
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL FOURIER MODELLING: A HIGHLY COMPACT
APPROACH TO TIME-SERIES ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural time-series analysis has traditionally focused on modeling data in the time
domain, often with some approaches incorporating equivalent Fourier domain
representations as auxiliary spectral features. In this work, we shift the main focus
to frequency representations, modeling time-series data fully and directly in the
Fourier domain. We introduce Neural Fourier Modelling (NFM), a compact yet
powerful solution for time-series analysis. NFM is grounded in two key properties
of the Fourier transform (FT): (i) the ability to model finite-length time series as
functions in the Fourier domain, treating them as continuous-time elements in
function space, and (ii) the capacity for data manipulation (such as resampling and
timespan extension) within the Fourier domain. We reinterpret Fourier-domain
data manipulation as frequency extrapolation and interpolation, incorporating
this as a core learning mechanism in NFM, applicable across various tasks. To
support flexible frequency extension with spectral priors and effective modulation of
frequency representations, we propose two learning modules: Learnable Frequency
Tokens (LFT) and Implicit Neural Fourier Filters (INFF). These modules enable
compact and expressive modeling in the Fourier domain. Extensive experiments
demonstrate that NFM achieves state-of-the-art performance on a wide range of
tasks (forecasting, anomaly detection, and classification), including challenging
time-series scenarios with previously unseen sampling rates at test time. Moreover,
NFM is highly compact, requiring fewer than 40K parameters in each task, with
time-series lengths ranging from 100 to 16K.

1 INTRODUCTION

Resampling
𝑢𝑝𝑑𝑜𝑤𝑛

𝑡 = 1

𝑡 = 1

𝑡 = 1 𝑡 = 2

𝑫𝑭𝑻

𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(𝑝𝑎𝑑𝑑𝑖𝑛𝑔/𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑛𝑔)

𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔)

Extending timespan

Figure 1: Illustration of Fourier-domain manip-
ulations (left), including zero-padding/truncation
(top) and zero-interleaving (bottom), and equiva-
lent effects in the time domain (right).

Time series analysis is valuable in understand-
ing the dynamics of systems and phenomena
that evolve over time, and to address practical
problems in a range of domains. With rapidly
increasing computational resources and data
available for learning, neural-based modelling
approaches (Vaswani et al., 2017; Oord et al.,
2016) have recently gained vast popularity in the
discipline. A number of sophisticated method-
ologies and models have been developed, greatly
advancing performance on a variety of time-
series tasks such as forecasting (Nie et al., 2022;
Wu et al., 2021), classification (Zhang et al.,
2022; Raghu et al., 2023), anomaly detection
(Xu et al., 2021a; Chen et al., 2022a). Behind
this success, a remaining central question in time
series modelling is how to capture meaningful
information relevant to tasks from temporal pat-
terns and generalize the dependencies ingrained
within time-evolving data that are inherently diverse and intricate. To answer the question and thus
progress the discipline further, in this work we study frequency representations, giving rise to a
powerful time-series modelling scheme, Neural Fourier Modelling (NFM).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Given its well-known prevalence in the field of conventional signal processing, the adoption of
frequency domain analysis to neural-based modelling is, unsurprisingly, not a unique idea in itself.
There have been a number of research efforts across multiple areas from time-series analysis to
computer vision (CV). Spectral representations are often harnessed as an alternative (Trabelsi et al.,
2018; Choi et al., 2019) or as a complement (Yang & Hong, 2022; Woo et al., 2022) to time- or spatial-
domain representations to capture information in a more compact and overarching form. Moreover,
several recent studies have extended its applications to an efficient form of global convolution (Huang
et al., 2023; Lee-Thorp et al., 2021; Lin et al., 2023; Alaa et al., 2020; Yi et al., 2024a) and a
means of data augmentation (Xie et al., 2022; Xu et al., 2021b; Zhou et al., 2022b) for facilitating
invariances conducive to generalization in learning. While the existing works have successfully
utilized the frequency representation, it still remains under-explored with the lack of study on
frequency interpolation and extrapolation as a direct means of modelling data fully in the Fourier
domain. More specifically, our work is motivated by two aspects of frequency representations. (i)
Simply learning directly in the Fourier domain enables finding a function-to-function mapping - an
inductive bias towards learning resolution-invariance property. (ii) Fourier-domain manipulation and
a fundamental connection to its time-domain counterparts can provide a general means of learning in
the Fourier domain.

Fourier-domain Manipulation. As shown in Figure 1, there are two ways to manipulate time
series in the Fourier domain – 1) padding/truncating and 2) interleaving the original Frequency
representation with zero coefficients, each of which resulting in resampling and extending the original
time-domain representation, respectively. Taking this into a view where a resultant time-domain
representation caused by the frequency manipulation to a given input sequence is a desired target,
we can naturally reformulate the manipulation with zero frequency coefficients into a constructive
process of learning meaningful coefficients towards the target - i.e., frequency extrapolation and
interpolation. Notably, this view provides a comprehensive learning framework requiring no archi-
tectural modification to models. For example, time series can be readily modelled for forecasting
task from the frequency interpolation. Moreover, context learning (e.g., classification and regression)
or representation learning can be made through the frequency extrapolation or directly imposing
reconstruction practice with an auxiliary modelling scheme such as Fourier-domain (Xie et al., 2022;
Zhang et al., 2022) masking.

Adopting the above insight as a core learning mechanism, we frame time series modelling into finding
an interpolation or extrapolation solution between input and target directly in the Fourier domain
and propose NFM. To achieve this, we introduce two main learning modules that operate directly
in the Fourier domain and equip NFM with them. (i) A complex-valued learnable frequency token
(LFT) is proposed to capture effective spectral priors and enable flexible frequency extension for
the frequency interpolation and extrapolation. (ii) Implicit neural Fourier filter (INFF) as a principal
processing operator is designed to realize an expressive continuous global convolution for learning
the interpolation or extrapolation in the Fourier domain. We apply NFM to various datasets and
distinct tasks of scenarios with both normal (constant) and unseen discretization rate, and show that
NFM achieves state-of-the-art performance in a remarkably compact form - forecasting with 27K,
anomaly detection with 6.6K, and classification with 37K parameters.

