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Abstract

Fine-tuning foundation models has emerged as a powerful approach for generating
objects with specific desired properties. Reinforcement learning (RL) provides
an effective framework for this purpose, enabling models to generate outputs that
maximize a given reward function. However, in many applications such as text
generation and drug discovery, it can be suboptimal to optimize using a single re-
ward signal, as multiple evaluation criteria are often necessary. This paper proposes
a novel reinforcement learning-based method for fine-tuning foundation models
using multiple reward signals. By employing an iterative fine-tuning strategy across
these rewards, our approach generalizes state-of-the-art RL-based methods. We
further provide a theoretical analysis that offers insights into the performance of
multi-reward RL fine-tuning. Experimental results across diverse domains includ-
ing text, biological sequence, and small molecule generation, demonstrate the
effectiveness of the proposed algorithm compared to state-of-the-art baselines.

1 Introduction

Foundation models have emerged as powerful tools capable of performing a wide range of tasks.
Trained on large-scale datasets, they acquire broad knowledge that enables their application across
diverse domains. To better align a foundation model with the specific preferences of a downstream
task, fine-tuning can be applied to improve both performance and task alignment. Given access to a
reward model or a preference dataset, reinforcement learning offers an effective framework for fine-
tuning foundation models and large language models (LLMs) to better align with downstream tasks
[46, 41, 2]. Preference criteria used to evaluate the quality of responses generated by LLMs can vary,
and in some cases, it may not be possible to derive a single reward or preference. Furthermore, these
criteria can sometimes conflict with one another, making it difficult to summarize them into a single,
unified preference metric. For example, human preferences can be diverse and conflicting with one
another, such as the trade-off between harmlessness and helpfulness [3]. As another example, LLMs
can be used to generate novel small molecules for drug design [50, 22, 35]. In such applications,
candidate molecules are often evaluated based on multiple criteria [24, 44]. In such cases, fine-tuning
foundation models on multiple objectives becomes essential.

Multi-objective reinforcement learning can be employed to address diverse rewards and preferences.
Existing methods in the literature primarily follow two approaches. The first approach combines all
reward signals corresponding to different objectives into a single scalar reward [31], which is then
used to fine-tune the foundation model. The second approach involves fine-tuning the foundation
model separately and independently for each objective to obtain a set of expert policy networks,
each specialized for a specific objective. These expert policies are then merged to form a unified
policy [42], effectively acting as an ensemble with the aim of capturing knowledge from all experts.
However, combining reward signals into a single objective may prevent the model from learning
objective-specific skills. This can result in high performance variance across objectives, particularly

∗Corresponding Author: ye.wang@biogen.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



when a minority of objectives conflict with a majority that are more similar. On the other hand,
merging expert policies into a single policy may lead to suboptimal performance across some or all
objectives, especially when there is significant divergence among the expert policies due to conflicting
objectives.

This paper introduces a novel multi-objective reinforcement learning method for fine-tuning foun-
dation models. To enable the model to acquire objective-specific skills, the proposed algorithm
fine-tunes the foundation model separately for each objective, resulting in an expert policy network
for each one. However, this fine-tuning is not performed independently. To control variance among
the expert policies, the algorithm breaks the fine-tuning process into smaller steps and performs
it iteratively. After each step, the expert policies are merged into a single policy, which is then
used as the starting point for the next round of objective-specific fine-tuning. We show that the
proposed method can be interpreted as a generalization of both reward-combining and expert-policy-
merging approaches. Furthermore, we analyze the convergence properties of the algorithm, providing
theoretical insights into its performance. The contributions of this paper are summarized as follows:

• We propose a novel and generalized algorithm that offers greater flexibility than reward-
combining and expert-merging baselines, leading to improved performance.

• We provide a theoretical analysis of the proposed algorithm, offering insights into its
properties.

• We conduct experiments across diverse tasks including small molecule design, DNA se-
quence generation, and text summarization, to demonstrate the effectiveness of the proposed
method.

2 Related Works

RLHF. Reinforcement learning with human feedback (RLHF) has been extensively studied in the
literature and has demonstrated promising results across various applications [30, 51, 10, 21]. In
the context of aligning foundation models with human preferences, RLHF emerges as a compelling
approach, as it enables the model to interact with humans feedback to their preferences [26]. Several
approaches have been proposed to improve the performance and efficiency of RLHF [13]. The
safety of RLHF has been studied by [12]. The alignment of multimodal large language models with
human preferences has been investigated by [56, 60]. However, these works typically assume that
preferences can be captured using a single feedback signal. In practice, preferences can be diverse,
and relying on a single signal may be insufficient to represent this variability.

Multi-Objective Reinforcement Learning. The problem of multi-objective optimization has at-
tracted significant attention in reinforcement learning [20, 24]. Several studies have extended deep
reinforcement learning techniques to address multi-objective problems [53, 1, 34]. However, focusing
on a single mode of the reward function can limit the ability of multi-objective reinforcement learning
methods to learn objective-specific skills and may reduce the diversity of the generated outputs.
Moreover, when fine-tuning large foundation models, the scalability of multi-objective reinforcement
learning becomes critical, potentially making traditional approaches unsuitable for such large-scale
applications. To fine-tune foundation models on multiple objectives, the Rewarded Soups [42] method
has been proposed. It follows an expert-merging approach, where a separate model is fine-tuned for
each objective and then linearly combined to obtain a unified policy. To improve the performance
of expert-merging methods particularly in molecular design applications, a more complex merging
algorithm was introduced in [7].

Supervised Fine-Tuning. Multi-dimensional attributes can be used as conditioning signals for
supervised fine-tuning of LLMs [14, 43]. This strategy has been applied to the problem of fine-tuning
LLMs on multiple objectives in [52]. By appending the rewards associated with the objectives
of interest to the prompts, supervised fine-tuning approach in [52] enables the LLM to learn the
relationships between prompt–response pairs and the corresponding multi-objective reward space.

3 Preliminaries

This section defines the problem of fine-tuning language models with multiple objectives and reviews
relevant approaches.

2



3.1 Multi-Objective Fine-Tuning Problem

Let πθ denote the policy of a language model parameterized by θ, and let πref represent the initial
(reference) policy of the model. Given a prompt x, the policy πθ generates a response y by sampling
from the distribution πθ(y | x). Suppose there are N objectives, R1, . . . , RN , where for each
objective Ri, the goal is to learn a policy πθ that minimizes the corresponding loss function Li(πθ),
defined as:

Li(πθ) = −Ex∼pdata, y∼πθ
[Ri(x,y, πθ, πref)]. (1)

Each Ri can represent an objective commonly used in reinforcement learning-based methods such as
PPO or DPO. For example, in the context of Reinforcement Learning from Human Feedback (RLHF),
assuming access to a reward model rϕ parameterized by ϕ, the objective Ri may be defined as:

Ri(x,y, πθ, πref) = rϕ(x,y)− β log
πθ(y|x)
πref(y|x)

, (2)

where β ≥ 0 is a regularization coefficient that penalizes deviation from the reference policy, ensuring
that the learned policy does not diverge excessively from πref. Assume that the weight 0 < wi < 1

represents the preference for objective Ri, where the weights satisfy
∑N

i=1 wi = 1. In this work, we
assume that the preference weights wi are known for each objective Ri. Under this assumption, the
problem of multi-objective model fine-tuning can be formulated as:

θ∗ = argmin
θ

N∑
i=1

wiLi(πθ). (3)

This optimization problem can be addressed using stochastic gradient descent (SGD) techniques. In
the remainder of this section, we review two approaches for solving it.

