-batching might introduce unexpected skew in training distribution.
In particular, Figure [5] depicts the original class distribution of the dataset, and compares it to the skewed
distributions resulting from employing the corresponding steps of mini-batching (see Section. Note that,
when sampling both hyperedges and nodes (‘Step 1 and 2’), dominant classes 0 and 3 undergo undersampled,
contributing to a more balanced distribution in the case of 20Newsgroup. Conversely, for Pubmed, class 2 is
undersampled, while the predominant 1st class experiences oversampling, further skewing the distribution in
this dataset. This observation leads to the hypothesis that, in some cases, the sampling procedure produces
a natural shift that rebalances the class distributions, which in turn helps to improve the performance.

Application to other models. Furthermore, we explore the proposed mini-batch sampling procedure
with the AllSetTransformer and EDHNN models by just sampling hyperedges without additional hyperpa-
rameter optimization. From Table[3] we can observe a drop in performance for most of the datasets both for
AllSetTransformer and for EDHNN, but overall they in turn outperform the HAN (mini-batching) model.
This suggests the substantial potential of the proposed sampling procedure.

Scalability. To evaluate the scalability of the proposed mini-batching approach, we compare memory
utilization across the mid-sized datasets used in this study, as well as the large-scale Amazon dataset, which
consists of 100k hyperedges and 547k nodes. This comparison highlights the efficiency of our method when
applied to larger datasets. On Amazon, MultiSetMixer achieves a substantial improvement in memory
efficiency, reducing utilization by an order of magnitude compared to AllSetTransformer (from 19020MiB to
1232MiB) while achieving comparable performance (92.22 £+ 0.84 vs 93.22 £ 0.089). In contrast, the batched
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version of AllSetTransformer performs worse on the same dataset, achieving 82.634 +0.029, while consuming
around eight times more memory compared to MultiSetMixer.

Table 4: Memory usage comparison across datasets.

Dataset ‘ Pubmed DBLP CA NTU2012 ModelNet40 20newsW100  Amazon
AllSetTransformer 2536MiB 2306MiB 1206MiB 2426MiB 2352MiB 19020MiB
AllSetTransformer (batched) 2652MiB 1940MiB 1138MiB 2038MiB 4224MiB 8022MiB
MultiSetMixer (no batching) | 12480MiB  17850MiB  1576MiB 2728MiB 3039MiB OOM
MultiSetMixer (batched) 1290MiB 2364MiB 1174MiB 1280MiB 1112MiB 1232MiB

5.4 How do connectivity changes affect performance?

In this section, we extensively explore the structure of datasets and assess model performance by manipulating
the original connectivity of the datasets. The extent to which the performance of the models is affected by
changes in connectivity provides valuable information both on the properties of the datasets and on the
considered architectures.

We design two different experimental approaches, aiming to systematically modify the original connectiv-
ity of datasets. The first experiment tests the performance when some hyperedges are removed following
different drop connectivity strategies. The second one examines the models performance by introducing
two preprocessing strategies on the hypergraph connectivity. Our findings below shed some light on the
fundamental questions Q1, Q2 and Q3.

5.4.1 Reducing connectivity

This experiment aims to investigate the significance of connectivity information in datasets and the extent
to which it influences the performance of the models. We divide this experiment into two parts: (i) drop
connectivity and (ii) connectivity rewiring. In the first part of the experiment, we employ three strategies to
introduce variations in the initial dataset’s connectivity. The first two strategies involve ordering hyperedges
based on their lengths in ascending order. In the first approach, referred to as trimming, we remove the
initial % of ordered hyperedges, for a certain fixed fraction z. The second approach, referred to as retention,
involves keeping the first % of hyperedges and discarding the remaining 100 —x%. The last strategy instead
involves randomly dropping % of hyperedges from the dataset, and it is referred to as random drop.

Results. The results are shown in Table[5] and they indicate that connectivity minimally impacts CEGCN
and AllSetTransformer for the Citeseer and Pubmed datasets. On the other hand, MultiSetMixer performs
better at the trimming 25% setting, although the achieved performance is on par with MLP, as reported in
Table[l] This indicates that the proposed model is negatively affected by the distribution shift. Conversely,
for the Pubmed dataset, we observe that MultiSetMixer’s performance improves, likely due to the reduced
impact of the distribution shift in this case. Notably, CEGCN shows improvements on 7 out of 9 datasets,
with the most significant gains seen in the ZOO dataset, where performance nearly doubles. Another
interesting pattern is observed in the Cora, CORA-CA, and DBLP-CA datasets, where retaining only 25%
of the highest relationships (retention 25%) consistently results in better performance compared to retaining
50% or 75%. This outcome is surprising, as at the 25% level, only a small fraction of the higher-order
relationships is preserved. In contrast, the trimming strategy shows the opposite trend, with performance
declining as more higher-order relationships are removed. This phenomenon remains consistent across all
models. Finally, when hyperedges are removed randomly, the performance consistently degrades as the
percentage of removed hyperedges increases.
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Table 5: Drop connectivity. Test accuracy in % averaged over 15 splits.

