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ABSTRACT

The success of machine learning for real-world robotic systems has created a new form of
intellectual property: the trained policy. This raises a critical need for novel methods that
verify ownership and detect unauthorized, possibly unsafe misuse. While watermarking is
established in other domains, physical policies present a unique challenge: remote detection.
Existing methods assume access to the robot’s internal state, but auditors are often limited
to external observations (e.g., video footage). This “Physical Observation Gap” means
the watermark must be detected from signals that are noisy, asynchronous, and filtered by
unknown system dynamics. We formalize this challenge using the concept of a glimpse se-
quence, and introduce Colored Noise Coherency (CoNoCo), the first watermarking strategy
designed for remote detection. CoNoCo embeds a spectral signal into the robot’s motions
by leveraging the policy’s inherent stochasticity. To show it does not degrade performance,
we prove CoNoCo preserves the marginal action distribution. Our experiments demonstrate
strong, robust detection across various remote modalities—including motion capture and
side-way/top-down video footage—in both simulated and real-world robot experiments.
This work provides a necessary step toward protecting intellectual property in robotics,
offering the first method for validating the provenance of physical policies non-invasively,
using purely remote observations.

1 INTRODUCTION

The rise of machine learning in robotics has yielded high-performance policies capable of sophisticated
locomotion, manipulation, and navigation (Lee et al., 2020; Smith et al., 2023; Hoeller et al., 2024). These
policies, often deep neural networks resulting from significant investment, represent a critical new form of
intellectual property (IP). As commercial deployment accelerates, the risk of unauthorized misuse and theft
escalates, creating an urgent need for reliable methods to verify ownership and provenance.

Digital watermarking is the standard mechanism for IP protection in domains like multimedia (Cox et al.,
1997) or large language models (Kirchenbauer et al., 2023; Dathathri et al., 2024). However, existing methods
for watermarking policies (Behzadan & Hsu, 2019; Chen et al., 2021) suffer from a critical limitation: they
assume white-box access to the system, requiring direct inspection of internal states, action logs, or specific
trigger environments. In realistic scenarios (Fig. 1), such access is often impossible or untrustworthy.

The ability to verify policy provenance using only remote observations (e.g., CCTV footage) is essential not
only for IP protection but also for high-impact AI safety applications. For instance, remote detection enables
Scalable Safety Compliance, allowing regulators to non-invasively verify whether safety-critical systems
(e.g., autonomous vehicles) are authorized for deployment by checking them against a database of certified
policy signatures. It also facilitates Trustworthy Forensics and Accountability. Following an incident (e.g.,
an autonomous vehicle crash or industrial accident), determining the provenance of the deployed control
software is critical for liability. Relying solely on onboard logs is insufficient, as they may be unavailable due
to damage or deliberately tampered with by adversarial actors seeking to evade responsibility or fraudulently
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Figure 1: Overview of the pipeline for robot policy watermarking. In Step 1, the policy owner trains a policy,
adds a watermark to it and produces a detection function to identify it. In Step 2, the watermarked policy is
used by a policy user who deploys it on their own robot. In Step 3, a policy auditor aims to identify the policy
used on the robot. To do so, they can only access glimpses of the policy behaviour through remote sensing,
such as a camera feed; these glimpses are passed through the detection function to identify the policy.

claim damages. Remote watermark detection provides an independent mechanism for auditors to verify the
active policy using external, tamper-resistant data sources like traffic camera footage.

These scenarios introduce a fundamental challenge we term the Physical Observation Gap. The auditor
does not observe the policy’s actions (say, torque commands), but rather their consequences (say, movement
captured by camera). The watermark signal must cross this gap, surviving severe distortions that destroy
traditional watermarking signatures. This entails three primary challenges: (C1) Synchronization Uncertainty
between the policy’s clock and the remote sensor; (C2) System Dynamics filtering the actions through the
robot’s complex, unknown physics (e.g., inertia, friction); and (C3) Interference and Noise from the robot’s
primary behavior and the environment.

In this work, we introduce Colored Noise Coherency (CoNoCo), the first watermarking strategy for robot
policy designed to enable remote watermark detection. CoNoCo operates in the frequency domain. It embeds
the watermark by exploiting the inherent stochasticity of standard continuous control policies. The watermark
is then detected using Spectral Coherency, a normalized frequency-domain metric conceptually analogous to
a correlation coefficient for specific frequencies. It possesses a notable invariance property that cancels out
the filtering effects of unknown system dynamics (Theorem 4.2). This allows us to, e.g., inject the watermark
on the level of torque commands executed by the robot, but detect it even when we only observe noisy, video
footage-derived velocity estimates. By combining this invariance with explicit synchronization techniques,
CoNoCo achieves robust detection despite the challenges of the Physical Observation Gap.

Our contributions are summarized as follows. (i) We formalize the problem of remotely detectable policy
watermarking using the concept of glimpse sequences and characterize the fundamental challenges posed by
the Physical Observation Gap (C1-C3). (ii) We introduce CoNoCo, a novel frequency-domain strategy based
on colored noise injection and spectral coherency detection. To our knowledge, it is the first method capable
of verifying policy provenance using only remote measurements. (iii) Finally, we demonstrate CoNoCo’s
effectiveness in simulated and real-world robot tasks with challenging detection modalities like motion
capture, and top-down, and sideway video footage. We compare it to adapted variants of existing watermarks,
and show its robustness to different types of noise and interference (including deliberate adversarial noise).

RELATED WORK

Digital Watermarking and Signal Processing. Watermarking has historically been used for IP protection
in multimedia (Berghel & O’Gorman, 1996; Swanson et al., 1998), with methods such as Spread Spectrum
(Cox et al., 1997) embedding robust, imperceptible signals across wide frequency bands. More recently,
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watermarking has been applied to generative models (Wen et al., 2023; Kirchenbauer et al., 2023; Dathathri
et al., 2024). These methods assume access to well-behaved signals and struggle with the dynamics of remote
physical systems; in this work, we extend these frequency-domain principles to such challenging settings.

Watermarking in Cyber-Physical Systems (CPS). In CPS security, “dynamic watermarking” defends robots
against sensor attacks by superimposing signals onto control inputs (Satchidanandan & Kumar, 2016; Ko
et al., 2016). While related, these methods target real-time security (integrity) rather than IP (provenance) and
crucially assume auditor access to internal control signals.