3.2 Reward Combining

One approach to solving the optimization problem in equation 3 is to apply reinforcement learning
with combined rewards. We refer to this approach as MORLHF in this paper. Let the policy πθ be
optimized over T steps, with θt denoting the policy parameters at step 1 ≤ t ≤ T . At each step t,
MORLHF defines a combined single-objective loss as:

LMORLHF(πθt) = −Ex∼pdata, y∼πθt

[
N∑
i=1

wiRi(x,y, πθt , πref)

]
. (4)

Using the loss function in equation 4, the parameters are updated via gradient descent as:

θt+1 = θt − η∇θLMORLHF(πθt), (5)

where η is the learning rate. It is worth noting that multi-objective reinforcement learning can be
implemented in various ways through reward combination, with the formulation in equation 4 being
just one of them.

3.3 Rewarded Soups

An alternative approach to solving the problem in equation 3 is the Rewarded Soups method. This
technique optimizes the policy πθ over T steps with respect to each objective Ri, yielding a set of
parameters θi. Specifically, at each step t, the parameters are updated as follows:

θi,t+1 = θi,t − η∇θLi(πθi,t). (6)

After T steps, the parameter θi = θi,T is obtained. The final policy πθRS is formed by merging the set
of expert policies {πθi}Ni=1. Each πθi is treated as an expert trained on objective Ri, and the merged
policy acts as an ensemble of these experts. A common merging strategy is to take a weighted linear
combination of the parameters:

θRS =

N∑
i=1

λiθi (7)
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where each 0 ≤ λi ≤ 1 is a weight associated with the i-th objective, satisfying
∑N

i=1 λi = 1.
These weights λi can be optimized to minimize the loss in equation 3. One approach is to randomly
sample candidate weight sets using Monte Carlo methods and select the one yielding the lowest
loss. However, this can be computationally expensive. A simpler and more efficient alternative is
to set λi = wi, thereby weighting each expert policy in proportion to its corresponding objective
preference.

Comparing MORLHF (Subsection 3.2) with Rewarded Soups (Subsection 3.3), we observe key
differences in their approaches. MORLHF optimizes a combined reward signal, aiming to directly
learn a policy that balances multiple objectives. In contrast, Rewarded Soups trains separate expert
policies for each objective and then constructs the final policy by merging these experts. Because
MORLHF does not explicitly specialize in any individual objective, the resulting policy may exhibit
high performance variance across different objectives. Conversely, while Rewarded Soups ensures
that each expert is well-optimized for its corresponding objective, significant variance among the
experts themselves can lead to a merged policy that performs poorly across all objectives.

4 Proposed Iterative Fine-Tuning with Multiple Objectives

As discussed in Section 3, MORLHF may exhibit high performance variance across objectives, while
Rewarded Soups may experience significant variance among expert policies. This section introduces
the proposed approach for fine-tuning models on multiple objectives. By iteratively training expert
policies for individual objectives and merging them, the proposed method offers a principled way to
mitigate both performance variance across objectives and variances among expert policies.

4.1 Algorithm

The proposed algorithm learns an expert policy corresponding to each reward. Let θi,t denote the
parameters of the policy associated with the i-th objective at optimization step t. Every m steps
where m is an integer hyperparameter the expert policy parameters θi,t are merged to produce an
updated shared parameter vector ρt. This merged parameter is then assigned to all expert policies,
synchronizing them before continuing individual optimization. To reduce computational complexity,
a subset of M ≤ N objectives can be selected uniformly at random at each merging step to update
only the corresponding expert policy parameters between two merging steps. Let St denote the set of
indices for the selected objectives at step t. The update rule is defined as follows:

θi,t+1 =

{
θi,t − η∇θLi(πθi,t), if t mod m ̸= 0

ρt − η∇ρLi(πρt
), if t mod m = 0

,∀i ∈ St (8)

where t mod m denotes the remainder of t divided by m. Note that when t mod m ̸= 0, the subset
remains unchanged, i.e., St = St−1. Various strategies can be used to merge the policy parameters
θi,t to compute ρt. For simplicity, we adopt a linear combination:

ρt =
∑
i∈St

λi,tθi,t, such that
∑
i∈St

λi,t = 1,∀t : t mod m = 0. (9)

Furthermore, if t mod m = 0, a new subset of objectives St is selected by uniformly sampling M
objectives at random. The weights λi,t ≥ 0 can be determined using Monte Carlo methods, by
sampling different sets of coefficients and selecting the one that minimizes the weighted loss. To
reduce computational overhead, a simpler alternative is to fix the weights as

λi,t =
wi∑

j∈St wj
(10)

aligning them with predefined objective preferences. Algorithm 1 summarizes the proposed algorithm.
Since every m steps involve a merging procedure similar to Rewarded Soups, we refer to the proposed
method as IterativeRS, short for Iterative Rewarded Soups.

4.2 Analysis

This section analyzes the performance of IterativeRS. To gain a clearer understanding, we examine its
convergence behavior in cases where the loss function Li(πθ) is convex with respect to θ. While this
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Algorithm 1 IterativeRS: Iterative Multi-Objective Model Fine-Tuning

1: Input: Reference policy πref, learning rate η, merge frequency m.
2: Initialize πθi,1 , ∀i ∈ {1, . . . , N} as πref; S0 by sampling M objectives uniformly.
3: for t = 1, . . . , T do
4: Set St = St−1

5: if t mod m = 0 then
6: Merge policy weights {θi,t}Ni=1 to obtain the shared parameter ρt as in equation 9.
7: Sample uniformly at random M objectives to update St.
8: end if
9: For any objective i ∈ St, update the policy parameter θi,t as in equation 8.

10: end for
11: Merge all policy weights {θi,T }Ni=1 to obtain the shared parameter ρT .
12: Output: Policy πρT

.

convexity assumption may not hold in practical scenarios, the analysis provides valuable insight into
the impact of hyperparameters on IterativeRS’s performance. It is worth noting that MORLHF and
Rewarded Soups can be viewed as special cases of IterativeRS by setting λi,t = wi and optimizing
all objectives at each step. According to Algorithm 1 and Subsections 3.2 and 3.3, setting m = 1
in IterativeRS recovers MORLHF described by equation 4, while setting m = T corresponds to
Rewarded Soups.

