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Abstract—Alzheimer’s Disease (AD) and Frontotemporal De-
mentia (FTD), among the most prevalent neurodegenerative
disorders, disrupt brain activity and connectivity, highlighting
the need for tools that can effectively capture these alterations.
Effective Connectivity Networks (ECNs), which model causal
interactions between brain regions, offer a promising approach
to characterizing AD and FTD related neural changes. In this
study, we estimate ECNs from EEG traces using a state-of-the-art
causal discovery method specifically designed for time-series data,
to recover the causal structure of the interactions between brain
areas. The recovered ECNs are integrated into a novel Graph
Neural Network architecture (ECoGNet), where nodes represent
brain regions and edge features encode causal relationships.
Our method combines ECNs with features summarizing local
brain dynamics to improve AD and FTD detection. Evaluated
on a publicly available EEG dataset, the proposed approach
demonstrates superior performance compared to models that
either use non-causal connectivity networks or omit connectivity
information entirely.

I. INTRODUCTION

Alzheimer’s Disease (AD) and Frontotemporal Dementia
(FTD) are among the most prevalent forms of neurodegen-
erative disorders. Projections estimate that the number of
individuals affected by AD will rise to 75 million by 2030
and 131 million by 2050 [1]. Similarly, estimates for FTD
suggest that dementia rates will double approximately every
20 years, surpassing 115 million cases by 2050 [2]. There is a
substantial overlap of symptoms between Alzheimer’s disease
and frontotemporal dementia, making differential diagnosis
challenging in many cases. AD is characterized by progressive
neuronal loss due to the accumulation of abnormal proteins
which disrupt brain function. These changes primarily affect
the temporal lobe and hippocampus, often altering the brain
before clinical symptoms of dementia appear [3]. FID is
characterized by progressive and relatively selective atrophy of
the frontal and/or temporal lobes [4]. Its variants are associated
with four distinct types of histopathology, all sharing common
features such as neuronal loss and astrocytic gliosis. However,
they differ in the abnormal processing and deposition of
specific proteins.

According to neuroscience literature [5], AD and FTD
lead to synaptic loss and cellular death, disrupting both the
activity within individual brain regions and the communication
among them. Consequently, the dynamics of neural activity
within a given region, as well as the structural mechanisms

governing information exchange across regions, are expected
to show distinct patterns when comparing healthy subjects
(CN) with AD and FTD patients. The connectivity patterns
revealing the relationships among brain regions are typically
referred to as Brain Connectivity Networks (BCNs). These
can generally be categorized into either functional connectivity
(FCNs) or effective connectivity networks (ECNs) [6]. FCNs
aim at summarizing the statistical dependence between brain
areas [7], hence by design FCNs lack an explicit modeling
of the direction of information flow between brain regions.
In contrast, ECNs model how activity in one brain region
causally influences another, aiming to determine the direction
of information flow at multiple time lags. The hypothesis
of this study is that accurately estimated ECNs provide a
more nuanced representation of relevant brain activity pat-
terns. When combined with an appropriate computational
model for data classification, such as Graph Neural Networks
(GNNs), this can enhance the discrimination of Alzheimer’s
disease (AD) and frontotemporal dementia (FTD) patients
from healthy controls. Notably, GNNs have been successfully
applied across a wide range of health and medical applications
(8], [9].

ECNs can be estimated from any functional brain imaging
modality (e.g. MEG, fMRI, PET or EEG) and then employed
to characterize the spatio-temporal brain organization and to
identify the relevant biomarkers for a given neurodegenera-
tive disease. Among these modalities, electroencephalography
(EEG) stands out as a non-invasive, cost-effective, and portable
method for analyzing brain activity.

Recent literature has proposed several solutions for esti-
mating ECNs from EEG data (cfr Section II-B), ranging
from well-established techniques (e.g. Granger Causality) to
more complex and data-hungry end-to-end neural network-
based solutions. However, selecting the most suitable approach
for estimating an ECN, and more importantly, identifying
the appropriate computational model to extract meaningful
information for disease diagnosis, remains an open challenge.

This work assumes that constructing an ECN involves
solving a causal discovery problem on the EEG multivariate
time-series data. To this end, we employ the PCMCI (Peter-
Clark Momentary Conditional Independence) [10] causal dis-
covery method. PCMCI provides state-of-the-art causal graph
recovery from time-series data by leveraging conditional in-



dependence tests rather than data-intensive parametric models
[11]. This feature is particularly desirable in contexts with
limited data availability, such as the one considered here.

