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Abstract
This paper presents a comprehensive compari-
son of various machine learning models, namely
U-Net (Ronneberger et al., 2015), U-Net inte-
grated with Vision Transformers (ViT) (Dosovit-
skiy et al., 2021), and Fourier Neural Operator
(FNO) (Li et al., 2020), for time-dependent for-
ward modelling in groundwater systems. Through
testing on synthetic datasets, it is demonstrated
that U-Net and U-Net + ViT models outperform
FNO in accuracy and efficiency, especially in
sparse data scenarios. These findings underscore
the potential of U-Net-based models for ground-
water modelling in real-world applications where
data scarcity is prevalent.

1. Introduction
Groundwater numerical models, such as MODFLOW
(Hughes et al., 2022), are crucial for water resource man-
agement, although they are computationally demanding.
To alleviate this, surrogate modelling through data-driven
methods offers efficient approximations of these complex
numerical techniques.

Neural Operators (Lu et al., 2021; Seidman et al., 2022),
particularly the Fourier Neural Operator (FNO) (Li et al.,
2020), have been at the forefront of recent advances, hav-
ing shown potential to approximate arbitrary continuous
functions. However, the computational demand of FNO
is particularly high during training phase while these neu-
ral operators require architectural enhancements to deliver
promising results in subsurface problems (Wen et al., 2022;

*Equal contribution 1School of Civil Engineering, University
of Leeds, Leeds, UK 2Department of Applied Mathematics, Tel-
Aviv University, Tel-Aviv, Israel 3School of Computing, University
of Leeds, Leeds, UK 4Division of Applied Mathematics, Brown
University, Providence, U.S.A. Correspondence to: Maria Luisa
Taccari <cnmlt@leeds.ac.uk>.

Accepted after peer-review at the 1st workshop on Synergy of
Scientific and Machine Learning Modeling, SynS & ML ICML,
Honolulu, Hawaii, USA. July, 2023. Copyright 2023 by the au-
thor(s).

Jiang et al., 2023). This is evident in the work of Wen et al.
(Wen et al., 2022), where the integration of FNO with U-Net
architecture showed improved accuracy, speed, and data ef-
ficiency in multiphase flow problems. However, Gupta and
Brandstetter’s work (Gupta & Brandstetter, 2022), showing
that U-Net outperforms FNOs across various fluid mechan-
ics problems, raises a question about the necessity of neural
operators when the vanilla U-Net architecture already ex-
hibits remarkable performance.

Recently, transformers (Vaswani et al., 2017) have seen
considerable success in various fields, including physical
systems (Cao, 2021; Li et al., 2023), for which the datasets
are typically smaller compared to other domains. Only one
study explores the use of transformers in groundwater mod-
eling (Mellouli et al., 2022), demonstrating that the models
were outperformed by both GRU and LSTM models to pre-
dict groundwater levels across various stations in France
with meteorological and hydrological data.

Finally, the integration of U-Net with Transformers, as ex-
emplified in studies like TransUNet (Chen et al., 2021) and
ViTO (Ovadia et al., 2023), has demonstrated their utility
across a broad range of applications, particularly in the field
of medical image segmentation and operator learning for
inverse PDE problems. Yet, the applicability of these com-
binations in addressing time-dependent forward problems,
real-world data scenarios, and in situations with sparse data,
remain areas yet to be fully explored.

Several studies, such as the one by Brakenhoff et al. (Brak-
enhoff et al., 2022; Mellouli et al., 2022), primarily focus on
individual time series when analysing the impact of various
hydrological stressors, including pumping rates, precipi-
tation excess, and river stage variations, on groundwater
levels of individual monitoring wells. While this approach
provides valuable insights, it does not account for spatial
correlations, thereby limiting its use to existing time series
or monitoring wells. Similarly, previous comparisons have
been predominantly limited to specific models like LSTM,
CNNs and NARX in the context of groundwater level fore-
casting (Wunsch et al., 2021), leaving room for broader
explorations.

