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Abstract
Most existing approaches to Visual Question001
Answering (VQA) answer questions directly,002
however, people usually decompose a complex003
question into a sequence of simple sub ques-004
tions and finally obtain the answer to the origi-005
nal question after answering the sub question006
sequence(SQS). By simulating the process, this007
paper proposes a conversation-based VQA (Co-008
VQA) framework, which consists of three com-009
ponents: Questioner, Oracle, and Answerer.010
Questioner raises the sub questions using an011
extending HRED model, and Oracle answers012
them one-by-one. An Adaptive Chain Visual013
Reasoning Model (ACVRM) for Answerer014
is also proposed, where the question-answer015
pair is used to update the visual representation016
sequentially. To perform supervised learning017
for each model, we introduce a well-designed018
method to build a SQS for each question on019
VQA 2.0 and VQA-CP v2 datasets. Experi-020
mental results show that our method achieves021
state-of-the-art on VQA-CP v2. Further anal-022
yses show that SQSs help build direct seman-023
tic connections between questions and images,024
provide question-adaptive variable-length rea-025
soning chains, and with explicit interpretability026
as well as error traceability.027

1 Introduction028

Visual Question Answering (Agrawal et al., 2015)029

requires to answer questions about images. It has030

to process visual and language information simul-031

taneously, which is a basic ability of advanced032

agents. Therefore, related researches (Anderson033

et al., 2018; Lu et al., 2016; Goyal et al., 2017b;034

Agrawal et al., 2018) have attracted more and more035

attention. The conventional approach (Agrawal036

et al., 2015) for Visual Question Answering (VQA)037

is to encode image and question separately and in-038

corporate representation of each modality into a039

joint representation. Recently, with the proposal of040

Transformer (Vaswani et al., 2017), based on pre-041

vious dense co-attention models (Kim et al., 2018;042

Questioner Oracle

q1: Is there any snowboard? a1 : yes

q3: Is there a man on the far right?

a2 : yellowq2: What color is the snowboard?

a3 : yes

Answerer
ans : noQ : Is the snowboard the same color as 

the jacket of the man on the far right?

q4: What color is the man’s jacket? a4 : black

Figure 1: An illustrative example. After a se-
quence of four sub questions and their answers
{(q1,a1),(q2,a2),(q3,a3),(q4,a4)}, its easier to answer
the original question.

Nguyen and Okatani, 2018), some methods (Yu 043

et al., 2019; Gao et al., 2019) further adopt self- 044

attention mechanism to exploit the fine-grained 045

information in both visual and textual modalities. 046

Meanwhile, to enrich indicative information about 047

the image contained in the visual representation, 048

some studies (Cadène et al., 2019; Li et al., 2019) 049

have explored different methods of relational rea- 050

soning to capture the relationship between objects. 051

Though above methods have achieved signif- 052

icantly improved performance on real datasets 053

(Agrawal et al., 2015; Goyal et al., 2017b), there 054

are still some issues unsolvable. Most existing ap- 055

proaches answer questions directly, however, it is 056

often difficult, especially to answer complex ques- 057

tions. On the one hand, achieving holistic scene 058

understanding in one round is pretty challenging. 059

On the other hand, performing the whole Q&A 060

process in one round lacks interpretability and is 061

absent to locate errors when the model runs into 062

wrong answers. To address the above difficulties, 063

motivated by theory of mind (Leslie, 1987), as 064

shown in Figure 1, we imagine an internal conver- 065

sation for answering the original question, where a 066

sub question sequence (SQS, which includes sev- 067

eral simple sub questions, we use SQ to refer to sub 068

question later) is raised and answered one-by-one 069

progressively. Finally, the answer to the original 070
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question is obtained by capturing joint informa-071