2 RELATED WORK

Frequency representations for time series modelling. There has been a growing attention for
processing time series and learning temporal dynamics of it with Fourier-domain information and/or
through Fourier-domain operations in neural-based time series modelling methods. Autoformer
(Wu et al., 2021), FEDformer (Zhou et al., 2022b), and FourierGNN (Yi et al., 2024a) adopt a
frequency-based mixing mechanism as a main operator for learning temporal dependencies, where
the computation efficiency is ensured by operating in the Fourier domain with the Fast Fourier
Transform (FFT) algorithm. FiLM (Zhou et al., 2022a), BTSF (Yang & Hong, 2022), and TimesNet
(Wu et al., 2022) leverage frequency representations in conjunction with time-domain representation
to have a better realization of long-term dependency and global patterns (low frequency components).
COST (Woo et al., 2021) and Autoformer exploit the Fourier domain as an explicit inductive bias,
utilizing it not only for efficient computation but for decomposing periodic patterns from complex time
series. TF-C (Zhang et al., 2022) enhances transferability of representations by integrating spectral

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑥[𝑛]

𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒕𝒊𝒎𝒆 𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏
(𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒆𝒙𝒕𝒓𝒂𝒑𝒐𝒍𝒂𝒕𝒊𝒐𝒏)

𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒕𝒊𝒎𝒆𝒔𝒑𝒂𝒏
(𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒊𝒐𝒏)

𝑦[𝑛]

𝑧[𝑛]

𝒎𝒕 > 𝟏

𝒎𝒇 > 𝟏

 = T𝑦

 = 0

 = 0

 = T𝑥

Figure 2: Overall workflow (forecasting scenario is exemplified) of the proposed NFM which deals
with discrete signals as continuous-time elements in the compact function space through Fourier lens.
NFM finds an interpolation/extrapolation from discrete input to target directly in the Fourier domain.

representations and introducing Fourier-domain augmentation in contrastive learning framework.
The current utilization is capitalized on enabling efficient computation over long sequences and
complementing the point-wise time-domain representations with the overarching representations.
Differing from these works, Yi et al. (2024b) designs FreTS fully with Fourier operators and models
time series fully in the Fourier domain for forecasting task. Our work follows in a similar vein
to FreTS in the sense that we model time series directly in the Fourier domain and fully leverage
on learning with the samples of functional representations of discrete signals, but with the distinct
difference in the used core learning mechanism, frequency extrapolation/interpolation.

FITS. More recently, Frequency Interpolation Time Series analysis baseline (FITS) (Xu et al.,
2023), a remarkably lightweight frequency-domain linear model, is introduced to address time-series
problems. While NFM is designed leveraging the analogous principle (frequency interpolation and
extrapolation) as FITS, there are several improvements essential for practicality - see details in
Appendix A. In short, NFM is a generalization of FITS, that can 1) model both multivariate and
univariate time series, 2) readily scale up, 3) be adaptive to variable-length inputs/outputs, and 4) be
as compact as FITS and even surpass FITS’s compactness while yielding better performance.

3 NEURAL FOURIER MODELLING

In this section, we provide an overview of NFM (Section 3.1) and introduce two main learning
modules, Learnable Frequency Tokens (LFT) (Section 3.2) and Implicit Neural Fourier Filter (INFF)
(Section 3.3). To begin, we first provide notations and necessary preliminaries below.

Notations. Considering a c-channel signal x ∈ (D,Rc) and a target function y ∈ (D,Rdy) defined
on some temporal domain D ⊂ R, let Di = (xi, yi) ⊂ D be a ith pair of input signal and target
in domain D. We denote IO = {0, ..., O − 1} a set of indices for integer O ≥ 1 and define
x[n ∈ IN]|Di

= x(n/fx)|Di
as a time series with N -point discretization at rate fx over the timespan

[0, Tx), i.e., N := Txfx. The target y can be in any form, depending on tasks (see Appendix E), and
its information spanning on its L-point latent representation z[n ∈ IL]|Di over an output timespan
[0, Ty(≥ Tx)) at sampling rate fy, where L(≥ N) := Tyfy. For notational simplicity, we drop |Di

and set Tx to a unit timespan and subsequently the input sampling rate fx = N .

Preliminary: Relationship between input and output discretization. In our framework, it is
important to pay an attention to the relationship between the input and output discretization N and
L as it removes ambiguities in formulating time series problems. For example, a task with L ̸= N

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

would require modelling time series either across timespan or about the same timespan but at different
discretization rate. To explicitly consider it, we denote an interpolation factor mτ := Ty/Tx and an
extrapolation factor mf := fy/fx and relate N and L with respect to these factors as follows:

L

N
=

Tyfy
Txfx

= mτmf (1)

mτ and mf can be understood as the input-and-output ratio with respect to timespan and discretization
rate in modelling, respectively. NFM is designed to effortlessly switching its forward processing
between frequency interpolation when mτ > 1 and frequency extrapolation when mf > 1 with
adoption of LFT in Section 3.2, which allows an easy specialization of NFM to various time series
tasks.