Model | Type Cora Citeser Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNetd)  20Newsgroups 700 avg. ranking
Original 77.11 + 1.00 70.67 + 1.42 89.04 + 0.45 82.23 + 1.46 91.34 + 0.27 99.96 £ 0.05 86.49 + 1.86 96.70 £+ 0.25 81.19 £ 0.49 89.10 £ 7.00 2.85
Random 25% | 76.65+1.03  70.83 £ 170 8887+ 047  80.39 = 151  90.36 £028 9991 +0.09 | 8549+ 174  96.85+026  8LI5+052  88.72 + 5.97 4.05
. Random 50% | 75.66 +1.18 | 7070+ 177 8886+ 0.41  77.97 £ 118 8936+ 0.25 | 99.93+£0.05 8442+ 175  96.88 £ 0.27 8121 +0.39  84.49 £ 6.66 4.90
% | Random 75% | 74.96 + 1.08 = 70.46 4 1.66  88.76 + 045  76.09+ 127  87.68+0.30 9953 +£0.3 8170 £ 1.57 | 96.84+ 027 8131+ 050 8115+ 6.8 7.50
%2 | Retention 25% | 76.87 £0.98  70.96 = 1.82 8894 £ 048  S163£1.26 9093+ 0.8 9983+ 009 | S513£205 9685026  81.09+£046 | 86.67 & 7.26 3.65
£ | Retention 50% | 7580 £ 1.06 70444163 88844040  S0.50 £ 135 90.55 £ 021  99.91£009 8225 +£221  9642+£0.23  S8104£045 6961 +£9.28 6.75
= | Retention 75% | 7552+ 149 | 70364+ 171 8878 £047 7950+ 109 8943+ 021 | 99.97 £ 0.04 78854193 9644 +£027 [ SLI9E045 7449 £ 9.97 6.85
Trimming 25% 74.12 + 1.30 70.95 + 1.92 88.77 £+ 0.45 T4.87 + 1.32 86.39 £+ 0.31 99.85 £ 0.15 T7AT + 1.67 96.18 £ 0.28 81.61 + 0.47 89.23 + 8.11 7.10
Trimming 50% 75.24 £ 0.99 70.42 + 1.62 88.87 £ 0.46 75.89 & 1.53 87.14 £ 0.31 99.93 £ 0.06 82.76 £ 1.61 96.75 £+ 0.23 81.47 £+ 0.48 86.28 £+ 8.73 6.15
Trimming 75% | 76.03 + 1.39 | 70.86 + 148  88.83 £048 7750+ 1.52  88.64 =027 | 99.93+£009 8474+ 181  9682+020 8120 £048  86.03 + 848 5.20
Original 79.54 + 1.02 7252 £ 0.88 88.74 + 0.51 84.43 + 1.14 91.61 £ 0.19  99.95 + 005  88.22 & 1.42 98.00 + 0.12  81.59 + 0.50  91.03 + 7.31 1.95
.| Random25% | 7914099 72.75 & 1.14  88.67 £ 0.47  82.36 £ 1.38  90.61 £ 0.20  99.94+0.09  87.50+ 136  97.98 £ 0.7 81.70 &+ 0.52  89.87 + 7.66 3.10
£ | Random50% | 77.77+ 134 | 72214125 8850+ 045  79.73 £ 158 80.46 +£0.27 | 99.96+0.04  87.34+ 155  97.83+0.17 | 8155+ 0.66  89.49 + 6.30 5.85
5 | Random 75% | 76.92+1.20 | 72404+ 122 8854+ 047 7788+ 174 8T73+£0.32 9976+ 0.15 8631+ 134 97.52+020 | 8146 +£0.62  87.69 + 6.09 8.10
Z | Retention 25% | 7919 £ 111 7249 + 086 8873 +£0.40 8358 £ 130  9LI8+0.17 | 99.93£0.09  S87.21 £ 158 | 97.82+ 0.7 = 8163 +£048  86.92 + 7.18 4.10
E Retention 50% 78.16 = 0.98 72.55 £ 1.13 88.70 £ 0.37 82.90 £ 1.15 90.80 £ 0.22 99.89 £ 0.18 86.67 £ 1.64 97.36 £ 0.21 81.61 £ 0.49 88.08 £ 7.51 5.20
% | Retention 75% | 77.38 £ 1.35 = 7243 +£098 8871 +0.39 8107+ 120  89.83+£025  99.97 £ 0.04 8558+ 1.70 9727 +£022 8158+ 048 8897 = 6.91 5.80
Z | Trimming 25% | 75.83 + 1.31 7239+ 1.50 8840+ 045 7651 +£135  8638+0.32  99.84+ 0.3 | 8688 £1.66  97.10+0.24  8L55+0.55 93.08 £ 7.79 8.05
= | Trimming 50% | 7737+ 117 | 72324 1.30 8849 £040 7741+ 173 87.03+£027 9991 £0.12 8686+ 1.53  97.86 + 0.21 8145 + 0.50  89.74 + 8.53 7.50
Trimming 75% | 7815+ 111 | 7267+ 1.00 8848 +£0.39 7891+ 154 8855+ 0.26  99.92+0.09  87.68+ 156  97.00£023 8141 +061  91.03 £ .17 5.35
Original 7846 + 114 73.05 + 1.48  88.07 + 047  83.92 + 1.02 91.56 & 0.18  99.80 £ 0.07 88.24 + 1.56  97.84 + 0.16 8116+ 049  89.61 + 8.09 2.25
Random 25% | 78314129 7291+ 124 8809+ 047 8242+ 1.05  90.86 +£0.22 = 99.85+0.10  87.82+ 146  97.87 £ 0.19  SLOS £ 052  89.10 + 7.76 3.55
Random 50% 77.36 £ 1.34 72.54 + 1.40 87.94 £ 0.52 80.17 £ 1.16 89.96 £ 0.24 99.85 £+ 0.12 87.42 + 1.44 97.77 £ 0.15 81.06 £ 0.55 87.31 £+ 8.21 6.10
Random 75% | 76.70 =135 = 7223+ 181 8791 +£0.50 77.75+ 131  8854+025 9987 +0.09 8756+ 1.56 9749 £ 0.8 8106+ 054  87.05 = 6.50 7.30
Retention 25% | 78.80 % 0.92  72.67 + 1.24  88.10 + 0.51 ~ 8368 £096 = 91.26+ 020 = 99.87 £0.06  87.56 + 143 9776 £ 0.6 81.01+ 049 | 8718+ 7.58 4.05
Retention 50% | 77.18 + 1.32 | 72.51 4+ 1.54  88.02+ 047 8281+ 132 9099 +£0.17 = 9983 +£0.08  87.16+ 1.33  97.20 £ 0.17  80.82+ 049 | 86.15 + 8.49 7.15
5 | Retention 75% | 76.63 £ 1.23 = 72.64 4 115 8807+ 052  81.33+ 127 9017+ 020 9983 +£0.14  86.71 4 1.33  97.04 £ 016  80.87 + 045 | 87.4d + 7.49 7.20
Trimming 25% | 75.34 + 1.26 | 7268+ 157  87.81 £ 047 7618+ 1.19 8742 +£0.30  99.87+0.10 8743+ 153  97.00+ 0.7  81.50 & 0.47 92.95 + 8.15 6.70
Trimming 50% | 76.75 + 1.10 | 7230+ 1.64  87.87 £ 048  77.19+ 142 88.00 £ 0.27  99.90 + 0.10  87.47 + 156 9771 £0.18 81224054  90.26 + 7.40 6.15
Trimming 75% | 77.27 + 1.08 | 7269+ 131 87.93 £ 052 7868 +£0096  89.26+0.28 | 99.84+0.10  87.93+ 169 9786+ 0.16 8122+ 045  90.64 £ 6.90 455
Original 80.74 £+ 1.00 73.22 + 1.14 89.12 + 0.47 85.17 &+ 1.02 91.94 + 0.23 99.94 £ 0.11 88.04 + 1.65 97.70 £+ 0.19 81.64 + 0.49 89.49 + 6.99 1.30
Random 25% | 79.884 117 72.03+ 159 | 89.02+0.33  80.54 = 1.37  89.97+028 9964+ 016 8537+ 151  97.19+£027 7870+ 049  89.23 + 7.03 3.75
Random 50% | 7845+ 139 | 7221+ 1.60 83814037 7835+ 152  S877+0.25  99.82+ 016 8419+ 167  97.02+0.24  TA37 059 | 87.69 £ 6.18 6.00
~ | Random 75% | 77.55+1.60 | 72.33 4161 8804+ 035  77.20+ 120  87.41 4024 9945+ 020 8272+ 143 96444022 6937+ 0.61  80.13 +6.78 7.85
Z | Retention 25% | 7979 £ 1.31 7197 + 1.30 | 89.09 + 044 8157+ 134 9037+ 022 9993 4009 8449 £ 151  97.03+0.22 7843+ 0.58 | 8628+ 595 1.00
Z | Retention 50% | 7871 + 144 7226 £ 144 8897+ 0.36  80.26 + 128 89.91 £ 027 | 9997006 8212+ 191  96.40 £ 028  73.97 + 0. 69.10 + 7.86 5.90
= Retention 75% 78.37 + 1.45 72.60 + 1.38 88.94 + 0.41 78.86 + 1.14 88.82 + 0.18 99.99 + 0.03 81.01 + 1.69 96.18 + 0. 67.38 £ 0.76 73.97 + 6.44
Trimming 25% 77.03 £ 1. 72.71 £ 1.45 88.63 £ 0.52 77.34 £ 1.46 87.00 £ 0.25 98.75 £ 0.46 82.00 £ 1.66 95.87 £ 0.30 78.58 + 0.54 86.15 £+ 9.07
Trimming 50% 78.42 + 1.33 72.49 + 1.30 88.80 + 0.38 78.10 + 1.48 87.48 £ 0.26 99.74 £ 0.14 82.92 £ 1.35 96.83 £ 0.25 77.78 + 0.62 83.59 £ 10.00
Trimming 75% | 7910 + 1.30 | 7218+ 1.34  88.82+£ 048 7868+ 1.32 8844028 9986+ 0.11 8504+ 150  96.96 £ 028 7870 +£0.64  89.74 £ 7.78
Original 76.53 = 1.58 7158 £ LIl 87.11+049 | 77.50 + 151  88.74 £ 0.31 9681 + 141 8227+ 1.60  92.79 + 0.44 NA 44.62 + 9.18
Random 25% | 75884+ 153  7L81+1.05  87.03+ 047  78.00 & 1.68  87.58 +0.35  94.56 +2.09  82.03+ 147  93.14 + 034 NA 46.03 + 9.01
Random 50% | 75.34 4+ 1.52 7186+ 122 8691+ 048 = 7692+ 1.00  86.81 + 0. 95.14 + 200 8173 + 144 NA 47.69 + 8.78
| Random 75% | 7526+ 145 7217+ 159  87.02+ 047 | 76.37 + 126  85.79 + 0. 96.90 + 140 82.66 + 1.39 : NA 50.87 + 8.55
;E Retention 25% 75.96 + 1.16 71.39 + 1.33 87.13 £ 0.50 77.35 £ 1.52 88.48 £ 0.30 5.65 80.39 £ 1.53 93.20 £ 0.45 NA 45.26 + 9.40
§_‘~ Retention 50% 75.36 + 1.30 71.56 + 1.27 87.16 £ 0.53 77.35 £ 1.52 88.14 £ 0.31 96.73 £ 1.59 80.56 £ 2.16 93.86 £+ 0.41 NA 45.38 £ 9.97
O | Retention 75% | 75.02+ 1.64 7206+ 141  87.22 £ 048 7720+ 147  87.54 028 9749+ 089 8182+ 1.23  94.94 + 0.29 NA 45.38 + 9.22
Trimming 25% | 7540 + 145  72.67 + 1.76  87.68 = 0.52  76.14 + 1.10 8532+ 042 | 9972 £0.10  84.94 £ 1.57 9442 + 0.33 NA 89.23 + 7.38
Trimming 50% | 75.90 + 148 7215+ 1.62 8741 £051  76.09 + 1.65  85.60 £ 0.40  99.80 & 0.12  82.04 + 1.32  93.22 + 038 NA 67.05 + 7.87
Trimming 75% | 7619 + 1.68  7L82+ 132  87.03+ 056 7604+ 0095 8618 +£0.38  99.31+0.24  SL74+ 148 9279 + 033 NA 53.33 + 6.60
Original 77.03 + 1.31 70.87 + 1.19 87.01 £ 0.62 77.55 + 1.65 88.12 + 0.25 94.91 + 0.44 80.90 + 1.74 90.04 £+ 0.47 NA 49.23 + 6.81
Random 25% 76.08 + 1.55 71.35 + 1.44 86.89 £ 0.59 76.51 + 1.53 87.01 + 0.39 93.11 £ 0.46 80.68 £ 1.86 ] + 0.46 NA 49.74 + 6.22
Random 50% 75.55 + 1.63 71.42 + 1.60 86.70 £+ 0.48 75.27 £ 1.22 86.24 £ 0., 93.28 £ 0.61 80.63 £ 1.78 90.69 £ 0.54 NA 56.92 £ 7.24
» | Random 75% | 75.31+1.62 | TL73+190 8697 £051 7453+ 156 85.36+0.26 9301+ 045 8056 £ 1.76 | 9191 % 0.54 NA 63.20 + 5.50
C | Retention 25% | 7612 £ 1.58  70.87 + 142 8694+ 056 7698 £ 1.53  87.00£0.20 94.94 £ 048 7920 £ 142 90.59 = 0.59 NA 49.87 + 7.59
2 | Retention 50% | 7543 £1.28 70834+ 152  86.95+0.54  76.87+ 149 8758 +£0.28 9497 +£040 7853+ 190 90.09 + 0.56 NA 45.77 + 6.88
© | Retention 75% | 75.53 + 1.25 | TL724+ 142 8711+ 053 7636+ 142 87.03+£0.28 9474+ 039  79.82+ 141  92.29 + 0.46 NA 40.38 + 5.42
Trimming 25% | 75.58 + 1.56  72.26 £ 1.52 87.36 & 0.51 7481+ 1.31 8497 +0.31  99.60 + 0.11 83.10 £ 1.69  91.85 + 0.42 NA 87.69 + 7.31
Trimming 50% | 76.57 £ 147 7181+ 144  87.07£0.55 7466 £ 1.68  85.24 + 0. 99.54 + 018 80.72+ 164 90.64 + 0.54 NA 71.28 + 6.60
Trimming 75% 76.53 + 1.50 71.45 £+ 1.45 86.75 £ 0.54 74.56 + 1.32 85.56 £ 0.33 99.14 £ 0.23 80.38 £ 1.91 90.06 £ 0.37 NA 58.46 + 7.17
Original 79.53 + 1.33 7257 = 1.06  86.97 £ 0.55 83.53 + 1.12 91.21 &+ 0.28 9804+ 0.54  86.60 = 1.96 9450 £ 0.33  80.75 £ 0.53  80.23 = 6.81
Random 25% | 78.74+130 7233+ 128 8684 +0.56 8193+ 134  90.09+0.35 9855+ 055 | 85.94+176 9478+ 028  80.16 = 0.46 | 89.10 £ 6.71
Random 50% | 77.65 % 146 = 7211+ 142 8667+ 048 7923 + 141  88.88+£0.35 9861+ 048 8532+ 175 9517+ 028  79.68+0.50 | 87.56 + 6.97
Random 75% | 76.56 + 1.60 = 7223+ 133  86.72+ 056 7711+ 1.28 98.50 + 0.76 | 8488+ 144  95.57 £ 0.34 7949 + 043 8218 + 6.58
T | Retention 25% | 79.09 £ 1.25 7229+ 117  86.95+ 052  83.06 £ 1.09 98.82 + 0.50 | 85.56 + 1.66 80.27 + 044 86.03 + 5.20
S | Retention 50% | 77.77 4138 | 72204120 86824048 8216+ 127 90174029  98.22+028 | 8480+ 179 : 79.96 £ 044 75.77 + 6.86
Retention 75% 77.05 + 1.53 72.37 £ 1.20 86.79 £ 0.47 80.79 £ 0.95 88.97 + 0.24 97.62 £ 0.30 84.35 + 1.65 95.21 £ 0.30 79.40 + 0.52 84.36 + 6.77
Trimming 25% 75.68 + 1.21 72.15 £ 1.72 86.83 £+ 0.47 75.94 £ 1.35 85.85 £ 0.40 99.87 + 0.11 85.60 £+ 1.92 95.02 £ 0.26 80.66 £ 0.56 91.92 + 7.10
Trimming 50% | 77.76 + 1.28 | 7210+ 1.49  86.96 £ 048 7726+ 1.17 8657 +0.36 | 99.84 0.1 8458+ 1.37 9473028  80.18+£0.60  83.08+ 872
Trimming 75% | 7838+ 1.80 7222+ 112 86.81 £ 053 7882+ 095  8%.09+027 9973 +£0.18 | 8605+ 1.60 9461027  80.02+ 057 | 89.36+ 8.49
Original 79.53 + 1.33 7224 + 1.08  86.97 + 0.55 83.45 + 1.22 91.26 £ 0.26  98.94 + 054  86.71 & 1.48 9450 £ 0.33  80.75 + 0.52  89.23 + 6.81
Random 25% | 78744130 7215+ 136 8684+ 056  81.94 + 1.31 98.55 + 0.55 | 85824165 9478+ 028  80.16 + 043 | 89.10 £ 6.71
Random 50% | 77.65+ 146 = 7220+ 1.62  86.67 £ 048  79.20 + 148 98.61 + 048 | 8550+ 149 9517 +£028  79.68 £ 0.50 | 87.56 + 6.97
: Random 75% 76.56 + 1.60 72.16 + 1.56 86.72 £ 0.56 77.03 £ 1.37 98.59 £ 0.76 85.12 £ 1.27 95.57 + 0.34 79.50 + 0.42 82.18 £ 6.58
; Retention 25% 79.09 + 1.25 72.13 £ 1.17 86.95 £ 0.52 83.11 £+ 1.09 98.82 £ 0.50 85.33 £+ 1.52 94.73 £ 0.34 80 + 0.44 86.03 £ 5.20
S| Retention 50% | 77.77+ 138 | 7220132 8682048 8220129 0021 £0.27 9822028 SASLE 177 9454022 TO.03E046 7577+ 636
Retention 75% | 77.05+ 153  72.35 + 1.40  86.79 = 0.47  80.88 £ 093  89.02+0.23  97.62+030  8419+149 9521 +0.30  79.36 =054  84.36 + 6.77
Trimming 25% | 75.68 + 1.21 7191 + 1.61  86.83+ 047 7573+ 144 8578+ 041  99.87 & 0.11 | 8580 £ 167 95.02+0.26 | 80.66 £ 0.56  91.92 + 7.10
Trimming 50% | 77.76 + 1.28 | 7L91 £ 150  86.96 + 0.48  77.20 + 118 99.84 + 011 8467+ 143 9473+ 028 8018+ 0.60  83.08 + 8.72
Trimming 75% | 7838 £ 130 7207+ 125 8681 £0.53  78.78 + 1.04 99.73 + 0.18 | 86.00£ 155 = 9461 +£027  80.02 £ 0.57 | 89.36 % 8.49
Original 74.78 + 1.11 66.06 + 1.58 82.32 + 0.62 77.48 + 1.14  86.07 + 3.32 69.51 £+ 4.98 46.10 £ 7.95 80.84 + 0.49 51.54 + 9.88
Random 25% 0 £+ 1.76 .71 £ 1.62 68.80 £ 0.62 55.31 £ 1.83 81.18 £ 0.39 69.61 + 4.77 4778 £ 7. 77.50 & 0.54 51.41 + 9.82
Random 50% 33.75 £ 2.58 .94 £ 1.72 69.37 £ 0.59 40.11 £ 1.97 67.36 £ 2.94 67.59 + 6.63 48.12 £ 5.98 71.74 +£ 0.58 51.67 + 9.40
% Random 75% | 42.42+251 4931+ 185  70.99£0.65  37.25+194 5033+ 0.74 6601 £815 4531 £3.01  49.08+252 6276 +0.73 | 5192 +9.02
G | Retention 25% | 3756 £1.65 3587 £1.80 6873 £0.53 63644122 | 84264032 69.61 £ 481 6133 +263 7236 £339 7924045 554 £ 884
€ | Retention 50% | 34.87 £2.14  37.98+ 1.70  69.04 + 053 5645+ 1.70  77.98 £0.36 = 69.58 £4.75  76.59 £ 260  81.69 + 1.75  75.60 + 0.57 | 5154 + 945
Z | Retention 75% | 36.71+1.95 4439 +£1.69  69.98 £0.52 4500 £2.09  63.78 £ 3.04 | 69.20 £ 516  77.44 £3.62 84.44 &+ 2.23  67.99 £ 0.51  52.18 + 8.61
Trimming 25% | 50.50 + 1.72 5515+ 157 7416 £ 0.66 5 ¢ 68.13 52.37 + 141 79.05 £ 2.74 4 730340 46.67 + 21.96
Trimming 50% .20 £ 2.74 44.47 £ 1. 71.35 + 0.58 39.84 £ 2.35 55.53 57 £ 7.40 5 + 1.81 + 3.52 68.07 £ 1.26 51.03 + 10.20 6.70
Trimming 75% 34.73 £ 1.52 36.60 £ 1.89 69.59 £ 0.54 37.81 £ 1.86 61.89 61.73 £ 3.19 65.10 £ 2.77 73.05 £ 1.78 73.42 +£ 0.63 50.90 + 11.14 7.00
Original 78.06 + 1.24 7185+ 150  87.19+0.53 82.74 + 1.23  90.68 = 0.19 9958+ 0.16  88.90 + 1.30 98.38 = 0.21 88.57 £ 1.96  88.08 + 8.04 2.65
Random 25% | 77.73 4124 7173+ 173 8698+ 1.02 8114+ 119 8974+ 021  99.42+030 | 88.00+125 97.83+0.20  80.84 + 1.56 | 88.46 + 7.00 475
Random 50% | 76.76 + 1.28 = 7169+ 175  87.29+0.63 7832+ 120 8855+ 031 9943+ 035  86.68+ 155 0746+ 022  77.28 +1.16 | 86.33 £ 7.05 6.40
Random 75% | 76.06 + 1.28 | 7211+ 1.81 8731 +£051 7654 + 141 8632 +£0.33 9942+ 048 8550+ 1.91 9689+ 026 7735+ 0.65 | 86.28 + 8.14 7.25
Retention 25% | 77.88 4 113 7133+ 143  86.86 + 0.96 | 82274 140 90.30 + 0.26 74008 8724+ 176 97.824+0.27 | STI2E 136 86.77 + 8.32 140
Retention 50% 76.86 + 1.20 71.49 + 1.76 87.02 £ 0.99 81.15 + 1.06 89.95 + 0.24 99.56 + 0.30 86.11 + 1.93 96.88 £+ 0.27 85.15 £ 1.42 89.12 + 7.59 5.10
= Retention 75% 76.29 + 1.62 71.23 + 2.00 87.16 + 0.77 79.59 + 1.05 88.75 £ 0.25 98.84 £ 1.00 85.16 £ 1.35 96.76 £ 0.32 83.87 £ 1.27 88.80 £+ 5.97 7.00
Z | Trimming 25% | 75.07 £ 144 7241 £ 1.61  ST.19+0.56  75.84 £ 1.35  85.86+£ 031  99.95 £ 0.07 8461+ 147  96.68 £ 025 7929+ 0.55  88.85 +8.23
Trimming 50% | 7634 + 1.33 | 7217+ 1.46  87.42 £ 0.50 7697+ 1.50  86.46 £ 0.37  99.75+0.13 8529+ 204 9747026 7442+ 068 8692+ 824 5.70
Trimming 75% | 77114 137 7L76 £ 156  87.35+0.56  T7.80 £ 094 8816+ 025 9959+ 0.20 8719+ 158 9T73+£021  67.00+ 1.22 | 88.43 & 8.07 5.20

14



Published in Transactions on Machine Learning Research (02/2025)