tion accumulated in the whole SQS. This way has072

several significant cognitive advantages: 1) ques-073

tions with different complexity will decompose074

SQSs with different lengths, resulting in question-075

adaptive variable-length reasoning chains, 2) gener-076

ating SQS gives a clear reasoning path, it therefore077

provides explicit interpretability and traceability of078

errors, 3) different questions are likely to contain079

the same SQ or SQS, these common SQ even SQS080

help improve the generalization ability of models,081

4) SQs are usually more simple and directly re-082

lated to images, which help further strengthen the083

semantic connection between language and image.084

To achieve above advantages, we therefore085

propose a conversation-based VQA (Co-VQA)086

framework which includes an internal conversation087

for VQA. It consists of three components: Ques-088

tioner, Oracle and Answerer. As shown in Fig-089

ure 1, once a question is raised, Questioner asks090

some SQs, and Oracle provides answers one-by-091

one. Their conversation brings a SQS and the cor-092

responding answer sequence. When there is no093

more SQ to be generated, the internal conversation094

is finished. Answerer gives the final answer to the095

original question.096

Questioner employs hierarchical recurrent097

encoder-decoder architecture (Sordoni et al., 2015),098

and we adopt a representative VQA model (Ander-099

son et al., 2018) as Oracle. For Answerer, we pro-100

pose an Adaptive Chain Visual Reasoning Model101

(ACVRM) to accomplish an explicit progressive102

reasoning process based on SQS, where SQs are103

used to guide the update of visual features by a104

graph attention network (Velickovic et al., 2018)105

one-by-one. Meanwhile, the answers of SQs are106

utilized as additional supervision signals to guide107

the learning process. Further, to provide supervi-108

sion information for the above three models during109

training, we propose a well-designed method to110

construct SQS for each question which is based111

on linguistic rules and natural language processing112

technology. VQA-SQS and VQA-CP-SQS datasets113

are obtained after applying this method to VQA 2.0114

(Goyal et al., 2017b) and VQA-CP v2 (Agrawal115

et al., 2018) datasets.116

In principle, our work is different from existing117

VQA systems. Our contributions can be concluded118

into three-fold:119

• We introduce a conversation-based VQA (Co-120

VQA) framework, which consists of three121

components: Questioner, Oracle and An- 122

swerer. 123

• An Adaptive Chain Visual Reasoning Model 124

(ACVRM) for Answerer is proposed, where 125

the question-answer pair is used to update vi- 126

sual representation sequentially. 127

• Co-VQA achieves state-of-the-art on the chal- 128

langing VQA-CP v2 dataset. Moreover, SQSs 129

help build direct semantic connections be- 130

tween questions and images, provide question- 131

adaptive variable-length reasoning chains, and 132

with explicit interpretability as well as error 133

traceability. 134

2 Related Work 135

Visual Question Answering. The current dom- 136

inant framework for VQA consists of an image 137

encoder, a question encoder, multimodal fusion, 138

and an answer predictor (Agrawal et al., 2015). To 139

avoid the noises caused by global features, meth- 140

ods(Yang et al., 2016; Malinowski et al., 2018) 141

introduce various image attention mechanisms into 142

VQA. Instead of directly using visual features from 143

CNN-based feature extractors, to improve the per- 144

formance of model, BUTD(Anderson et al., 2018) 145

adopts Faster R-CNN (Ren et al., 2015) to ob- 146

tain candidate regional features while Pythia(Jiang 147

et al., 2018) integrates the regional feature with 148

grid-level features. Meanwhile, Lu et al. (2016); 149

Nam et al. (2017) put more attention on learning 150

better question representations. To merge informa- 151

tion from different modalities sufficiently, MFB(Yu 152

et al., 2017), and MUTAN(Ben-younes et al., 2017) 153

explored higher-order fusion methods. Further, 154

BAN(Kim et al., 2018) and DCN(Nguyen and 155

Okatani, 2018) propose dense co-attention model 156

which directly establish interaction between differ- 157

ent modalities with word-level and regional fea- 158

tures. Moreover, with the proposal of Transformer 159

(Vaswani et al., 2017), MCAN (Yu et al., 2019) 160

and DFAF (Gao et al., 2019) adopt self-attention 161

mechanism to fully excavate the fine-grained infor- 162

mation contained in text and image. Meanwhile, to 163

fully cover the holistic scene in an image, MuREL 164

(Cadène et al., 2019) and ReGAT (Li et al., 2019) 165

explicitly incorporate relations between regions 166

into the interaction process. Selvaraju et al. (2020) 167

also introduces sub questions into their work, the 168

distinctness between us is that it constructs a Sub- 169

VQA dataset for the subset of reasoning questions 170
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Q: Is the man in the red 
shirt wearing sunglasses?

Questioner

Oracle

𝑞!
𝑎!

𝑞!"#
𝑎#

A
nsw

erer

𝑎!"#

Input OutputInternal conversation

Figure 2: Overall illustration and data flow structure
diagram of Co-VQA framework.

in VQA dataset to evaluate consistency of VQA171

models while we adopt sub questions to achieve172

task-dividing.173

Visual Dialogue. Different from VQA, Visual dia-174

logue(VD) is a continuous conversation for images.175

Several VD tasks (Visual Dialog (Das et al., 2017),176

GuessWhich (Chattopadhyay et al., 2017), Guess-177

What?! (de Vries et al., 2017), MMD (Saha et al.,178

2018)) have been proposed. GuessWhat?!, as a179

goal-directed dialogue task, requires both players180

to continuously clarify the reference object through181

dialogue. The Oracle provides the Questioner with182

relevant information about the target object by con-183

stantly answering yes/no questions raised by the184

Questioner, and the Guesser generates the final an-185

swer based on the historical dialogue. Following186

the setting, our Co-VQA framework consists of187

three components, in which Questioner raises SQs,188

and Oracle answers them one-by-one, finally, An-189

swerer obtains the answer to the original question.190

3 Approach191

Figure 2 shows the overall illustration and data192

flow structure diagram of Co-VQA, which con-193

sists of the Questioner, the Oracle, and the An-194

swerer. Given an input image I and a question195

Q, Co-VQA is responsible for predicting the cor-196

rect answer from the candidate answer set. Specif-197

ically, Questioner is responsible for generating198

a new SQ qt for the next round by combining199

the information in Q, I and the dialogue history200

Ht−1 = {(q1, a1), · · · , (qt−1, at−1)}. Then, Or-201

acle produces appropriate answer at for qt. Af-202

ter accomplishing the last round of sub question-203

answer pair(abbreviated as qa), Answerer utilizes204

the historical information accumulated throughout205

the process to obtain the final answer. In this sec-206

tion, we will introduce the three components in207

Section 3.1-3.3.208

Q：Is the man in the red shirt
wearing glasses? 