In this paper, we present a comprehensive comparison
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among models—specifically U-Net, U-Net integrated with
Vision Transformers (U-Net+ViT), and Fourier Neural Oper-
ator (FNO)—for their efficacy in modeling time-dependent
forward and inverse problems in groundwater systems. We
test our model extensively on synthetic datasets, simulating
conditions from the Overbetuwe region in the Netherlands,
including sparse data scenarios. We show that both U-Net
and U-Net+ViT are particularly well-suited to these impor-
tant sparse data scenarios, with the addition of the Trans-
former providing enhanced predictive capability in many
cases.

2. Methodology
2.1. Example of study site and data

This subsection provides context and rationale for our study
via an example case study based upon the polder region
of Overbetuwe in the Netherlands (Figure 1). This region
showcases the characteristic Dutch system of water man-
agement where the area is divided into several polders in a
mix of agriculture, nature, and urban environments. Along-
side its sparse data and heterogeneous soil, these unique
characteristics underscore the inherent complexities of wa-
ter management in similar settings, making this dataset a
suitable choice for our research. The subsoil is primarily
composed of clay and sandy clay, with soil properties being
determined via borehole and cone penetration tests. The
study area features numerous observation wells for mon-
itoring groundwater heads while well fields (indicated as
groundwater usage facilities in the figure) are utilized for
the extraction of drinking water. The work of Brakenhoff et
al. (Brakenhoff et al., 2022) considers a dataset consisting
of 250 head time series, with daily recordings starting from
the year 1990 and drawdown attributed to the extraction
from up to four well fields.

For the purposes of this study, we employ synthetic data to
validate the proposed methodology, with the intention to sub-
sequently apply the validated method to the real-world data
of the Overbetuwe region. Figure 2 represents a sample of
the high-fidelity labeled dataset, which is constructed using
the U.S. Geological Survey (USGS) finite-difference flow
model, MODFLOW. The model is composed of a single-
layer representation of a confined aquifer with a 128× 128
grid. The aquifer’s heterogeneity is reflected through vary-
ing horizontal hydraulic conductivity within the bounds
k ∈ [0.1, 0.5] m/d. The hydraulic conductivity fields in
our study are created using random fields which are then
thresholded to delineate different classes. A maximum of
ten pumping wells are extracting water with variable rates
in the range Q ∈ [0, 30] m3/d over a simulation period of
T = 10 days. The pumping wells are located in random
locations which vary for each sample. The boundary con-
ditions are delineated as Dirichlet, with the head equal to

Figure 1. A representation of the target study area located in the
polder region of Overbetuwe, Netherlands. (DIN).

zero, mimicking a polder encircled by ditches where a stable
water level is maintained through a comprehensive network
of pumping stations.

The datasets consist of Ntrain = 5000 training instances
and Ntest = 1000 testing instances. To mirror the inher-
ent sparsity of real-world data, a data selection strategy is
adopted for the test dataset. The locations of the boreholes
for estimating the hydraulic conductivity are chosen follow-
ing a radial distribution pattern, and a helical pattern is used
for the wells monitoring hydraulic head (Figure 2).

2.2. Architectures

The architectures of the three models under comparison in
this study encompass the U-Net structure, a U-Net with at-
tention mechanism in the bottleneck, and the Fourier neural
operator (FNO).

The U-Net architecture is designed with an encoder-decoder
structure where the decoder receives the upsampled feature
map, which is then concatenated with the corresponding
feature map from the encoder through a skip connection.
Detailed diagrams of the the U-Net encoder and decoder
can be found in Figures 6 and 7 in Appendix A. The en-
coder consists of three bottleneck blocks, where each block
utilizes three layers of Conv2d, Instance Normalization, and
GELU activation to extract spatial features. These blocks
increase the number of channels by a factor of 2 and perform
downsampling with a stride of 2. The decoder is composed
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Figure 2. An test sample of the high-fidelity dataset constructed
using MODFLOW. The first column showcases the heterogeneous
hydraulic conductivity, the second column presents the randomly
positioned pumping wells, and the third column depicts the re-
sulting hydraulic head. The red dots (column 1 and 3) represent
a selection of data points—following radial and helical patterns,
respectively—emulating the sparse observations in real-world sce-
narios.

of a series of upsampling blocks, where each block consists
of a bilinear upsampling operation (Upsample), followed by
a double convolution operation. Each convolution within the
decoderis followed by Instance Normalization and GELU
activation function. The bottleneck consists on a single
convolutional layer. In the time-dependent scenario, the
time series data of the historical pumping rates is processed
through two layers of feed-forward neural network (FNN)
prior to being concatenated to the input for the latent space
representation (Figure 6).