Table 6: Rewiring connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
Label Based 82.24 + 1.12 75.65 £ 1.57 90.49 £+ 0.40 91.12 £ 0.92 96.59 £ 0.17 99.96 + 0.04 93.13 £ 1.29 99.52 & 0.11 99.79 £ 0.13 91.54 + 7.24 1.05
AllDeepSets k-means 7520 £ 1.11 70.87 + 1.54 88.96 + 0.48 79.59 + 1.42 89.75 + 0.25 99.94 + 0.09 84.23 + 1.50 97.17 £ 0.13 81.18 + 0.54 86.92 + 7.73 2.80
Original 77.11 £ 1.00 70.67 + 1.42 89.04 + 0.45 82.23 + 1.46 91.34 + 0.27 99.96 + 0.05 86.49 + 1.86 96.70 + 0.25 81.19 + 0.49 89.10 + 7.00 2.15
Label Based 83.43 £ 1.36 76.45 £ 1.43 90.19 £ 0.42 91.71 £ 0.89 96.75 £ 0.16 99.96 = 0.05 94.81 & 1.04 99.68 £ 0.09 99.93 £ 0.03 94.10 + 6.91 1.05
AllSetTransformer k-means 77.14 £ 1.46 72.83 £ 1.07 88.60 £ 0.41 81.92 + 1.35 89.79 + 0.30 99.96 £ 0.06 87.95 + 1.28 97.29 £ 0.20 81.58 & 0.55 88.72 + 7.69 2.75
Original 79.54 £ 1.02 72.52 + 0.88 88.74 £ 0.51 84.43 + 1.14 91.61 + 0.19 99.95 + 0.05 88.22 + 1.42 98.00 £ 0.12 81.59 + 0.59 91.03 + 7.31 2.20
Label ed 82.12 + 1.11 75.23 + 1.64 89.18 = 0.50 89.80 £ 0.95 94.78 £ 0.13 99.93 + 0.07 92.87 £+ 1.32 99.31 & 0.10 99.70 £ 0.10 94.74 + 6.35 1.00
UniGCNIT k- S 76.49 + 1.01 72.73 + 1.50 88.02 + 0.48 81.13 + 1.41 90.13 + 0.26 99.88 + 0.07 88.05 + 1.78 97.10 £ 0.21 81.06 + 0.48 89.23 + 7.52 3.00
Original 78.46 £ 1.14 73.05 + 1.48 88.07 + 0.47 83.92 + 1.02 91.56 + 0.18 99.89 + 0.07 88.24 + 1.56 97.84 +£ 0.16 81.16 + 0.49 89.61 + 8.09 2.00
Label Based 84.51 £ 1.23 76.76 £ 1.51 90.63 £ 0.53 92.28 £ 0.86 97.35 + 0.15 99.96 = 0.09 93.64 & 1.12 99.59 & 0.09 99.88 £ 0.08 92.44 £ 8.72 1.00
EDHNN k-means 78.43 £ 1.08 7321 £ 1.25 88.98 + 0.43 82.99 + 1.33 90.45 + 0.25 99.94 + 0.08 86.91 4 1.51 96.83 + 0.16 81.34 4+ 0.55 86.54 + 7.68 2.95
Original 80.74 £ 1.00 73.22 4+ 1.14 89.12 £ 0.47 85.17 + 1.02 91.94 + 0.23 99.94 £ 0.11 88.04 + 1.65 97.70 £ 0.19 81.64 + 0.49 89.49 + 6.99 2.05
Label Based 83.05 = 1.08 77.82 £ 1.59 90.25 £+ 0.39 91.42 + 0.88 96.25 £ 0.13 99.91 &+ 0.07 94.23 £ 0.77 99.26 + 0.14 OOM 93.85 + 7.39 1.00
CEGAT k-means 75.45 + 1.54 7257 + 1.12 87.32 + 0.47 7711 £+ 1.51 87.27 +0.29 97.66 + 0.72 85.48 + 1.66 96.39 + 0.26 OOM 68.08 + 8.28 2.33
Original 76.53 = 1.58 71.58 + 1.11 87.11 + 0.49 77.50 + 1.51 88.74 + 0.31 96.81 + 1.41 82.27 + 1.60 92.79 + 0.44 OOM 44.62 £ 9.18 2.67
Label Based 83.70 £ 1.02 77.50 £ 1.53 90.08 £ 0.42 91.28 £ 0.97 96.68 &= 0.14 99.95 & 0.05 94.03 & 1.24 99.30 £ 0.14 OOM 95.00 + 7.08 1.00
CEGCN k-means 75.89 £+ 1.53 72.07 + 1.18 87.13 +£ 0.51 76.43 £ 1.41 86.76 + 0.24 94.84 £ 0.47 85.34 + 1.71 95.77 £ 0.31 OOM 73.72 £ 7.89 2.44
Original 77.03 + 1.31 70.87 + 1.19 87.01 + 0.62 77.55 + 1.65 88.12 + 0.25 94.91 + 0.44 80.90 + 1.74 90.04 £+ 0.47 OOM 49.23 £ 6.81 2.56
Label Based 84.06 = 1.08 77.12 £ 1.37 88.81 £ 0.43 92.77 £ 0.73 96.70 £ 0.12 99.96 = 0.06 95.21 £ 1.27 99.67 &= 0.09 99.93 £ 0.04 94.61 * 6.97 1.00
HCHA k-means T7.51 £ 1.41 72.62 + 1.33 86.89 + 0.48 81.19 + 1.31 89.42 +0.29 99.56 + 0.27 87.62 + 1.33 96.98 = 0.15 80.58 & 0.57 84.10 + 9.83 2.60
Original 79.53 £ 1.33 72.57 + 1.06 86.97 + 0.55 83.53 + 1.12 91.21 + 0.28 98.94 + 0.54 86.60 + 1.96 94.50 = 0.33 80.75 + 0.53 89.23 + 6.81 2.40
Label Based 84.06 £ 1.08 77.11 £ 1.47 88.81 £ 0.43 92.86 £ 0.65 96.70 = 0.11  99.96 = 0.06 95.34 & 1.07 99.67 & 0.09 99.93 £ 0.04 94.61 £ 6.97 1.00
HGNN k-means 77.51 £ 1.41 7241 + 1.55 86.89 + 0.48 81.19 + 1.38 89.42 + 0.27 99.56 + 0.27 87.52 4+ 1.51 96.98 + 0.15 80.58 + 0.57 84.10 + 9.83 2.60
Original 79.53 £ 1.33 7224 + 1.08 86.97 + 0.55 83.45 4+ 1.22 91.26 + 0.26 98.94 + 0.54 86.71 4 1.48 94.50 + 0.33 80.75 4+ 0.52 89.23 + 6.81 2.40
Label 2 72.88 £ 1.23 66.10 = 1.79 82.18 + 0.62 76.20 + 1.50 84.86 + 0.39 69.68 = 4.90 43.37 + 4.65 47.19 £ 6.42 82.14 £+ 0.43 53.97 + 8.24 1.50
HyperGCN k- S 45.7¢ 97 49.96 + 1.68 77.97 £ 0.75 47.63 £ 1.36 40.88 + 4.04 69.53 £ 4.91 3221 4 2.57 41.96 + 2.40 80.85 4 0.46 53.46 + 8.65 2.70
Original 74.78 £ 1.11 66.06 + 1.58 82.32 + 0.62 77.48 + 1.14 86.07 £ 3.32 69.51 + 4.98 47.65 + 5.01 46.10 £ 7.95 80.84 + 0.49 51.54 + 9.88 1.80
Label Based 83.31 £ 1.09 74.98 £ 1.45 89.42 £ 0.56 92.34 £ 1.09 97.37 £ 0.20 99.98 &+ 0.03 93.89 & 1.34 99.49 £ 0.10 99.87 £ 0.06 91.28 £ 7.35 1.00
MultiSet Mixer kmeans based 76.02 + 1.33 7247 + 1.50 87.43 + 0.50 79.80 + 1.50 88.38 + 0.33 99.92 + 0.08 87.55 + 1.21 97.03 £ 0.19 80.54 &+ 0.57 88.85 + 8.65 2.60
Original 78.06 = 1.24 71.85 £+ 1.50 87.19 + 0.53 82.74 + 1.23 90.68 + 0.19 99.58 + 0.16 88.90 + 1.30 98.38 + 0.21 88.57 + 1.96 88.08 + 8.04 2.40
Label Based 74.54 + 1.51 72.41 + 1.47 86.02 £ 0.50 74.71 + 1.16 84.88 + 0.38 99.97 + 0.06 85.94 4+ 1.59 96.38 + 0.32 81.09 + 0.52 87.56 + 7.33 1.45
MLP CB k-means 74.53 + 1.34 72.23 + 1.55 85.99 + 0.39 74.46 + 1.32 84.78 + 0.35 99.92 + 0.07 86.16 + 1.54 96.31 + 0.27 81.09 + 0.55 87.44 + 7.75 2.25
Original 74.06 + 1.26 71.93 + 1.53 85.83 + 0.51 74.39 &+ 1.40 84.91 + 0.44 99.93 + 0.08 85.43 + 1.51 96.41 + 0.32 86.13 £ 2.82  81.61 + 10.98 2.30

5.4.2 Rewiring connectivity

In this experiment, we preserve the original connectivity while investigating the influence of homophilic
hyperedges on performance. To do so, we adjust the given connectivity in two different ways.

« Label-based Rewiring. Our first strategy aims to unveil the full potential of the homophily
measure for each dataset. To that end, we split hyperedges into fully homophilic ones based on
their true node labels. While this approach is not applicable to practical evaluations, it represents a
meaningful baseline to assess the meaningfulness of pure homophilic connections.

e Feature-based Rewiring. In contrast, the second strategy explores the possibility of partition-
ing hyperedges based on their initial node features. This approach, supported by the hypothesis
that nodes of the same class might have similar features, represents an attempt of easily dividing
hyperedges into more homophilic connections —its practicality assured given that only features are
taken into account. In particular, the hyperedge splitting results from applying multiple times the
k-means algorithm for each hyperedge e € £. At each iteration, the number of centroids m is varied
from 2 to min(C, |e|), where we recall C is the number of classes; the elbow method is then used to
determine the m value for the optimal hyperedge partitioning.

Results. As shown in Table[f] the Label-based strategy enhances performance for all datasets and models;
as expected, pure homophilic connections enhance performance. Notably, the graph-based method CEGCN
achieves similar results to HNNs with this strategy. Additionally, on average, only CEGCN performs better
with the k-means strategy, and this method also mitigates distribution shifts for MultiSetMixer. These
findings collectively suggest the crucial role of connectivity preprocessing, especially for graph-based models.

5.5 Benefits and challenges of hyperedge-dependent node representations in hypergraphs

In this section, we provide a deeper comparison between lifted models, such as AllSetTransformer,
AllDeepSets, and EDHNN, and the MultiSetMixer, which allows for hyperedge-dependent node representa-
tion and thus leverages specific characteristics of hypergraph networks.

Table [I] highlights MultiSetMixer’s superior performance on three datasets: NTU2012, ModelNet40, and
20Newsgroups. The improved results on 20Newsgroups can be attributed to two aspects (i) the pooling
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operations over the hyperedge-dependent node representations, and (ii) distribution shift (see Section [5.3)).
Regarding (i), Table [1] highlights that the distribution shift affects the MLP CB model, resulting in a
performance of 86.13 + 2.82, which already outperforms all HNN baselines. However, the MultiSetMixer
achieves an even higher performance of 88.57 + 1.96. Notably, the best-performing HNN baseline achieves
81.64 £ 0.49, while the MLP baseline achieves 80.93 & 0.59, showing an absolute difference of approximately
0.5%. In contrast, the MultiSetMixer leverages the introduced MultiSet message-passing mechanism to
achieve 88.57 +1.96, resulting in an improvement of 2%. Our hypothesis is that, in this case, MultiSetMixer
works by giving each document a separate representation for every group (hyperedge) to which it belongs.
This means the model can adjust how it sees a document depending on the context of each group. By doing
this, it captures how a document is similar to or different from others in each group, which is a strong clue
for classification. This flexibility makes it much better at handling situations where important relationships
aren’t limited to one group but spread across many. Traditional methods, with unique representations,
struggle in these cases because they miss those cross-group connections. Regarding (ii), the uncontrolled
distribution shift might negatively impact MultiSetMixer’s performance on the Zoo, Mushroom, and Pubmed
datasets. As shown in Sections [5.4] and [5.4.2] this distribution shift can be mitigated by modifying the
initial connectivity. Specifically, Table [f] demonstrates that applying k-means clustering to adjust the initial
connectivity allows MultiSetMixer to achieve better performance on Zoo, Mushroom, and Pubmed. In
the case of Mushroom, this approach enables performance comparable to models like AllSetTransformer,
AllDeepSets, and EDHNN. At the same time, modifying the connectivity on 20Newsgroups mitigates the
distribution shift but results in a performance decline, bringing MultiSetMixer’s results closer to those of
AllSetTransformer, AllDeepSets, and EDHNN.

Additionally, we observed that MultiSetMixer excels in processing Computer Vision/Graphics datasets such
as NTU2012 and ModelNet40. This success is due to the initial graph construction, which involves lifting
the k-uniform graph by constructing hyperedges based on the one-hop neighborhood of each node. On the
Cora and Citeseer datasets, MultiSetMixer outperforms AllDeepSets and performs comparably to AllSet-
Transformer, all without requiring an attention mechanism. However, on CORA-CA, AllSetTransformer
outperforms MultiSetMixer, which instead produces results similar to AllDeepSets. The strongest con-
nectivity effects appear in naturally-occurring hypergraph datasets like CORA-CA and DBLP-CA, where
hyperedges are derived from metadata rather than constructed from existing graphs. In these cases, Mul-
tiSetMixer’s underperformance suggests the need to explore alternative MultiSet framework architectures,
including attention-based approaches and permutation-equivariant continuous hyperedge diffusion opera-
tors similar to EDHNN. Moreover, MultiSetMixer’s lower performance on Pubmed and DBLP-CA can be
attributed to the difficulty of processing the entire hypergraph in a single forward pass due to memory
constraints when storing all hyperedge-dependent node representations. However, employing the proposed
mini-batching scheme still allows MultiSetMixer to achieve strong performance on these datasets.

At the conclusion of this section, we summarize the main benefits and challenges of hyperedge-dependent
node representations in hypergraphs. The key advantage lies in their ability to model and capture com-
plex interactions within hypergraph structures, as demonstrated by their superior performance on certain
datasets, especially those involving computer vision and large-scale hyperedges. However, challenges arise
in managing the scalability of these models, particularly in scenarios with large hyperedges or datasets,
where memory constraints and distribution shifts can negatively impact performance. Despite these issues,
careful modifications to the connectivity and the use of mini-batching strategies can mitigate some of the
limitations, offering a promising path forward for further optimization.

6 Conclusion and Discussion

This section summarizes the key findings of our extensive evaluation and the proposed frameworks, relating
them to the fundamental questions that motivated our work.

Q1: Can the concept of homophily play a crucial role in HNNs, similar to its significance in
graph-based research? We show that the concept of homophily in higher-order networks is considerably
more complicated compared to networks that exhibit only pairwise connections. To address the issue,
we introduce a novel message passing homophily framework that is capable of characterizing homophily
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in hypergraphs through the distribution of node features as well as node class distribution. In Section
we present A homophily, based on the dynamic nature of the proposed message passing homophily,
showing that it correlates better with HNN models’ performance than classical homophily measures over the
clique-expanded hypergraph. Our findings underscore the crucial role of accurately expressing homophily
in HNNs, emphasizing its complexity and the potential in capturing higher-order dynamics. Moreover, in
our experiments (see Section , we demonstrate that rewiring hyperedges for perfect homophily leads to
similar results for graph-based methods (CEGCN, CEGAT) and HNN models. In conclusion, the proposed
framework offers a robust foundation for exploring homophily in higher-order networks and can be seamlessly
adapted to incorporate other characteristics (such as the distribution of node features, which parallel the node
label homophily examined in this study). While we presented this framework in the context of hypergraphs,
its adaptability allows for straightforward extensions to other topological domains.