Watermarking Neural Networks (NN). Methods exist to verify ownership of NN models by embedding
signatures into weights (Darvish Rouhani et al., 2019) or using rare “trigger” inputs (backdooring) (Adi et al.,
2018; Szyller et al., 2021). These require white-box access or the ability to actively query the model.

Watermarking Policies and Agents. Prior work on policy watermarking typically modifies behavior in
specific situations. Behzadan & Hsu (2019) requires execution in a secret “trigger environment.”, Chen et al.
(2021) enforces secret actions in specific “safe states.” Methods for agentic systems (Huang et al., 2025)
watermark high-level behavior. Unlike CoNoCo, all of these approaches require access to the internal state of
the policy, making them unsuitable for remote detection.

2 PROBLEM STATEMENT

We address the challenge of watermarking a stochastic robotic control policy πθ so that the watermark can be
detected using only remote measurements. The policy maps observations ok ∈ O to actions ak ∈ A at discrete
time steps k = 0, 1, . . . . We assume a standard structure common in continuous control Reinforcement
Learning (RL), where the policy outputs the parameters of a Gaussian distribution1: ak = µθ(ok)+Σθ(ok)ϵk.
Here, µθ is the mean action (the primary behavior), and Σθ(ok) determines how much the action deviates
from the mean, which we call the exploration scale. ϵk ∼ N (0, I) is White Gaussian Noise (WGN)—random,
uncorrelated noise used for exploration. A robot, R, executes this policy.

The objective is to create a watermarked policy π̃θ using a secret key K. An auditor, possessing K, must
detect this signature using only remotely collected, passive data (e.g., video footage), without access to the
robot’s internal state. This is difficult due to the challenges (C1-C3) and requirements (W1-W2) below.

Firstly, we must overcome the “Physical Observation Gap”: the separation between the digital policy execution
and the remote physical observations. This gap introduces three primary challenges:

C1. Synchronization Uncertainty. The policy executes at an internal rate fπ, which is often unknown
(within bounds [fπ,lb, fπ,ub], say ±50%) and may vary slightly over time (jitter). Remote sensors (e.g.
camera) sample data at an independent, known rate fg. Due to this difference, the timing between the
policy’s actions and the sensor’s recording is misaligned.

C2. System Dynamics. The auditor does not see the policy commands (e.g., motor torques); they see the
physical response (e.g., movement), which is transformed by the robot’s unknown and time-varying
physical dynamics Sdyn. The physics filter and distort the original signal.

C3. Interference and Noise. The policy behaviour µk is typically much stronger than the watermark signal,
acting as significant interference. External disturbances and sensor noise further corrupt the observation.

We model the Physical Observation Gap through a Glimpse Sequence Formalism. The policy runs at un-
known times {Tk}. The executed action aexec(t) drives the robot’s state evolution ṡ(t) = Sdyn(s(t), aexec(t)).

1Often, the action is bounded by a saturation function (e.g., ak = tanh(. . . )). For simplicity, we omit this in our
theoretical analysis; however, our experiments show that detection remains effective even when such a function is applied.
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Definition 2.1 (Glimpse Sequence). A remote sensor samples the state at times {ti} (rate fg), producing
measurements Gi = Gmap(s(ti)) + ηi, where ηi is measurement noise. The sequence G = (Gi)

N−1
i=0 is the

glimpse sequence, the sole data available for detection. Gmap is a function that maps the state of the system
at time ti to a remote observation, such as a velocity estimate from video data. In complex (MIMO) systems,
G is multi-dimensional; we denote the d-th dimension as Gd.

Secondly, to be useful, the watermarked policy π̃θ must satisfy two requirements:

W1. Marginal Distribution Preservation. To ensure the watermarked policy behaves like the original, we
require the probability distribution of actions to remain unchanged: pπθ

(a|o) = pπ̃θ
(a|o) for all o, a.

W2. Robust Detectability. The detector DK(G) must reliably distinguish π̃θ from πθ despite C1-C3.

3 THE COLORED NOISE COHERENCY STRATEGY (CONOCO)

The distortions caused by the Physical Observation Gap (C1-C3) make detection methods based on precise
timing (time-domain) fragile. We introduce Colored Noise Coherency (CoNoCo), a strategy that analyzes the
signal’s frequency content (frequency-domain), which is more robust to these distortions. CoNoCo operates
on two principles (i) It embeds the watermark by replacing the WGN exploration noise with normalized
Colored Gaussian Noise (CGN). CGN is a type of “shaped” noise that concentrates energy in a target
frequency band. We show in Section 4 that this approach improve detection while satisfying W1. (ii) It
detects this signature using Spectral Coherency, a technique robust to unknown dynamics, combined with
synchronization methods to address remote sensing challenges.

Watermark Generation and Injection. We generate the watermark by creating a CGN sequence, Wk, to
replace the original WGN ϵk. The watermark is defined by a secret key K = {S,B}, where S is a secret seed
and B = [fmin, fmax] is a frequency band (e.g., in Hz). The process is described in Algorithm 1.

To generate Wk, we filter a pseudorandom WGN sequence X (derived from S) using a digital Band-Pass
filter H. The goal is for the physical actions to vibrate within B. Since the physical frequency depends on the
uncertain policy rate fπ (C1), the digital filter spans [fmin/fπ,ub, fmax/fπ,lb]. This guarantees the resulting
physical signal covers B, regardless of fπ . X is then filtered and normalized to produce Wk.

The watermarked policy π̃θ utilizes this CGN: ãk = µθ(ok)+Σk ·Wk. The advantage of targetting a specific
band B is that it can be chosen outside the anticipated frequencies spectrum of µθ(ok), reducing policy
interference (C3). Note that the time-varying exploration scale Σk changes the amplitude of the watermark;
we analyze this effect in Section 4. If the policy action is multi-dimensional, we generate independent CGN
sequences for each dimension to improve detection.