The following assumptions are made for the analysis:
A 1. Loss functions Li(·), ∀i ∈ {1, . . . , N} are L-smooth such that Li(πθ1) ≤ Li(πθ2) +

L
2 ∥θ1 −

θ2∥2, ∀θ1,θ2.

A 2. Loss functions Li(·), ∀i ∈ {1, . . . , N} are µ-strongly convex such that Li(πθ1) ≥ Li(πθ2) +
(θ1 − θ2)⊤∇Li(θ2) +

µ
2 ∥θ1 − θ2∥

2, ∀θ1,θ2.

A 3. Loss gradients are bounded from above as ∥∇Li(πθ)∥ ≤ G, ∀θ, ∀i ∈ {1, . . . , N}.

Let the overall loss of a policy πθ be defined as

L(πθ) =
N∑
i=1

wiLi(πθ), (11)

where Li(πθ) is defined in equation 1. Let θ∗ denote the optimal policy parameters for the multi-
objective loss, and let θ∗i denote the optimal policy parameters for the objective i, defined as

θ∗ = argmin
θ

L(πθ), θ∗i = argmin
θ

Li(πθ) (12)

The following theorem provides a convergence bound for IterativeRS, with the proof presented in
the Appendix A. The theorem is proved under the assumption that the merged policy parameter is
computed as ρt = N

M

∑
i∈St wiθi,t where wi =

1
N , ∀i ∈ {1, . . . , N}. The extension to non-uniform

weights wi is straightforward and is discussed in Appendix A.
Theorem 1. Let the learning rate at step t is set as ηt = 2

µ(γ+t) where γ = max{ 8L
µ ,m} −

1. Furthermore, let θref denote the policy parameter of the initial reference policy πref. Under
assumptions A 1–A 3, the performance gap of policy learned by IterativeRS with respect to the
optimal policy πθ∗ is bounded from above as:

L(πρT
)− L(πθ∗) ≤ 4L

µ2(γ + T )

(
3L∆∗ + 2(2(m− 1)2 +

N −M

N − 1

m2

M
)G2

)
+

γL

2(γ + T )
∥θref − θ∗∥2 (13)

where ∆∗ be defined as:

∆∗ = L(πθ∗)−
N∑
i=1

wiLi(πθ∗
i
). (14)
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In what follows, the effects of the hyperparameters are analyzed using Theorem 1. It is important
to note, however, that a tighter performance gap upper bound in equation 13, does not necessarily
translate to better performance during deployment. It primarily reflects improved convergence during
training and may increase the risk of overfitting. Therefore, while the theoretical analysis helps in
understanding the impact of hyperparameters, practical performance should be monitored using a
validation set.

Effects of πref and ∆∗. From equation 13, it can be inferred that decrease in ∥θref − θ∗∥ improves
the performance gap upper bound. This suggests that initializing with a stronger reference policy
yields a more effective fine-tuned policy. Furthermore, equation 13 shows that smaller ∆∗ results
in tighter performance gap upper bound. A smaller ∆∗ can be achieved when the optimal policies
corresponding to individual objectives exhibit less variation. Therefore, Theorem 1 suggests that
greater similarity among objectives facilitates learning the optimal policy.

Choice of M and T . Using the bound in equation 13, it can be observed that increasing the number
of selected objectives M leads to a tighter upper bound on the performance gap. This is expected,
as learning over a larger set of objectives at each time step typically results in a better final policy.
However, increasing M also increases the computational complexity. Similarly, equation 13 indicates
that increasing the number of steps T tightens the upper bound on the performance gap, but at the cost
of greater computational complexity. Thus, a trade-off arises between minimizing the performance
gap and managing computational cost.

Choice of m. In order to understand the effect of m on the upper bound in equation 13, let break the
upper bound into two terms A1 and A2 where

A1 =
12L∆∗

µ2(γ + T )
(15a)

A2 =
8L

µ2(γ + T )

(
2(m− 1)2 +

N −M

N − 1

m2

M

)
G2 +

γL

2(γ + T )
∥θref − θ∗∥2. (15b)

Given that γ = max{ 8L
µ ,m}, if m ≥ 8L

µ , increasing m can lead to a reduction in the term A1. On
the other hand, increasing m is more likely to increase the term A2. The overall effect of m on
the upper bound depends on which term dominates. Therefore, the impact of m is influenced by
several factors, including the loss function and even the dataset, which may not be known a priori. As
previously discussed, MORLHF and Rewarded Soups represent two extreme cases, where m = 1
(MORLHF) and m = T (Rewarded Soups). However, a moderate choice of m may yield the best
trade-off. Therefore, it can be concluded that IterativeRS offers greater flexibility and potential for
improvement by allowing arbitrary values of m.

5 Experiments

To evaluate the performance of IterativeRS, we conducted extensive experiments across a diverse
set of tasks, including small molecule generation (Subsection 5.1), DNA sequence generation
(Subsection 5.2), and text summarization (Subsection 5.3). We compare IterativeRS against state-
of-the-art baselines: MORLHF [31], Rewarded Soups (RS) [42], and Rewards-in-Context (RiC)
[52]. We assume that all objectives are equally important across all tasks, setting the weights to
w1 = w2 = w3 = 1

3 . It should be noted that the implementation of the MORLHF baseline in this
section differs from the formulation presented in equation 4 in Subsection 3.2. To fine-tune models
using IterativeRS, RS, and MORLHF, we employed PPO [46]. We evaluate the performance of
each algorithm using the average rewards of its generated samples, both per objective and across
all objectives. In addition, we report an inverse coefficient of variation (ICV) score to quantify
performance consistency across objectives. For a given sample, the ICV score is defined as the
average reward across all objectives divided by the standard deviation of those rewards. The average
ICV score over S samples is computed as

ICV =
1

S

S∑
j=1

1
N (Rj,1 + . . .+Rj,N )

std(Rj,1, . . . , Rj,N )
(16)

where Rj,i denotes the reward obtained by sample j on objective i, and std(Rj,1, . . . , Rj,N ) represents
the standard deviation of rewards across objectives. A higher ICV score indicates lower variability
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Figure 1: Pairwise scatter plots of generated molecules in the reward space for the three objectives.

Table 1: Average performance of Pareto-optimal molecules generated by multi-objective approaches.
α energy gap U0 energy Avg Reward ICV

MORLHF 1.4229 0.9355 1.5146 1.2910 4.1883
RS 1.4134 0.9589 1.5464 1.3062 4.2674
RiC 0.5955 0.6795 0.7544 0.6765 3.7538
IterativeRS 1.5893 0.9508 1.6649 1.4017 3.5854

and more balanced performance across objectives. Codes are available at https://github.com/
pouyamghari/IterativeRS.