Preliminary: Discrete Fourier Transform (DFT). DFT is a computational tool widely used to
convert data in physical domain (e.g., time and spatial) to spectral representations. Given the finite-
length sequence x[n ∈ IN], the DFT and its inverse (IDFT) for recovery to the original sequence,
F(·) and F−1(·), are defined as follows:

X[k] = F(x) :=

N−1∑
n=0

x[n]e−j2πkn/N (2)

x[n] = F−1(X) :=
1

N

N−1∑
k=0

X[k]ej2πkn/N (3)

where k ∈ IN , and the capital letter X is a complex spectral representation of its time-domain variable
x. Importantly, each k frequency component represents the entirety of the sequence x summarized
at different oscillation. The convolution theorem, in conjunction with the IDFT, leverages this
characteristic of the FT and provides an efficient way for performing convolution operations through
point-wise multiplication in Fourier domain (Rabiner & Gold, 1975; McGillem & Cooper, 1991).
We adopt this insight in NFM and introduce a new type of neural Fourier filters (NFFs) playing as a
continuous global token mixer that is both expressive and adaptive yet lightweight in Section 3.3.
Besides, for computation, we utilize an efficient algorithm of DFT, fast Fourier transform (FFT)
that offers O(N logN) complexity at optimum, as well as its conjugate symmetry property (i.e.,
X[N −k] = X∗[k ∈ IKN

]). KN := ⌊N/2⌋+1 is the number of the first half frequency components
of sequence length N .

3.1 OVERVIEW OF NFM

Linear frequency interpolation and extrapolation. We begin with rewriting IDFT in Eq.(3) for
the desired output of a model, z, as follows:

z[n ∈ IL] =
1

L

L−1∑
k=0

Z[k]ei2πkn/L (4)

One straightforward way to express Eq.(4) with respect to the given input sequence x[n ∈ IN] would
be by taking a linear system to the spectral representation such that Z[k] = mτmf (WF(x[n]) + b),
where W ∈ CKL×KN and b ∈ CKL are weights and bias term, respectively. Directly designing
y = z = F−1(mτmf (WF(x) + b)) with adoption of a heuristic low-pass filter to further reduce
the dimensionality of W and b yields exactly FITS. FITS greatly appreciates the simplicity and
lightweight-ness of the linear system and presents a solution to low-resources tasks like edge comput-
ing. Nevertheless, it lacks in several aspects as a general solution to a range of time series analysis
(refer to Appendix A).

NFM. We aim to build a general-purpose time series model as a composition y = P ◦ M(x),
that learns mapping between infinite-dimensional spaces of input signal and target function directly
in the Fourier domain, given discrete observations D. Especially, we introduce NFM for encoder
M : RN×c → RL×d that acts globally on the input signal x and seeks the mapping as a frequency
interpolation/extrapolation to z = M(x). The target y = P(z) is evaluated from the latent represen-
tation z through a predictor (e.g., a local-to-local transformation P : Rd → Rdy and a global-to-local

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

INFF

Global

Convolution

𝑳
𝒂

𝒚
𝒆

𝒓
𝑵

𝒐
𝒓

𝒎

𝑳𝑭𝑻
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

𝑷
𝒓

𝒐
𝒆

𝒋𝒄
𝒕𝒊

𝒐
𝒏

ℝ
𝒄

⟶
ℝ

𝒅 𝑀𝐿𝑃
𝐶ℎ𝑎𝑛𝑛𝑒𝑙

𝑀𝑖𝑥𝑒𝑟

𝑀𝑖𝑥𝑒𝑟 𝑏𝑙𝑐𝑜𝑘

𝑳
𝒂

𝒚
𝒆

𝒓
𝑵

𝒐
𝒓

𝒎

ℂ
𝑲

𝑳
×

𝒅

 𝒏
=

𝟎
:𝑳

−
𝟏

𝑫
𝑭

𝑻

ℂ𝑲𝑵×𝒅ℝ𝑵×𝒅

𝐌

1

-1
𝑫

𝑭
𝑻

ℂ𝑲𝑳×𝒅

𝝓𝑳𝑭𝑻

 𝒏
=

𝟎
:𝑳

−
𝟏

1

-1

𝑫
𝑭

𝑻

ℂ𝑲𝑳×𝒅

𝒊𝑫
𝑭

𝑻

𝑫
𝑭

𝑻
 𝒊𝑫𝑭𝑻

ℂ𝑲𝑳×𝒅

…

𝑷
𝒓

𝒆
𝒅

𝒊𝒄
𝒕𝒐

𝒓

𝑯𝒂𝒅𝒂𝒎𝒂𝒓𝒅
𝒑𝒓𝒐𝒅𝒖𝒄𝒕

ℝ𝑳×𝒅 ℝ𝑲𝑳×𝒅

ℝ𝑳×𝒅

𝑧0ҧ𝑥𝑥
𝑦

𝑧𝑙

𝑰𝒏
𝒔

𝒕𝒂
𝒏

𝒄
𝒆

𝑵
𝒐

𝒓
𝒎

× 𝒍

𝑧0𝝓𝑰𝑵𝑭𝑭

𝑪
𝑽

 𝑳
𝒊𝒏

𝒆
𝒂

𝒓

𝑵
𝒐

𝒏
𝒍𝒊

𝒏
𝒆

𝒂
𝒓

𝑪
𝑽

 𝑳
𝒊𝒏

𝒆
𝒂

𝒓

𝑰𝒏
𝒔

𝒕𝒂
𝒏

𝒄
𝒆

𝑵
𝒐

𝒓
𝒎

𝑀
𝐿

𝑃
 𝑀

𝑖𝑥
𝑒𝑟

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

Figure 3: Illustration of NFM architecture consisting of three main learning modules: 1) LFT block to
allow flexible frequency extension and provides effective spectral priors, 2) a plain MLP for channel
mixing, and 3) INFF module for effective token mixing with global convolution operation. The M in
LFT block denotes frequency extension operation.