The recovered causal structure is embedded into a novel
Graph Neural Network architecture (ECoGNet), where each
node represents a brain area (EEG electrode). Connections
between nodes are initialized with edge features derived from
the recovered ECN, while node features capture local brain
dynamics.

Our main contributions can be summarized as follows:

1) We evaluate the importance of adopting ECN in con-
junction with features summarizing the local brain dy-
namics for the recognition of AD and FTD. To estimate
ECNs from EEG data we adopt state-of-the-art causal
discovery methods for time series data.

2) We propose a novel GNN architecture (ECoGNet) ex-
plicitly devised to properly model both local brain
dynamics and the causal relationships (direction of infor-
mation flow) between different brain areas (ECN), for
the objective of discriminating AD and FTD patients
from healthy controls.

The proposed approach is evaluated on the publicly avail-
able dataset introduced in [12]. Results demonstrate that the
estimated ECNs, when processed by the proposed GNN archi-
tecture, achieve the overall best performance for the detection
of the considered brain disorders. Notably, using a FCN
as input to the GNN (thereby ignoring causal information)
significantly reduces the approach’s performance. Similarly,
excluding brain connectivity information entirely, leads to
suboptimal results.

II. RELATED WORKS

Numerous studies have explored the use of EEG features
to improve the diagnostic accuracy of AD and other forms
of dementia [13]. These efforts encompass a wide array of
methodologies, including both traditional ML models [14] and
Deep Learning (DL) approaches [15]. ML models typically
rely on engineered features that capture temporal, spectral, or
statistical characteristics of EEG signals, while DL models
process raw data in an end-to-end manner. Additionally, a
growing body of research focuses on modeling Brain Con-
nectivity Networks (BCNs) as either Functional Connectivity
Networks (FCNs) or Effective Connectivity Networks (ECNs)
to better capture interactions between brain regions [16].

This section provides a brief review of the relevant literature
in this context, and concludes with a summary of how causal
discovery can be achieved using the PCMCI method, as this
approach is employed in our methodology.

A. Machine and Deep learning models

A wide variety of ML algorithms have been utilized in
the literature for EEG classification in dementia detection.
Traditional methods, such as Support Vector Machines (SVM)
[17], k-Nearest Neighbors (kNN) [18], logistic regression
[19], and random forests [18], remain relevant and widely
used for classifying Alzheimer’s Disease and other types of

dementia. However, deep learning methodologies have gained
significant traction in EEG-based dementia research due to
their ability to extract and learn features directly from raw data
without the need for hand-crafted features or prior knowledge.
Notable examples of deep learning models applied to EEG
classification include Convolutional Neural Networks (CNN)
[20], Recurrent Neural Networks (RNN) [21], Transformers
[22], and graph-based methods [23]. These models have
demonstrated promising results in classifying EEG signals and
identifying biomarkers for AD.

B. Brain Connectivity Networks

Recent years have seen a considerable amount of research
focused on modeling BCNs in the form of either FCNs [24],
[25] or ECNs [26]-[28], with possible applications to the
diagnosis of brain disorder mechanisms.

Historically, the most widely adopted technique to derive
the causal connections between brain areas has been Granger
Causality [29], [30]. However, more recently, a wider variety
of approaches has been employed. For instance, in [31]
authors adopted Sugihara causality analysis to develop novel
EEG biomarkers for discriminating normal aging from Mild
Cognitive Impairment (MCI) and early Alzheimer’s disease.

Successively, Li et al. [32] derived the ECN via an ultra-
group Lasso method for diagnosing MCI. Their experimental
findings revealed that the ECN-based approach significantly
outperformed the traditional functional connectivity FCN-
based method. Similarly, Chen et al. [33] proposed a message-
passing algorithm to estimate the directional flow of infor-
mation between brain regions, demonstrating that ECN-based
methodologies offer a distinct advantage over FCN-based
approaches in identifying neuroimaging biomarkers associated
with diseases.

In [34] authors proposed an Effective Temporal-Lag Neural
Network (ETLN) designed to simultaneously infer causal rela-
tionships and temporal-lag values between brain regions, with
the advantage of end-to-end trainability. ETLN is applied to
functional Magnetic Resonance Imaging (fMRI) signals from
distinct brain regions to assess direct or indirect interactions
between them, with the ultimate goal of detecting AD.