5.1 Small Molecule Generation

The goal of this task is to generate small molecules that exhibit specific desirable energy properties.
Specifically, the task involves generating molecules that (1) maximize polarizability (α energy), (2)
maintain a moderate HOMO-LUMO gap, and (3) minimize internal energy at 0 K (U0). To evaluate
the properties of molecules generated by IterativeRS and the baseline methods, we use PAMNet [59]
as the oracle model. PAMNet is specifically trained to predict molecular properties from the QM9
dataset. A GPT-2 model is pre-trained on SMILES representations of 2 million molecules from the
MOSES dataset [40], resulting in a model referred to as MolGPT-2. This pre-trained model is then
fine-tuned on the QM9 dataset [6, 45] to optimize for multiple objectives. To fine-tune models using
IterativeRS, RS, and MORLHF, we employed PPO [46] with a reward model trained on the QM9
dataset. Rewards for each objective are normalized to the interval [0, 1] using statistics computed from
the training data. For RiC, supervised fine-tuning was performed using the QM9 dataset. To generate
molecules, we first sample 10,000 SMILES representations using the fine-tuned model. Then, using
RDKit, we construct 3D structures for each generated SMILES. Due to potential randomization in
the 3D coordinates produced by RDKit, we generate 10 distinct 3D conformations for each SMILES.
The resulting structures are then evaluated using PAMNet. More implementation details can be found
in Appendix B.1.

Table 1 presents the performance of IterativeRS and other baseline methods in molecule generation.
For IterativeRS, the merging frequency is set to m = 4. Moreover, for all reinforcement learning-
based approaches (IterativeRS, RS, and MORLHF) the number of optimization steps is set to T = 100.
To evaluate each method, we compute the Pareto front of the generated molecules and report the
average reward for each objective within that front. If one generated molecule outperforms another
(both produced by the same model) across all objectives, the former is said to dominate the latter
and is included in the Pareto optimal set, while the dominated sample is considered suboptimal. As
shown in Table 1, RL-based methods outperform RiC in terms of reward. This is likely because
IterativeRS, RS, and MORLHF allow the pre-trained foundation model to interact with reward models
during training, enabling it to explore and learn to generate higher-quality SMILES. In contrast, RiC
relies solely on labeled data and lacks the exploration benefits provided by reinforcement learning.
Since the distribution of pre-trained data differs from the labeled dataset, RL-based methods are
better equipped to discover molecules with higher rewards than those present in the training set.
Furthermore, as can be seen from Table 1, IterativeRS outperforms both MORLHF and RS in terms
of average reward.
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Figure 2: Pairwise scatter plots of generated DNA sequences in the reward space for the three
objectives.

Table 2: Average performance of Pareto-optimal DNA sequences generated by multi-objective
approaches.

K562 HepG2 SKNSH Avg Reward ICV
MORLHF 0.2724 0.7096 0.7183 0.5667 3.1356
RS 0.3057 0.6808 0.7131 0.5666 3.8235
RiC 0.4221 0.6615 0.6688 0.5842 2.4672
IterativeRS 0.3032 0.7370 0.7378 0.5927 3.8310

Figure 1 presents scatter plots of the molecules generated by each method. Each subplot depicts
the relationship between two objectives, with each point representing a molecule generated by the
corresponding model. These plots illustrate how the generated molecules are distributed across
the objective space. Notably, Figure 1 shows that the highest-scoring molecules are produced by
IterativeRS. This is particularly important for molecule design, where the goal is often to identify
a small number of molecules with optimal properties. These results highlight the effectiveness of
IterativeRS in the small molecule generation task.

5.2 DNA Sequence Generation

The goal is to generate DNA sequences that exhibit desired regulatory activities in specific cell lines
K562, HepG2 and SKNSH. To this end, a GPT-2 model referred to as DNAGPT-2 is pre-trained
on approximately 700,000 unlabeled DNA sequences, each 200 base pairs long, from the MPRA
dataset [18], comprising over 35 million tokens. The objective is to generate sequences with maximal
regulatory activity across three different cell lines. For fine-tuning, we use a labeled subset of
100,000 sequences along with their corresponding activity measurements in the three target cell lines.
To assess the quality of the generated sequences, we utilize the Malinois model [18] as an oracle
predictor of regulatory activity. Rewards for each objective are normalized to the interval [0, 1] using
statistics computed from the training data. Each method generates 10,000 DNA sequences. More
implementation details can be found in Appendix B.2.

Table 2 presents the performance of different algorithms in generating DNA sequences. For Iter-
ativeRS, the merging frequency is set to m = 8, and for all reinforcement learning (RL)-based
methods the number of optimization steps is fixed at T = 200. For each method, the Pareto front of
the generated DNA sequences is extracted based on their rewards across the objectives. As shown
in Table 2, RiC achieves higher average reward scores than MORLHF and RS. Unlike the small
molecule generation task, the distribution of data used to pre-train the foundation model aligns closely
with the supervised training data for DNA sequences. As a result, RL-based methods provide less
benefit in this setting compared to supervised fine-tuning. While IterativeRS achieves an average
reward that is 1% higher than RiC, IterativeRS attains a 35% higher ICV score, indicating significantly
greater consistency in performance across objectives. Moreover, IterativeRS outperforms both RS
and MORLHF in terms of average reward.

Figure 2 presents scatter plots of DNA sequences generated by each method, with each subplot
comparing the rewards of two objectives. The results indicate that sequences generated by RiC
exhibit greater variability across objectives compared to those produced by IterativeRS. Notably,
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Figure 3: Pairwise scatter plots of generated summaries in the reward space for the three objectives.

Table 3: Average performance of text summarization by multi-objective approaches.
faithful summary deberta Avg Score ICV

MORLHF 0.6530 0.5778 0.3857 0.4525 4.5500
RS 0.6732 0.5807 0.4296 0.4732 4.5870
RiC 0.6497 0.5688 0.3455 0.4518 3.9579
IterativeRS 0.6927 0.5854 0.4398 0.4849 4.9134

IterativeRS generates fewer DNA sequences with low rewards, demonstrating a more consistent
performance compared to RiC.

5.3 Text Summarization

The task is to summarize Reddit posts. To accomplish this, we use Llama-3.2-3B-Instruct as the
base model. This foundation model is fine-tuned on the Reddit Summary dataset [49] for the post
summarization task. To evaluate the quality of the generated summaries, we employ three different
reward models: bart-faithful-summary [9], gpt2-reward-summary 2, deberta-v3 3. The rewards
assigned by bart-faithful-summary, gpt2-reward-summary, deberta-v3 are referred to as the faithful
score, summary score, and deberta score, respectively. All reported rewards are normalized to
the range [0, 1] using statistics computed from the training dataset. The merging steps in RS and
IterativeRS are performed using seven different sets of merging weights. For each set, a merged
model is obtained, and the model that achieves the highest average reward according to the reward
models is selected as the final merged model for the text summarization task. It is worth noting that
one of the main differences between IterativeRS and RS is that, according to Algorithm 1, IterativeRS
performs merging both during and after training, whereas RS merges the expert policies only once
after training. More implementation details can be found in Appendix B.3.