Watermark Detection Strategy. The detection strategy (Algorithm 1) aims to address the Physical Obser-
vation Gap. We first address (C1). The unknown policy frequency fπ must be found. The detector searches
over a grid of candidate frequencies Fsearch ⊆ [fπ,lb, fπ,ub]. For each candidate s, the detector regenerates the
watermark W and resamples (time-stretches) it from the hypothesized rate s to the known glimpse rate fg,
yielding a hypothesis W ′

s. This aligns the time scales. We next address (C2). Detecting the watermark after it
passes through unknown system dynamics is challenging. We use Spectral Coherency, a frequency-domain
metric analogous to correlation in statistics.
Definition 3.1 (Complex Coherency). The Complex Coherency CXY (f) between two processes X and Y at
frequency f is defined as: CXY (f) =

SXY (f)√
SXX(f)SY Y (f)

. Here, SXX(f) and SY Y (f) are the Power Spectral

Densities (PSDs), representing the energy (variance) of X and Y at frequency f . SXY (f) is the Cross-Spectral
Density (CSD), representing the covariance between X and Y at frequency f .
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Coherency is a normalized version of the CSD. Its magnitude |CXY (f)| ∈ [0, 1] acts like a correlation
coefficient at frequency f , indicating the strength of the linear relationship between X and Y . Crucially, if Y
is the output of an Linear Time-Invariant (LTI) system H with input X, then |CXY (f)| = 1, regardless of the
specifics of H (Thm. 4.2). This property makes CoNoCo robust to system dynamics. For example, if the
glimpses are related to the robot’s actions by an ODE with constant coefficients (e.g., robot executes torque
commands but we observe velocity glimpses), this transformation is LTI, and does not impact coherency.

For a given hypothesis s, we calculate the coherency between W ′
s and G. Let CW ′

dGd
(f ; s) be the coherency

between the d-th dimension of W ′
s and the glimpse Gd. The final detection score is the maximum average mag-

nitude within the secret band B, calculated using Welch’s method (Karl, 2012) (which breaks the signal into
segments) and optimized over all hypotheses: D(G) = maxs∈Fsearch

(
1
D

∑D
d=1 meanf∈B|CW ′

dGd
(f ; s)|

)
.

Algorithm 1 Watermark generation and detection procedures.
Watermark Generation

Require: Seed S, Length N , Dimensions D, Band B =
[fmin, fmax], Freq Bounds [fπ,lb, fπ,ub]

1: W ← Zeros(N,D)
2: Blow ← fmin/fπ,ub; Bhigh ← fmax/fπ,lb
3: HB ← DesignButterworthBPF(Blow, Bhigh)
4: for d = 1 to D do
5: Sd ← DeriveDimSeed(S, d)
6: X ← GenerateWGN(Sd, N)
7: Wraw ← ApplyLTIFilter(HB, X)
8: W [:, d]←Wraw/Std(Wraw) ▷ Normalize
9: return W

Watermark Detection
Require: Glimpses G, Glimpse Freq fg , Key K =
{S,B}, Search Range Fsearch

1: D ← NumDimensions(G); BestScore← 0
2: Wbase ← RegenerateWatermarkSequence(. . . )
3: for s ∈ Fsearch do ▷ Frequency Alignment
4: W ′

s ← ResamplePoly(Wbase, fg/s)
5: Scoresum ← 0
6: for d = 1 to D do
7: W ′

d ←W ′
s[0 : |G|, d]

8: f, Cd ← Coherency(G[:, d],W ′
d, fg)

9: Scored ← Mean(Abs(Cd[f ∈ B]))
10: Scoresum ← Scoresum + Scored
11: if Scoresum/D > BestScore then
12: BestScore← Scoresum/D

13: return BestScore

4 ANALYSIS OF WATERMARK PROPERTIES

We now study the properties of CoNoCo. Theorem proofs are provided in the Appendix.

(W1) Marginal Distribution Preservation and Utility. We show that the watermark injection process
preserves the statistical distribution of the exploration noise (Theorem 4.1), proving requirement (W1).

Theorem 4.1. Let Wk be generated by filtering a WGN sequence Xk ∼ N (0, I) through a stable LTI filter
H , followed by normalization to unit variance. Then the marginal distribution of Wk is also N (0, I).

Theorem 4.1 establishes that pπθ
(a|o) = pπ̃θ

(a|o); the statistics of the actions at any single time step
are identical for the watermarked and original policies. However, using CGN instead of WGN introduces
temporal autocorrelation: the noise at one time step is related to the noise at previous steps, rather than being
fully independent. We empirically show that this does not affect system performance if the band B is chosen
appropriately. The reason CGN is often benign is noted in (Lillicrap et al., 2015): temporally correlated noise
can lead to smoother exploration, often improving performance in continuous control.

(W2) Robust Detectability. Detectability relies on the properties of Spectral Coherency. We first start with
idealized assumptions, assuming constant dynamics (LTI) and constant exploration scale (Σk = Σ). The
system mapping the watermark Wk to the glimpse Gi is LTI (Linear Time-Invariant). the core reason we use
coherency for detection is that coherency can “see through” the dynamics; e.g., even if the robot uses torque
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actions but we observe velocity glimpses, the detection score is not affected by this transformation. This is
expressed in the following, well-known theorem (Karl, 2012):
Theorem 4.2 (Invariance of Coherency Magnitude under LTI Filtering). Let X and Y be stationary processes
related by an LTI system Hsys. In the absence of noise, |CXY (f)| = 1, regardless of Hsys (provided
Hsys(f) ̸= 0, SXX(f) > 0).

In practice, the glimpse G is corrupted by interference from µk and sensor noise ηi (C3). We quantify the
effect of this interference using the Signal-to-Interference-plus-Noise Ratio (SINR).
Definition 4.1 (Signal-to-Interference-plus-Noise Ratio (SINR)). The SINR at frequency f is the ratio of
the desired signal power to the power of the undesired components: SINR(f) = PS(f)

PN (f) . Here, PS(f) is the
power (PSD) of the watermark signal in the glimpse, and PN (f) is the power of the interference from the
policy µk, sensor noise, and other sources.
Theorem 4.3 (SINR in Watermarked Policies). Consider the watermarked policy action ãk = µk+ΣWk, with
constant Σ, driving an LTI system Hsys. Assume W , µ, and measurement noise η are mutually independent.
Then the magnitude squared coherency between W and the glimpse G is |CWG(f)|2 = SINR(f)

SINR(f)+1 .