Q2: Given that current HNNs are predominantly extensions of GNN architectures adapted to
the hypergraph domain, are these extended methodologies suitable, or should we explore new
strategies tailored specifically for handling hypergraph-based data? The three main contributions
presented in this paper —Message Passing Homophily, the MultiSet framework (integrating existing HNNs
within a unified framework), and the formulation of a novel mini-batch sampling scheme to address scalability
issues— are directly inspired by the inherent properties of hypernetworks and their higher-order dynamics.
Based on our experimental results and analysis, the proposed methodologies open an interesting discussion
about the impact of ways of processing hypergraph data and defining HNNs. For instance, our mini-batching
sampling strategy —which helps address scalability issues of current solutions— allowed us to realize the implicit
introduction of node class distribution shifts in the process. This study could potentially lead to the definition
of meaningful connectivity rewiring techniques, as we already explore in Section [5.4] Furthermore, we show
that the introduced message passing and A homophily measures allow for a deeper understanding of the
hypernetwork topology and its correlation to the HNN models’ performances. Overall, this study focuses on
comparing graph-based extensions for modeling hypergraph networks and methodologies that incorporate
hypergraph-specific characteristics. This approach allows for identifying common failure modes in current
hypergraph modeling techniques (Section . We argue that these contributions offer a new perspective on
processing higher-order networks that extend beyond the graph domain.

Q3: Are the existing hypergraph benchmarking datasets meaningful and representative enough
to draw robust and valid conclusions? In Sections[5.4and[5.4.2] we demonstrate that the significant per-
formance gap of HNNs models on Cora, CORA-CA, and DBLP-CA is primarily attributed to the hyperedges
with the largest cardinalities. Further analysis using A homophily reveals that their notable improvement is
strongly tied to the homophilic nature of the one-hop neighborhood. Additionally, the experimental results
in Section [5.1] and highlight challenges for current HNNs with certain benchmark hypergraph datasets.
Specifically, we find that lifted HNN models ignore connectivity for Citeseer, Pubmed, and 20Newsgroups,
as well as for the Mushroom dataset, due to highly discriminative features. Furthermore, we observe that
models that do not rely on inductive bias (i.e. do not use connectivity in the architecture), consistently
exhibit good performance across the majority of datasets. This suggests that the expressive power of node
features alone is sufficient for efficient task execution. Addressing this gap presents an open challenge for
future research endeavors, and we posit the necessity for additional benchmark datasets where connectivity
plays a pivotal role. In addition to this, we believe it would be also interesting to analyze datasets involving
higher-order relationships where node classes explicitly depend on hyperedges, as introduced in |Choe et al.
(2023). This represents an insightful line of research to further exploit hyperedge-based node representations.
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Supplementary Materials

A Extended Related Works on Hypergraph Neural Networks

Numerous machine-learning techniques have been developed for processing hypergraph data. One commonly
used approach in early literature is to transform the hypergraph into a graph through clique expansion
(CE). This technique involves substituting each hyperedge with an edge for every pair of vertices within the
hyperedge, creating a graph that can be analyzed using graph-based algorithms (Agarwal et al. 2006} |Zhou
et al.l |2006; |Zhang et al.l 2018} [Li & Milenkovic, [2017)).

Several techniques have been proposed that use Hypergraph Neural Networks (HNNs) for semi-supervised
learning. One of the earliest methods extends the graph convolution operator by incorporating the normalized
hypergraph Laplacian (Feng et al.l 2019). As pointed out in [Dong et al| (2020)), spectral convolution with
the normalized Laplacian corresponds to performing a weighted CE of the hypergraph. HyperGCN (Yadati
et al.l |2019)) employs mediators for incomplete CE on the hypergraph, which reduces the number of edges
required to represent a hyperedge from a quadratic to a linear number of edges. The information diffusion
is then carried out using spectral convolution for hypergraph-based semi-supervised learning. Hypergraph
Convolution and Hypergraph Attention (HCHA) (Bai et al.,2021) employs modified degree normalizations
and attention weights, with the attention weights depending on node and hyperedge features.

CE may cause the loss of important structural information and result in suboptimal learning performance
(Hein et al.; 2013; |Chien et all |2022)). Furthermore, these models typically obtain the best performance with
shallow 2-layer architectures. Adding more layers can lead to reduced performance due to oversmoothing
(Huang & Yang, 2021). In the recent study |Chen & Zhang (2022), an attempt was made to address
oversmoothing in this type of network by incorporating residual connections; however, the method still
relies on using hypergraph Laplacians to build a weighted graph through clique expansion. Another method
presented in [Yang et al.| (2020]) introduces a new hypergraph expansion called line expansion (LE) that treats
vertices and hyperedges equally. The LE bijectively induces a homogeneous structure from the hypergraph by
modeling vertex-hyperedge pairs. In addition, the LE and CE techniques require significant computational
resources to transform the original hypergraph into a graph and perform subsequent computations, hence
making the methods unpractical for large hypergraphs.

Another line of research explores hypergraph modeling involving a two-stage procedure: information is
transmitted from nodes to hyperedges and then back from hyperedges to nodes (Wei et al., 2021} [Yi & Park,
2020; Dong et al., 2020; |Arya et al., |2020; Huang & Yang) 2021; [Yadati et al., 2020). This procedure can
be viewed as a two-step message passing mechanism. HyperSAGE (Arya et al., [2020) is a prominent early
example of this line of research allowing transductive and inductive learning over hypergraphs. Although
HyperSAGE has shown improvement in capturing information from hypergraph structures compared to
spectral-based methods, it involves only one learnable linear transformation and cannot model arbitrary
multiset function (Chien et al., 2022|). Moreover, the algorithm utilizes nested loops resulting in inefficient
computation and poor parallelism.

UniGNN (Huang & Yang}|2021]) addresses some of these limitations by using a permutation-invariant function
to aggregate vertex features within each hyperedge in the first stage and using learnable weights only during
the second stage to update each vertex with its incident hyperedges. One of the variations of UniGNN, called
UniGCNII addresses the oversmoothing problem, which is common for most of the methods described above.
It accomplishes this by adapting GCNII (Chen et al. 2020) to hypergraphs. The AllSet method, proposed
in |Chien et al| (2022), employs a composition of two learnable multiset functions to model hypergraphs. It
presents two model variations: the first one exploits Deep Set (Zaheer et al., |2017)) and the second one Set
Transformer (Lee et al., 2019). The AllSet method can be seen as a generalization of the most commonly
used hypergraph HNNs (Yadati et al.,|2019; |[Feng et al} |2019; Bai et al., 2021; |Dong et al., |2020; |Arya et al.,
2020). More implementation details and detailed drawbacks discussion can be found in Section Although
AllSet achieves state-of-the-art results, it suffers from the drawbacks of the message passing mechanism,
including the local receptive field, resulting in a limited ability to model long-range interactions (Gu et al.|
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2020; Balcilar et al.l [2021). Two additional issues are poor scalability to large hypergraph structures and
oversmoothing that occurs when multiple layers are stacked.

Finally, we would like to mention two related papers that put the focus on hyperedge-dependent compu-
tations. On the one hand, EDHNN (Wang et all [2023) incorporates the option of hyperedge-dependent
messages from hyperedges to nodes; however, at each iteration of the message passing it aggregates all
these messages to generate a unique node hidden representation, and thus it doesn’t enable to keep different
hyperedge-based node representations across the whole procedure —as our MultiSetMixer does. On the other
hand, the work |Aponte et al.| (2022)) does allow multiple hyperedge-based representations across the message
passing, but the theoretical formulation of this unpublished paper is not clear and rigorous, and the evalua-
tion is neither reproducible nor comparable to other hypergraph models. Hence, we argue that our MultiSet
framework represents a step forward by rigorously formulating a simple but general MP framework for hy-
pergraph modeling that is flexible enough to deal with hyperedge-based node representations and residual
connections, demonstrating as well that it generalizes previous hypergraph and graph models.

B Details of the Implemented Methods

We provide a detailed overview of the models analyzed and tested in this work. In order to make their
similarities and differences more evident, we express their update steps through a standard and unified
notation.

Notation. A hypergraph with n nodes and m hyperedges can be represented by an incidence matrix
H € R™*™. If the hyperedge e, is incident to a node v; (meaning v; € e;), the entry in the incidence matrix
H, ; is set to 1. Instead, if v; ¢ e;, then H; ; = 0.

We denote with W and b a learnable weight matrix and bias of a neural network, respectively. Generally,
x, and z. are used to denote features for a node v and a hyperedge e respectively. Stacking all node
features together we obtain the node feature matrix X, while Z is instead the hyperedge feature matrix.
o(-) indicates a nonlinear activation function (such as ReLU, ELU or LeakyReLU) that depends on the
model used. Finally, we use || to denote concatenation.

B.1 AllSet-like models

This Section addresses the models that are covered in the AllSet unified framework introduced in (.1} and
that can potentially be expressed as particular instances of equations [5] and [} For a detailed proof of the
claim for most of the following models, refer to Theorem 3.4 in |Chien et al.| (2022]).

CEGCN / CEGAT. As introduced in the previous Sections, the CE of a hypergraph G = (V,€) is a
weighted graph obtained from G with the same set of nodes. In terms of incidence matrix, it can be described
as H(CF) = HH" (Chien et al., 2022). A one-step update of the node feature matrix X € R™*/ can be
expressed both in a compact way as H(F) X or directly as a node-level update rule, as

x{ttD) = Z Z xt). (15)

ec&, uuce

Some types of hypergraph convolutional layers in the literature adopt a CE-based propagation, for example
generalizing popular graph-targeting models such as Graph Convolutional Networks (Kipf & Welling), 2017))
and Graph Attention Networks (Velickovi¢ et al., [2017)).

HNN. Before describing how HNN (Feng et al., [2019) works, it is necessary to define some notation. Let
H be the hypergraph’s incidence matrix. Suppose that each hyperedge e € £ is assigned a fixed positive
weight z., and let Z € R™*™ now denote the matrix stacking all these weights in the diagonal entries.
Additionally, the vertex degree is defined as
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dy =Y 2, (16)

ec&,

while the hyperedge degree, instead, is

be= Y L (17)

vivee

The degree values can be used to define two diagonal matrices, D € R"*™ and B € R™*™.

The core of the hypergraph convolution introduced in [Feng et al.| (2019) can be expressed as

et = o (Z Z zea:gt)W(t)> , (18)

e€e&, uiuce

where o is a non-linear activation function like LeakyReLU and ELU, and W®) ¢ R/ DX g g weight
matrix between the (¢)-th and (¢ + 1)-th layer, to be learnt during training. Note that in this case the
dimensionality of the node feature vectors f*) can be layer-dependent.

The update step can be rewritten also in matrix form as

XU — g(HZHTXOW ), (19)

where X+ ¢ R and X ¢ Rm<S

In practice, a normalized version of this update procedure is proposed. The matrix-based formulation allows
to clearly express the symmetric normalization that is actually put in place through the vertex and hyperedge
degree matrices D and B defined above:

x(t+1) — O'(D_l/QHZB_lHTD_l/QX(t)W(t))- (20)

HCHA. With respect to the previously described models, HCHA (Bai et al.l [2021)) uses a different kind of
weights that depend on the node and hyperedge features. Specifically, starting from the same convolutional
model proposed by |Feng et al.| (2019)) and described in Equation they explore the idea of introducing an
attention learning model on H.

Their starting point is the intuition that hypergraph convolution as implemented in Equation [20] implicitly
puts in place some attention mechanism, which derives from the fact that the afferent and efferent information
flow to vertexes may be assigned different importance levels, which are statically encoded in the incidence
matrix H, hence depend only on the graph structure. In order to allow for such information on magnitude of
importance to be determined dynamically and possibly vary from layer to layer, they introduce an attention
learning module on the incidence matrix H: instead of maintaining H as a binary matrix with predefined
and fixed entries depending on the hypergraph connectivity, they suggest that its entries could be learnt
during the training process. The entries of the matrix should express a probability distribution describing
the degree of node-hyperedge connectivity, through non-binary and real values.

Nevertheless, the proposed hypergraph attention is only feasible when the hyperedge and vertex sets share
the same homogeneous domain, otherwise, their similarities would not be compatible. In case the comparison
is feasible, the computation of attention scores is inspired by (Velickovi¢ et al., |2017): for a given vertex v
and a hyperedge e, the score is computed as

. _ exp(g(sim(asz, ZeW)))
ve degu exp(o(sim(z, W, ng))),

(21)
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where o is a non-linear activation function, and sim is a similarity function defined as

sim(w,, z.) = @’ [y || 2], (22)
in which a is a weight vector, and the resulting similarity value is a scalar.

HyperGCN. The method proposed by [Yadati et al.| (2019)) can be described as performing two steps
sequentially: first, a graph structure is defined starting from the input hypergraph, through a particular
procedure, and then the well known CGN model (Kipf & Welling), 2017)) for standard graph structures is
executed on it. Depending on the approach followed in the first step, three slight variations of the same
model can be identified: 1-HyperGCN, HyperGCN (enhancing 1-HyperGCN with so-called mediators) and
FastHyperGCN.

Before analyzing the differences among the three techniques, we introduce some notation and express how
the GCN-update step is performed. Suppose that the input hypergraph G = (V, £) is equipped with initial
edge weights {z.}cce and node features {x,},cy (if missing, suppose to initialize them randomly or with
constant values). Let A® denote the normalized adjacency matrix associated to the graph structure at
time-step (¢). The node-level one-step update for a specific node v can be formalized as:

20+ = o ((W(t)>T Z A% ,wg)> 7 (23)

ueE,

in which :cS,tH) is the (¢ + 1)-th step hidden representation of node v and &, is the set of neighbors of v. For

what concerns AE},{M it refers to the element at index u, v of A®), which can be defined in the following ways
according to the method:

1. 1-HyperGCN: starting from the hypergraph G = (V, &), a simple graph is defined by considering
exactly one representative simple edge for each hyperedge e € £, and it is defined as (v, u.) such that
(Ve, ue) = argmaxv’ueeH(W(t))T (wz(;t) - :m(f))Hg. This implies that each hyperedge e is represented
by just one pairwise edge (v, ue), and this may also change from one step to the other, which leads
to the graph adjacency matrix A®) being layer-dependent, too.

2. HyperGCN: the model extends the graph construction procedure of 1-HyperGCN by also considering
mediator nodes, that for each hyperedge e consist in K, := {k € e : k # v,k # u.}. Once the
representative edge (ve, u.) is determined and added to the newly defined graph, two edges for each
mediator are also introduced, connecting the mediator to both v, and u.. Because there are 2|e| — 3
edges for each hyperedge e, each weight is chosen to be ﬁ in order for the weights in each
hyperedge to sum to 1. The generalized Laplacian obtained this way satisfies all the properties of
the HyperGCN’s Laplacian (Yadati et al., [2019).