More recently, in [35] a directed structure learning GNN
(DSL-GNN) was developed to estimate the ECN while learn-
ing to discriminate between Alzheimer’s disease, Parkinson’s
disease and Healthy controls.

III. BACKGROUND: CAUSAL DISCOVERY WITH PCMCI

PCMCI (Peter-Clark Momentary Conditional Indepen-
dence) analyzes multivariate time series data (e.g., EEG sig-
nals) to infer causal relationships among each of the variables
composing it. Discovered causes can be eventually represented
via a Directed Acyclic Graph (DAG). As any causal discovery
method, PCMCI comes with a set of standard assumptions
on the data that ingests; beyond the causal Markov condition
and faithfulness assumption [36], PCMCI assumes that causal
effects between EEG traces do not change over time (causal
stationarity), time series do not have contemporaneous causal



links and all the relevant variables are measured (causal
sufficiency, or unconfoundedness) [10].

Here we apply PCMCI to non overlapping temporal seg-
ments (epochs) of the EEG traces. Given a time series x;(t),
representing a segment of the EEG trace of the i-th electrode,
PCMCI identifies causal dependencies using a Conditional
Independence (CI) test. Causality between time series from to
two different electrode segments x;(t) and x;(t) is assessed
based on their conditional dependency, typically denoted by:

2i(t) L (1) | 2(t),

where z(t) is the set of conditional variables influencing their
relationship.

PCMCI requires the definition of a limited numbers of funda-
mental hyperparameters:

o The CI Test: Determines the eventual causal effect be-
tween variables; options include Partial Correlation (Par-
Corr), robust-ParCorr (r-ParCorr), Chi-squared or G-Test.
The appropriate CI test is selected based on data type,
distribution, and sample size.

o Time Lag (Tyin, Tmax): Defines the range of temporal lags
at which a causal effect should be determined. Wider time
lag ranges allow for more exhaustive inferences, while
requiring significantly higher computational resources.

o Significance Level (a): Sets the significance level of the
CI independence test for pruning spurious dependencies.

PCMCT identifies causal relationships between time series
by detecting directed, lagged links among the measured vari-
ables (EEG electrodes). It outputs a p-value matrix indicating
statistical significance, test statistics quantifying dependency
strength, and confidence intervals to assess result reliability.
The resulting causal graph captures lagged interactions, pro-
viding insights into the system’s causal structure.

IV. THE MODEL

The proposed method employs a multi-step pipeline for
analyzing EEG recordings, as illustrated in Figure 1, which
outlines the key stages of the process. Briefly, the pipeline
begins with an epoching phase, where the continuous EEG
signal is segmented into discrete epochs for further analysis.
Subsequently, feature extraction captures essential temporal
and spectral characteristics from the raw EEG data. Concur-
rently, causal graphs are constructed to represent the dynamic
relationships between different brain regions over time. The
extracted information is structured as graphs with both node
and edge features, capturing the relationships between brain
regions. Finally, a graph convolutional network-based classi-
fier (ECoGNet) processes these graphs, leveraging both node
features and the underlying causal structure for classification.

A. Graph Construction

For each epoch, two key operations are performed: node
feature extraction and causal graph estimation which defines
the edge features.

i. Node Feature Extraction

In the feature extraction phase [37], a set of EEG biomark-
ers, well-established in the literature [38], [39] and associated
with AD and FTD, is computed for each epoch and each
electrode signal. These features include the power within
the alpha, beta, theta, and delta frequency bands, along with
statistical measures such as the mean, standard deviation, and
interquartile range (IQR) of the signal. A visual comparison of
the differences in average feature values is provided in Figure 2
for the AD vs. CN case and in Figure 3 for FTD vs. CN case.

From a qualitative standpoint, Figure 2 shows how Delta and
Alpha power reveal minimal differences in central and poste-
rior regions, with more variation in the frontal and occipital ar-
eas. Theta power exhibits broader differences, especially in the
frontal and parietal regions, suggesting potential alterations in
AD patients; conversely, Beta power differences are relatively
low. Statistical measures such as mean, standard deviation,
and interquartile range reveal more widespread differences,
reflecting increased EEG variability in AD vs controls.