The second model, here called UNet+ViT, employs the Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021), in the
latent space representation of the U-Net, as per implemen-
tation of TransUNet (Chen et al., 2021) and ViTO (Ovadia
et al., 2023). The input is tokenized into a sequence of flat-
tened 2D patches, each of size 1×1. Positional information
is retained by employing trainable convolutional projection
to learn and add specific position embeddings to the patch
embeddings. The structure of the Transformer includes L
blocks, with each block comprising Multi-Head Attention
(MSA) and FNN. This configuration involves the use of 2
blocks, each with 2 Multihead Self-Attentions, and a FNN
composed of 128 neurons. For a more detailed visualization
of the Vision Transformer, attention block, and multihead
attention, please refer to Appendix A, Figure 8.

The Fourier neural operator (FNO) (Li et al., 2020) model
leverages the fast Fourier Transform to parameterize the
integral kernel directly in the Fourier space. The implemen-
tation of FNO for the 2D Darcy Flow problem as presented
in (Li et al., 2020) is followed in this study. The total amount
of parameters of FNO corresponds to 2.38 million, that is
15 times more than UNet+ViT (151k) and 17 times more
than UNet (137k).

3. Results
3.1. Forward problem with sparse observations

This section presents the prediction of the hydraulic head
at sparse monitoring wells after a constant 10-day pumping
period under two different training conditions. We employ
distinct sampling strategies for both input and output data
in our methodology. Our training data is sampled from a
regular quadratic grid, while for testing we have explored
other arrangements, such as radial and helical, to understand
their potential impact on the prediction performance. In the
first scenario, training is conducted using sparse data, with
a spacing of 20 grid points for the input hydraulic conduc-
tivity field and a spacing of 8 for the output hydraulic head.
Testing is then carried out on sparse data points, following
the radial and helical patterns delineated in subsection 2.1.
The resulting root mean square error (RMSE) is found to
be 5.2× 10−2, 3.5× 10−2 and 8.1× 10−2 for the vanilla
U-Net, the UNet+ViT models and FNO respectively. These
results underline the superior performance of the UNet+ViT
model in handling sparse data, exhibiting a lower RMSE
compared to both the vanilla U-Net and the FNO models.

In contrast, when training is performed using the entire field
and testing on the same sparse dataset, the error marginally
escalates to 3.9× 10−1 for FNO, 3.8× 10−1 for UNet and
3.6 × 10−1 for UNet+ViT model. This outcome is antici-
pated considering the training set exhibits sparsity in the first
scenario, but not in the latter. Additionally, Figure 3 displays
the prediction over the entire domain, resulting in a lower
RMSE of 1.0× 10−2 for FNO, 1.7× 10−2 and 1.9× 10−2

for the vanilla U-Net and UNet+ViT models, respectively.
The FNO model, while superior when dealing with full data,
exhibits the highest predictive error under sparse data ob-
servations. These results highlight the practical advantages
of the U-Net and especially UNet+ViT model in real-world
scenarios for which data sparsity is common.

It should be noted that traditional simpler neural networks
and other machine learning techniques may not provide ad-
equate solutions for this specific problem. This assertion is
backed by a comparison of the results from a fully connected
neural network, a linear regression model and a random for-
est, detailed in Appendix B. Despite the substantial number
of trainable parameters, reaching 51.17 million, inherent to
the fully connected neural network and the application of
linear regression and random forest, these methods signifi-
cantly underperform compared to the U-Net, the UNet+ViT
models, and FNO.