3. FastHyperGCN: in order to save training time, in this case the adjacency matrix A® is computed
only once before training, by using only the initial node features of the input hypergraph.

UniGCNII. This model aims to extend to hypergraph structures the GCNII model proposed by |Chen
et al.| (2020) for simple graph structures, that is a deep graph convolutional network that puts in place an
initial residual connection and identity mapping as a way to reduce the oversmoothing problem (Huang &
Yang, 2021)).

Let d, denote the degree of vertex v, while d, = I%\ Ziee
update step performed by UniGCNII can be expressed as:

d; for each hyperedge e € £. A single node-level

w_ 1 2
oV, Z; NG
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2+ (1—B)I + ﬁw(t))((l — a);f:g}t) + Oza;go)), (25)

v

)

in which « and 8 are hyperparameters, I is identity matrix and :1:1(,0 is the initial feature of vertex i.

HNHN. For the HNHN model by [Dong et al.| (2020)), hypernode and hyperedge features are supposed to
share the same dimensionality d, hence in this case X € R"*? and Z € R™*?. The update rule in this case
can be easily expressed using the incidence matrix as

ZUD) = o(H' XYW, + by), (26)
X — o(HZHYWy + bx). (27)

in which ¢ is a nonlinear activation function, Wx, Wy € R%*? are weight matrices, and bx,bz € R? are
bias terms.

AllSet. The general formulation for the propagation setting of AllSet (Chien et al.; 2022) is introduced
in Subsection and, starting from that, we now analyze the different instances of the model obtained by
imposing specific design choices in the general framework.

In the practical implementation of the model, the update functions fy_.e and fe_.y, that are required to
be permutation invariant with respect to their first input, are parametrized and learnt for each dataset and
task. Furthermore, the information of their second argument is not utilized in practice, hence their input
can be more generally denoted as a set S.

The two architectures AllDeepSets and AllSetTransformer are obtained in the following way, depending on
whether the update functions are defined either as MLPs or Transformers:

1. AllDeepSets (Chien et al., [2022): fy_e(S) = fev(S) = MLP(}_,.s MLP(s));

2. AllSetTransformer (Chien et al.,|2022), in which the update functions are defined iteratively through
multiple steps as they were first designed by [Vaswani et al.| (2017)).

The first set of operations corresponds to the self-attention module. Suppose that h attention heads
are considered: first of all, h pairs of matrices K; (keys) and V; (values) with ¢ € {1,...,h} are
computed from the input set through different MLPs. Additionally, h weights 6;,i € {1,...,h} are
also learned and together with the keys and values they allow for the computation of each head-
specific attention value O; using an activation function w (Vaswani et al., |2017). The h attention
heads are processed in parallel and they are then concatenated, leading to a unique vector being
the result of the multi-head attention module MHj, ,,. After that, a sum operation and a Layer
Normalization (LN) (Ba et al., |2016) are applied:

K; = MLPX(S),V; = MLP}'(S), where i€ {1,...,h}, (28)

0= |10, 29)
0; = w(0i(K;)")V;, where i€ {l,..,h}, 30)
MH}, ,(6,S,S) = ||",0", 31)

Y = LN(0 + MH,, ., (6,S,S)). 32)

A feed-forward module follows the self-attention computations, in which a MLP is applied to the
feature matrix and then sum and LN are performed again, corresponding to the last operations to
be performed:

(
(
(
(

frose(8) = fev(S) = LN(Y + MLP(Y)). (33)
B.2 Other models

This Section describes the models that are considered for the experiments but that don’t fall directly under
the AllSet unified framework defined in Section [A.11
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EDHNN. The Equivariant Diffusion-based HNN model, shortened as EDHNN (Wang et al., 2023 rep-
resents the first attempt to draw a connection between the class of hypergraph diffusion algorithms and
the design of Hypergraph Neural Networks. The underlying motivation is that, by enabling the model to
approximate any continuous equivariant hypergraph diffusion operator, a broad spectrum of higher-order
relations can be encoded.

In EDHNN, the hypergraph diffusion operators are learned directly from data, harnessing the expressive
power of Neural Networks. This leads to the development of a novel Hypergraph Neural Network inspired
by hypergraph diffusion solvers, with the subsequent operations executed at each layer described in the
following.

The hyperedge-level feature update is performed as

20 =3 (@), (34)

uece

and starting from that, the node-level update is defined as

z{+) =) < (t) Z B, 2(t+D), mg,dv> . (35)

ec&,

In the equations above, 1/3, g@ and p are three MLPs shared across layers.

HAN. The Heterogeneous Graph Attention Network model (Wang et al., |2019) is specifically designed for
processing and performing inference on heterogeneous graphs. Heterogeneous graphs have various types of
nodes and/or edges, and standard GNN models that treat all of them equally are not able to properly handle
such complex information.

In order to apply this model on hypergraphs, (Chien et all 2022)) define a preprocessing step to derive
a heterogeneous graph from a hypergraph. Specifically, a bipartite graph is defined such that there is a
bijection between its nodes and the set of nodes and hyperedges in the original hypergraph. The nodes
obtained in this way belong to one of two distinct types, that are the sets V and E (if they correspond to
either a node or a hyperedge in the original hypergraph, respectively). Edges only connect nodes of two
different types, and one edge exists between a node u, € V and a node u, € E if and only if v € e in the
input hypergraph. We consider two types of so-called meta-paths (in this case, paths of length 2) in the
heterogeneous graph, that are V.~ E — V and E -+ V — E. We denote the sets of such meta-paths as ®y,
and ®g respectively. Furthermore, let ./\/3:] v denote the neighbors of node u, € V through paths v, € ®y,
and vice-versa let ./\/3; ¢ denote the neighbors of node u, € E through paths v, € ®y.

At each step, the model updates separately and sequentially the node features of nodes in V and E. Consider
for example the case of nodes in V (for nodes in E the process is the same, except that ®¢ is considered
instead of ®y,). The node-level update is performed as follows, for a certain u € V:

2 = Wiz, 36
by, Fu
(t+1) — 4 Z a‘bv A(t) (37)
wENfV

In the equations above, Wéfg is a meta-path dependent weight matrix while 0437‘{” is an attention score

computed between neighboring nodes in the same way as proposed in |Velickovié et al.| (2017), through
similar equations as and More generally, h attention heads may be considered, that give rise to
different attention scores for each head and consequently multiple results for the node feature update, that

are then concatenated to obtain a unique feature vector :c(tH)
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MLP. We also add the MLP model as a baseline; this model doesn’t use connectivity at all and only relies
on the initial node features to predict their class. The node feature matrix X is obtained as

X® = MLP(X D), (38)

MLP CB. This model employs a sampling procedure as outlined in Section in which we straight-
forwardly apply a Multilayer Perceptron to the initial features of nodes. During the training phase, we
incorporate dropout by applying an MLP with distinct weights dropped out for each hyperedge, resulting in
slightly different representations for nodes for each hyperedge they belong to. Furthermore, we execute the
mini-batching procedure in accordance with the guidelines presented in Section [£.2] Importantly, that these
two choices affect the training approach significantly so that the results of this model are very different from
MLP’s performances: see, for example, Table

During the validation phase dropout is not utilized, ensuring that the representations used for each hyperedge
remain exactly the same. Consequently, there is no need for the readout operation in this context. The node-
level update is described by:

z{!t) = 2{") + MLP(LN(z{")), (39)
1
(T) _ (T)
Ty = g Ty - (40)

v GEEU
Transformer. Along with MLP, we consider another simple baseline that is the basic Transformer model
(Vaswani et al., [2017)).

Also in this case, let S denote the set of input vectors, and define as S = MLP(S) the matrix of input
embeddings, obtained from the input set through a MLP. The operations performed on S generalize the
ones described for the Transformer module adopted in AllSetTransformer, and they can be split in two main
modules, that are the self-attention module and the feed-forward module:

1. Suppose that h attention heads are considered in the self attention module. First of all, A triples
of matrices K; (keys), V; (values) and Q; (queries) with ¢ € {1,...,h} are obtained from S through
linear matrix multiplications with weight matrices WX W) and VVZ-Q that are learned during
training. The result for each attention module is computed through the key, query and key matrices
using an activation function w (Vaswani et al.,[2017)) and a normalization factor dj, that corresponds
to the dimension of the key and query vectors associated to each input element. The h outputs of
the different attention heads are then concatenated, leading to a unique result matrix. After that,

a sum operation and a Layer Normalization (LN) (Ba et al., 2016) are applied:

K, =SWX V,=SWY Q; = SWF, where ic{l,..,h}, (41)
Qi(Ki>T) )

O, =w|—=——1V;, where i€{l,..., A}, 42

(2 {10} (12)

MH,.,(Q,K,V) = |0, (43)

Y = LN(S + MH, (S, S)). (44)

Since it will be useful in the following we introduce, we denote by MAB the output of the multihead
self-attention block, namely

MAB(S) = LN(S + MH,, (S, 9)). (45)
2. As described for AllSetTransformer (Chien et al. 2022), in the feed-forward module a MLP is applied

to the feature matrix, followed by a sum operation and Layer Normalization. After that, the output
of the overall Transformer architecture is obtained:

Y.t = LN(Y 4+ MLP(Y)). (46)
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WHATsNet In |Choe et al.| (2023), authors introduce a classification of edge-dependent node labels. In
the following section, we will describe their method and define all the components. The author introduced
WithinATT, inspired by the Transformer model [Vaswani et al.| (2017)), which adjusts a node embedding by
focusing on interactions with other nodes within the same hyperedge. Specifically, it applies a set of node
embeddings as queries, keys, and values in the attention mechanism. This approach effectively captures
relationships between nodes by computing the dot-product for each node pair within the hyperedge. However,
calculating the dot-product for all pairs results in a computational complexity that is quadratic relative to
the hyperedge size, posing challenges for large-scale, real-world hypergraphs. To address this, they utilize
the inducing point method from SetTransformer Lee et al.| (2019)), which achieves performance comparable
to all-pair attention but with significantly greater efficiency. More precisely, [Lee et al,| (2019) introduce a
matrix of trainable inducing points I of shape way smaller than the shape of Q and K the MAB(Q, K) is
approximated by MAB(Q, MAB(I, K)).

Let us now describe the WHATsNet model described in (Choe et al.| (2023), first we need to define the
WithinATT module. Let th) be the set of embeddings of nodes in a hyperedge e in the ¢-th layer. Along
with Xg) € Rl¢I*4 WithinATT uses number of trainable inducing points I, € R¥*¢ | where k is typically
much smaller than max.c¢ |e], in particula in their experiments they fix kK = 4. Then, WithinATT is formally

expressed as follows:
WithinATT(X ", I,,) = MAB(X (Y, MAB(I,,, XV)). (47)

where MAB is defined in . They also define WithinOrderPE, a positional encodings used in edge-
dependent attention between nodes within each hyperedge. To introduce WithinOrderPE, the authors first
define the order of each element a in a set A as follows:

Order(a, A) = Z Lo<a- (48)

a’€A

Then, given node centralities F' € RV*4/ where d; represents the number of centrality measures, which
corresponds to the dimensionality of the positional encodings, they define the WithinOrderPE of a node v
within a hyperedge e as follows:

s iorder(Fv,i, {Fu.ituee)- (49)

WithinOrderPE(v, e; F) = ||,1, ]
e

This WithinOrderPE is then added to the node embeddings, which are subsequently fed into WithinATT.
Four centrality measures are used: degree, eigenvector centrality, PageRank, and coreness. The notation
Xét%a refers to the node embedding that incorporates the positional encodings from WithinOrderPE. To
integrate these positional encodings, they first align the dimensionality of the positional encodings with that
of the node features at layer ¢ by using a learnable weight matrix. We are now prepared to outline the
hyperedge and node update embeddings as presented in |Choe et al.| (2023)). Specifically, the a hyperedge e’s

embedding zét) are obtained as

Xitga = {z{Y 8 WithinOrderPE (v, ¢) : v € e}, (50)
X () = WithinATT(X %) (51)
20 = MAB(z{7V, X)) (52)

Similarly, node embeddings are updated by aggregating node-dependent hyperedge embeddings from Withi-
nATT and WithinOrderPE. Specifically, a node v embedding me) is updated as follows,

Z!" = (z{Y B WithinOrderPE(v, ¢) : € € &,}, (53)
Z", = WithinATT(Z'"),) (54)
z() = MAB(z{!™V, Z) (55)
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C Proof of Propositions

C.1 Proof of Proposition [4.7]

UniGCNII inherits the same hyperedge update rule of other hypergraph models (e.g. HNN (Feng et al.,
2019), HyperGCN (Yadati et al., 2019)), so it directly follows from Theorem 3.4 of (Chien et al. [2022) that
it can be expressed through [5| By looking at the definition of the node update rule of UniGCNII (Eq.
and , we can re-express it as

1 zét—&-l)

\/che;& Ve

Note that this is a particular instance of the extended AllSet node update rule [7] where only a residual
connection to the initial node features is considered. Lastly, it is straightforward to see that fg_,y is

et = (1) + WD) ((1 - a) + aw£°)> = fesv({2{"V}eee,s20). (56)

permutation invariant w.r.t the set {zétﬂ)}eegv, as it processes the set through a weighted mean. O

C.2 Proof of Proposition [4.2]

We prove this proposition by showing that we can obtain AllSet update rules [B}ff] and [7] from our proposed
MultiSet framework This can easily follow by not distinguishing node representations among hy-
peredges, so Xg) = {wq(f,?g}eegu = ng). With this particular choice, we directly get [5| from |8 and |7| can be
obtained from[J] by further disregarding the hyperedge subscript —as there is only a single node representation
to update. Analogously, we can get [f] from [J] if we additionally do not consider node residual connections,
) {Xq(,k) ¢ _, simply becomes xq(,t). Finally, the readout (10| can be defined as the identity function applied to
the node representations at the last message passing step 7' O

C.3 Proof of Proposition [4.3|

We also prove this proposition by showing that we can obtain EDHNN (Wang et al.l |2023)) update rules
from our proposed MultiSet framework [BOI0] EDHNN hyperedge update rule can be expressed as

2D =3 (D) = fooe{z}uev),

uce

which is a particular instance of |§| given that {x&k)}uev C Xq(,t). As for the node update rule, we have

(T =) (xSf), PRI dv> = feo ({20} eeesi (2P hre o ) (57)

ec&,

where we recall that d, := |&,|. By disregarding the hyperedge superscript in Eq. @fessentially making all
hyperedge-based node representations the same one—, it is straightforward to see that the previous expression
is a particular case of the MultiSet node update rule. Lastly, the readout step can be just defined
as the identity function, given that all involved hyperedge-based messages to nodes (i.e. ﬁ(xg,t), zét+1))) are

already being aggregated at each iteration while updating the node state. O

C.4  Proof of Proposition [4.4]

The node updates in WHATsNet output a single node feature, while in MultiSet, the output of node updates
results in multiple features for each node, i.e., one for each hyperedge to which it belongs. MultiSet framework
preserves a higher level of generality by not enforcing pooling for edge-wise node representations at each layer,
but a pooling operation could be intrinsically defined as part of the function in our Equation [0} leading to
a single feature for each node as output.