Theorem 4.3 links detectability and SINR. Coherency approaches 1 when the watermark power PS(f) is
significantly greater than the noise power PN (f). The exploration scale Σ directly controls the strength of
PS(f); thus, policies with more exploration (larger Σ) allow for better detectability (W2)2.

The above analysis holds in idealized (LTI) conditions. Real robotic systems are often LTV (Linear Time-
Varying), with changing dynamics Sdyn(t) and scale Σk. A time-varying Σk causes “spectral smearing,”
reducing SINR. Furthermore, we use Short-Time analysis (Karl, 2012), assuming slow-changing system
dynamics. Rapid changes, particularly in phase, can bias the coherency estimate downwards. CoNoCo
mitigates this via its aggregation strategy (Section 3): (i) averaging over multiple glimpse dimensions can
pick up signal from dimensions that behave more like an LTI; (ii) the band B can be chosen to avoid unstable
frequencies. Please see Appendix C for details and practical tuning tips in Appendix D.

5 EXPERIMENTAL SETUP

To evaluate CoNoCo, we design experiments covering multiple glimpse modalities and environments (Fig. 2).
We categorize glimpse modalities based on the auditor’s access (Table 1). Ground Truth Action assumes
direct access to the watermarked action signal. This unrealistic setting serves as an idealized baseline, free
from the challenges (C1-C3) central to this work. Onboard Sensors use proprioceptive measurements from
the robot. This modality is affected by system dynamics and noise (C2, C3), as it only estimates the effect of
the actions after these are filtered by physics. Remote modalities use fully external sensors and are the main
focus of this work, encompassing all challenges (C1-C3). Remote Motion Capture remotely approximates
the motion of the robot using multiple cameras; its readings are unsynchronised with the policy (C1). Remote
Camera Feed uses a single-pov video recording at either top-down or sideways angle; it is similar to Motion
Capture but typically provides less precise estimates (higher C3). Across our onboard sensor, motion capture,
and remote camera settings, fg/fπ ≈ 5. Other ratios attained similar performance.

As CoNoCo is the first strategy for remote detection, no direct baselines exist. To be able to perform
comparisons, we therefore introduce three adapted variants of watermarks intended for related settings: (i)
Multi-Sine Wave, inspired by replay attack detection (Ghamarilangroudi et al., 2025), embedding secret
sinusoids detected via DFT energy; (ii) Correlation-Based, embedding a pseudo-random sequence detected
via normalized cross-correlation; and (iii) Tournament-Based, a novel adaptation of SynthID (Dathathri

2We emphasize that Theorems 4.2 and 4.3 are well-known properties of LTI systems (Karl, 2012). The contribution of
CoNoCo is in exploiting these properties to design a remotely detectable watermarking strategy.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Ground 
Truth Action

External 
Camera

Motion 
Capture

Proprioceptive 
Measurements

Onboard 
Sensors

Remote 
Motion 
Capture

Remote 
Camera 

Feed

observation !! action "!

Onboard the robot Remote

VMAS Navigation

HalfCheetahPendulum

RoboMaster Navigation

torque
0

Robot

Goal

force or 
velocity

Trajectory

Navigation

Actuated Joints

Figure 2: Overview of the Experimental Setup. (Left) Glimpse modalities: Ground Truth Action uses the
watermarked action signal, Onboard Sensors uses readings from some onboard sensors; both assume the
auditor can access some of the onboard hardware, Remote Motion Capture and Remote Camera Feed use only
external sensors. (Right) Tasks: two are navigation tasks, either velocity- or force-controlled, the other two are
actuated joints tasks, including an Inverted Pendulum and a Legged Robot, either force- or torque-controlled.

Table 1: Overview of the glimpse modalities considered in our experiments and the challenges they induce.

Challenge Ground Truth Action Onboard Sensors Motion Capture Camera Feed

C1: Sync. Uncertainty - - . .

C2: System Dynamics - . . .

C3: Interference & Noise - . . .

et al., 2024) extended for continuous action spaces and remote robustness. The first three strategies handle
synchronization uncertainty (C1) by maximizing the detection score over a grid of possible execution
frequencies, while Tournament-Based does not require knowledge of the frequency and is thus not impacted
by (C1). All approaches preserve the action distribution (W1). Full details are in Appendix E.

We evaluate performance using three metrics, using batch-estimates with 100 bootstraps:

Detectability. As raw detection scores are not comparable across strategies, we assess how reliably water-
marks are detected by comparing Receiver Operating Characteristic (ROC) curve. ROC give detection rates
based on the relative score obtained by watermarked and non-watermarked policies.

Anonymity. A watermark should only be detectable by the intended owner. Strategies use an owner key for
personalization, and detectors with the wrong key should fail. Anonymity measures non-detectability with
incorrect keys; quantified as 1 minus the ROC Area Under Curve (ROC AUC) (higher is better).

Reward Preservation. A watermark must preserve the original policy’s performance. We evaluate this by
comparing the reward distributions of watermarked and non-watermarked policies.

In the following, one replication refers to running replications of the watermarked policy and one replication of
the non-watermarked policy. For each replication, we reset the policy, the environment, and the watermarking
strategy, then generate a new signal of the given modality from scratch. The detection mechanism is
applied independently to the outcome of each replication. To process Remote Camera Feed glimpses, we
convert all camera feeds into velocity estimates using Template Matching from LuNežič et al. (2018). When
experimenting with remote modalities in simulation, we use the raw rendered images as camera feed and
discard all other data. Note that all the watermarking strategies considered in this work apply at inference
time, meaning while the policy is deployed, and do not impact RL training. Thus, the different strategies can
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Remote Motion Capture Remote Motion CaptureRoboMaster Navigation(A) (B) (C) (D)

CoNoCo (ours)

Non-Watermarked

Start
Goal

Figure 3: Results on the RoboMaster Navigation tasks. (A) Example trajectories of the watermarked and non-
watermarked policies on the robot. (B) Detectability: ROC curve for 40 replications of the watermarked and
non-watermarked policy for each baseline, lines indicate median and dashed areas quartiles. (C) Anonymity:
computed as the complement to 1 of the ROC area under the curve for detection with a different owner seed.
(D) Reward Preservation: reward distribution of the watermarked and non-watermarked policies.

be deployed on the same pre-trained policies. In the following, we pre-train the same policies for all strategies
and for each environment using Proximal Policy Optimisation (PPO) (Schulman et al., 2017).