Table 3 presents the performance of the algorithms on the text summarization task for Reddit posts.
The merging frequency for IterativeRS is set to m = 40, while the number of steps for all RL-based
methods is T = 160. For each generated summary, we computed the average of the faithful, summary,
deberta, and ROUGE scores as the evaluation metric to incorporate a standard metric such as ROUGE
in addition to the scores assigned by the reward models. This average is reported as Avg Score in the
table. The ICV score is calculated using the faithful, summary, and deberta reward scores. The results
in Table 3 show that IterativeRS outperforms the other baselines across all metrics. These findings
indicate that employing IterativeRS can lead to improvements over RL-based approaches such as
MORLHF and RS. It is also worth noting that RiC is a supervised fine-tuning (SFT) approach, unlike
the RL-based methods. Although IterativeRS achieves higher scores than RiC, the superiority of
RL-based approaches over SFT methods such as RiC is not universally generalizable and is influenced
by the experimental conditions. Figure 3 shows scatter plots of the summaries generated by each
method, with each subplot comparing two objectives. As seen in the figure, IterativeRS is less likely
to produce responses with relatively low scores.

2https://huggingface.co/Tristan/gpt2_reward_summarization
3https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
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6 Conclusion

This paper introduced IterativeRS, an iterative multi-objective reinforcement learning algorithm for
fine-tuning foundation models. IterativeRS fine-tunes a separate model for each objective to capture
objective-specific knowledge, while mitigating divergence across expert models through an iterative
merge-and-fine-tune strategy. The paper presents a theoretical analysis of the convergence properties
of IterativeRS, offering deeper insight into its behavior. Furthermore, by formulating the problem as
an optimization task, our work can potentially open new directions for improving multi-objective
fine-tuning of foundation models. Experimental results across diverse tasks including small molecule
generation, DNA sequence generation, and text summarization demonstrate that IterativeRS achieves
higher average rewards compared to both MORLHF and Rewarded Soups.
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A Proof of Theorem 1

This section proves Theorem 1. The notations used in this section are summarized in Table 4. For
simplicity of analysis, we assume that all data samples are used at each step, although the case where
a random subset of data is sampled at each step can also be considered. In that case, Assumption A 3
can be modified to E[∥∇Li(πθ)∥] ≤ G, where the expectation is taken with respect to the randomness
in data sampling. Extending the results to the case with random data sampling is straightforward. Let
ψt be defined as ψt =

∑N
i=1 wiθi,t. Furthermore, let the merged policy parameter ρt be defined as

ρt =

{
N
M

∑
i∈St wiθi,t, if t mod m = 0

ψt, if t mod m ̸= 0
(17)

We can write

∥ρt+1 − θ∗∥2 = ∥ρt+1 −ψt+1 +ψt+1 − θ∗∥2

= ∥ρt+1 −ψt+1∥2 + 2(ρt+1 −ψt+1)
⊤(ψt+1 − θ∗) + ∥ψt+1 − θ∗∥2. (18)

To obtain an upper bound on ∥ψt+1 − θ∗∥2, consider the Lemma 1. This lemma is taken from [33].
Lemma 1. Suppose Assumptions A 1 and A 2 hold. If ηt ≤ 1

4L , then the following inequality holds:

∥ψt+1 − θ∗∥2 ≤ (1− ηtµ)∥ψt − θ∗∥2 + 6Lη2t∆
∗ + 2

N∑
i=1

wi∥ψt − θi,t∥2 (19)

where ∆∗ = L(πθ∗)−
∑N

i=1 wiLi(πθ∗
i
).

Proof. Let gt be defined as gt :=
∑N

i=1 wi∇Li(πθi,t). It can be inferred that ψt+1 = ψt − ηtgt.
Therefore, we may write

∥ψt+1 − θ∗∥2 = ∥ψt − ηtgt − θ∗∥2 = ∥ψt − θ∗∥2 − 2ηtg
⊤
t (ψt − θ∗) + η2t ∥gt∥2. (20)

From L-smoothness of Li stated in assumption A 1, it follows that

∥∇Li(πθi,t)∥2 ≤ 2L
(
Li(πθi,t)− Li(πθ∗

i
)
)

(21)

where θ∗i = argminθ Li(πθ). Using the above inequality and due to the convexity of ∥ · ∥2, we can
write

η2t ∥gt∥2 ≤ η2t

N∑
i=1

wi∥∇Li(πθi,t)∥2 ≤ 2η2tL

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗

i
)
)
. (22)

Furthermore, we can rewrite the term −2ηtg
⊤
t (ψt − θ∗) in equation 20 as

−2ηtg
⊤
t (ψt − θ∗) =− 2ηt

N∑
i=1

wi∇Li(πθi,t)
⊤(ψt − θi,t)

− 2ηt

N∑
i=1

wi∇Li(πθi,t)
⊤(θi,t − θ∗) (23)

Using AM-GM inequality, we can obtain

−2∇Li(πθi,t)
⊤(ψt − θi,t) ≤

1

ηt
∥ψt − θi,t∥2 + ηt∥∇Li(πθi,t)∥2, (24)

while due to µ-strong convexity of Li, we can write

−∇Li(πθi,t)
⊤(θi,t − θ∗) ≤ −(Li(πθi,t)− Li(πθ∗))− µ

2
∥θi,t − θ∗∥2 (25)

Taking a weighted average over the objectives and applying Jensen’s inequality to the right-hand side
of equation 25, we obtain

−
N∑
i=1

wi∇Li(πθi,t)
⊤(θi,t − θ∗) ≤ −

N∑
i=1

wi(Li(πθi,t)− Li(πθ∗))− µ

2
∥ψt − θ∗∥2. (26)
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Table 4: Notation Table.
Symbol Description

N Number of objectives
M Number of randomly selected objectives at each step t

St Set of selected objectives at step t

wi Preference weight associated with the i-th objective
πθ Policy of the language model parameterized by θ
θi,t Parameters of the policy associated with the i-th objective at optimization step t

ρt Merged parameters of all policies at step t, defined as in equation 17
ψt Weighted average of policy parameters, defined as ψt =

∑N
i=1 wiθi,t

gt Weighted average of policy gradients, defined as gt =
∑N

i=1 wi∇Li(πθi,t)

θ∗ Optimal policy parameter for the multi-objective loss, defined as in equation 12
θ∗i Optimal policy parameter for objective i, defined as in equation 12

Furthermore, taking a weighted average and applying the inequality in equation 21 to equation 24,
we get

−2

N∑
i=1

wi∇Li(πθi,t)
⊤(ψt − θi,t) ≤

N∑
i=1

wi

ηt
∥ψt − θi,t∥2

+ 2ηtL

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗

i
)
)
. (27)

Combining equation 20 with equation 22, equation 23, equation 26 and equation 27, we arrive at

∥ψt+1 − θ∗∥2 ≤(1− ηtµ)∥ψt − θ∗∥2 +
N∑
i=1

wi∥ψt − θi,t∥2

+ 4η2tL

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗

i
)
)
− 2ηt

N∑
i=1

wi(Li(πθi,t)− Li(πθ∗)) (28)