…

Embedder

𝒒𝒕"𝟏: Is there a man? 𝒂𝒕"𝟏 : yes

Embedder

…
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Figure 3: Overview of the Questioner model which is
based on extending HRED model. There are three mod-
ules: Image Encoder, Hierarchical Encoder, Decoder.

3.1 Questioner 209

At round t, given an image I , a ques- 210

tion Q and the dialogue history Ht−1 = 211

{(q1, a1), · · · , (qt−1, at−1)}, Questioner is respon- 212

sible for generating new sub question qt. Generally, 213

we build Questioner based on extending hierarchi- 214

cal recurrent encoder decoder (HRED) (Sordoni 215

et al., 2015). The overall structure of Questioner is 216

depicted in Figure 3. 217

Image Encoder. Following common prac- 218

tice(Anderson et al., 2018), we extract regional 219

visual features from I in a bottom-up manner us- 220

ing Faster R-CNN model(Ren et al., 2015). Each 221

image will be encoded as a series of M regional 222

visual features R ∈ RM×2048 with their bounding 223

box b = [x, y, w, h] ∈ RM×4 (M ∈ [10, 100] in 224

our experiments). 225

Hierarchical Encoder. Embedding matrix Em- 226

bedder is adopted to map Q and each pair (qi, ai) 227

in Ht−1 to Qemb and (qemb
i , aemb

i ) respectively. 228

Then, two question-level encoder GRU, GRUQ 229

and GRUq, are deployed to obtain corresponding 230

question feature Qfea and qfeai for Q and qi. 231

Qfea is utilized as the first step input of session- 232

level encoder GRU, GRUs to grasp global infor- 233

mation of original question. qfeai and aemb
i are 234

concatenated as qafeai , which is regard as represen- 235

tation for sub question-answer pair. Meanwhile, 236

it is treated as the i+1-th step input of GRUs to 237
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Q: Is the man in the red shirt
wearing sunglasses?

q1: Is there a man?

qT: Are there sunglasses?

q2: Is there a man wearing red shirt?

Question Encoder

...

Sequential Progressive Reasoning

Image Encoder

Fa
st

er
 R

-C
N

N

a1: Yes GVR
mean


pooling
sub

classifier

...

mean

pooling

Losssub

aT: No GVR sub
classifier

GVR Fusion Classifier

LossBCE

a : no

Multimodal Fusion

mean

pooling

Tr
an

sf
or

m
er

E

SE1
SE2

SET

...

Losssub

Figure 4: Model architecture of the proposed ACVRM for Answerer. There are four functional modules: Image
Encoder, Question Encoder, Sequential Progressive Reasoning and Multimodal Fusion.