6 EXPERIMENTAL RESULTS

To encode ownership, a watermarking strategy must preserve anonymity and receive a high detection score
only when the auditor detects it with the secret key used during watermark generation. Our experimental
results show that, among all the baselines we consider, only CoNoCo has this property. For example, we find
that Multi-Sine-Wave has high detectability (as seen by its ROC curves), but really low anonymity, meaning
that its watermark can be easily detected with the wrong secret key. The other baselines have better anonymity
scores, but poor detectability, making them infeasible.

RoboMaster Navigation. We first demonstrate our approach in a real-world setting. We intentionally chose
a simple task: navigating to a random 2D goal. This setting is challenging because behavioural redundancy is
scarce and deviations are immediately visible, narrowing the margin for imperceptible modification. Success
here emphasizes that CoNoCo is viable even in straightforward tasks, not just complex systems. We train a
policy in simulation (VMAS (Bettini et al., 2022)) and deploy it on the RoboMaster platform (Blumenkamp
et al., 2024), embedding the watermark online. We evaluate the Remote Motion Capture modality and use 40
replications, with each replication collecting 50s of data (≈ 1000 policy calls), and resetting the target upon
arrival. The results in Fig. 3 show that CoNoCo consistently performs among the best in detection across
modalities, while preserving anonymity and reward. The results for the same policy on the VMAS task in
Appendix H further show that while CoNoCo performs well in both simulation and real-world settings, other
baselines degrade on the real robot. Crucially, CoNoCo succeeds despite the remote glimpse setup. The
example trajectories (Fig. 3.A) confirm that the watermarked policy closely matches the non-watermarked
one, showing that detectability does not induce visible behavioural changes. These results highlight the
promise of CoNoCo for real-world robotics and remote detection.

Force and Torque Controlled Tasks. We next demonstrate generalization to more complex robotic systems,
different control dynamics and Remote Camera Feed modality. As opposed to our real-world experiment,
which used velocity commands, we watermark force-controlled policies in VMAS Navigation and Mujoco
Inverted Pendulum (Todorov et al., 2012), and torque-controlled policies in Mujoco HalfCheetah (Brockman
et al., 2016). All tasks use velocity estimates as glimpses, where the estimation methodology depends on the
glimpse modality. We evaluate Ground Truth Action, Onboard Sensors, and Remote Camera Feed modalities
(we omit Remote Motion Capture in simulation). For limbed robots such as HalfCheetah, the glimpses are
the joint angular velocity, which we remotely estimate from a side-way camera feed by combining linear
velocity estimates of the two extremities of each limb. We validate the watermarks across 100 replications.
Data collected per replication: Navigation: 50s (≈ 1000 calls); Pendulum: 25s (≈ 1000 calls); HalfCheetah:
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Figure 4: Results on a variety of Force and Torque Control tasks with increasing difficulty. (A) Detectability:
ROC curve over 100 replications of the watermarked and non-watermarked policy for each baseline, lines
indicate median and dashed areas quartiles. (B) Anonymity: computed as the complement to 1 of the ROC
area under the curve for detection with a different owner seed, for Onboard Sensors glimpses. (C) Reward
Preservation: reward distribution of the watermarked and non-watermarked policies.

200s (≈ 4000 calls). Results are shown in Fig. 4. Across all tasks and glimpse modalities, CoNoCo achieves
near-perfect detectability, despite the additional complexity of the tasks. This performance is only matched by
Multi-Sine Wave, which, however, fails on anonymity. Importantly, CoNoCo also obtains high detectability
using Remote Camera Feed. This result highlights the promise of CoNoCo for more complex robotic tasks.

Glimpse sequence length sensitivity. Our experimental results in this section assume fixed glimpse sequence
length. However, CoNoCo’s detection quality correlates with glimpse sequence length, eventually converging
on perfect detection (ROC AUC = 1). To understand how much data is required to reliably detect the
watermark in our real robot experiments and each of our simulated environments, we examine CoNoCo’s
performance with respect to different glimpse sequence lengths. Our findings are presented in Appendix F.

Adversarial Noise. Beyond the inherent challenges of remote detection, it is helpful for a watermarking
scheme to be robust against deliberate attempts by an adversary to remove the signature. In Appendix G, we
investigate the resilience of CoNoCo against additive adversarial noise attacks executed by an adversarial
operator seeking to impede watermark detection. We find that CoNoCo is highly robust to such attacks: any
noise threshold sufficient to degrade detection also destroys policy performance, rendering the attack useless.

7 CONCLUSION

Remotely detectable robot policy watermarking is an important capability for IP protection and safety certifi-
cation in real-world robotics. We formalized the fundamental challenges posed by this type of watermarking,
and proposed Colored Noise Coherency (CoNoCo), a robust, performance-preserving watermarking strategy
designed for remote physical data. Our experiments, spanning different robot types and remote modalities,
demonstrate that CoNoCo can successfully detect physical watermarks from remote data. Our results demon-
strate how robot policy provenance can be verified non-invasively, paving the way for trustworthy deployment
and accountability in real-world robot systems. We discuss open questions and limitations in Appendix A.

9
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REPRODUCIBILITY STATEMENT

We open-source our code as an anonymised repository at https://anonymous.4open.science/
r/rl_watermarking-7191/README.md. This contains the code used to produce all results in this
work, including the code used to train the policies, generate, inject, and detect the watermark across all tested
modalities. The documentation linked in the README contains detailed instructions on how to reproduce all
results and figures in this work. CoNoCo is implemented in the file mimo wgn.py (legacy name). We also
include the trained policies themselves, to enable exact replication of our simulation results. We designed this
codebase to be straightforward to install and use, so that new users can easily implement new watermarking
strategies and test them on our environments to try and beat our proposed approach.

All mathematical theorems claimed in this work are fully proven in the Appendix.
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A OPEN QUESTIONS AND LIMITATIONS

As shown in our theoretical analysis and experiments, the CoNoCo watermark is robust to different policy
behaviours, glimpse modalities, and robot types (e.g., legged or wheeled). Nevertheless, it has two important
limitations worth noting:

• First, CoNoCo currently does not handle large time offsets well: in other words, for the watermark
detection to be successful, the glimpse data recording needs to start near the beginning of the robot’s
operations. This is in part because the sequence Wk is aperiodic. We believe that CoNoCo can readily be
extended to support such offsets by introducing periodicity into the watermark injection Wk and updating
the detection strategy accordingly. We leave this dimension open for future work.