Taking the definition of ∆∗ into account, the last two terms in the right hand side of equation 28 can
be rewritten as

4η2tL

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗

i
)
)
− 2ηt

N∑
i=1

wi(Li(πθi,t)− Li(πθ∗))

=− 2ηt(1− 2ηtL)

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗

i
)
)
+ 2ηt

N∑
i=1

wi(Li(πθ∗)− Li(πθ∗
i
))

=− 2ηt(1− 2ηtL)

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
+ 4η2tL

N∑
i=1

wi(Li(πθ∗)− Li(πθ∗
i
))

=− 2ηt(1− 2ηtL)

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
+ 4η2tL∆

∗. (29)

To bound
∑N

i=1 wi

(
Li(πθi,t)− Li(πθ∗)

)
, considering the convexity of Li, we can write

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
=

N∑
i=1

wi

(
Li(πθi,t)− Li(πψt

)
)
+

N∑
i=1

wi (Li(πψt
)− Li(πθ∗))

≥
N∑
i=1

wi∇Li(ψt)
⊤(θi,t −ψt) + Li(πψt

)− Li(πθ∗). (30)
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Applying AM-GM inequality to the right hand side of equation 30, we get

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
≥

N∑
i=1

−wi

2

(
ηt∥∇Li(πψt

)∥2 + 1

ηt
∥θi,t −ψt∥2

)
+ Li(πψt)− Li(πθ∗) (31)

Applying the inequality in equation 21 to the right hand side of equation 31, we conclude that

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
≥−

N∑
i=1

wi

(
ηtL

(
Li(πψt

)− Li(πθ∗
i
)
)
+

1

2ηt
∥θi,t −ψt∥2

)
+ Li(πψt)− Li(πθ∗). (32)

Due the fact that 0 ≤ ηt ≤ 1
4L , it can be concluded that ηt ≤ 2ηt(1− 2ηtL) ≤ 2ηt. Multiplying both

sides of equation 32 by −2ηt(1− 2ηtL), we obtain

− 2ηt(1− 2ηtL)

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
≤

N∑
i=1

wi

(
2η2t (1− 2ηtL)L

(
Li(πψt)− Li(πθ∗

i
)
)
+ (1− 2ηtL)∥θi,t −ψt∥2

)
− 2ηt(1− 2ηtL) (Li(πψt

)− Li(πθ∗)) . (33)

The inequality in equation 33 can be rewritten as

− 2ηt(1− 2ηtL)

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
≤2η2t (1− 2ηtL)L∆

∗ +

N∑
i=1

wi(1− 2ηtL)∥θi,t −ψt∥2

+ (ηtL− 1)2ηt(1− 2ηtL) (Li(πψt)− Li(πθ∗)) . (34)

Using the facts that Li(πψt
)− Li(πθ∗) ≥ 0, ηtL− 1 ≤ − 3

4 and 1− 2ηtL ≤ 1, from equation 34
we obtain

−2ηt(1− 2ηtL)

N∑
i=1

wi

(
Li(πθi,t)− Li(πθ∗)

)
≤ 2η2tL∆

∗ +

N∑
i=1

wi∥θi,t −ψt∥2. (35)

Combining equation 28 with equation 29 and equation 35 proves the Lemma.

Since IterativeRS merges every m steps, there exists t′ such that t − t′ < m and θi,t′ = ψt′ ,
∀i ∈ {1, . . . , N}. Considering the facts that ψt′ is the expected value of {θi,t′}Ni=1, over distribution
{wi}Ni=1 and E∥X − E[X]∥2 ≤ ∥E[X]∥2, we can conclude that

N∑
i=1

wi∥ψt − θi,t∥2 =

N∑
i=1

wi∥ψt −ψt′ + θi,t′ − θi,t∥2 ≤
N∑
i=1

wi∥θi,t′ − θi,t∥2. (36)

Assume that ηt is selected such that it is non-increasing and satisfies ηt ≤ 2ηt+m, ∀t. Taking the
assumption A 3 into account, we can infer that

N∑
i=1

wi∥θi,t′ − θi,t∥2 =

N∑
i=1

wi∥
t−t′∑
τ=0

ηt′+τ∇Li(πθi,t′ )∥
2 ≤ 4(m− 1)2η2tG

2. (37)

Combining equation 37 with equation 19, we get

∥ψt+1 − θ∗∥2 ≤ (1− ηtµ)∥ψt − θ∗∥2 + 6Lη2t∆
∗ + 8(m− 1)2η2tG

2. (38)
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Recall that IterativeRS in Algorithm 1 samples M objectives uniformly without replacement. Such a
sampling scheme is unbiased and we can write

ESt [ρt+1] = ψt+1 (39)

where ESt [·] denote the expectation with respect to sampling randomization. Therefore, taking
expectation from equation 18 leads to

ESt [∥ρt+1 − θ∗∥2] = ESt [∥ρt+1 −ψt+1∥2] + ∥ψt+1 − θ∗∥2. (40)

Combining equation 40 with equation 38, we get

ESt [∥ρt+1 − θ∗∥2] ≤ESt [∥ρt+1 −ψt+1∥2]
+ (1− ηtµ)∥ψt − θ∗∥2 + 6Lη2t∆

∗ + 8(m− 1)2η2tG
2. (41)

According to equation 17, if (t + 1) mod m ̸= 0, it can concluded that ESt [∥ρt+1 − ψt+1∥2] =
0. If (t + 1) mod m = 0, considering the assumption that w1 = . . . = wN = 1

N , the term
ESt [∥ρt+1 −ψt+1∥2] can be expressed as:

ESt [∥ρt+1 −ψt+1∥2] =ESt

∥∥∥∥∥∥ 1

M

∑
i∈St+1

θi,t+1 −ψt+1

∥∥∥∥∥∥
2

=
1

M2
ESt

∥∥∥∥∥
N∑
i=1

Pr[i ∈ St+1](θi,t+1 −ψt+1)

∥∥∥∥∥
2

=
1

M2

N∑
i=1

Pr[i ∈ St+1]∥θi,t+1 −ψt+1∥2

+
1

M2

∑
i ̸=j

Pr[i, j ∈ St+1](θi,t+1 −ψt+1)
⊤(θj,t+1 −ψt+1). (42)

Considering the facts that Pr[i ∈ St+1] =
M
N and Pr[i, j ∈ St+1] =

M(M−1)
N(N−1) and

∥
N∑
i=1

θi,t+1 −ψt+1∥2 =

N∑
i=1

∥θi,t+1 −ψt+1∥2

+
∑

i,j∈St+1

(θi,t+1 −ψt+1)
⊤(θj,t+1 −ψt+1) = 0, (43)

we can rewrite equation 42 as

ESt [∥ρt+1 −ψt+1∥2] =
1

M(N − 1)

(
1− M

N

) N∑
i=1

∥θi,t+1 −ψt+1∥2 (44)