Concerning FTD vs. CN case (Figure 3), the image suggests
substantial EEG differences between FTD patients and healthy
controls, particularly in frontal regions, aligning with the
disease’s known impact on the frontal and temporal lobes.
FTD may be associated with increased power in the lower
frequency Delta and Theta bands, potentially indicating slowed
brain activity or abnormal slow waves. A possible reduction
in Alpha power, especially frontally, could reflect reduced
alertness and cognitive slowing. Beta power changes are less
clear but present. Variations in the spread of these differences,
as seen in standard deviation and interquartile range maps,
may reflect disease heterogeneity.

ii. ECN Estimation

The PCMCI algorithm is applied to each of the segmented
EEG signals (epochs) using both the Partial Correlation (Par-
Corr) and the Robust Partial Correlation (r-ParCorr) as the con-
ditional independence (CI) tests [40]. Both these CI tests en-
sure a robust evaluation of conditional dependencies between
time-series variables, leveraging their strengths in managing
linear relationships. The algorithm iteratively removes non-
significant connections and identifies significant lagged and
contemporaneous interactions, ultimately generating a causal
graph that captures the directed causal relationships within the
data. Figure 4 shows the highest causal links found by PCMCI
across all subjects and time lags.

As can be observed, in healthy controls (Figure 4, left)
numerous connections are evident, suggesting active commu-
nication between different brain regions. Frontal and temporal
areas, seem to be highly involved, with many connections
terminating there. This suggests a central role for the frontal
cortex and temporal lobe in the overall network organization.
We also observe connections spanning longer distances across
the circle, implying communication between more spatially
separated brain regions, suggesting integration of information
across different functional areas.

FTD subjects (Figure 4, center) seem to present a noticeable
shift in the network causal organization. The overall density of
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Fig. 1. Overview of the pipeline for causal graph construction and classification. First, node feature extraction and identification of causal relationships from
EEG time-series data using the PCMCI algorithm are performed (Graph Construction). Subsequently, the obtained graph is processed by ECoGNet, which

incorporates both node and edge features.
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Fig. 2. Plots showing the differences between the average values of each
feature across electrodes for the AD and CN groups.
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Fig. 3. Plots showing the differences between the average values of each
feature across electrodes for the FTD and CN groups.

connections appears reduced compared to the CN group, sug-
gesting a decrease in communication between brain regions.
The connections to frontal areas, which were prominent in the
CN network, seem to exhibit a slight decrease.

Eventually, AD subjects (Figure 4, right), exhibit the most
sparse connectivity of the three. The number of connections is
substantially reduced compared to both CN and FTD, indicat-
ing a further decline in inter-regional communication. Long-
range connections, which were present in the CN network,
are now greatly diminished, implying a breakdown in the
integration of information across distant brain regions.

B. ECoGNet

A graph for each epoch is then constructed: each node v; of
the graph corresponds to an electrode of the EEG recording,
with its features computed as previously reported (cfr. Section
IV-A.i), resulting in a feature vector f; € R Froce,

The graph is fully connected, and for each edge e;; between
two nodes (v;, vj), a feature vector is constructed based on the
causal graph generated in the ECN Estimation (cfr. Section
IV-A.ii). Specifically, for each edge and each time lag, a one-
hot encoding is used to represent the three possible edge types:
causal, undetermined, or no causal relationship. Furthermore,
the causal strength is included as an additional numerical
feature. The feature vectors corresponding to different time
lags are then concatenated to form a comprehensive feature
vector e;; € RFee for the edge e;;. This concatenated vector
encapsulates the temporal dynamics and causal relationships
between the nodes across the various lags.

The graph convolutional network (GCN) that we propose is
designed to process graph-structured data with edge features,
so as to learn both node and edge representations through
message passing, where each node aggregates information
from its neighbors, considering both node and edge features.

The proposed layer, termed EdgeFeatureGCNConv, extends
the traditional graph convolutional operation to incorporate
edge attributes, enabling a richer representation of the graph
structure. Let F € RV *Fw represent the node feature matrix
with N nodes and F)uq. features, and let E € RE>*Feze denote
the edge feature matrix with E representing the number of
edges. The node features are transformed by a learnable linear
layer:

F' =FW,, e))

where W,, € RFwexFou jg a weight matrix. Similarly, the
edge features, if provided, are linearly transformed:

E =EW,, 2)

where W, € RFeseXFou i another weight matrix.