obtain context feature si+1, which is denoted as:238

si+1 = GRUs([q
fea
i || aemb

i ], si), (1)239

where || represents concatenation. After encoding240

Ht−1, we obtain current context representation st.241

Decoder. At decoding qt, we employ an extra one-242

layer GRU as decoder, which is initialized by st.243

Then a question-guided attention is deployed to244

regional features R to obtain the weighted visual245

feature vt. Further, we fuse vt with Embedder(qit)246

as the input of decoder at every time step i.247

The negative log-likelihood loss is used for train-248

ing, where T is the maximum round of dialogues,249

θQ is the parameters of Questioner :250

L(θQ) = −
T∑
t=1

logP (qt|Q, I,Ht−1). (2)251

3.2 Oracle252

The Oracle is responsible for constantly answering253

SQs raised by Questioner. Specifically, at round254

t, Oracle supplies the answer at for SQ qt, based255

on the image I and qt. We regard Oracle as a con-256

ventional VQA task and adopt the BUTD (Ander-257

son et al., 2018), which is a representative VQA258

method, as our Oracle.259

3.3 Answerer260

Given a question Q, an image I and a complete261

dialogue history HT = {q1, a1, ..., qT , aT }, the262

assignment of Answerer is to find out the most263

accurate â in the candidate answer set, which could264

be denoted as:265

â = argmax
a∈A

Pθ(a|I,Q,HT ), (3)266

where θ denotes the parameters of Answerer. To ac- 267

complish this task, we propose an Adaptive Chain 268

Visual Reasoning Model (ACVRM), which con- 269

sists of four components: Image Encoder, Ques- 270

tion Encoder, Sequential Progressive Reasoning, 271

and Multimodal Fusion. The overall structure of 272

ACVRM is illustrated as Figure 4. 273

3.3.1 Image and Question Encoder 274

Feature extraction modules are shown in the left 275

part of Figure 4. Image encoder is the same as 276

Questioner. For question encoder, we adopt a bidi- 277

rectional Transformer (Vaswani et al., 2017). Q 278

and each SQ in HT will be padded to a maximum 279

length of 14 and be encoded by bidirectional Trans- 280

former with random initialization, at last the corre- 281

sponding question features E ∈ Rdq , {SEi}Ti=1 ∈ 282

RT×dq are obtained after mean pooling. To align 283

the feature dimensions, we linearly map image fea- 284

ture R to V0 ∈ RM×dv . We set dq = dv = 768. 285

3.3.2 Sequential Progressive Reasoning (SPR) 286

Overall. To realize progressive visual reasoning 287

under the guidance of SQS, we utilize Graph Vi- 288

sual Reasoning (GVR) module, which will be 289

introduced later, to gradually guide the update of 290

visual features. Specifically, for Q containing T 291

SQs, the t-th step of SPR can be expressed as: 292

V R
t = GV R(Vt−1, SEt; θG), (4) 293

where V R
t represents the t-th step visual feature, 294

and θG denotes parameters for GVR. Then, residual 295

connection is deployed in each round to preserve 296

historical information and avoid vanishing of gra- 297
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Figure 5: Flowchart of the GVR, including two parts:
multimodal fusion based on concatenation and relation
reasonsing based graph attention network.