Using equation 36 and equation 37, from equation 44 we arrive at

ESt [∥ρt+1 −ψt+1∥2] ≤
4N

M(N − 1)

(
1− M

N

)
η2tm

2G2. (45)

Combining equation 45 with equation 41, we get

ESt [∥ρt+1 − θ∗∥2] ≤(1− ηtµ)∥ψt − θ∗∥2 + 6Lη2t∆
∗

+ 4

(
2(m− 1)2 +

N −M

M(N − 1)
m2

)
η2tG

2 (46)

Define B as

B = 6L∆∗ + 4

(
2(m− 1)2 +

N −M

M(N − 1)
m2

)
G2. (47)
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With a step size chosen as ηt = β
t+γ for some β > 1

µ and γ > 0 satisfying η1 ≤ min{ 1
µ ,

1
4L} and

ηt ≤ 2ηt+m, using induction it can be proved that ESt [∥ρt − θ∗∥2] ≤ v
γ+t where

v = max

{
β2B

βµ− 1
, (γ + 1)∥ψ1 − θ∗∥2

}
. (48)

Since ρt is an unbiased estimator of ψt, we can conclude that ESt [∥ρt − θ∗∥2] = ∥ψt − θ∗∥2.
Definition of v ensures that ∥ψt − θ∗∥2 ≤ v

γ+t for t = 1. Assume that ∥ψt − θ∗∥2 ≤ v
γ+t holds for

t. Using equation 38, we can write

∥ψt+1 − θ∗∥2 ≤ (1− ηtµ)∥ψt − θ∗∥2 + η2tB

≤
(
1− βµ

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
(49)

which proves that ESt [∥ρt+1 − θ∗∥2] ≤ v
γ+t+1 holds. Choosing β = 2

µ and γ = max{ 8L
µ ,m} − 1,

we have ηt =
2

µ(γ+t) . It can be verified that in this case ηt ≤ 2ηt+m. Then, we can write

v = max

{
β2B

βµ− 1
, (γ + 1)∥ψ1 − θ∗∥2

}
≤ β2B

βµ− 1
+ (γ + 1)∥ψ1 − θ∗∥2

≤ 4B

µ2
+ (γ + 1)∥ψ1 − θ∗∥2. (50)

Combining equation 50 with equation 49 and the fact that ESt [ρt] = ψt, we get

ESt [∥ρt+1 − θ∗∥2] = ∥ψt+1 − θ∗∥2 ≤ 1

t+ γ + 1

(
4B

µ2
+ (γ + 1)∥ψ1 − θ∗∥2

)
(51)

According to smoothness assumption in A 1, we can write

E[L(πρt
)]− L(πθ∗) ≤ L

2
ESt [∥ρt+1 − θ∗∥2] (52)

Combining equation 52 with equation 51, we arrive at

E[L(πρt)]− L(πθ∗) ≤ L

2(t+ γ)

(
4B

µ2
+ (γ + 1)∥ψ1 − θ∗∥2

)
. (53)

Plugging in ψ1 = θref in equation 53 proves the Theorem. Note that for the ease of notation we drop
the expectation in Theorem 1. Furthermore, it should be noted that most of proof steps are taken from
[33]. Furthrmore, it is useful to mention that Theorem 1 is proved for the case where w1 = . . . =
wN = 1

N . However, extension to non-uniform cases is straightforward. Define the scaled loss for
the objective i as L̃i(πθ) = wiNL(πθ). Then it can be concluded that L(πθ) = 1

N

∑N
i=1 L̃i(πθ).

Therefore, in that case the proof can be applied to scaled losses.

B Supplementary Experimental Results and Details

This appendix provides supplementary experimental results and implementation details.

B.1 Implementation Details for Small Molecule Generation

To fine-tune the MolGPT-2 model using MORLHF, RS, and IterativeRS, we employed PPO from the
TRL library. For each objective, a reward model was trained using the labeled QM9 dataset. Each
reward model consists of a MolGPT-2 backbone with a three-layer MLP head; only the MLP head
was trained. The dataset was split into 80% training, 10% validation, and 10% test sets. All models
were fine-tuned with a learning rate of 1.41× 10−5 using the Adam optimizer and a batch size of
128. The RiC baseline was configured with the same hyperparameters and settings as MORLHF,
RS, and IterativeRS. We set p = 2 for RiC. Model training was conducted using four V100 GPUs.
To perform merging for IterativeRS and RS, we average all objective-specific model weights. For
IterativeRS the number of selected objectives was 3.
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B.2 Implementation Details for DNA Sequence Generation

Similar to the molecule generation task, we fine-tuned the DNAGPT-2 model using MORLHF, RS,
and IterativeRS with PPO from the TRL library. A subset of 100,000 samples was uniformly sampled
from the MPRA dataset and evaluated using the Malinois model to obtain activity scores across three
cell lines. This subset was used as the labeled dataset to train the reward models for PPO. For each
objective, a separate reward model was trained using this labeled data. Each reward model consists of
a DNAGPT-2 backbone with a three-layer MLP head, where only the MLP head was trained. The
dataset was split into 70% training, 10% validation, and 20% test sets. All models were fine-tuned
with a learning rate of 1.41 × 10−5 using the Adam optimizer and a batch size of 128. The RiC
baseline used the same hyperparameters and settings as MORLHF, RS, and IterativeRS. We set p = 2
for RiC. Model training was performed on four V100 GPUs. For IterativeRS the number of selected
objectives was 3.

B.3 Implementation Details for Text Summarization

To fine-tune the Llama-3.2-3B-Instruct model using MORLHF, RS, and IterativeRS, we employed
PPO from the TRL library. We first passed all prompt–response pairs from the Reddit dataset through
three oracle reward models to construct a multi-labeled dataset. For each objective, a proxy reward
model was trained using the dataset and the corresponding objective-specific labels. Each proxy
model consists of a Llama-3.2-3B-Instruct backbone with a two-layer MLP head, with only the MLP
head being trained. We used the training set from the Reddit dataset for training and randomly split
its validation set into two subsets to serve as validation and test sets. The validation set was used
both for training the proxy reward models and for supervised fine-tuning in RiC. During inference,
prompts from the test set were provided to the fine-tuned models to generate text summaries. The
maximum summary length was set to 32.