During message passing, the layer propagates information
along the edges using the transformed features. For an edge
between nodes v; and v;, the message is defined as:

=fl. e

mgj =1 - €5,

where - denotes element-wise multiplication, fjf represents the
embedding of node j, obtained according to Equation (1), and



Fig. 4. Chord diagrams illustrating the highest causal links recovered by PCMCI from the adopted EEG traces. For visualisation purposes only arcs with a
causal strength above a threshold are shown. Casual connections between various brain areas are shown across the three different groups: Healthy Controls
(CN, left), Frontotemporal Dementia (FTD, center), and Alzheimer’s Disease (AD, right). Each arc of the circle represents a causal link between two brain
areas, while the color indicates the direction of information flow (source of the connection).

e],; represents the embedding of edge (i, j), obtained according
to Equation (2). The aggregated messages for each node are
computed based on the specified aggregation method (e.g.,
summation), and a learnable bias term b € R is added:

F{ = Aggregate({m;; : j € N'(i)}) + b,

where A/ (7) represents the neighbors of node 4. This layer,
repeatedly applied throughout the architecture, effectively in-
tegrates node and edge information, enabling the model to
capture both local and relational properties within the graph.

At the output stage, the features are aggregated using both
global maximum pooling and global mean pooling across all
nodes in the graph. These pooled features are concatenated
and passed through a linear classifier (LC) to generate the final
predictions. The classifier is designed to distinguish between
classes, such as Alzheimer’s patients and control subjects,
based on the learned node and edge features. The final output
is computed as:

§ = LC(concat(GlobalMaxPool(F'), GlobalMeanPool(F))),

where ¢ represents the predicted class label and F is the node
feature matrix at the last layer.

V. EXPERIMENTAL ANALYSIS

In this section, we present a detailed analysis of the exper-
iments conducted to evaluate the proposed methodology, the
parameters used in the model, the evaluation metrics, and the
experimental setup. Finally, we report and discuss the results,
highlighting key findings and their implications.

A. Dataset

Experimental analysis has been conducted using the pub-
licly available dataset presented in [12]. It includes record-
ings from 36 patients with Alzheimer’s disease, 23 patients
with frontotemporal dementia, and 29 healthy age-matched
controls. The EEG data were acquired using a clinical sys-
tem with 19 scalp electrodes while participants were in a

resting state with their eyes closed. Signals were recorded
using a monopolar montage, and the dataset includes both
raw and preprocessed EEG in the standard BIDS format.
For preprocessing, artifact subspace reconstruction and inde-
pendent component analysis were employed to ensure high-
quality, denoised signals. Additionally, the dataset provides
each subject’s Mini-Mental State Examination (MMSE) score.
Each recording lasted approximately 13.5 minutes for the AD
group (mean = 5.1, max = 21.3), 12 minutes for the FTD
group (mean = 7.9, max = 16.9), and 13.8 minutes for the
cognitively normal (CN) group (mean = 12.5, max = 16.5).
In total, the dataset includes 485.5 minutes of AD recordings,
276.5 minutes of FTD recordings, and 402 minutes of CN
recordings. In this study, we used all three groups—control
subjects, patients with Alzheimer’s disease, and those with
frontotemporal dementia.

To ensure independence from the preprocessing phase,
the analysis used the preprocessed data provided within the
dataset.

B. Model configuration

The model architecture (cfr. Figure 1) is composed of three
sequential blocks, each consisting of four distinct components
arranged in the following order: a dropout layer, an Edge-
FeatureGCNConv layer, a batch normalization layer, and a
ReLU activation function. At the input stage, the node feature
vector has an initial dimensionality of Fj,4e = 7, while the
edge feature vector starts with a dimensionality of Figee = 20.
As the data propagates through the network, the node feature
vector undergoes transformations across hidden layers, with
dimensions set to 32, 64, and 16, respectively. To promote
generalization and reduce the risk of overfitting, a dropout
layer with a probability of 0.5 is applied at the start of each
block. Before producing the final output, the network applies
both global max pooling and global mean pooling to aggregate
information across all nodes. These pooled representations
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Fig. 5. Lagged unconditional dependencies for a representative subset of two
electrodes (F7 and P3). The full analysis, which includes all 19 electrodes,
was used to determine the optimal maximal time lag Tmax = 4.

are concatenated, resulting in a combined feature vector with
a dimensionality of 2 X Fpiggen, Where Fpiggen = 16 is the
dimensionality of the last hidden layer. This concatenated
representation is then passed through a final linear classifier,
which outputs a vector of size Foy = 2.