We denote by Xét) the set of the embeddings of nodes belonging to edge e. The functions are :
2V = MAB(2!™!, WithinATT ({z) 8 WithinOrderPE(v, e) : v € €})) = fye ({2 }oee, 287Y)  (58)

e
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with WithinOrderPE defined as in equation Similarly,
z) = MAB(z!!, WithinATT({z) B WithinOrderPE (v, ¢) : ¢ € &,})) = 2 eee,, V). (59
v v e ) v fgﬁv efe€Ey sy

where MAB is defined according to Equation In the work of |Choe et al.| (2023), the centrality measures
used to compute the vectors in WithinOrderPE(v, e) rely solely on the topology of the graph. However,
centrality measures based on node and edge features could also be considered, and our framework is capable
of capturing these as well.[J

C.5 Proof of Proposition [4.5]

It is straightforward that functions fy_,¢e, fe—y and fy_,yp defined in MultiSetMixer (Equations are
permutation invariant w.r.t their first argument: hyperedge update rule[I1]and readout [I3]process it through
a mean operation, whereas the node update rule only receives a single-element set. The rest of the proof
follows from the proof of Proposition 4.1 of |Chien et al.| (2022]). O

D Experiments

D.1 Hyperparameters optimization

In order to implement the benchmark models, we followed the procedure described in |Chien et al.| (2022); in
particular, the maximum epochs were set to 200 for all the models. The models were trained with categorical
cross-entropy loss, and the best architecture was selected at the end of training depending on validation
accuracy. For the AllDeepSets (Chien et al., 2022), AllSetTransformer (Chien et al. 2022), UniGCNII
(Huang & Yang] 2021), CEGAT, CEGCN, HCHA (Bai et al., [2021), HNN (Feng et al., 2019), HNHN (Dong
et al., 2020), HyperGCN (Yadati et al., [2019), HAN(Wang et al.| 2019), and HAN (mini-batching) (Wang
et al.,|2019)) and MLP, we performed the same hyperparameter optimization proposed in |Chien et al.| (2022)).
For both the proposed model and the introduced baseline, we conducted a thorough hyperparameter search
across the following values:

e learning rate within the range of 0.001,0.01;
o weight decay values from the set 0.0,1e — 5, 1;
e MLP hidden layer sizes of 64,128,256, 512;
e mini-batch sizes set to 256,512, with full-batch utilization when memory resources allow;
e the number of sampled neighbors per hyperedge ranged from 2, 3, 5, 10.
It’s important to note that the limitation of the number of sampled neighbors per hyperedge to this small

range was intentional. This limitation showcases that even for datasets with large hyperedges, effective
processing can be achieved by considering only a subset of neighbors.

The models’ hyperparameters were optimized for a 50% split and subsequently applied to all the other splits.
Reproducibility. We are committed to providing a comprehensive overview of our experimental setup,
encompassing machine specifications, environmental details, and the optimal hyperparameters selected for

each model. Additionally, the source code, including training/validation/test splits, will be supplied with
both the initial release and the camera-ready version, ensuring the reproducibility of our results.

D.2 Further information about the datasets

For our experiments we utilized various benchmark datasets from existing literature on hypergraph neural
networks, the statistical properties of which are in Table [7]] For what concerns co-authorship networks
(Cora-CA and DPBL-CA) and co-citation networks (Cora, Citeseer, and Pubmed), we relied on the datasets
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provided in [Yadati et al.[(2019). Additionally, we employed the Princeton ModelNet40 (Wu et al.| [2015) and
the National Taiwan University (Chen et al.l [2003) dataset introduced for 3D object classification. For these
two datasets, we complied with what Feng et al.| (2019) and [Yang et al.| (2020)) proposed for the construction of
the hypergraphs, using both MVCNN (Su et al},2015) and GVCNN (Feng et al.,|2019)) features. Additionally,
we tested our model on three datasets with categorical attributes, namely 20Newsgroups, Mushroom, and
Z0O0, obtained from the UCI Categorical Machine Learning Repository (Dua et al., [2017). In order to
construct hypergraphs for these datasets, we followed the approach described in [Yadati et al| (2019), where
a hyperedge is defined for all data points sharing the same categorical feature value.

The 20Newsgroups dataset consists of 100-dimensional attributes, where each attribute corresponds to a TF-
IDF value. Hyperedges are formed by grouping all data points that share the same value for a categorical
feature, with each hyperedge assigned a uniform weight of 1. For our analysis, we utilized a preprocessed
version of the 20Newsgroups dataset (Zhou et al.| [2006), where data samples (nodes) are represented by
binary occurrence values for 100 words across 16,242 articles. These articles are categorized into four topics,
aligned with the highest-level groupings of the original 20Newsgroups dataset available at the UCI ML
Repository (Mitchell, [1997)). The topic-specific group sizes in the preprocessed dataset are 4,605, 3,519,
2,657, and 5,461, respectively. However, the exact filtering criteria used in|Zhou et al.| (2006]) to reduce the
sample count from 20, 000 (in the original 20Newsgroups dataset (Mitchell, [1997)) to 16, 242 or to determine
the number of classes remain unclear. We hypothesize that the filtering process may have removed documents
with insufficient content or relevance to the top 100 words. Furthermore, we observed that the original version
of the dataset (from the UCI ML Repository) is balanced, with approximately 1,000 samples per class. In
contrast, the preprocessed dataset (Zhou et al., |2006|) shows a skewed distribution with uneven group sizes
of 4,605, 3,519, 2,657, and 5,461. Based on statistical analysis of the group distributions in the UCI
dataset, we hypothesize that some original groups (e.g., alt, comp, misc, rec, sci, soc, talk) were merged
during preprocessing. As a result, we were unable to reproduce the dataset from scratch and relied on the
preprocessed version for our experiments. While we acknowledge that the preprocessed version has certain
limitations, such as its restricted 100-term vocabulary, the construction of hyperedges directly from node
features, and challenges with reproducibility, it nonetheless provides an illustrative case for studying the
limitations of HNN models. Despite its artificial nature, the dataset exhibits interesting characteristics, such
as large hyperedges, which make it valuable for highlighting these challenges.

Table 7: Statistics of hypergraph datasets: |e| denotes the size of hyperedges while d,, denotes the node
degree.

Cora Citeseer Pubmed CORACA DBLP-CA ZOO 20Newsgroups Mushroom NTU2012 ModelNet40

€| 1579 1079 7963 1072 22363 43 100 298 2012 12311
# classes 7 6 3 7 6 7 4 2 67 40
min |e| 2 2 2 2 2 1 29 1 5 5
med |e] 3 2 3 3 3 40 537 72 5 5
max d, 145 88 99 23 18 17 44 5 19 30
min d, 0 0 0 0 1 17 1 5 1 1
avg d, 1.77 1.04 1.76 1.69 2.41 17 4.03 5 5 5
med d, 1 0 0 2 2 17 3 5 5 4

CE Homophily | 89.74 89.32 95.24 80.26 86.88 82.88 75.25 85.33 46.07 24.07

\TI)I > vey I 84.10 78.25 82.05 80.81 88.86 91.13 81.26 88.05 53.24 42.16

ﬁ ZUGV hi 78.08 74.18 75.73 76.51 86.01 85.79 74.78 84.41 41.95 29.42

We downloaded co-citation and co-authoring networks from [Yadati et al. (2019). Below are the details on
how the hypergraph was constructed. Cora-CA, DBLP: all documents co-authored by an author are in one
hyperedge, following what was done in [Yadati et al.| (2019). Co-citation data Citeseer, Pubmed, Cora:
all documents cited by a document are connected by a hyperedge. Each hypernode (document abstract) is
represented by bag-of-words features (feature matrix X).

Citation and co-authorship datasets. In the co-citation and co-authorship networks datasets, the node
features are the bag-of-words representations of the corresponding documents. In co-citation datasets (Cora,
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Citeseer, PubMed) all documents cited by a document are connected by a hyperedge. In co-authored datasets
(CORA-CA, DBLP-CA), all documents co-authored by an author belong to the same hyperedge.

Computer vision/graphics. The hyperedges are constructed using the k-nearest neighbor algorithm in
which k£ = 5.

Categorical datasets. There are instances with categorical attributes within the datasets. To construct
the hypergraph, each attribute value is treated as a hyperedge, meaning that all instances (hypernodes) with
the same attribute value are contained in a hyperedge. The node features of 20Newsgroups are the TF-
IDF representations of news messages. The node features of mushrooms (in Mushroom dataset) represent
categorical descriptions of 23 species. The node features of a zoo (in ZOO dataset) are a combination of
categorical and numeric measurements describing various animals.

Table 8: Node Connectivity Statistics. For brevity we use the following notation in this table: under the

columns labeled |€,| = k, we report the amount of nodes that belong to k hyperedges. This value can
be expressed in a more formal way as |[v € V : || = k|. Moreover, |&,|] = 0, denotes the number of
isolated nodes. In addition, the columns labeled “% |&,| = k7 indicate the percentage of nodes belonging

to k hyperedges relatively to the total number of nodes. Finally, > e| corresponds to the number of

hyperedge-dependent node representations.

ecf ‘

VL [ =0 [ [El=1 [ [{v: & =2 [ & =3 | €] >3 | %IE[=0] %l =1 | % €] =2 | % €] =31 | % [ >3 | >eg €l

Cora 2708 1274 575 327 156 376 47.05 21.23 12.08 5.76 13.88 6060
Citeseer 3312 1854 798 307 144 209 55.98 24.09 9.27 4.35 6.31 5307
Pubmed 19717 | 15877 339 313 292 2896 80.52 1.72 1.59 1.48 14.69 50506

CORA-CA 2708 320 995 951 287 155 11.82 36.74 35.12 10.60 5.72 4905
DBLP-CA | 41302 0 8998 16724 9249 6331 0.00 21.79 40.49 22.39 15.33 99561
Mushroom 8124 0 0 0 0 8124 0.00 0.00 0.00 0.00 100.00 40620
NTU2012 2012 0 173 256 296 1287 0.00 8.60 12.72 14.71 63.97 10060
ModelNet40 | 12311 0 1491 1755 1594 7471 0.00 12.11 14.26 12.95 60.69 61555
20newsW100 | 16242 0 3053 3149 2720 7320 0.00 18.80 19.39 16.75 45.07 65451
Z00 101 0 0 0 0 101 0.00 0.00 0.00 0.00 100.00 1717

E Experiment results

E.1 Additional experiments with heterophilic datasets

In this section, we broaden our experimental scope by including a set of datasets that were previously used
in Wang et al,| (2023). These datasets, namely Senate, Congress, House, and Walmart, are classified as
heterophilic based on the CE homophily measure. Notably, they present an interesting challenge as they
do not have inherent node features. Therefore, generating artificial node attributes is necessary before
applying hypergraph models. Due to this constraint, we have decided to postpone the exploration of these
datasets to future work, as we acknowledge the significance of addressing such limitations for a more thorough
analysis. Table [J] displays the performance results of MultiSetMixer, EDHNN, and AllSet-like architectures
on the mentioned datasets. Notably, EDHNN consistently outperforms other models across all datasets,
demonstrating superior results. MultiSetMixer ranks as the second-best model, deviating by one standard
deviation from EDHNN on Senate and House datasets, and performing similarly to AllSetTransformer and
AddDeepSets on Congress and Walmart.

Table 9: Additional hypergraph model performance benchmarks on heterophilic datasets (test accuracy in
%). Results for AllDeepSets and AllSetTransformer are taken from Wang et al.| (2023).

Senate Congress House ‘Walmart
AllDeepSets 48.17 + 5.67 91.80 &+ 1.53 67.82 + 2.40 64.55 + 0.33
AllSetTransformer | 51.83 £ 5.22 92.16 &+ 1.05 69.33 + 2.20 65.46 = 0.25
EDHNN 64.79 £ 5.14 95.00 &= 0.99 72.45 & 2.28 66.91 £ 0.41
MultiSetMixer 61.34 + 3.45 92.13 + 1.30 70.77 &+ 2.03 64.23 + 0.41

32



Published in Transactions on Machine Learning Research (02/2025)

E.2 Rewiring experiment

Figure [6] visualizes the impact of connectivity modifications across different architectures and datasets. We
organize results in a matrix format where each column represents a distinct rewiring strategy, and each
row corresponds to a dataset. Model variants are color-coded, with dashed lines showing their original
performance as baselines. The HNN models show little deviation from the corresponding baselines, regardless
of the rewiring strategy. In contrast, CEGCN demonstrates significant improvement, particularly with the
trimming and random strategies.

Random Retention Trimming
100 100 -
| 90 - 1
%0 ¢ : b ; [ 90 5 |
80 g |
o 70 80 —
o 70
N . 60 70 Q
60 ? 50 ¢ : 60 .
50 .
40 50
98 ¢ v T 98 4 98 . ’
o " . H 4 e
2 96 96 96
Z
= 94 94 94
kS 92 T2
92 . .
s L ; ;
90 ¢ 90 90
|’
88 § — 88 ! I 88 - %
[\l . L] °
= 86 - : i :i + 86 | .
I
E 84 82 84 I
z 82 L] . r} 80 * | o h{ 2
80 78 ¥ 80
78
25% 50% 75% 25% 50% 75% 25% 50% 75%
---- Origimal Accuracy mmm AllSetTransformer mmm CEGCN B MultiSetMixer

Figure 6: Visualization of model performance under different rewiring strategies. Columns show connectivity
modifications, rows show datasets. Solid lines indicate modified architectures while dashed lines show baseline
performance. Each color represents a different model variant.

E.3 Analysis of i, parameter in A Homophily

This Section sheds more light on the impact of parameter p in our proposed A homophily. To that end, we
show in Figure |7l how A-homophily evolves as p varies across multiple datasets.

We first observe that A-homophily generally increases with . However, conceived as an homophily frame-
work, the relevant aspect here is the relative homophily values across datasets —and not the specific absolute
values. In this regard, we can see that the relative homophilic ranking is quite stable for different values of
1, and in particular around the 0.1 value (our choice for the homophily analysis in Section .

E.4 Benchmarking models across multiple training proportions splits
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Figure 7: A-homophily scores across several models for different values of p parameter (Eq.