RL×d → Rdy). As depicted in Figure 2 and Figure 3, the overall workflow of NFM is described
in two steps. Given input sequences projected to hidden dimension x̄ ∈ RN×d (see Appendix D),
(i) it is first tailored to temporal embedding z0 ∈ RL×d = F−1(Z0) = LFT(x̄), in that its spectral
embedding Z0 ∈ CKL×d explicitly accounts for an extension of the original sequence with respect
to mτ and mf . (ii) Then, the low-level embedding tokens z0 are polished iteratively through a
stack of l mixing blocks consisting of a channel-mixing module and global convolution, INFF, as in
zi = Mixer(zi−1) for i = {1, ..., l}. In the following sections, we detail out the two main modules,
LFT and INFF.

3.2 LEARNABLE FREQUENCY TOKENS

In our framework, we decouple the process of extending the spectral representations of original
sequence to that of target domain (i.e., N → L and KN → KL), from learning the abstract
coefficients of Fourier interpolation/extrapolation. We denote such extended spectral representation
with absence of the weighting coefficients Z̄0 ∈ CKL×d, and it is obtained by simply initializing
the Z̄0 with zeros and rearranging X̄ = F(x̄) onto it with scaling for the extension such that
Z̄0[⌊mtk⌋] = mτmf X̄[k] for all k ∈ IKN

, where ⌊·⌋ is floor operation.

The result from the above extension is equivalent to the ones from applying zero-padding and/or
zero-interleaving to X̄ . The operation itself is non-parametric and allows handling variable-length
input sequence. However, directly adopting Z̄0 is not effective for learning since extending spectral
representations with zero coefficients itself does not bring in any information gain. One natural
solution to this is introducing extra embeddings that are learned to encapsulate certain abstraction
and priors in data during optimization. Indeed, it has become a canonical practice, especially in many
Transformer models (Devlin et al., 2018; Chen et al., 2022b; 2023; Wang & Chen, 2020), to enrich
the models’ learning capability and performance.

Inspired by this, we introduce LFT that can be learned without a-priori and applied directly in
the complex Fourier domain as expressive spectral priors across sequences. Especially, we design
the LFT by representing the desired spectral priors as a composition of F and an implicit neural
representation (INR) (Sitzmann et al., 2019b; Chen et al., 2021) ϕ : R → Rd that maps a temporal
location τ ∈ [0, Ty) to abstract temporal priors v corresponding to that time location. Notably, the
LFT can be characterized as samples from continuous-time Fourier transform (CTFT) of the temporal
priors, allowing sampling of the frequency tokens within bandwidth from any arbitrary temporal
locations without a need of re-training. We first obtain the learnable frequency tokens V [k] ∈ Cd by
sampling v[n] = ϕ(τn) at temporal locations τn = {n/fy|n ∈ IL} and add it to Z̄0 to get Z0. This

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

entire process of the LFT block is completed as follows:

V [k ∈ IKL
] = F(InstanceNorm(ϕ(τn))),

Z0[k] = (Z̄0[k] + V [k]),

z0[n] = F−1(Z0[k])

(5)

We apply an instance normalization before applying DFT to v[n] to the LFT block as shown in Figure
3. This removes DC priors of each channel and a source of internal covariate shift, thereby helping
the LFT effectively learn the priors over spectrum - we find in the experiment that the energy of
the spectral priors without it is often largely concentrated in DC component, preventing effective
learning. The ϕ is expressed by MLP with a periodic activation function (Sitzmann et al., 2020) - see
Appendix D.

3.3 IMPLICIT NEURAL FOURIER FILTER

Neural Fourier filters. Upon convolution theorem and FT, a convolution kernel can be directly
defined in the Fourier domain with arbitrary resolution and its size being as large as the length
of inputs. This, then, gives rise to a way for instantiating an efficient global convolution operator
K : (D,Rd) → (D,Rd) as follows (Guibas et al., 2021; Li et al., 2020):

K(z)(τ) =

∫
D
κ(τ − s)z(s) ds, ∀τ ∈ D (6)

K(z)(τ) = F−1(R · F(z))(τ), ∀τ ∈ D (7)

where Eq.(6) and Eq.(7) express convolution operator on physical space of the signals and its
equivalent form with convolution theorem and the FT applied, respectively. R ≡ F(κ) is a Fourier
filter defined directly in the Fourier domain and parameterized by a neural network. While a shallow
fully-connected network is generally sufficient to parameterize R, much design concerns are put in
how to achieve properties of NFFs that are desirable for modelling. We summarize them and compare
the existing NFFs from the designing perspective in Appendix B. In short, it is highly desirable
to have a NFF that is memory-efficient, length-independent (i.e., flexible), instance-adaptive, and
mode-adaptive (i.e., expressive and generalized across spectrum). We design INFF that satisfy these
properties below.

INFF. INFF is formulated for modulating the embedding tokens z globally in the Fourier domain
to ẑ through a Fourier filter, R[k] ∈ Cd, as follows:

ẑ = F−1(R(z0)⊙F(z)) (8)

where ⊙ denotes Hadamard product. The computation of R is conditioned on the initial spectral
embedding Z0, for which a reason will be clarified later. Here, the use of an INR for encapsulating
abstract spectral priors in Section 3.2 is extended to define R with implicit filter coefficients.

R(z0) := W(F(InstanceNorm(ϕ(τn) + z0))) (9)

Recalling that F(ϕ(τn)) implicitly models CTFT, in this formulation the Fourier filter has filter
coefficients defined uniquely for each period in spectrum, but with a single parameterization. That is,
the designed Fourier filter is in a compact form and can readily handle variable-length sequence with
unique frequency coefficients (i.e., mode-adaptive). Unfortunately, the INFF with the filter solely
defined by the F(ϕ(τn) would lack expressivity due to the reliance on depth-wise convolution (i.e.,
no channel mixing) and struggle to generalize across different instances. We further improve the filter
on both factors by aggregating its temporal coefficients with the initial temporal embedding tokens
z0 and processing them through a complex-valued MLP, W : Cd → Cd. Note that we use ReLU
for non-linearity and have no bottleneck or expansion factor for the intermediate dimension. With
this, each feature of the updated kth filter coefficient now represents a mixture of all features of kth
implicit filter coefficient and all features of the kth spectral representation of the input embedding.