The model was trained over a total of 500 epochs to
ensure sufficient convergence. During training, a batch size
of 512 was used to balance between memory efficiency and
the stability of the optimization process. The Adam optimizer
was selected with a learning rate of Ir = 0.0001. Additionally,
a weight decay of 1 x 107 was applied to regularize the
model and prevent overfitting by penalizing large weights.
These hyperparameter choices were made based on a series of
preliminary experiments, the details of which are not included
here as they did not significantly alter the outcome and were
deemed unnecessary for the scope of this work.

C. Hyperparameters Tuning and Ablation Studies

The performance of the PCMCI algorithm in recovering
directed causal relationships depends on several key hyper-
parameters. To optimize the method and ensure robust and
interpretable results, we focused on the maximum time lag
Tmax and the significance level a of the PC algorithm.

In order to determine the appropriate value for the 7yax
parameter in the causal discovery algorithm, we visualized
the lagged conditional dependencies (i.e.lagged correlations)
from the ParCorr conditional independence test. This approach
allows to gain insights into the temporal relationships within
the data. Figure 5 reports the lagged dependencies for a subset
of 2 electrodes, as a representative example. The analysis of
the full set of 19 electrodes revealed an optimal value of
Tmax = 4 as the conditional dependencies at lags greater than
4 were mostly zero or negligibly small, thus allowing us to
ignore eventual causal relationships above such lag.

For what concerns the « parameter, setting the signifi-
cance level of the PCMCI’s conditional independence tests,
we conducted an ablation analysis to assess its impact on

the resulting causal graph and the downstream classification
performance. By default, the PCMCI algorithm automatically
evaluates a predefined set of candidate values for o and selects
the one that best fits the input time series data. Alternatively,
it is possible to specify a specific value for a to enforce
consistency across analyses. To evaluate the implications of
this choice, we compared the performance of the PCMCI
algorithm when using its adaptive selection mechanism versus
fixed values of « in the AD vs CN classification task. For a fair
comparison, the fixed values considered in the ablation study
matched the candidate values used by the algorithm during
its adaptive selection process. The results of such analysis
showed that the overall best performances are achieved when
the significance level a is set to either 0.05, 0.1, or 0.5,
with such vaues all delivering similar performances. Among
these, = 0.05 is selected in order to maintain a stricter
threshold for conditional independence tests, thereby reducing
the likelihood of including spurious connections in the causal
graph.

D. Results

To assess the performance of our framework, we em-
ployed Leave-One-Subject-Out Cross Validation (LOSO) to
thoroughly evaluate the model’s ability to generalize to unseen
subjects. In LOSO, each subject in the dataset is treated as
an independent entity, and the model is trained on data from
all other subjects, leaving the data from the selected subject
out for testing. Since each subject is associated with multiple
epochs (data segments), this approach ensures that the model
is tested on all available epochs for that specific subject,
providing a more comprehensive evaluation of its ability to
generalize to unseen individuals. Binary classification tasks
were performed comparing AD vs. CN, FTD vs. CN, and AD
vs. FTD. To evaluate our framework, we employed standard
metrics such as Accuracy, ROC-AUC and F1 score. The
metrics were computed at both an epoch-level - i.e. by treating
each epoch as a separate instance - and subject-level - i.e. the
predicted label is set as the most frequent prediction across all
the epochs composing a subject.

To assess the specific contribution of the proposed approach,
we trained two different instances of ECoGNet: one that relies
on the recovered ECN (cfr. Section IV-B) and one that encodes
mere correlational information (functional connectivity, FCN).
Specifically, in the vein of [24], we devised an instance of
ECoGNet which retained the same connections and node
features as defined by the ECN causal graph, but replaced
the edge weights with either Pearson correlation or Mutual
Information values computed from the electrode pairs. In
addition to this, we also benchmarked our model against two
standard classifiers not implementing any network connectivity
strategy: Support Vector Machine (SVM) and Decision Tree.
For these models, the features from all nodes are concatenated
into a single vector of size 133, representing the combined
information from each node.

The detailed results are summarized in Table I, which pro-
vides a comprehensive overview of the model’s performance



TABLE I
COMPARISON OF METHODS USING ECNs, FCNS, OR NO STRUCTURAL CONNECTIVITY. RESULTS ARE REPORTED AT THE SUBJECT-LEVEL AND
EPOCH-LEVEL ACROSS DIFFERENT METRICS: ACCURACY (ACC), AREA UNDER THE CURVE (AUC) AND F1-SCORE (F1). BEST RESULTS ARE IN BOLD,

SECOND-BEST ARE UNDERLINED.