Table 10: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training
split: 50%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
AllDeepSets 77.11 + 1.00 70.67 £ 1.42 89.04 + 0.45 82.23 + 1.46 91.34 + 0.27 99.96 + 0.05 86.49 + 1.86 96.70 + 0.25 81.19 + 0.49 89.10 + 7.00 6.80
AllSetTransformer 79.54 £ 1.02 72.52 £ 0.88 88.74 &+ 0.51 84.43 + 1.14 91.61 + 0.19 99.95 & 0.05 88.22 & 1.42 98.00 + 0.12 81.59 + 0.59 91.03 + 7.31 3.25
UniGCNII 78.46 £ 1.14 73.05 = 1.48 88.07 + 0.47 83.92 + 1.02 91.56 + 0.18 99.89 + 0.07 88.24 & 1.56 97.84 + 0.16 81.16 + 0.49 89.61 & 8.09 4.75
EDHNN 80.74 + 1.00 7322 £ 1.14 89.12 + 0.47 85.17 £ 1.02 91.94 + 0.23 99.94 + 0.11 88.04 £+ 1.65 97.70 + 0.19 81.64 + 0.49 89.49 + 6.99 2.90
CEGAT 76.53 £+ 1.58 71.58 + 1.11 87.11 + 0.49 77.50 + 1.51 88.74 + 0.31 96.81 + 1.41 82.27 + 1.60 92.79 + 0.44 NA 44.62 + 9.18 12.11
CEGCN 77.03 £ 1.31 70.87 £ 1.19 87.01 + 0.62 77.55 £+ 1.65 88.12 + 0.25 94.91 + 0.44 80.90 + 1.74 90.04 £+ 0.47 NA 49.23 + 6.81 12.56
HCHA 79.53 £ 1.33 72.57 & 1.06 86.97 + 0.55 83.53 + 1.12 91.21 £ 0.28 98.94 + 0.54 86.60 + 1.96 94.50 + 0.33 80.75 + 0.53 89.23 & 6.81 7.85
HGNN 79.53 £+ 1.33 72.24 £+ 1.08 86.97 + 0.55 83.45 + 1.22 91.26 + 0.26 98.94 + 0.54 86.71 + 1.48 94.50 + 0.33 80.75 + 0.52 89.23 & 6.81 7.95
HNHN 77.68 £+ 1.08 73.47 + 1.36 87.88 + 0.47 78.53 + 1.15 86.73 + 0.40 99.97 + 0.04 88.28 &+ 1.50 97.84 + 0.15 81.53 + 0.55 89.23 + 7.85 5.55
HyperGCN 74.78 £ 1.11 66.06 + 1.58 82.32 + 0.62 7748 £ 1.14 86.07 + 3.32 69.51 + 4.98 47.65 £ 5.01 46.10 + 7.95 80.84 + 0.49 51.54 £ 9.88 14.30
HAN 80.73 = 1.37 73.69 £ 0.95 86.34 £ 0.61 84.19 = 0.81 91.10 + 0.20 91.33 £ 0.91 83.78 £ 1.75 93.85 + 0.33 79.67 £ 0.55 80.26 + 6.42 8.90
HAN minibatch 80.24 + 2.17 73.55 £ 1.13 85.41 + 2.32 82.04 + 2.56 90.52 + 0.50 93.87 + 1.04 80.62 + 2.00 92.06 + 0.63 79.76 £ 0.56 70.39 + 11.29 10.60
MultiSet Mixer 78.06 £ 1.24 71.85 £ 1.50 87.19 + 0.53 82.74 £ 1.23 90.68 + 0.19 99.58 + 0.16 88.90 + 1.30 98.38 £ 0.21  88.57 £ 1.96 88.08 & 8.04 6.20
MLP CB 74.06 £ 1.26 71.93 £+ 1.53 85.83 £ 0.51 74.39 £ 1.40 84.91 + 0.44 99.93 & 0.08 85.43 £ 1.51 96.41 + 0.32 86.13 + 2.82 81.61 &+ 10.98 10.30
MLP 73.27 £+ 1.09 72.07 £ 1.65 87.13 + 0.49 73.27 £+ 1.09 84.77 + 0.41 99.91 + 0.08 79.70 £ 1.56 95.31 + 0.28 80.93 + 0.59 85.13 £ 6.90 11.50
Transformer 7415 + 1.17 71.82 £ 1.51 87.37 £ 0.49 73.61 &+ 1.55 85.26 + 0.38 99.95 + 0.08 82.88 + 1.93 96.29 + 0.29 81.17 + 0.54 88.72 4 10.25 9.85

Table 11: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training
split: 40%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking

AllDeepSets 76.09 + 1.22 70.32 &+ 1.39 88.58 + 0.46 81.32 + 1.27 90.96 + 0.24 99.94 + 0.08 85.60 + 1.46 96.71 £ 0.21 81.11 + 0.43 89.57 + 5.91 7.20
AllSetTransformer 78.81 4 0.99 71.65 £+ 1.05 88.17 + 0.45 83.26 + 1.12 91.26 + 0.24 99.94 £ 0.09 87.04 £+ 1.07 97.92 + 0.14 81.30 + 0.41 91.72 + 6.38 3

UniGCNII 7778 £ 1.15 72.30 &+ 1.45 87.86 + 0.37 83.39 + 0.95 91.32 £ 0.19 99.88 + 0.09 87.30 &+ 1.34 97.86 + 0.16 81.14 + 0.45 89.68 & 6.42 4.45
EDHNN 80.46 + 0.91 72.62 = 0.98 88.70 &+ 0.34 84.41 £ 0.87 91.60 % 0.20 99.95 £ 0.09 87.33 £ 1.20 97.65 + 0.20 81.41 + 0.37 90.75 £ 5.54 2.00
CEGAT 75.68 + 1.09 70.59 + 0.89 86.39 + 0.47 76.91 + 1.22 88.18 + 0.31 96.72 + 1.50 80.97 + 1.30 92.46 + 0.29 NA 45.27 + 9.41 11.67
CEGCN 76.19 £ 1.06 70.08 £ 1.26 86.22 + 0.50 76.17 £+ 1.44 87.61 + 0.26 95.00 + 0.38 79.41 £+ 1.26 89.79 + 0.39 NA 51.40 4+ 7.24 12.72
HCHA 78.87 £+ 1.04 71.73 £ 0.91 86.28 + 0.43 83.05 + 0.99 91.04 + 0.23 99.00 + 0.48 85.53 + 1.43 94.53 + 0.28 80.77 £ 0.31 90.54 £ 5.29 7.40
HGNN 78.87 £ 1.04 71.44 £ 1.00 86.28 + 0.43 82.95 + 1.06 91.06 + 0.24 99.00 + 0.48 85.71 + 1.37 94.53 + 0.28 80.77 + 0.31 90.54 £ 5.29 7.40
HNHN 76.47 £ 0.90 72.25 + 1.10 87.17 + 0.45 T7.27 £ 1.11 86.61 + 0.31 99.96 &+ 0.08  87.14 £ 1.23 97.82 + 0.17 81.28 + 0.49 89.46 + 6.50 6.10
HyperGCN 73.56 & 0.91 64.65 + 1.28 82.09 + 0.67 76.44 £ 1.06 86.22 + 2.93 69.49 + 5.02 46.78 £ 4.61 45.34 + 7.34 80.82 + 0.59 52.80 & 8.90 14.00
HAN 79.89 &+ 0.78 73.16 £ 1.04 86.11 + 0.56 83.84 &+ 0.91 90.96 + 0.19 91.39 £ 0.93 82.79 £ 1.16 93.83 + 0.27 79.52 £ 0.47 80.11 & 6.46 8.75
HAN minibatch 80.07 £ 1.68 69.44 + 6.58 86.08 + 0.84 82.33 +£ 1.91 NA 93.60 + 0.91 79.41 £ 1.62 NA 79.43 £ 0.91 64.84 + 12.59 11.56
MultiSetMixer 7714 £ 1.25 70.96 + 1.66 86.67 + 0.42 82.09 + 0.79 90.45 + 0.25 99.61 + 0.23 87.41 +1.10 98.31 £ 0.17 88.82 + 1.56 88.71 £+ 6.33 6.15
MLP CB 72.60 & 1.44 71.08 £ 1.68 85.14 + 0.47 72.63 £ 1.31 84.63 £ 0.31 99.91 &+ 1.03 83.72 + 1.40 96.25 + 0.25 87.28 & 3.50 81.42 + 11.55 10.15
MLP 70.61 £ 7.44 70.96 £ 1.65 86.60 + 0.40 70.70 £ 7.33 84.42 + 0.28 99.91 & 0.09 77.83 £ 1.63 95.24 + 0.23 80.95 + 0.54 85.38 & 8.02 11.35
Transformer 72.65 + 1.15 70.70 £ 1.50 86.79 + 0.34 71.96 £+ 1.03 84.97 + 0.27 99.92 £ 0.09 80.69 + 1.55 96.18 + 0.24 80.95 + 0.46 89.68 + 7.31 9.80
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Table 12: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training
split: 30%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
AlID ts 74.78 £+ 1.02 69.10 + 1.34 88.01 £+ 0.39 7! + 1.44 90.57 + 0.20 99.95 &+ 0.06  84.04 &+ 1.39 96.49 + 0.26 80.99 + 0.41 87.04 + 6.74
AllSetTransformer | 77.67 + 0.92 71.06 £ 1.00 87.62 + 0.34 82.14 £ 0.96 91.10 + 0.18 99.94 £ 0.09 85.73 &+ 1.38 97.73 + 0.21 81.05 + 0.49 90.19 £ 6.18 4

UniGCNII 76.29 £ 1.05 71.38 £+ 1.32 87.48 + 0.35 81.93 + 1.09 90.97 + 0.20 99.88 + 0.08 85.59 £ 1.60 97.89 + 0.16 81.10 + 0.44 88.33 & 6.29 4.55
EDHNN 79.30 £+ 1.03 71.85 + 0.84 88.25 + 0.38 83.13 £ 1.03 91.37 &+ 0.18 99.94 + 0.11 86.09 + 1.44  97.55 + 0.23 81.26 + 0.34 89.44 + 6.38 2.35
CEGAT 74.25 +1.24 69.75 + 0.90 85.41 + 0.44 75.24 £ 1.05 87.54 + 0.23 96.86 + 1.27 79.12 £ 1.60 91.89 + 0.30 NA 42.87 + 8.96 11.94
CEGCN 74.84 £ 1.35 69.17 + 0.93 85.17 + 0.41 74.83 £ 1.72 87.10 + 0.25 95.08 % 0.40 78.13 £+ 1.35 89.34 + 0.40 NA 48.70 + 5.96 12.44
HCHA 77.81 £ 1.07 71.10 £ 1.11 84.97 + 0.41 81.81 + 1.08 90.85 + 0.18 99.00 + 0.47 84.34 + 1.61 94.38 + 0.28 80.78 + 0.43 90.65 + 5.58 7.40
HGNN 77.81 £+ 1.07 70.88 & 1.05 84.97 + 0.41 81.78 + 1.13 90.85 + 0.16 99.00 + 0.47 84.40 + 1.38 94.38 + 0.28 80.78 + 0.43 90.65 + 5.58 7.60
HNHN 74.85 + 1.14 71.34 £+ 1.03 86.34 + 0.39 75.46 £+ 1.02 86.33 + 0.25 99.95 + 0.07 84.93 + 1.49 97.75 + 0.20 81.10 + 0.48 85.37 &+ 7.96 6.30
HyperGCN 71.54 £+ 1.26 63.82 + 1.34 81.87 % 0. 44 £ 1.25 85.63 + 2.89 69.44 + 5.02 46.70 + 4.01 45.28 + 8.18 80.64 + 0.48 55.46 £ 6.78 14.20
HAN 78.60 + 1.28 72.44 £ 1.05  85.89 + 0.44 82.69 + 0.77 90.85 + 0.19 91.47 + 0.79 81.54 + 1.44 93.79 + 0.20 79.51 £ 0.58 79.81 £ 6.61 7.90
HAN minibatch 78.84 +£ 1.19 72.26 + 0.93 85.70 & 0.81 79.81 £+ 1.53 NA 93.59 + 0.84 7797 + 1.63 NA 79.46 + 1.10 45.74 + 13.83 9.88
MultiSet Mixer 76.03 £ 1.37 70.60 £ 1.15 86.12 + 0.36 80.58 + 1.11 90.19 + 0.20 99.56 + 0.16 85.95 &+ 1.43 98.20 &= 0.17 88.20 £ 1.24 86.11 + 6.96 5.90
MLP CB 71.14 £ 1.09 70.21 £ 1.14 84.24 + 0.63 71.14 £ 1.61 84.17 + 0.24 99.92 £ 0.08 81.18 + 1.79 96.10 + 0.22 85.94 + 5.83 79.58 £ 8.22 10.40
MLP 66.14 + 11.37 69.92 + 1.32 85.86 + 0.29 66.14 + 11.37 83.96 + 0.25 99.89 + 0.11 75.08 £ 1.69 95.05 + 0.31 80.82 + 0.45 82.87 + 7.37 11.70
Transformer 70.41 4+ 1.13 69.75 + 1.33 86.05 + 0.28 69.93 + 0.92 84.57 +£ 0.25 99.93 £ 0.10 78.20 &+ 1.73 95.92 + 0.20 80.87 + 0.37 86.85 &+ 9.97 10.25

Table 13: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training
split: 20%.