Finally, INFF is put together with a plain channel-mixing block and Layer Normalization to form a
complete Mixer block. We configure the components as pre-channel-mixing and post-normalization
with a skip connection in each Mixer block and stack multiple Mixer blocks followed by a final
channel-mixing block to constitute a NFM backbone network M(·) as shown in Figure 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Long-term forecasting results averaged over 4 horizons. The best averaged results are in
bold and the second best are underlined. Full result is available in Appendix E.

Model NFM FITS N-Linear iTransformer PatchTST TimesNet
(params) (27K) (∼0.2M) (∼0.5M) (∼5.3M) (∼8.7M) (∼0.3B)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.345 0.375 0.357 0.380 0.366 0.383 0.371 0.401 0.353 0.382 0.400 0.406
ETTm2 0.250 0.311 0.250 0.313 0.258 0.315 0.276 0.337 0.256 0.317 0.291 0.333
ETTh1 0.407 0.420 0.407 0.420 0.413 0.422 0.503 0.491 0.413 0.434 0.458 0.450
ETTh2 0.356 0.400 0.334 0.382 0.343 0.389 0.405 0.430 0.331 0.381 0.414 0.427
Weather 0.227 0.269 0.241 0.280 0.254 0.288 0.255 0.289 0.227 0.264 0.259 0.287

Electricity 0.159 0.251 0.163 0.254 0.169 0.262 0.163 0.259 0.159 0.253 0.193 0.298
Traffic 0.391 0.260 0.411 0.280 0.433 0.290 0.376 0.270 0.391 0.264 0.620 0.336

4 EXPERIMENTS

We conduct extensive experiments to demonstrate the effectiveness of NFM and its competence as a
general solution to time series modelling. Note that we provide only a brief description about the
setting for each experiment below, but one can find all details in the supplementary section (Appendix
C∼E). Our code is publicly available at: https://github.com/minkiml/NFM.

Implementation. A general-purpose time-series model allows one to address a range of tasks as
well as various time series modalities without significant architectural modifications (i.e., no injection
of task-specific inductive bias). To this end, we implement a single NFM backbone M(·) and use
it for all tasks (only differ by some hyper-parameters such as hidden size and the number of mixer
blocks) by equipping it with a task-specific linear predictor P(·) (simply a fully-connected layer).
For all experiments, we use a single NVIDIA A100 GPU.

4.1 TIME SERIES MODELLING

We begin with showcasing the efficacy of NFM in three distinct time-series tasks, including long-term
forecasting, anomaly detection, and classification under their conventional scenario (f train

x = f test
x).

We follow the experimental setups: forecasting (Zhou et al., 2021), anomaly detection (Xu et al.,
2021a), and classification (Romero et al., 2021). Refer to Appendix D for details.

Long-term forecasting. Long-term times-series forecasting task (mf = 1 and mτ > 1) is con-
ducted on 7 benchmark datasets over 4 horizons (96, 192, 336, and 720). In Table 1, The averaged
results of NFM on MSE and MAE metrics are compared with 5 SOTA forecasting models - FITS
(Xu et al., 2023), N-Linear (Zeng et al., 2023), iTransformer (Liu et al., 2023), PatchTST (Nie et al.,
2022), TimesNet (Wu et al., 2022). While the performance of NFM is highly competitive with that of
the dedicated forecasting models with hundreds or millions of trainable parameters, we put an extra
emphasis on its compactness. Especially, the number of parameters that need to be trained in NFM is
only around 27K for all forecasting cases, which sheds light on both low-resource on-device learning
and processing. This result stands out that of the simple linear models like N-Linear and FITS, and
other SOTA by large margin, for which the number of parameters is subject to the length of both
lookback and prediction horizon whereas the number of parameters in NFM is decoupled from the
length of input or target prediction. Please see Appendix E for more analysis about the results.

Anomaly detection. We frame the anomaly detection task as learning correct contexts (dominant
and normal contexts) and evaluating the validity of observations within the contexts. More specifically,
our approach is to learn the correct contexts by reconstructing complete sequences from their down-
sampled counterparts (i.e., mf > 1 and mτ = 1) - refer to Appendix D for detail. For quantitative
evaluation, we employ 4 popular anomaly detection benchmark datasets and compare the performance
with 6 baselines - vanilla Transformer (Vaswani et al., 2017), PatchTST (Nie et al., 2022), TimesNet
(Wu et al., 2022), ADformer (Xu et al., 2021a), N-linear (Zeng et al., 2023), and FITS (Xu et al.,
2023). In Table 2, NFM shows effectiveness in anomaly detection task, presenting top-tier results in
three datasets (SMD, MSL, and PSM) and third-tier result in SMAP. This result in NFM is achieved
with a compact model size of only around 6.6K parameters, which follows that of FITS (1.3K) and
stands out that of the deep feature learning models (TimesNet and ADformer) by considerably large

7

https://github.com/minkiml/NFM

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Anomaly detection results (F1-score)
on 4 datasets, where higher F1-score indicates
better performance. Full tabular result is avail-
able in Appendix E.

Model (params) SMD MSL SMAP PSM

Transformer (0.2M) 75.95 81.93 69.70 88.75
PatchTST (0.2M) 82.11 80.51 69.11 96.00
TimesNet (∼28M) 83.27 81.70 73.23 97.30
ADformer*(4.8M) 76.38 81.78 71.18 83.14
N-Linear (10K) 81.81 81.18 67.50 95.77
FITS (1.3K) 81.67 80.77 64.07 96.60
NFM (6.6K) 84.32 82.46 70.88 97.51

* The joint criterion in ADformer is replaced with the simple
reconstruction error to compute anomaly score for fair comparison.