• Second, and more importantly, the applicability of CoNoCo is limited by the quality of the glimpse
data it receives, which may be even less clean in real-world settings than in our experiments. In all our
experiments, we could record the robots’ movements with a stationary side-view or top-view camera that
had full visibility at all times. In many real-world scenarios, however, robots may be partially obscured
due to other moving bodies, camera angles or self-occlusion. Such setups would make it challenging
to extract reliable motion glimpse estimates. Addressing this limitation would require more advanced
computer vision techniques, which are beyond the scope of this work and are left for future study.

Addressing these two challenges will significantly broaden the applicability of CoNoCo to real-world domains.

B USE OF LLMS

We used LLMs (Gemini and ChatGPT) to discover new references related to our work, as well as polish some
parts of the writing. We read all suggested references ourselves and verified their relevance.

C CONOCO IN LTV SYSTEMS

Real robotic systems often deviate from the idealized LTI (Linear Time-Invariant) assumptions, presenting
as LTV (Linear Time-Varying) systems with changing dynamics Sdyn(t) and exploration scale Σk. This
presents two main challenges and corresponding mitigation strategies employed by CoNoCo.

C.1 TIME-VARYING EXPLORATION SCALE (Σk)

The Challenge: Spectral Smearing. The watermark Wk is scaled by the policy’s exploration scale Σk. If
Σk changes rapidly (e.g., the robot suddenly switches from cautious exploration to decisive movement), it
modulates the amplitude of the watermark. This modulation (like rapidly changing the volume of a specific
tone) spreads the energy of Wk outside the secret band B. This effect, known as ”spectral smearing,” reduces
the detectable signal energy within the band, lowering the SINR and making detection harder.

Mitigation. CoNoCo works best when Σk evolves slowly. We find it robust to this effect empirically,
achieving high detection rates despite varying exploration scales in all our experiments. However, if Σk

evolves abruptly, a potential mitigation strategy (which we do not employ in this work) is to replace Σk with
a moving average of the last several exploration scales: Σk. This smooths the modulation, reducing spectral
smearing and improving detection. This introduces a trade-off: larger averaging windows improve detection
but may slightly impact policy performance if the responsiveness of the exploration scale is critical.

12
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C.2 LTV DYNAMICS AND ESTIMATION CHALLENGES

The Challenge: Phase Variation and Estimation Bias. Coherency is formally defined for LTI systems,
where the relationship (including the timing, or phase) between input and output is constant. CoNoCo analyzes
the signals of real-world LTV systems using Short-Time analysis (implemented via Welch’s method), which
divides the signal into short windows. If these dynamics change over time, particularly the phase relationship
between the input (watermark) and the output (glimpse), this averaging can lead to cancellation (destructive
interference) of the Cross-Spectral Density (CSD). This cancellation biases the coherency magnitude estimate
downwards, making the watermark harder to detect. This is a known limitation when analyzing LTV systems.

Mitigation. CoNoCo works best when the system dynamics do not change over time. In particular, if the
system is approximately LTI within each window, the detection signal will be stronger. However, CoNoCo
also has a number of mitigation elements that improve its robustness when this is not the case:

(i) Multi-Dimensional Averaging (Spatial Diversity). The final detection score (Section 3) is calculated by
averaging the magnitude of the different physical dimensions D. Complex robots are typically monitored
through multiple sensors or observation dimensions (e.g., different joint angles, velocities, or viewpoints
in a camera feed). It is unlikely that all dimensions are affected equally by time-varying dynamics.
Some physical dimensions may behave much more linearly (LTI-like) than others. By averaging the
detection scores across all available dimensions, CoNoCo exploits this spatial diversity. Strong detection
signals from the well-behaved, more linear dimensions can ensure successful watermarking, even if other
dimensions provide a weaker signal due to strong LTV effects. Furthermore, while not explored in this
work, one could potentially improve detection further by identifying and censoring dimensions that exhibit
highly non-linear behavior.

(ii) Strategic Band Selection (B). The design of CoNoCo allows the owner to choose the secret frequency
band B. This band can be strategically selected to target frequencies where the robot’s physical response is
known to be relatively stable, predictable, and linear (more LTI-like). Conversely, we can avoid frequencies
associated with highly unstable or rapidly changing dynamics (e.g., resonant frequencies or behaviors
involving abrupt contact changes) where the LTV effects are most pronounced (see Appendix D).

D TUNING CONOCO

In general, we find that CoNoCo is fairly robust and works “out of the box” when given sufficiently long
glimpse sequences. However, in cases where the glimpse sequences are very short, or in rare cases where we
observe that policy performance is impacted by the autocorrelation introduced by the watermark injection,
detection and performance can be improved by tuning the frequency band B and the window length of Welch’s
method Twin.

B should be selected to not interfere with the policy performance and ideally, interact with the system
dynamics and policy as little as possible: this might mean omitting low frequencies (if the policy varies
smoothly), or high frequencies (if the policy varies highly and requires precision). Twin should be selected
based on the length of the glimpse sequence. When fg/fπ = 5 and we observe 1000 policy calls–so the
glimpse sequence has length 5000–we find Twin = 64 to work well. When the glimpse sequence is of length
20000 or more, Twin = 256 works best. For intermediate values, Twin = 128 may work.

In the case of the VMAS Velocity Navigation environment, we found that the glimpse sequence length of
5000 (1000 policy steps at a glimpse-to-policy-call ratio of 5) meant that our default window of Twin = 256
was too large. Setting the window to Twin = 64 attained almost perfect detection results.

In the case of the Pendulum environment, we found that using the band B = [0.1, 2.49] was interfering
with the policy performance (but not watermark detection). Reducing the higher frequencies by setting

13
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B = [0.1, 1.5] made the policy perform equivalently to its non-watermarked variant while not harming
detection.

E BASELINE WATERMARKING STRATEGIES

To the best of our knowledge, our proposed watermarking strategy is the first that enables remote detection.
As no direct baseline exists for this setting, we introduce adapted variants of prior watermarking methods,
which, although not originally designed for remote detection, serve as the most relevant points of comparison.