Model Cora Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
AllDeepSets 72.56 £ 1.60 87.24 £+ 0.36 77.24 £+ 1.52 89.91 + 0.26 99.92 & 0.07  80.71 & 1.32 96.30 + 0.24 80.59 + 0.33 84.72 £ 7.95
AllSetTransformer | 75.69 + 1.09 69.39 + 1.30 86.63 % 0.40 80.54 £ 0.94 90.72 £ 0.17 99.92 + 0.07 82.58 = 1.31 97.48 + 0.24 80.82 + 0.28 85.61 &+ 7.29
UniGCNII 74.11 £ 1.28 70.51 £+ 1.48 86.97 & 0.41 79.41 £ 1.23 90.47 + 0.19 99.90 £ 0.06 82.54 £+ 1.60 97.83 £ 0.15 80.88 + 0.32 88.21 £ 5.55 4.20
EDHNN 77.09 £+ 1.30 70.76 + 1.39 87.52 + 0.40 81.06 £+ 1.27 90.91 =+ 0.20 99.91 £+ 0.10 83.45 + 1.34  97.37 £ 0.17 80.92 + 0.35 88.54 + 6.38 2.10
CEGAT 71.86 £ 1.42 68.11 + 1.34 84.03 + 0.51 73.18 £+ 1.32 86.98 + 0.27 96.19 + 1.38 76.14 £ 1.20 91.34 + 0.31 NA 41.22 + 6.16 11.67
CEGCN 73.25 + 1.35 67.23 + 1.39 83.47 + 0.52 72.50 £ 1.44 86.29 + 0.21 .98 £ 0.31 75.55 £+ 1.37 88.60 + 0.41 NA 49.51 + 6.31 12.44
HCHA 76.04 + 1.30 69.90 + 1.25 3.6 80.03 + 0.87 90.53 + 0.17 3+ 0.43 81.48 + 1.29 94.31 + 0.20 80.60 + 0.29 89.35 + 5.89 6.50
HGNN 76.04 + 1.30 69.59 + 1.22 80.02 + 0.88 90.51 + 0.19 99.03 + 0.43 81.60 + 1.24 94.31 £ 0.20 80.60 + 0.29 89.35 + 5.89 6.60
HNHN 72.47 £ 1.06 69.44 + 1.21 73.16 £ 0.99 85.82 + 0.21 99.88 & 0.10 81.56 + 1.54 97.61 + 0.24 80.48 + 0.32 82.60 + 7.71 7.90
HyperGCN 68.59 + 1.79 62.08 + 1.28 81.57 + 0. 71.42 +£1.27 85.45 + 2.31 + 5.10 44.01 + 3.47 46.40 + 8.41 80.38 + 0.37 p 5+ 8.74 14.10
HAN 76.73 £ 1.18 71.21 £ 1.13  85.72 £ 0.44 80.83 & 0.89 90.56 + 0.15 91.50 + 0.98 79.46 £+ 1.30 93.77 + 0.23 79.33 £ 0.45 78.54 £ 6.50 7.45
HAN minibatch 76.89 + 1.51 NA 85.59 + 0.72 78.55 &+ 1.43 NA 93.22 + 1.34 73.79 + 1.54 NA 79.50 £ 0.42 47.72 + 14.96 10.14
MultiSet Mixer 73.93 £ 1.15 68.95 + 1.37 85.00 % 0.62 i +0.94 89.80 + 0.19 99.42 + 0.20 82.40 &+ 1.41 98.01 &+ 0.19 87.85 £ 1.53  81.06 &+ 7.04 6.60
MLP CB 68.07 + 1.50 68.64 + 1.34 83.06 + 0.58 68.37 + 1.23 83.43 + 0.25 99.84 + 1.38 77.01 £ 1.69 95.85 + 0.27 85.66 + 5.70 75.61 £ 9.73 10.45
MLP 51.73 £ 17.51 68.20 + 1.21 85.09 + 0.34 51.73 + 17.51 83.22 + 0.21 99.84 + 0.12 69.35 + 9.49 94.69 + 0.34 80.58 + 0.31 78.54 + 8.98 11.70
Transformer 67.34 + 1.26 68.06 + 1.39 85.31 4+ 0.40 66.61 + 1.50 83.93 + 0.27 99.86 &+ 0.13 74.17 £ 1.65 95.65 + 0.29 80.51 + 0.38 81.45 + 6.81 10.70

Table 14: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits. Training
split: 10%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups 700 avg. ranking
AlID ts 68.51 + 1.64 64.50 + 1.43 85.55 &+ 0.38 73.67 £ 1.79 88.82 + 0.25 99.88 + 0.08  73.44 + 1.91 95.96 + 0.21 79.61 £ 0.36 76.81 £+ 7.05 7.05
AllSetTransformer 71.82 £ 1.18 65.96 + 1.48 84.71 + 0.55 76.16 £ 1.36 90.09 + 0.18 99.86 £ 0.09 75.78 + 1.96 96.93 + 0.21 80.18 + 0.31 75.22 & 10.78 4.70
UniGCNII 69.36 + 1.63 66.41 + 1.59 85.51 = 0.50 75.84 £+ 1.13 89.70 + 0.25 99.86 = 0.09 74.86 = 2.20 97.58 + 0.18  80.44 £ 0.26 79.86 £ 7.97 4.10
EDHNN 72.78 £ 1.54 67.90 + 1.51 86.00 + 0.51 77.20 + 1.31 90.30 + 0.17 99.86 &+ 0.10 76.60 £ 1.79  96.91 + 0.27 80.47 + 0.29 79.06 + 7.88 2.30
CEGAT 68.08 + 1.65 64.15 + 1.60 81.83 + 0.43 69.04 + 1.60 85.92 + 0.23 96.01 + 1.31 69.26 + 2.27 90.17 + 0.37 NA 39.20 + 6.19 12.00
CEGCN 70.22 £ 1.62 62.68 + 1.49 82.13 + 0. 67.45 + 1.54 85.41 + 0.26 94.85 + 0.36 68.31 + 2.08 87.28 + 0.39 NA 49.20 + 5.69 12.11
HCHA 72.76 + 1.82 66.15 + 1.27 82.41 + 0.36 76.97 = 0.95 90.00 + 0.19 98.93 + 0.41 T4.44 £ 2.31 94.04 + 0.21 80.23 + 0.32 79.78 £ 7.89 5.95
HGNN 72.76 + 1.82 65.69 + 1.57 82.41 £ 0.36 76.96 + 1.10 90.00 + 0.18 98.93 + 0.41 74.53 £+ 2.44 94.04 + 0.21 80.23 + 0.32 79.78 + 7.89 6.25
HNHN 67.43 + 1.62 65.02 + 1.40 82.33 + 0.76 68.10 + 1.67 84.74 + 0.31 99.69 + 0.18 73.82 4+ 2.11 97.34 £ 0.25 80.00 + 0.26 73.12 £ 6.57 8.80
HyperGCN 63.21 + 1.95 57.81 & 1.91 80.83 + 0.46 65.58 + 2.02 84.37 + 1.73 67.56 + 8.16 40.30 + 3.67 45.92 + 7.60 79.57 & 0.38 51.96 & 6.32 14.10
HAN 72.08 &+ 1.47 67.86 = 1.46 85.10 + 0.43 77.48 £ 1.22  90.02 £ 0.17 91.67 + 0.86 72.91 £+ 1.88 93.52 + 0.32 T8.77 £ 0.49 70.94 £ 14.54 7.30
HAN minibatch 69.61 + 6.86 68.25 + 1.15  84.93 £ 0.65 76.27 + 1.54 NA NA 63.36 + 2.66 NA NA 43.62 + 9.44 8.17
MultiSet Mixer 69.69 + 1.36 65.71 + 1.46 83.01 + 0.65 74.88 £+ 1.01 89.11 + 0.21 99.08 + 0.33 74.82 +£ 2.10 97.52 + 0.20 86.92 + 1.66 73.53 £ 7.58 6.10
MLP CB 62.42 + 1.37 64.85 + 1.30 81.43 + 0.86 62.82 + 1.80 82.02 + 0.36 99.61 + 0.18 68.80 + 1.51 95.16 + 0.26 85.21 + 3.81 67.46 + 9.14 10.70
MLP 38.64 + 12.37 64.21 + 1.53 83.56 + 0.49 37.85 + 11.79 81.88 + 0.21 99.72 + 0.15 63.39 + 2.24 93.71 + 0.38 79.63 £ 0.42 7217 £9.21 11.60
Transformer 61.45 + 1.66 63.75 + 1.39 83.86 + 0.50 60.65 + 1.87 82.40 + 0.47 99.74 + 0.20 65.14 + 1.61 94.66 + 0.42 79.61 + 0.39 68.82 + 8.32 11.15

F Sampling analysis

As it has been discussed in Section [£.3] the proposed mini-batching procedure consists of two steps. At step
1, it samples B hyperedges from £. The hyperedge sampling over £ can be either uniform or weighted (e.g.
by taking into account hyperedge cardinalities). Then in step 2 L nodes are in turn sampled from each
sampled hyperedge e, padding the hyperedge with L — |e| special padding tokens if |e| < L —consisting of 0
vectors that can be easily discarded in some computations. Overall, the shape of the obtained mini-batch
X has fixed size B x L.

Step 0 (hyperedge mini-batching) is particularly beneficial for large datasets; however, it can be skipped when
the network fits fully into memory. Empirically, we found step I (node mini-batching within a hyperedge)
to be useful for two reasons: (i) pooling operations over a large set may over-squash the signal, and (ii)
node batching leads to the training distribution shift, hence it can be useful to keep it even when the full
hyperedge can be stored in memory.
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When both step 1 and step 2 are employed, considering the hidden dimension size, the batch size required
to be stored in memory during the forward pass is B X L x d, where d represents the hidden dimension.
If only step 2 is employed, the batch size is |E] x L x d, where |£| is the number of hyperedges within the
hypernetwork. Finally, when no mini-batching steps are used, the batch size is |€] X maxeeg |e| X d, where
maXecg |e| is the size of the longest hyperedge.

Theoretical analysis. In this Section, we provide an analysis regarding the uniform sampling of the
hyperedges in Step 1. We propose sampling X mini-batches of a certain size B at each iteration. At step 1,
we sample B hyperedges from &; in step 2, for each hyperedge we sample a fixed number of nodes, that are
randomly chosen among the ones belonging to that specific hyperedge. If the hyperedge does not contain
enough samples, we use padding so that the size of the set of sampled nodes is increased to the desired
value. By choosing to sample the nodes uniformly at random from the hyperedge, there is no guarantee that
we will eventually sample all the nodes of each hyperedge. Indeed, sampling uniformly at random c¢ items
from a set of size n, the probability of not sampling our desired one is 1 — . The probability of having to
wait for T independent trials before finding node z among the sampled nodes is described by the geometric
distribution.

Namely, let « € e and |e| = n, and assume the size of the considered mini-batch is c:

T-1
P ( Sample node x from hyperedge e for the first time at epoch T') = (1 - E) <. (60)
n n
It follows that
E [ # of epochs to wait before sampling node z] = —
Assume now that a node x belongs to k hypergraphs eq,...,ex of respective sizes ny,...,n,. The events

{Node z is sampled from hyperedge e; } and {Node z is sampled from hyperedge e; } are independent if
i # j. It follows that the random variable { # of epochs to wait until we sample node = from all the
hyperedges ey, ..., e} is the maximum of k independent non-identically distributed geometric distributions.
Denote by T; the random variable that corresponds to the number of epochs we have to wait before sampling
sample = from edge e;. The exact distribution for the random variable T', that is, the number of epochs we
have to wait until we sample node x from all hyperedges ey, ... ey at least once, is

.....

It follows that

E ( # of epochs to wait until we sample node = from all the hyperedges e, ..., ex) = (61)
h
E(anlax T) 2%( 1;[1 1—(1—p) )) (62)

This can’t be expressed in closed form: we can use the Moment Generating Function to bound the expected
value of the maximum. Alternatively, we can also try to use the inequality due to Aven (1985), so that

E < makai> (63)

< max E(T}) + ’Hivm): ‘max ”+\/Hk =2 (1-2)] (64)

=t e [E (-] (65)
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Probability that a specific node is not sampled in one epoch. Let v be a node and let d, be its
degree. In one epoch, we “see” all hyperedges but, of course, not necessarily all their nodes. It holds that

P ( node v is sampled in epoch T ) = 1 — P ( node v is not sampled in epoch T") (66)

We can write the event

{ node v is not sampled in epoch T' } = Ng s5.t.vee { Node v is not sampled in e} .

It follows that

c

dy
P ( node v is sampled in epoch T ) = max {1 — H Liing_r. . a, ei|<c} (67)
i=1

les| =17

Indeed, if any on the edges v belongs to has a size smaller than the batch size for nodes (c), the node is for
sure seen in the first epoch.

G Node Homophily

In this Section, we report the node homophily plots for the datasets not illustrated in Figure [ For each
dataset, we choose to illustrate 3 different levels of node homophily, respectively 0,1 and 10— level homophily,
using Equation [2/at ¢ = 0,1 and 10 (left, middle, and right plots respectively). Horizontal lines depict class
mean homophily, with numbers above indicating the number of visualized points per class.

G.1 Figure - node homophily
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Figure 8: Node Homophily Distribution Scores for Cora.
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Figure 9: Node Homophily Distribution Scores for Citeseer.
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Figure 10: Node Homophily Distribution Scores for CORA-CA.
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Figure 16: Node Homophily Distribution Scores for ZOO.

H Comparisons with others Homophily measure in literature

K-uniform homophily measure

Hyperedge homophily. |Veldt et al| (2023)) defines the group homophily measure for k-uniform hyper-
graphs as G, = (V,€). The type t-affinity score for each ¢t € {1,...,k}, indicates the likelihood of a node
belonging to class ¢ participating in groups in which exactly ¢ group members also belong to class ¢ and
defined as in equation di(v) is the number of hyperedges that v belongs to with exactly ¢ members from
class ¢. The authors also consider a standard baseline score b;(c), equation that measures the probability
that a class-c node is in the group where ¢ members are from class ¢, given that the other k — 1 nodes were
chosen uniformly at random.

Zv:y“:c dt(v)

ne(c) = m7 (68) bi(c) = M (69)

)

n. is the number of nodes in class ¢ and n is the total number of nodes in the hypergraph. The k-uniform
hypergraph homophily measure can be expressed as a ratio of affinity and baseline scores, with a ratio value
of 1 indicating that the group is formed uniformly at random, while any other number indicates that group
interactions are either overexpressed or underexpressed for class c.

They suggest three possible ways for extending the concept of homophily to the hypergraph context. The
first one is the simple homophily and it means that n.(c) > b:(c) for t = k and check whether a class has
a higher-than-baseline affinity for group interactions that only involve members of their class. The second
one is order-j majority homophily that is obtained when the top j affinity scores for one class are higher
than the baseline, i.e. ng_;y1(c) > bp—jr1(c),...,mk(c) > br(c). The last one they consider is order-j
monotonic homophily, which corresponds to the case when top j ratio scores are increasing monotonic, i.e.
Mk (€) /b () > ne—1(c) /br—1(c) > - > Mr—jy1(c) > bp—j11(c).

Finally, considering that the value n:(c) — bi(c) is the bias of class ¢ for type ¢, they introduce a type-t
normalized bias score that normalizes the maximum possible bias, hence the obtained metric is bounded in
[0,1] and it is computed as:

ne(c)=be(e) ¢
oS ne(c) > be(c)
file) = {nf@)b—tét%c) if (70)
) if ne(c) < be(c)

Comparisons to our measure Unlike |Veldt et al| (2023) our measure of homophily does not assume a
k-uniform hypergraph structure and can be defined for any hypergraph. Furthermore, the proposed measure
enables the definition of a score for each node and hyperedge for any neighborhood resolution, i.e., the
connectivity of the hypergraph can be explicitly investigated. It gives a definition of homophily that puts
more emphasis on the connections following the two-step message passing mechanism starting from the
hyperedges of the hypergraph.
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H.1 Figure - k-uniform homophily

Some of the hypergraphs have a lot of different size for hyperedges, here, we report the plots only for some
k for each dataset for brevity. All additional plots can be found in the supplementary material’s zip files.
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Figure 17: k-uniform homophily Cora.
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Figure 18: k-uniform homophily Cora.
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Figure 19: k-uniform homophily Cora.
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2-uniform hypergraph, number of hyperedges: 486
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Figure 20: k-uniform homophily CORA-CA.
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Figure 21: k-uniform homophily CORA-CA.
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Figure 22: k-uniform homophily CORA-CA.
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2-uniform hypergraph, number of hyperedges 9976
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Figure 23: k-uniform homophily DBLP-CA.
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Figure 24: k-uniform homophily DBLP-CA.
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Figure 25: k-uniform homophily DBLP-CA.
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5-uniform hypergraph, number of hyperedges: 12311

Affinity/Baseline
Normalised bias

Figure 26: k-uniform homophily ModelNet40.
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