Table 3: Classification accuracy (%) on Speech-
Command. ∼ denotes inapplicable (pro-
hibitively slow) or computationally not possible
on single GPU.

Model (params)
SpeechCommand

MFCC RAW RAW
(SR=1) (SR=1/2)

ODE-RNN (89K) 65.90 ∼ ∼
GRU-∆t (89K) 20.0 ∼ ∼
GRU-ODE (89K) 44.8 ∼ ∼
NCDE (89K) 88.5 ∼ ∼
NRDE (89K) 89.8 16.49 15.12
S4 (400K) 93.96 96.17 94.11
CKConv (100K) 95.27 71.66 65.96
Transformer (800K) 90.75 ∼ ∼
NFM (37K) 94.23 90.94 90.30

Table 4: Forecasting results (MSE) and performance drops (%) at different sampling rate. Three
models, including PatchTST (Transformer-based), N-Linear (time-domain linear model), and FITS
(frequency-domain linear model) are opted for comparison. The best performance is in blue and the
least performance drop in red. Full tabular results over all horizons can be found in Appendix E.

Model SR ETTm1 ETTm2 Weather

96 720 96 720 96 720

PatchTST 1/4 0.394 (34.5 ↓) 0.433 (4.1 ↓) 0.232 (39.8 ↓) 0.382 (5.5 ↓) 0.212 (42.3 ↓) 0.329 (4.8 ↓)
1/6 0.434 (48.5 ↓) 0.443 (6.5 ↓) 0.265 (59.6 ↓) 0.396 (9.4 ↓) 0.236 (58.4 ↓) 0.335 (6.7 ↓)

N-Linear 1/4 0.436 (42.5 ↓) 0.469 (8.3 ↓) 0.288 (72.5 ↓) 0.409 (11.1 ↓) 0.268 (47.3 ↓) 0.351 (3.8 ↓)
1/6 0.482 (57.5 ↓) 0.471 (8.8 ↓) 0.281 (68.3 ↓) 0.422 (14.7 ↓) 0.280 (53.8 ↓) 0.364 (7.7 ↓)

FITS 1/4 0.348 (12.6 ↓) 0.426 (2.9 ↓) 0.198 (21.5 ↓) 0.356 (2.0 ↓) 0.182 (7.7 ↓) 0.325 (1.2 ↓)
1/6 0.368 (19.1 ↓) 0.437 (5.3 ↓) 0.216 (31.7 ↓) 0.364 (4.3 ↓) 0.195 (14.8 ↓) 0.329 (2.5 ↓)

NFM 1/4 0.299 (4.5 ↓) 0.407 (0.2 ↓) 0.179 (11.9 ↓) 0.356 (2.0 ↓) 0.164 (6.5 ↓) 0.315 (1.0 ↓)
1/6 0.319 (11.5 ↓) 0.414 (2.0 ↓) 0.189 (18.2 ↓) 0.358 (2.6 ↓) 0.173 (12.3 ↓) 0.318 (1.9 ↓)

margin. Note that the remarkably small model size of FITS is highly subject to cases (short length of
input and target while their energy dominantly spans in low frequency regime).

Classification. We evaluate the effectiveness of NFM in time-series classification task (mf = 1
and mτ = 1) using SpeechCommand dataset (Warden, 2018) that provides both MFCC features
(N = 161) and raw waveform (N = 16k). In Table 3, we report the classification accuracy (ACC)
and compare it with that of 8 different baselines (7 continuous-time models and 1 Transformer) - ODE-
RNN (Rubanova et al., 2019), GRU-∆t (Kidger et al., 2020), GRU-ODE (De Brouwer et al., 2019),
NCDE (Kidger et al., 2020), NRDE (Morrill et al., 2021)), S4 (Gu et al., 2021), CKConv (Romero
et al., 2021), and vanilla Transformer (Vaswani et al., 2017). Overall, NFM yields competitive
performance in both cases of processing MFCC features - CKConv (95.27%) vs. NFM (94.23%)
vs. S4 (93.96%), and raw waveform - S4 (96.17%) vs. NFM (90.94%) vs. CKConv (71.66%) with
far smaller model size (37K) among all baselines. The neural ODE-based models are generally in
a compact form with a weight-tying architecture but struggle dealing with long series due to the
need of solving differential equations for a long step. Vanilla transformer suffers from huge memory
occupancy and thus is unable to process the raw waveform in a single GPU setting.

4.2 EVALUATION AT DIFFERENT DISCRETIZATION RATES

In practice, it is highly desirable for a model to have a resolution-invariance property that readily en-
ables generalization of the learned solutions to unseen discretizations without significant performance
lose. To this end, we now reveal this aspect of NFM, which learns function-to-function mappings, by
conducting the classification and forecasting tasks in a scenario where the observations are sampled
at different (unseen) sampling rate during testing time (SR= f test

x /f train
x). The classification result

in Table 3 shows that NFM has the least performance drop, yielding only around 0.7% ↓ degradation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

from the original performance on the input sequences sampled at unseen sampling rate of SR= 1/2,
compared to NRDE (8.31% ↓), CKConv (7.95% ↓), and S4 (2.14% ↓). In the forecasting task, the
similar result is drawn as shown in Table 4, where the performance degradation of NFM in all cases
is considerably lower than that of the 3 baselines. We provide more details on the forecasting results
in Appedix E.

4.3 EXPLORATION OF NFM

INFF INFF-Naive INFF-LFT FNO-LFT AFNO-LFT GFN-LFT AFF-LFT

10 1

100

101

C
os

t V
al

ue
s

(lo
g

sc
al

e)

Params (M)
FLOPs (G)
PMU (GB)
ACC
ACC (SR=0.5)

 79.4 82.6

 90.9

 84.8 84.7
 86.2

 88.4

74.1

78.6

90.4

75.0

82.4

78.0

85.8

Figure 4: Comparison of NFM with different ab-
lation cases on SpeechCommand dataset. PMU is
peak memory usage during inference time.