Multi-Sine Wave. Inspired by techniques used for replay attack detection (Ghamarilangroudi et al., 2025),
this strategy embeds a watermark by synthesizing a signal composed of a sum of multiple sinusoids. The
owner key defines the secret frequencies and signs of these sinusoids within a specific band. This synthesized
signal, normalized to preserve the policy’s action distribution (W1), replaces the standard exploration noise.
Detection is performed in the frequency domain. The detector calculates the energy of the observed glimpses
at the secret frequencies using a Discrete Fourier Transform (DFT). The detection score is the signed
sum of these energies, maximized over a search grid of possible policy execution frequencies to address
synchronization uncertainty (C1).

Correlation-Based. This strategy embeds a watermark by replacing the policy’s exploration noise with a
secret pseudo-random sequence. For detection, the glimpses are first high-pass filtered to isolate the watermark
signal from the primary behaviour (C3). The detector then calculates the normalized cross-correlation between
the filtered glimpses and the hypothesized watermark signal, maximizing this score over a range of possible
policy execution frequencies to handle synchronization uncertainty (C1).

Tournament-Based. SynthID (Dathathri et al., 2024) is a tournament-based method for watermarking that
represents the state of the art in watermarking LLMs. However, the token generation setting used in SynthID
differs from ours in two respects: (1) the support of the token distribution is discrete, and (2) detection is
not remote, as the exact LLM output is always available to the detector. We therefore introduce a variant,
which we term Tournament-Based, designed to: (1) extend to distributions with continuous support, and (2)
enable remote detection by (2.i) ensuring robustness to noise through assigning similar scores to neighbouring
actions, and (2.ii) relying exclusively on information available in the glimpses when selecting watermarked
actions, so it can be inverted for detection. One round of Tournament-Based proceeds as follows. First,
N actions are sampled from the policy distribution for the current timestep, which enables (1). These N
actions encounter a tournament, where the winner of each duel is determined using scoring functions known
as g-functions. Here, to enforce property (2.i), we use Bell-shaped g-functions, with the parameters of the
Bell-curve sampled using a context-dependent random key. To enforce property (2.ii), we choose this random
key as the norm of the observation that will later be available through glimpses (e.g. velocities). The owner
key is used to build the continuous function that is sampled to get the g-value parameters.

14



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

F GLIMPSE SEQUENCE LENGTH SENSITIVITY

HalfCheetah Force-Controlled Navigation Velocity-Controlled Navigation Pendulum RoboMaster Navigation

Figure 5: We examine the relationship between glimpse sequence length and watermark detectability of
CoNoCo over our experimental environments. We measure detectability as the ROC Area Under Curve (ROC
AUC). This analysis quantifies the amount of data necessary for reliable detection of the watermark in each
environment. Data is collected over 10 repetitions using the Onboard Sensors glimpse modality, except the
“RoboMaster Navigation” graph, which is computed from real-world data from our robot experiments using
the Motion Capture modality. Shaded regions denote quartile confidence intervals.

G ROBUSTNESS TO ADVERSARIAL ADDITIVE NOISE

We consider a threat model where the adversary is the Policy User (Figure 1, Step 2). This adversary deploys
the watermarked policy π̃θ but wishes to evade detection and accountability. They have access to the sequence
of actions ak output by the policy before they are executed on the robot. The adversary aims to transform
ak into a tampered sequence a′k such that the watermark detection score D(G′) (where G′ are the glimpses
resulting from a′k) is minimized. The adversary operates under a constraint (the adversarial budget) to limit
performance degradation, as excessive tampering would damage the utility of the stolen policy. We assume
the adversary does not possess the secret key K.

Additive Noise Attack (Randomized Smoothing). Since the adversary cannot reconstruct the secret
watermark sequence Wk to cancel it deterministically, a standard and effective strategy is an Additive Noise
Attack, often implemented via randomized smoothing. The adversary adds White Gaussian Noise (WGN) to
the actions before execution:

a′k = Clip (ak + ηadv) , (1)

where ηadv ∼ N (0, σ2
advI), and the clipping ensures the actions remain within the environment’s physical

bounds. The standard deviation σadv represents the adversary’s strength or budget.

This attack directly impacts detectability by introducing an additional source of noise into the system. Refer-
ring to the analysis in Section 5, the addition of ηadv increases the overall noise power PN (f), consequently
reducing the Signal-to-Interference-plus-Noise Ratio (SINR) (Definition 5.1). According to Theorem 5.3, this
directly lowers the expected magnitude of the coherency, making detection more difficult.

Evaluation and Results. To evaluate CONOCO’s robustness, we simulate this attack on the RoboMaster
Navigation with force commands and HalfCheetah tasks, varying the adversarial strength σadv from 0.25 to 2.
We analyze the trade-off between the reduction in the detection scores and the degradation in the policy’s
reward. The results, shown in Figure 6, demonstrate that CoNoCo is strongly robust to this type of adversarial
attack. In the RoboMaster Navigation task, both detection AUC and policy reward degrade gradually as σadv
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(a) VMAS Navigation with force commands (b) HalfCheetah

Figure 6: Adversarial robustness results for additive noise attacks (results averaged over 10 repeats). Each
subfigure shows detection scores and policy reward as a function of adversarial noise strength σadv ranging
from 0.25 to 2. Results demonstrate CoNoCo’s resilience, with detection persisting under high noise in
navigation (a) while requiring severe reward degradation to evade detection in locomotion (b).

increases, but the watermark remains consistently identifiable up to σadv = 2. This is particularly robust
given that, at σadv = 2, the added adversarial noise overwhelms the policy’s original actions, yet detection
persists. In contrast, for the HalfCheetah task, even a modest σadv = 0.25 severely degrades both detection
and reward, indicating that the attack cannot evade watermarking without rendering the policy ineffective.
Overall, these findings show that additive noise attacks perform poorly against CoNoCo, as evading detection
requires noise levels that destroy the policy’s value, demonstrating its robustness.
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H RESULTS ON VELOCITY-CONTROLLER VMAS NAVIGATION

We provide in Fig 7 the results for the Velocity-Controlled VMAS Navigation task. The policy used here is
also the one deployed on the RoboMaster in the main results. The results show that baselines that got low
detectability on the real robot are getting better results on the simulated task. CoNoCo is highly successful in
both the real and simulated task.
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Figure 7: Results on the Velocity-Controlled VMAS Navigation task. T(A) Detectability: ROC curve for 100
replications of the watermarked and non-watermarked policy for each baseline, lines indicate median and
dashed areas quartiles. (B) Anonymity: computed as the complement to 1 of the ROC area under the curve
for detection with a different owner seed, for Onboard Sensors glimpses. (C) Reward Preservation: reward
distribution of the watermarked and non-watermarked policies.