dient. Therefore, the updated visual feature for t-th298

round can further be depicted as Vt = Vt−1 + V R
t .299

Furthermore, each qt has a corresponding answer300

at, which supplies an additional supervision signal301

for training. For each step t, we adopt a shared302

two-layer MLP as the sub classifier and then utilize303

average V R
t as input. A cross-entropy loss is used304

for classification, which is denoted as Losssubt .305

Graph Visual Reasoning. Inspired by ReGAT306

(Li et al., 2019), we utilize Graph Attention Net-307

work (Velickovic et al., 2018) to learn relations308

between objects. An overall illustration of GVR309

is shown in Figure 5. The whole reasoning pro-310

cess is abbreviated as V R = GV R(V, q), which311

consists of two parts: feature fusion and relational312

reasoning.313

At first, the question representation q is concate-314

nated with each of the M visual features vi, which315

we write as [vi || q], then we compute a joint em-316

bedding as:317

v
′
i = W ([vi || q]) for i = 1, ...,M, (5)318

where W ∈ Rdq×(dq+dv), and v
′
i ∈ Rdq is con-319

ducted as initial value of node in the graph G(V,E),320

where eij denotes edges between nodes. Then, to321

reduce the interference caused by irrelevant infor-322

mation, we design a masked multi-head attention323

for relational reasoning. Specially, for each head,324

inspired by Hu et al. (2018), attention weight not325

only depends on visual-feature weight αh,v
ij , but326

also bounding-box weight αh,b
ij , we formulate non-327

normalized attention weight eij as:328

ehij = αh,v
ij + log(αh,b

ij ), (6)329

αh,v
ij =

(W h
q v

′
i)
T ·W h

k v
′
j√

dh
, (7)330

αh,b
ij = max {0, w · fb(bi, bj)} , (8)331

where dh =
dq
H , H denotes the number of head and332

we set H = 8, W h
q ∈ Rdh×dq , W h

k ∈ Rdh×dq ,333

fb(·, ·) first computes relative geometry fea- 334

ture (log(
|xi−xj |

wi
), log(

|yi−yj |
hi

), log(
wj

wi
), log(

hj

hi
)), 335

then embeds it into a dh-dimensional feature by 336

computing cosine and sine functions of different 337

wavelengths, w ∈ Rdh . Furthermore, accord- 338

ing to ehij , to learn a sparse neighbourhood Nh
i 339

for each node i, we adopt a ranking strategy as 340

Nh
i = topK(ehij), where topK returns the indices 341

of the K largest values of an input vector, and we 342

set K=15. 343

By employing above mechanism, output features 344

of each head are concatenated, denoted as: 345

vRi = ||Hh=1σ(
∑
j∈Nh

i

softmax(ehij) ·W h
v v

′
j), (9) 346

where W h
v ∈ Rdh×dq . 347

3.3.3 Fusion Module 348

Context-aware visual features VT are obtained after 349

completing the whole process of SPR. To suffi- 350

ciently integrate the information of two modali- 351

ties, we utilize Q to convert VT into Ṽ through 352

GV R as Ṽ = GV R(VT , E). Then, we employ 353

the same multi-modal fusion strategy as Anderson 354

et al. (2018) to obtain a joint representation H . For 355

Answer Predictor, we adopt a two-layer multi-layer 356

perceptron (MLP) as classifier, with H as the input. 357

Binary cross entropy is used as the loss function. 358

Thus, final loss can be formulated as: 359

Loss = LossBCE +

T∑
t=1

Losssubt . (10) 360

4 Experiments 361

4.1 Datasets 362

We evaluate our approach on two widely used 363

datasets, including: 1) VQA 2.0 (Goyal et al., 364

2017b) is composed of real images from MSCOCO 365

(Lin et al., 2014) with the same train/validation/test 366

splits. For each image, an average of 3 questions 367

are generated. These questions are divided into 3 368

categories: Y/N, Number and Other. 10 answers 369

are collected for each image-question pair from 370

human annotators. The model is trained on the 371

training set, but when testing on the test set, both 372

training and validation set are used for training, 373

and the max-probable answer is selected as the 374

predicted answer. 2) VQA-CP v2 (Agrawal et al., 375

2018) is a derivation of VQA 2.0. In particular, 376

the distribution of answers with respect to question 377

types differs between training and test splits. 378
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Validation Test-std
Model All Y/N Num Other All
Bottom-Up 63.37 80.4 43.02 55.96 65.67
BAN 66.04 - - - -
MuREL 65.14 - - - 68.41
ReGAT∗ 67.18 - - - 70.58†
DFAF 66.66 - - - 70.34†
MCAN 67.2 84.85‡ 49.5‡ 58.45‡ 70.9†
MLIN 66.53 - - - 70.28†
Ours 67.26 84.71 50.38 58.44 70.39

Table 1: Performance on VQA 2.0 val split and test-
standard splits. "∗" means ensembling result. "†" means
training with augmented VQA samples from Visual
Genome. "‡" based on our re-implementations.

Construction of SQS dataset. To provide the379

corresponding supervised signal for training Ques-380

tioner, Oracle, and Answerer, we propose a well-381

designed method, which is chiefly based on linguis-382

tic rules and natural language processing technol-383

ogy. VQA-SQS and VQA-CP-SQS are obtained384

by applying this method on VQA 2.0 and VQA-CP385

v2 datasets. The details of the construction process386

and the specific statistical information of the two387

datasets can be found in Appendix.388

4.2 Implementation Details389

Training and inference. During training, Ques-390

tioner, Oracle and Answerer are trained indepen-391

dently. For inference, given a question Q and an392

image I , SQS is firstly generated through the coop-393

eration between Questioner and Oracle, then Q, I394

and the complete SQS is combined as the input of395

Answerer, and obtain the final answer.396

Each question is tokenized and padded with 0 to397

a maximum length of 14. For Questioner and Ora-398

cle, each word is embedded using 300-dimensional399

word embeddings. The dimension of the hidden400

layer in GRU is set as 1,024(except for GRUQ and401

GRUs with 1,324).402

Our model is implemented based on Py-403

Torch(Paszke et al., 2017). In experiments, we404

use Adamax optimizer for training, with the mini-405

batch size as 256. For choice of learning rate, we406

employ the warm-up strategy(Goyal et al., 2017a).407

Specifically, we begin with a learning rate of 5e-4,408

linearly increasing it at each epoch till it reaches409

2e-3 at epoch 4. After 14 epochs, the learning rate410

is decreased by 0.2 for every 2 epochs up to 18411

epochs. We also adopt early stopping strategy. For412

transformer encoder, we fix the learning rate as 5e-413

5. Every linear mapping is regularized by weight414

Model All Y/N Num Other
MuREL 39.54 42.85 13.17 45.04
ReGAT∗ 40.42 - - -
MCAN‡ 42.35 42.29 14.51 50.02
Ours 42.52 44.42 14.68 49.17

Table 2: State-of-the-art comparison on the VQA-CP
v2 dataset. "∗" means ensembling result. "‡" Results
based on our re-implementations.

normalization and dropout (p = 0.2 except for the 415

classifier with 0.5). 416

4.3 Results 417

To compare with existing VQA methods, we con- 418

duct several experiments to evaluate the perfor- 419

mance of our Co-VQA framework, further, to ver- 420

ify the generation quality of the SQs and their 421

impact on the performance of the overall model, 422

Questioner and Oracle are tested additionally. In 423

Table 1, we compare our method with previous 424

work on VQA 2.0 validation and test-standard split. 425

From Table 1, it can be seen that on validation split, 426

Co-VQA achieves the top-tier preformance, our 427

method obtains a accuracy of 67.26 , which surpass 428

that of (Yu et al., 2019) by 0.06, and achieves a ob- 429

vious performance improvement on number ques- 430

tions. On test-standard split, without additional 431

augmented samples from Visual Genome, Our per- 432

formance still at the third place. We assume the 433

gap between two splits mainly due to the differ- 434

ence in SQS generation quality. To demonstrate 435

the generalizability of Co-VQA, we also conduct 436

experiments on the VQA-CP v2 dataset, where the 437

distributions of the training and test splits are differ- 438

ent. Table 2 illustrates the overall performance and 439

from the experimental results, our model gains a 440

significant advantage (2.1) over ReGAT. Compared 441

with MCAN, our model also improved by 0.16. For 442

Questioner and Oracle, we train and evaluate on 443

the train/val split of VQA-SQS dataset. 444

Oracle. The accuracy of Oracle is 93.73 and 445

average F-value is 90.13. On the one hand, the 446

high accuracy is due to SQ itself being simple; On 447

the other hand, decomposition of question leads 448

to many same SQs, strengthening image-language 449

correlation ability at SQ level. 450

Questioner. For Questioner, BLEU score is 451

adopted to measure the quality of the generated 452

SQs. As is shown in Table 3, we attribute the low 453
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BLEU-1 BLEU-2 BLEU-3
26.5 10.4 4.78

Table 3: BLEU evaluation scores of Questioner. We
don’t report BLEU-4 score because the length of some
sub questions is shorter than 4.