Effects of LFT and INFF. We examine the ef-
fect of the proposed LFT in NFM (INFF + LFT)
by comparing a NFM with randomly initialized
complex-valued learnable weights as frequency
tokens (namely, Naive) and without frequency
tokens (namely, INFF-only). As shown in Fig-
ure 4, the improvement on performance is re-
markable, reporting 82.6 → 90.9 (10.0% ↑)
and 79.4 → 90.9 (14.5% ↑) compared to
Naive and INFF-only, respectively. In the case
of testing at different input resolution (SR=1/2),
the improvement is more significant, yielding
78.6 → 90.4 (15.0% ↑) and 74.1 → 90.4
(22.0% ↑) respectively. These results from
INFF + LFT are achieved with ∼ 8.6 times
smaller and ∼ 1.16 times larger model size com-
pared to the Naive and INFF-only, which shows
that LFT is conducive to learning spectral priors in a compact form. Furthermore, we compare INFF
with 4 different SOTA NFFs, including FNO (Li et al., 2020), AFNO (Guibas et al., 2021), GFN (Rao
et al., 2021), AFF (Huang et al., 2023). The result in Figure 5 shows the overall performance of INFF
+ LFT surpasses the others + LFT by notable margin. The instance-adaptive NFFs - AFNO (2.7% ↓)
and AFF (2.9% ↓), perform more robustly against different input resolution than the mode-adaptive
ones - FNO (11.6% ↓) and GFN (9.5% ↓). As analysed in Appendix B, INFF which is both instance-
and mode-adaptive further improves the robustness (0.7% ↓). This superiority of INFF comes only at
the cost of a minor complexity and memory usage increase. Besides, it is noteworthy that dealing with
different input resolution is originally not possible in the mode-adaptive ones (FNO and GFN) due to
the fixed-length operation without a heuristic low-pass filter, but becomes possible with the adoption
of LFT in NFM framework. The similar results are obtained on forecasting task (see Appendix E for
it and full tabular results).

Learned INFF coefficients

Output of INFF

Input sequence

Frequency component
200 600 1000200 600 1000

200 600 1000

Frequency component

Frequency component
200 600 1000

Frequency component

M
a
g
n
it
u
d
e

2

6

10

14

M
a
g
n
it
u
d
e

0

2

4

0

2

4

M
a
g
n
it
u
d
e

0

2

8

M
a
g
n
it
u
d
e

4

6

H
id

d
e
n
 D

im
e
n
si

o
n

10

0

20

30

Figure 5: Visualization of INFF on synthetic data.
The top-left figure shows the frequencies of input
sequence, bottom-left the frequencies of filtered
sequence, bottom-right the learned INFF’s coef-
ficients, and top-right the coefficients averaged
over hidden dimension.

Visualization on INFF. We study the be-
haviour of INFF in terms of what representations
it potentially leads to be learned. Specifically,
one would expect to see INFF learning effec-
tive filter coefficients such that INFF amplifies
frequencies of relevant information while sup-
pressing frequencies of irrelevant one. To con-
firm this, we synthesize simple single channel
band-limited (up to Nyquist frequency fnyquist)
signals by composing multiple frequency com-
ponents. During generation, we assign class
labels to them according to certain combina-
tions of the frequency components spanning in
a frequency range [fA, fB(< fnyquist)]. Please
refer to Appendix C for details about the gen-
eration. For experiment, we sample 10 classes
of sequences of length N = 2000 at fx = N
with the class frequencies spanning in the range
[320, 590]. Figure 5 provides a visualization of
the resulting INFF trained on the synthetic data,
where it is clearly shown that finding a correct

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 16 36 80 128 256
Hidden dimension

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
um

. p
ar

am
et

er
s

(M
)

0.0076M 0.012M 0.027M

0.260

0.280

0.300

0.320

0.340

M
SE

FITS (0.016M)

PatchTST (0.548M)

N-Linear (0.069M)

iTransformer (0.304M)

TimesNet (4.712M)Num. params
Depth = 1
Depth = 2
Depth = 3

(a)

8 16 36 80 128 256 512
Hidden dimension

0

1

2

3

4

5

6

7

8

N
um

. p
ar

am
et

er
s

(M
)

0.012M 0.018M 0.037M

80.0

85.0

90.0

95.0

A
C

C
 (%

)

CKConv (0.1M)

S4 (0.4M)

Num. params
Depth = 1
Depth = 2
Depth = 3

(b)

Figure 6: Scaling behavior (performance - the line plots) of NFM with respect to varying hidden
dimension and depth on (a) ETTm1 (forecasting over the horizon of 96) and (b) SC-MFCC (classifi-
cation) datasets. The bar plots represent the number of parameters computed at each set of hidden
dimension and depth. Baseline performances are also included with the dashed horizontal lines for
comparison.

solution comes with INFF learning its filter coefficients aligned with the frequency range [320, 590]
of the class labels (relevant information).

Scaling behaviour and compactness of NFM. We present how scaling over hidden dimension (d)
and depth affects NFM’s performance in Figure 6. While it is clearly seen that increasing the NFM’s
scale consistently leads to improved performance, we observe that NFM rapidly reaches a regime
of competitive performance despite having significantly fewer parameters compared to all baseline
models (as indicated by the dashed horizontal lines). This highlights the compactness of NFM, which
achieves high performance without the need for excessive parameter scaling.

5 CONCLUSION

In this work, we have introduced, NFM, modelling time series directly in Fourier domain by for-
mulating the Fourier-domain data manipulation into Fourier interpolation and extrapolation. NFM
with learnable frequency tokens and implicit neural Fourier filter enjoys the intriguing properties of
the FT in learning, resulting in a remarkable compactness and continuous-time characteristics. Our
experiments demonstrate that NFM can be a powerful general solution to time series analysis across
a range of datasets, tasks, and scenarios and show that it is possible to achieve the state-of-the-art
performance with a remarkably compact model, compared to models with hundreds thousand and
million parameters.