I PROOF OF THEOREM 4.1 (MARGINAL DISTRIBUTION PRESERVATION)

Proof of Theorem 4.1 (Marginal Distribution Preservation). Let H be a stable LTI filter with impulse re-
sponse {hj}. The input is a sequence of independent and identically distributed (i.i.d.) White Gaussian Noise
Xk ∼ N (0, 1). The raw filtered output W raw

k is given by the convolution:

W raw
k = (H ∗X)k =

∞∑
j=−∞

hjXk−j (2)

1. Gaussianity: Since the input variables Xk−j are jointly Gaussian (due to independence), and W raw
k is a

linear combination of these variables, W raw
k is also a Gaussian random variable.

2. Mean: We calculate the expected value using the linearity of expectation:

E[W raw
k ] = E

∑
j

hjXk−j

 =
∑
j

hjE[Xk−j ] (3)

Since E[Xk] = 0 for all k, we have E[W raw
k ] = 0.

3. Variance: We calculate the variance. Since the mean is zero, V ar[W raw
k ] = E[(W raw

k )2].

V ar[W raw
k ] = E

∑
j

hjXk−j

(∑
m

hmXk−m

) (4)

=
∑
j

∑
m

hjhmE[Xk−jXk−m] (5)

Since Xk is WGN with unit variance, E[XnXm] = δnm (Kronecker delta). The expectation is non-zero only
when j = m.

V ar[W raw
k ] =

∑
j

h2
j = σ2

W raw (6)
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This sum converges because the filter H is stable.

4. Normalization: The final watermark sequence Wk is normalized by the standard deviation:

Wk =
W raw

k

σW raw
(7)

Wk remains Gaussian with mean E[Wk] = 0. Its variance is:

V ar[Wk] =
V ar[W raw

k ]

σ2
W raw

= 1 (8)

Therefore, the marginal distribution of Wk is N (0, 1).

J PROOF OF THEREOM 4.2 (INVARIANCE OF COHERENCY MAGNITUDE UNDER LTI
FILTERING)

Proof. We have SY Y (f) = |Hsys(f)|2SXX(f) and SXY (f) = Hsys(f)
∗SXX(f). This implies

|CXY (f)| = |SXY (f)|√
SXX(f)SY Y (f)

=
|Hsys(f)

∗SXX(f)|√
SXX(f)·|Hsys(f)|2SXX(f)

= 1.

K PROOF OF THEOREM 4.3 (COHERENCY AND SINR)

Proof. We analyze the system under the LTI assumptions stated in the theorem. The input to the dynamics
Hsys is the action ã = µ+ ΣW . The observed glimpse G is the output of the dynamics plus sensor noise
η. We aim to calculate the magnitude squared coherency between the watermark W and the glimpse G,
|CWG(f)|2.

Due to the linearity of the system, the glimpse G (in the time domain) is a superposition of the responses:

G(t) = (ΣHsys ∗W )(t) + (Hsys ∗ µ)(t) + η(t). (9)

We decompose G(t) into two components: G(t) = S(t) +N(t).

The signal component S(t) is the part derived from the watermark W :

S(t) = (ΣHsys ∗W )(t). (10)

S(t) is the output of an LTI system (defined by the combined response ΣHsys) with input W (t).

The noise/interference component N(t) includes the policy interference and sensor noise:

N(t) = (Hsys ∗ µ)(t) + η(t). (11)

By assumption, W,µ, η are mutually independent. Therefore, the input W (t) is independent of the noise
component N(t). Furthermore, the signal S(t) (derived only from W ) is independent of N(t).

We define the signal power PS(f) and noise power PN (f) in the glimpse G as the PSDs of S(t) and N(t)
respectively (Definition 4.1):

PS(f) = SSS(f) (12)
PN (f) = SNN (f) (13)

Since G = S + N and S and N are independent (and thus uncorrelated, assuming standard zero-mean
processes for spectral analysis), the PSD of the glimpse G is the sum of the component PSDs:

SGG(f) = SSS(f) + SNN (f) = PS(f) + PN (f). (14)
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We analyze the CSD between the input W and the output G. Using the distributive property of the CSD
(derived from the linearity of expectation):

SWG(f) = SW (S+N)(f) = SWS(f) + SWN (f). (15)

Since W and N are independent (and zero-mean), their CSD is zero (SWN (f) = 0). Thus:

SWG(f) = SWS(f). (16)

The magnitude squared coherency is defined as:

|CWG(f)|2 =
|SWG(f)|2

SWW (f)SGG(f)
. (17)

We substitute the results from steps 2 and 3:

|CWG(f)|2 =
|SWS(f)|2

SWW (f)(PS(f) + PN (f))
. (18)

We now relate the numerator |SWS(f)|2 to PS(f). Recall that S is the output of an LTI system with input
W , without added noise. By Theorem 4.2 (Invariance of Coherency Magnitude under LTI Filtering), the
magnitude squared coherency between W and S must be 1:

|CWS(f)|2 =
|SWS(f)|2

SWW (f)SSS(f)
= 1. (19)

Therefore, we can express the numerator in Eq. 18 as:

|SWS(f)|2 = SWW (f)SSS(f) = SWW (f)PS(f). (20)

Substituting this back into Eq. 18:

|CWG(f)|2 =
SWW (f)PS(f)

SWW (f)(PS(f) + PN (f))
. (21)

Assuming the watermark has power (SWW (f) > 0), we simplify:

|CWG(f)|2 =
PS(f)

PS(f) + PN (f)
. (22)

The SINR is defined as SINR(f) = PS(f)
PN (f) . Dividing the numerator and denominator of the coherency

expression by PN (f):

|CWG(f)|2 =
PS(f)/PN (f)

(PS(f)/PN (f)) + 1
=

SINR(f)
SINR(f) + 1

. (23)
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