Methods CN vs. AD | CN vs. FTD | AD vs. FTD
Subject Epoch | Subject Epoch | Subject Epoch
ACC AUC Fl ACC AUC Fl1 ‘ACC AUC Fl1 ACC AUC Fl ‘ACC AUC Fl ACC AUC Fi1

ECN-based

ParCorr 83.08 86.57 85.24 70.16 77.55 70.62|71.15 72.21 67.12 66.03 69.14 65.75|67.80 65.21 58.20 60.86 52.90 39.16
r-ParCorr 75.38 75.81 71.20 67.41 71.69 67.07|76.92 74.44 71.11 64.23 68.07 64.10|64.41 57.49 44.44 59.08 54.80 44.13
FCN-based

Pearson Corr. 73.85 73.04 69.09 68.47 73.20 62.29|63.46 64.47 59.37 62.26 61.40 58.89(59.32 49.94 35.56 56.76 51.19 37.40
Mutual Info. 73.85 73.04 69.09 68.72 72.69 62.40|73.85 62.29 55.81 57.71 6191 53.53|57.63 52.90 40.91 53.64 45.67 21.92
No Structure

SVM 76.92 84.24 82.35 70.55 68.41 68.1861.53 59.30 50 57.32 55.73 55.50(59.32 42.39 54.47 42.03 51.25 36.71
Decision Tree 76.92 81.37 81.08 64.35 63.97 63.96|63.43 76.61 65.12 61.96 60.99 61.03|61.01 57.07 52.09 46.17 48.75 46.05

across all evaluation criteria.

VI. DISCUSSION AND CONCLUSIONS

In this study, we present a novel approach for Alzheimer’s
disease (AD) and Frontotemporal Dementia (FTD) detection
that leverages state-of-the-art causal discovery techniques to
estimate effective connectivity networks (ECNs) from EEG
data and integrates them with well established EEG fea-
tures, capturing local brain dynamics. Such information is
processed by a novel graph neural network architecture,
namely ECoGNet. The results demonstrate that ECNs, which
capture the direction of information flow between brain re-
gions, provide a richer and more nuanced representation of
brain dynamics compared to functional connectivity networks
(FCNs). By jointly modeling both local brain activity and
causal interactions, our method achieves superior performance
in distinguishing AD and FTD patients from healthy controls.

Qualitative results show how the adopted features rep-
resentation (cfr. Figure 2 and Figure 3) and, notably, the
recovered causal structure of the brain (see Figure 4) offer
great discrimination potential between healthy controls and
patients affected by either AD or FTD. Actual classification
results, summarized in Table I, showcase the effectiveness
of different approaches based on ECNs, FCNs, and methods
that do not incorporate structural information across different
metrics. A clear trend emerges: our approach (ECoGNet) when
ingesting ECNs estimated with PCMCI (using either ParCorr
or r-ParCorr as conditional independence tests), consistently
achieves the highest performance across all three classification
tasks (CN vs. AD, CN vs. FTD, and AD vs. FTD). This
highlights the crucial role of capturing causal information flow
between brain regions in distinguishing these groups.

In contrast, when relying on functional connectivity (FCN-
based) estimated via either Pearson Correlation or Mutual
Information, ECoGNet demonstrates moderate performance,
generally falling short of ECN-based approaches. While FCN
captures statistical dependencies between brain regions, it
proves to be less effective in this context.

Interestingly enough, the methods assuming no structural
dependence between brain areas, but relying solely on fea-
tures summarizing local brain dynamics, (SVM and Decision
Tree classifiers), exhibit the lowest performance overall. This
underscores the importance of connectivity-based features for
successful classification. Simply relying on statistical features
without considering the underlying network structure of the
brain significantly diminishes the ability to differentiate be-
tween healthy controls and either AD or FTD.

In summary, our findings highlight the limitations of ap-
proaches that ignore causality or rely solely on statistical
dependencies between brain regions. While FCN-based and
feature-only baselines offer some predictive capacity, their
inability to represent directional information significantly re-
duces their diagnostic performance for AD and FTD.

Future work could extend this approach to other imaging
modalities, assess its robustness across diverse datasets, and
explore its potential for tracking disease progression or pre-
dicting treatment responses. Moreover, some PCMCI assump-
tions for brain causal structure discovery may eventually be
relaxed by some of its extensions (e.g., [41]) at the expense
of significantly higher computational requirements.
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