Before applying PPO fine-tuning, we first trained an SFT model. The PPO fine-tuning was then
performed using this SFT model. We observed that initializing PPO with an SFT model leads to
improved ROUGE scores in the generated summaries. To construct the SFT training dataset, for
each prompt in the training set, we selected the summary that outperformed the alternative in the
majority of objectives based on reward scores. SFT was performed for two epochs with a learning
rate of 1.41× 10−6 using this constructed dataset. For fine-tuning with PPO, we selected a random
rollout of 1,024 samples per epoch and used a batch size of 128. Each model was fine-tuned for
20 epochs using a learning rate of 1.41 × 10−6 and the Adam optimizer. The RiC baseline was
fine-tuned on the entire training set for 2 epochs, using the same learning rate and batch size. We set
p = 2 for RiC. All other hyperparameters were kept consistent across MORLHF, RS, and IterativeRS.
Training was conducted on four A100 GPUs. For IterativeRS, the number of selected objectives
was set to 3. For both RS and IterativeRS, model merging was performed by selecting from seven
candidate merged models obtained using seven different sets of merging weights. The model with the
highest average reward, as evaluated by the reward models, was selected. The seven sets of merging
weights consisted of [1/3, 1/3, 1/3], all permutations of [1/6, 1/6, 2/3], and all permutations of
[1/6, 5/12, 5/12]. During training, at each merging step, we computed the reward of each merged
model on 256 samples from the training data and selected the model with the highest average reward
for the next iteration. After training, to obtain the final merged model, we evaluated all seven merged
models on 1,024 validation samples and selected the one with the highest average reward. We then
assessed its performance on the test set. Note that RS does not perform merging during training.

B.4 Supplementary Results

We performed additional experiments on the DNA sequence generation task to evaluate the perfor-
mance of RL-based fine-tuning methods MORLHF, RS, and IterativeRS, using RLOO, which does
not rely on a value model. The results are presented in Table 5. The results show that IterativeRS
achieves a higher average reward than both MORLHF and RS when using RLOO.

To investigate the influence of merging on the performance of IterativeRS, we conducted supplemen-
tary experiments. For DNA sequence generation task, we considered ten different sets of merging
weights, including [1/3, 1/3, 1/3], permutations of [1/6, 1/6, 2/3], permutations of [1/6, 5/12, 5/12]
and permutations of [1/2, 1/4, 1/4]. To assess the performance of each merged model, we generated
8, 192 samples per model and identified the Pareto-optimal sequences based on scores from reward
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Table 5: Average performance of Pareto-front DNA sequences generated by multi-objective ap-
proaches using RLOO.

K562 HepG2 SKNSH Avg Reward ICV
MORLHF 0.3754 0.6747 0.6882 0.5794 3.5907
RS 0.4080 0.6571 0.6786 0.5812 5.7214
IterativeRS 0.3559 0.6860 0.7061 0.5826 3.9890

Table 6: Comparison of selective merging and fixed merging on the performance of IterativeRS on
DNA sequence generation task.

K562 HepG2 SKNSH Avg Reward
fixed merging 0.3559 0.6860 0.7061 0.5826
selective merging 0.3678 0.6778 0.6923 0.5793

models. The final selection was based on the model that achieved the highest average reward score on
its Pareto optimal sequences. This method is referred to as selective merging, whereas merging with
uniform weights is referred to as fixed merging. Table 6 presents the results obtained using RLOO.
The results suggest that selective merging offers no improvement over fixed merging. One possible
reason for the limited effectiveness in the DNA sequence generation task is the evaluation method,
which relies on Pareto-optimal samples generated by the model. This makes identifying the best-
performing model more challenging. During training, merging allows experts to transfer cross-task
knowledge, which can help the final merged model generate higher-quality sequences. However,
selecting the best merged model among candidates is difficult because it depends on evaluating the
Pareto-optimality of generated sequences using reward models. These reward models are trained
on limited data derived from an oracle model used during evaluation, leading to a performance gap
between the reward models and the oracle. As a result, assessing Pareto-optimality using these reward
models may not yield reliable outcomes.

To examine the effect of the merging strategy on both RS and IterativeRS in the molecule generation
task, we applied MolMoE [7] to each method. MolMoE is an expert merging method designed for
molecular applications, whereas IterativeRS focuses on expert training. Therefore, these two methods
can be used in conjunction. We applied MolMoE to both IterativeRS and RS, and the results are
presented in Table 7. As shown, IterativeRS with MolMoE outperforms RS with MolMoE across all
objectives. Comparing Table 1 and Table 7, we observe that incorporating MolMoE improves the
performance of RS across all objectives. While IterativeRS with MolMoE achieves nearly the same
average reward as IterativeRS without MolMoE, it yields an 11% improvement in ICV. It is worth
noting that one of the main advantages of using MolMoE is its ability to handle scenarios where
preferences over objectives change dynamically over time, which is outside the scope of this paper’s
experimental study.

C Supplementary Related Works

Federated Learning. Federated learning involves a group of users, called clients, who collaborate
with each other through communication with a central server to train a global model [39, 19, 57].
There is an analogy between federated learning and multi-objective reinforcement learning in the
context of foundation model fine-tuning. In federated learning, the clients and the server work
together to train a model that performs optimally across all clients’ data. However, this can be
challenging since the data may be distributed non-i.i.d. among clients, which similar to multi-
objective reinforcement learning can lead to conflicting objectives during model training. To address
this issue, several personalized federated learning algorithms have been proposed in the literature
[48, 15, 11, 32, 38, 8, 58, 16].

GFlowNet. GFlowNets, initially proposed by [4], were introduced as a generative reinforcement
learning framework designed to effectively handle scenarios with multiple paths leading to a common
state. They have been widely applied to biological sequence [23, 28, 17] and molecule design
[61, 29, 27] tasks, where their effectiveness has been well documented. In this paper, we focus on
policy gradient–based methods such as PPO, due to their computational efficiency for foundation

21



Table 7: Average performance of Pareto-optimal molecules generated by RS and IterativeRS employ-
ing MolMoE for merging.

α energy gap U0 energy Avg Reward ICV
RS+MolMoE 1.4499 0.9715 1.5988 1.3400 4.1120
IterativeRS+MolMoE 1.5651 0.9941 1.6420 1.4004 3.9938

model fine-tuning. It is also worth noting that several methods have been proposed in the literature to
improve the learning efficiency of GFlowNets [5, 37, 36, 47]. Furthermore, GFlowNets have recently
been utilized to enhance the reasoning capabilities of large language models and vision-language
models [25, 55, 54].

D Societal Impact

In this paper, we addressed the problem of fine-tuning large language models (LLMs) on multiple
objectives—a challenge with significant implications in areas such as small molecule design for
drug discovery and biological sequence design. Methods that enable LLMs to generate molecules or
biological sequences with desirable functionalities hold great promise for accelerating the discovery
of new drugs and therapeutics, potentially benefiting society at large. However, we recognize the
dual-use nature of this research. There is also the risk that such technologies could be misused or
exacerbate existing health disparities, particularly among marginalized communities. As researchers,
we underscore the importance of carefully considering both the societal benefits and the potential unin-
tended consequences of this work. We remain optimistic that the broader impact of our contributions
will lean toward positive, equitable outcomes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly explained the main contributions in both introduction and abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the experimental section, we reported that some baselines perform better
than ours in certain aspects.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
Answer: [Yes]

23



Justification: In section 4.2, we provide the accurate definition of assumptions. We provide
the complete proof for the Theorem in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the full implementation details in both the paper and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• At submission time, to preserve anonymity, the authors should release anonymized
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25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
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eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed societal impact in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe the paper pose no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited all models and datasets used by the paper in the experimental
section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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