Model All Y/N Num Other
Full 67.26 84.71 50.38 58.44
wo-sub-loss 66.94 84.58 48.95 58.29
wo-SQS 66.55 84.43 46.78 58.18

Table 4: Ablation studies on impact of SQS on VQA
2.0 validation set.

BLEU scores to the diversity of syntax details.454

455

4.4 Ablation Study456

We conduct several ablation studies to explore crit-457

ical factors affecting the performance of Co-VQA.458

The impact of SQS. In general, as we can ob-459

serve from Table 4, though there are noises in the460

answers for SQs, the weak supervision signal pro-461

vided by them shows a gain of +0.32. Further-462

more, the decrease is obvious(-0.71) when we re-463

move total SQS from model, indicating that though464

the SQS generated from Questioner is not good465

enough, it still plays a important role in improving466

performance of model.467

Detail Analysis of SQS. To analyze the impact468

of SQS in detail, we divide the validation split of469

VQA-SQS into SQS-0 / SQS-1 / SQS-2 / SQS-3&4470

subsets, where SQS-n represents samples with n471

SQs. Then, the average accuracy of different mod-472

els on each subset is reported in Table 5. For SQS-1473

and SQS-2, the additional reasoning brought by474

SQS achieves a improvement of 1.02 and 0.93475

respectively. However, for SQS-3&4, the perfor-476

mance decreases compared with wo-SQS, we per-477

form statistics in two aspects to comprehensively478

explore the causes of this phenomenon. As shown479

in Table 6, compared with other subsets, SQS-3&4480

has obviously fewer samples, causing insufficient481

learning for these samples of long sequence. More-482

over, SQs in SQS-34 occur less frequently, thus it is483

inadequate for model to establish accurate semantic484

connections between these images and questions.485

Coherence of SQS. We also studied the impact486

of the coherence of SQS on the performance. We487

Model SQS-0 SQS-1 SQS-2 SQS-3&4 All
(57,411) (119,285) (34,226) (3,432) (214,254)

Full 69.51 66.70 65.78 63.62 67.26
wo-SQS 69.48 65.68 64.85 64.35 66.55

Table 5: Ablation studies of SQS in detail on VQA 2.0
validation set. SQS-n represents the subset of samples
with n SQs in VQA-SQS validation set. We report the
average accuracy on each subset.

Subset SQS-0 SQS-1 SQS-2 SQS-3&4 All
Samples-Num 57,411 119,285 34,226 3,432 214,254
Avg(Freq of SQ) - 870 851 693 854

Table 6: Data statistics of SQS in detail on VQA 2.0
validation set. The first row shows the number of origi-
nal questions contained in different SQS sets, and the
second row counts the average number of occurrences
of the sub questions contained in each subset in the
VQA-SQS train split.

ran two different cases : 1) randomly shuffle the 488

SQs in a sequence; 2) remove some SQs in a se- 489

quence with 50% probability. As we can observe 490

from Table 7, the declines from original one are 491

not significant, partly due to the coherence of SQS 492

in dataset is not good enough. 493

4.5 Visualization 494

To better illustrate the effectiveness, explicit in- 495

terpretability, and traceability of errors of Co- 496

VQA, we visualize and compare the attention maps 497

learned by complete Co-VQA with those learned 498

by wo-SQS. As shown in Figure 6. Column 1 is the 499

original question and ground truth, while Column 500

2 corresponds to the prediction of model wo-SQS. 501

The middle columns and last column correspond 502

to the generated sub q&a, and the prediction of 503

Co-VQA, respectively. To visualize the attention 504

maps, we use the in-degree of each node as atten- 505

tion value and circle top-2 attended regions with 506

red and blue boxes. 507

Line 1 shows model wo-SQS only notices one of 508

the dogs and gives a wrong answer "1". However, 509

through SQ "Are there dogs?", Co-VQA focuses 510

on two dogs and gives the correct answer "2". This 511

Model All Y/N Num Other
Full 67.26 84.71 50.38 58.44
shuffle 67.15 84.68 49.78 58.42
random 67.08 84.68 49.75 58.28

Table 7: Ablation studies of coherence of SQS on VQA
2.0 validation set.
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Q : What color is the woman's 
shirt on the left?
A : black