3.2. Identification of pumping wells

In this section, we focus on an inverse problem: specifically
the identification of pumping wells. This task requires de-
termining the locations and rates of pumping wells based
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Figure 3. Predictions over the entire domain are shown, with the
UNet+ViT model exhibiting a RMSE of 1.9× 10−2. The figure
demonstrates the model’s ability to accurately capture the spatial
distribution of the hydraulic head across the entire domain.

on the observed hydraulic heads. Throughout these exper-
iments, we employ a single hydraulic conductivity field,
which, while spatially varying, remains identical across all
samples within the dataset.

In evaluating the performance of our models, we use both
RMSE and accuracy. The RMSE calculates the average
difference between the true and the predicted value for each
pump location in the test dataset, giving a quantitative mea-
sure of the prediction error. Complementing this, the accu-
racy was determined by counting the proportion of correct
pump predictions, where a prediction is considered correct
if the predicted and actual pump locations align. This gives
a sense of how often the model correctly identifies the loca-
tion of pumps.

The U-Net model performs optimally, achieving an RMSE
of 5.6 × 10−2. Interestingly, the integration of the Vision
Transformer with the U-Net model does not confer any
additional precision in this scenario, yielding a near RMSE
of 6.1 × 10−2. The FNO model exhibits a higher RMSE
of 1.1 × 10−1, indicating a somewhat lower accuracy in
identifying the pumping well locations.

To visually illustrate these results, Figure 4 presents a test
sample using the U-Net + ViT model. It demonstrates an
accuracy of 93% in locating the pumps, calculated across
the entire test dataset. The figure visualizes the model’s
ability to accurately identify the positions and the pumping
rate of the wells. In comparison, the FNO model achieved a
notably lower detection accuracy of 79% in the same task.

3.3. Example results for time series data

This section unveils the results achieved from the analy-
sis of time series data, starting with a simplified scenario,
for which the inputs are the varying hydraulic conductivity
field and the pumping rate of a single pump which varies
over a 10-day simulation period. Results are evaluated in
terms of root mean square error (RMSE) with a focus on the
comparison of different configurations of the U-Net archi-
tecture with transformers. Figure 5 presents a comparison

Figure 4. Test sample results for the identification of pumping
wells using the U-Net + ViT model. The model accurately identi-
fies both the positions of the pumping wells with an accuracy of
93 % across the entire test dataset.

of results over 5 time frames for the U-Net with the Vision
Transformer under autoregressive testing conditions.

Figure 5. Depiction of autoregressive testing results from the
UNet+ViT model over the final five frames of a ten-frame test
sequence. This sequence simulates a single variable-rate pump
operating over a ten-day period within a region characterized by
a diverse hydraulic conductivity field. The top row presents the
ground truth, while the lower row displays the predicted outcomes.
Contour lines in the images represent groundwater levels, which
are color-coded for enhanced visual clarity. Each successive frame
is employed as input to the U-Net-Vision Transformer system,
aiding in the prediction of the subsequent frame.

The RMSE for each method was calculated to quantify the
models’ performance. The U-Net architecture alone yielded
an RMSE of 1.79 × 10−2. When supplemented with a
Vision Transformer, consisting of 2 attention blocks and
2 heads, the performance improves, registering an RMSE
of 1.67 × 10−2. However, increasing the complexity of
the Vision Transformer to 8 blocks and 8 heads did not
further improve the performance, instead, it led to a slight
degradation in the RMSE (1.77× 10−2). Adding an Axial
Transformer (Ho et al., 2019) to the U-Net architecture
also did not enhance the performance, yielding an RMSE
of 1.83 × 10−2. These results suggest that while adding
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a Vision Transformer to the U-Net architecture leads to
performance improvement, increasing the complexity of the
latent space does not necessarily do so.

4. Conclusion
This paper explores and evaluates the capabilities of dif-
ferent machine learning models, with a particular focus on
U-Net, U-Net integrated with Vision Transformers (ViT),
and Fourier Neural Operator (FNO), in the context of pre-
dicting hydraulic head in groundwater studies.