Pred : pink
Status : Failed

Q1 : Is there any woman?
A1 : yes

Q2 : Is there any person wearing 
shirt?
A2 : yes

Pred : black
Status : Success

Q : Does this blue car have 
a front license plate? 
A : no

Pred : yes
Status : Failed

Q1 : Is there any car? 
A1 : yes

Q2 : Is there any blue car? 
A2 : yes

Q3 : Is there any license 
plate on car? 
A3 : no

Pred : no
Status : Success

Q : Is the motorcyclist wearing 
proper foot gear?
A : yes

Pred : no
Status : Failed

Q1 : Is there any motorcyclist?
A1 : no

Q2 : Is this any safety gear?
A2 : no

Pred : no
Status : Failed

Q : How many dogs are in the picture?
A : 2

Pred : 1
Status : Failed

Q1 : Are there dogs?
A1 : yes

Pred : 2
Status : Success

Figure 6: Visualization of attention maps learned by complete Co-VQA with those learned by wo-SQS. The second
and last column corresponds to the prediction of wo-SQS and complete Co-VQA respectively. Red and blue
bounding boxes shown in each image are the top-2 attended regions.

case demonstrates that asking an existence question512

firstly is beneficial to number question. In Line 2,513

wo-SQS model focuses on unrelated entities. How-514

ever, Co-VQA attends to the women and the people515

wearing short sleeves gradually with SQS, and fi-516

nally, concentrates on the related woman’s shirt.517

Line 3 shows Co-VQA successively attends to cars,518

blue cars, and the license plate under the guidance519

of SQS and gets the correct answer. These exam-520

ples prove that questions with different complexity521

will correspond to SQS of variable length, and SQ522

is indeed related to more accurate image attention.523

Moreover, generating SQ provides not only the524

logic of reasoning but also additional language in-525

terpretation. Thus, compared with previous works526

that only explain models by attention maps, Co-527

VQA has significantly better interpretability.528

The last line shows Co-VQA gives a wrong an-529

swer after adding SQS. However, we can find some530

possible causes, such as the wrong answer of Q1,531

Q2 is not related to the question, and the model532

doesn’t attend to relevant entities in the light of533

Q1. It shows that Oracle and Questioner may give 534

wrong answers or generate inappropriate questions, 535

as well as Answerer may establish faulty semantic 536

connections between questions and images, which 537

verifies that Co-VQA has sure traceability for er- 538

rors and provides guidance for future work. 539

5 Conclusions 540

We propose a conversation-based VQA (Co-VQA) 541

framework which consists of Questioner, Oracle 542

and Answerer. Through internal conversation 543

based on SQS, our model not only has explicit 544

interpretability and traceability of answer errors, 545

but also can carry out question-adaptive variable- 546

length reasoning chains. Currently, Questioner is 547

relatively simple, and the quality still has a lot of 548

room to improve. Meanwhile, current SQs are 549

only yes/no questions. For future work, we plan 550

to explore how to more effectively generate more 551

diverse and higher quality SQS, and look forward 552

to better model performance. 553
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A Appendix703

Here we introduce our method for construcing SQS704

and the statistical information of datasets.705

A.1 Data source706

We construct SQS dataset based on VQA 2.0 and707

VQA-CP v2 datasets.708

A.2 Construction principle709

The principle of data construction is based on an710

intuitive idea: high-order questions can adopt cor-711

responding low-order questions as their sub ques-712

tions, then these sub questions are arranged accord-713

ing to the order from low to high to form a sub714

question sequence.715

We determine the order of questions according to716

the templates in the Table 8. For order-0 and order-717

1 questions, there is no corresponding SQ, order-2718

questions can construct corresponding order-1 SQs,719

while the order-3 questions can construct multiple720

order-1 SQs and order-2 SQs.721

A.3 Construction method722

we construct the sub questions according to the723

following process.724

1) For each question, we first adopt Spacy 1 and725

NLTK toolkit (Loper and Bird, 2002) to identify726

all noun blocks in the question and filter out some727

noun blocks based on the predefined phrase list.728

The phrase list mainly includes meaningless quan-729

tifiers, pronouns and abstract nouns, such as lots,730

someone, something, you, they, it, the day, the pic-731

ture, a body, emotion, this, type etc.732

2) After the first step of filtering, for questions con-733

taining noun blocks, according to the dependency734

relation between the extracted noun blocks, some735

noun blocks may be used as prepositional phrases.736

For remaining noun blocks, we use Part-of-Speech737

Tagging of Spacy to find out corresponding nouns,738

adjectives and quantifiers. For nouns, we save739

them separately, while for adjectives, quantifiers740

and prepositional phrases, we save these modifiers741

with the noun in a form of 2-tuple, such as (noun,742

modifier).743

3) After the first step of filtering, for questions744

without noun blocks, considering there may be745

omissions in the process of extraction, we perform746

pattern matching through Spacy based on the pre-747

defined matching template to determine their cate-748

gories. Table 9 illustrates partial matching patterns749

1https://spacy.io/

order question template
0 no entity
1 single entity
2 entity & attribute
3 comparison between different entities

Table 8: Templates for question of different order.