Our analysis and testing, conducted on synthetic datasets
designed to simulate the conditions from the Overbetuwe re-
gion in the Netherlands and including scenarios with sparse
data, firmly establish that both U-Net and U-Net + ViT
models are particularly adept at dealing with such tasks.
Importantly, these models are also preferred due to their
fewer requisite parameters.

Specifically, in the case of sparse observation scenarios, the
vanilla U-Net and the U-Net + ViT models outperformed the
FNO model. In particular the performance of the UNet+ViT
model was superior when handling sparse data, highlight-
ing the potential of the model in real-world applications,
where data scarcity is a common issue. The U-Net model
demonstrated optimal performance in identifying pumping
wells. Interestingly, the integration of the Vision Trans-
former with the U-Net model did not confer any additional
accuracy in this scenario. As for the analysis of time series
data, supplementing the U-Net architecture with a Vision
Transformer improved the model performance, recording
an RMSE of 1.67 × 10−2 compare to 1.79 × 10−2 of the
vanilla U-Net. However, increasing the complexity of the
Vision Transformer did not further enhance the model per-
formance, indicating that a more complex architecture does
not necessarily yield better results.

Future research will involve applying this validated method-
ology to real-world data, beginning with the Overbetuwe
region in the Netherlands. This will offer an opportunity
to further validate and refine the model, accounting for the
sparsity and uncertainties inherent in real-world data.

Broader impact
The implications of this research span a wide range of poten-
tial societal impacts, with a primary focus on improving the
efficiency and reliability of groundwater level forecasting.
Given that groundwater is a crucial resource for approxi-
mately 2.5 billion people worldwide, fulfilling their daily
water needs, and a significant source of global irrigation wa-
ter, the importance of reliable forecasts cannot be overstated.
Our work, through enhancing the performance of groundwa-
ter numerical models, offers an opportunity to revolutionize

the management and distribution of this vital resource. By
providing more accurate and data-efficient predictions, we
can aid in the formulation of informed and sustainable water
management strategies. This is particularly crucial con-
sidering the pressing challenges of population growth and
climate change.
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A. Appendix A
This appendix provides detailed diagrams of the model structures.
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Figure 6. U-Net Encoder: The encoder consists of 3 bottleneck blocks, each comprising 3 convolutional blocks (Conv2d, Instance
Normalization, and GELU). These blocks increase the channel dimension by a factor of 2 and perform downsampling with a stride
of 2, extracting spatial features. In time-dependent scenarios, the pumping rate time series undergoes processing through a two-layer
feed-forward neural network. The resulting processed data is then concatenated with the input, creating the latent space representation.
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Figure 7. U-Net Decoder: The decoder is composed of a series of upsampling blocks, where each block consists of a bilinear upsampling
operation followed by a double convolution operation.
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B. Appendix B
This appendix sets out to examine whether simpler machine learning models, specifically a fully connected neural network,
a linear regression model, and a Random Forest model, can achieve the same level of accuracy as more advanced models
like the U-Net, the UNet+ViT models, and FNO in predicting groundwater levels.

The particular Random Forest model tested here used 30 estimators. The fully connected neural network, employed for this
comparison, comprises three hidden layers, each containing 1000 nodes and using ReLU activation functions. The model
holds an impressive count of 51.17 million trainable parameters.

Unfortunately, none of the models was able to predict accurately the groundwater levels neither capturing the location of the
wells. Specifically, the fully connected neural network and the linear regression model yielded high RMSEs of 1.17× 10−1

and 1.24× 10−1, respectively. The Random Forest model fared slightly better, achieving a lower RMSE of 1.02× 10−1,
but it still fell short of the U-Net, the UNet+ViT models, and FNO.

Figure 9 visually contrasts the predictions of these simpler models gainst the ground truth. Their significant underperformance
becomes evident when compared to more sophisticated models. For a comparison of these results with accurate outcomes
produced by the UNet+ViT model, the reader is directed to Figure 3.

Figure 9. These figures illustrate the testing results using a fully connected neural network, a linear regression model, and a Random
Forest model. The top row of each figure presents the ground truth, while the remaining rows display the predicted outcomes generated by
each respective model. Contour lines represent groundwater levels, color-coded for clarity.