for different type of questions. Specially, for ex- 750

istence questions, no additional processing is re- 751

quired, while for other type of questions, we save 752

the nouns that are exist in the questions. 753

4) We further filter the nouns and tuples saved in 754

2) and 3). We aim to filter out abstract nouns, non- 755

substantial nouns, and 2-tuple corresponding to 756

these nouns. The following are some cases to be 757

filtered: 758

a) Abstract Noun: direction, design, surface, area, 759

emotion, skill etc. 760

b) Non Substantive Noun: mode, base, day, love, 761

name, print, piece etc. 762

5) For the remaining nouns and their correspond- 763

ing 2-tuple, we use the pre-defined question tem- 764

plate to construct the corresponding sub questions. 765

To facilitate the process of construction and model 766

training, we design all sub questions as yes / no 767

questions and reveal the matching pattern for each 768

type of sub questions in Table 11. The construction 769

process of ground-truth for sub questions can be 770

illustrated as following: 771

Existence SQ and Attribute SQ we first extract 772

the label and attribute information of the entity by 773

using the detection model, and then combine these 774

information to produce the answer. 775

Prep SQ and Position SQ the location informa- 776

tion obtained by the detection model is utilized to 777

judge the relationship of overlapping and orienta- 778

tion between entities, we use the obtained relation- 779

ship to generate the corresponding answer. 780

Number SQ we first make a rough quantity esti- 781

mation based on the image, and then make manual 782

correction. 783

6) Considering there may be wrong answers, inco- 784

herent sequences and nonstandard question gram- 785

mar in the process of automatic construction, and 786

to increase the diversity of SQs, we invite ten stu- 787

dents in our laboratory to further manually correct 788

some samples(about 5K samples). 789

The SQS datasets obtained by performing the above 790

operations on VQA 2.0 and VQA-CP V2 datasets 791

are called VQA-SQS and VQA-CP-SQS respec- 792
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Question Type Matching Pattern
Existence (do you see)?[DET | PRON | ADP]* [NOUN | PROPN]* NOUN?
Verb (do you see)? [DET | PRON | ADP]* [NOUN | PROPN]* NOUN?[VBG | VBN]?
Attribute BE [DET | PRON | ADP]* [NOUN | PROPN]* NOUN? ADJ?
Num BE [DET | PRON | ADP]* NUM NOUN NOUN* ?
Prep BE [DET | PRON | ADP]* [NOUN | PROPN]* NOUN VERB? ADP DET NOUN NOUN* ?

Table 9: Matching patterns for different type of questions

Dataset Split #Images #Q&A #Non-empty SQS Avg(SQ)
VQA-SQS Train 82,783 443,757 328,140 0.94
VQA-SQS Val 40,504 214,354 156,943 0.925

VQA-CP-SQS Train 120,932 438,183 322,200 0.93
VQA-CP-SQS Test 98,226 219,928 162,883 0.946

Table 10: Dataset statistics of VQA-SQS and VQA-CP-SQS.
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Figure 7: Dataset distribution of VQA-SQS.
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Q : Are the two men wearing glasses at the closest table?
q1 : Is there a closest table?
a1 : yes
q2 :Are there two men at the closest table?
a2 : yes
q3 : Are the two men wearing glasses?
a3: no
A : yes

Q : Is the green vehicle a sports utility vehicle?
q1 : Is it a vehicle?
a1 : yes
q2 : Is there a green vehicle?
a2 : yes
q3 : Is the green vehicle truck?
a3: yes
A : no

Q : Is the man wearing a plain tie?
q1 : Is there a man?  
a1 : yes
q2 : Is the a man wearing a tie?  
a2 : yes
q3 : Is the tie plain?
a3: no
A : no

Q : Are these two players on the same team?
q1 : Are there players?
a1 : yes
q2 : Are there two players?
a2 : yes
q3 : Are the two players wearing the same color?
a3: yes
A : yes

Figure 9: Some samples of VQA-SQS, including existence SQ, attribute SQ, prep SQ and number SQ.

SQ Type Matching Pattern

Existence
Is there any [entity]?

Is there any [color] [entity]?
Are there [entites]?

Attribute
Is the [entity] [color]?

Is any [entity]?
Are these [entites] in similar size?

Prep
Is there any [entity] on the [entity2]?
Is there any [entity] in the [entity2]?

Number
Are there [number] [entites]?

Is there only one [entity]?

Position
Is the [entity] on the left?

Is the [entity] on the right?
‘ Is the [entity] in the middle?

Table 11: Sub question generation template for different
SQ types.

tively.793

A.4 Dataset statistics794

Table 10 shows general statistical information of795

the two SQS datasets, then, Figure 7 and Figure 8796

respectively reveal three fine-grained distribution797

of two datasets including number distribution of798

SQ (7-a / 8-a), type distribution of SQ (7-b / 8-799

b) and answer distribution of SQ (7-c / 8-c). To800

display more convenient, in (7-a / 8-a) and (7-b /801

8-b), the ordinate axis adopts logarithmic scale.802

Figure 9 displays four samples of VQA-SQS803

dataset.804
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