Limitations and Future Work. Despite the fact that NFM models time series in function space
through Fourier lens, the current implementation is not directly suitable for some other dynamic
scenarios such as handling irregular time series. A reason for this is that the FFT for efficient
transformation requires uniformly-sampled sequence thus not applicable while a naive algorithm
with computing a DFT matrix and its pseudo inverse is not only too slow but also memory-intensive
for every long and multivariate but irregular time series. While addressing this challenging scenario
is highly valuable in time series analysis, we are currently improving NFM on this matter.

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pp. 2485–2494, 2021.

Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling with
fourier flows. In International Conference on Learning Representations, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Wenchao Chen, Long Tian, Bo Chen, Liang Dai, Zhibin Duan, and Mingyuan Zhou. Deep varia-
tional graph convolutional recurrent network for multivariate time series anomaly detection. In
International Conference on Machine Learning, pp. 3621–3633. PMLR, 2022a.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8628–8638, 2021.

Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
Liu. Mobile-former: Bridging mobilenet and transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5270–5279, 2022b.

Yuxiao Chen, Jianbo Yuan, Yu Tian, Shijie Geng, Xinyu Li, Ding Zhou, Dimitris N Metaxas, and
Hongxia Yang. Revisiting multimodal representation in contrastive learning: from patch and token
embeddings to finite discrete tokens. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15095–15104, 2023.

Hyeong-Seok Choi, Jang-Hyun Kim, Jaesung Huh, Adrian Kim, Jung-Woo Ha, and Kyogu Lee.
Phase-aware speech enhancement with deep complex u-net. arXiv preprint arXiv:1903.03107,
2019.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous mod-
eling of sporadically-observed time series. Advances in neural information processing systems,
32, 2019.

Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas Lehrmann. Modeling
continuous stochastic processes with dynamic normalizing flows. Advances in Neural Information
Processing Systems, 33:7805–7815, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learning
Representations, 2017.

Zhipeng Huang, Zhizheng Zhang, Cuiling Lan, Zheng-Jun Zha, Yan Lu, and Baining Guo. Adaptive
frequency filters as efficient global token mixers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6049–6059, 2023.

Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Focal frequency loss for image recon-
struction and synthesis. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 13919–13929, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707,
2020.

Chiheon Kim, Doyup Lee, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Generalizable im-
plicit neural representations via instance pattern composers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11808–11817, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. arXiv preprint arXiv:2105.03824, 2021.

Zhe Li, Zhongwen Rao, Lujia Pan, Pengyun Wang, and Zenglin Xu. Ti-mae: Self-supervised masked
time series autoencoders. arXiv preprint arXiv:2301.08871, 2023.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, 2020.

Shiqi Lin, Zhizheng Zhang, Zhipeng Huang, Yan Lu, Cuiling Lan, Peng Chu, Quanzeng You, Jiang
Wang, Zicheng Liu, Amey Parulkar, et al. Deep frequency filtering for domain generalization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11797–11807, 2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2023.

Clare D McGillem and George R Cooper. Continuous and discrete signal and system analysis. 1991.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
for long time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR,
2021.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2022.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Lawrence R Rabiner and Bernard Gold. Theory and application of digital signal processing.
Englewood Cliffs: Prentice-Hall, 1975.

Aniruddh Raghu, Payal Chandak, Ridwan Alam, John Guttag, and Collin Stultz. Sequential multi-
dimensional self-supervised learning for clinical time series. In International Conference on
Machine Learning, pp. 28531–28548. PMLR, 2023.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. In Advances in Neural Information Processing Systems, 2021.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub Mikolaj Tomczak, and Mark Hoogendoorn.
Ckconv: Continuous kernel convolution for sequential data. In International Conference on
Learning Representations, 2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems, 33:13016–13026,
2020.

Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. Scene representation networks:
Continuous 3d-structure-aware neural scene representations. In Advances in Neural Information
Processing Systems, 2019a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Contin-
uous 3d-structure-aware neural scene representations. Advances in Neural Information Processing
Systems, 32, 2019b.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020a.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, 2020b.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Joao Felipe
Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep complex
networks. In International Conference on Learning Representations, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yu-An Wang and Yun-Nung Chen. What do position embeddings learn? an empirical study of pre-
trained language model positional encoding. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 6840–6849, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. In International
Conference on Learning Representations, 2021.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint
arXiv:2202.01575, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2022.

Jiahao Xie, Wei Li, Xiaohang Zhan, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Masked fre-
quency modeling for self-supervised visual pre-training. In The Eleventh International Conference
on Learning Representations, 2022.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time se-
ries anomaly detection with association discrepancy. In International Conference on Learning
Representations, 2021a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A fourier-based framework
for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14383–14392, 2021b.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv
preprint arXiv:2307.03756, 2023.

Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilinear
temporal-spectral fusion. In International Conference on Machine Learning, pp. 25038–25054.
PMLR, 2022.

Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph
perspective. Advances in Neural Information Processing Systems, 36, 2024a.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing
Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
forecasting. Advances in Neural Information Processing Systems, 36, 2024b.

Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and Pascal Frossard. A structured dictionary
perspective on implicit neural representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19228–19238, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive
pre-training for time series via time-frequency consistency. Advances in Neural Information
Processing Systems, 35:3988–4003, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
Frequency improved legendre memory model for long-term time series forecasting. Advances in
Neural Information Processing Systems, 35:12677–12690, 2022a.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022b.

Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences. In
International Conference on Machine Learning, pp. 7673–7682. PMLR, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX: COMPARISON WITH FITS

96 192 336 720
Horizon

0k

25k

50k

75k

100k

125k

150k

175k

200k
Pa

ra
m

s
ETTm1
ETTm2
ETTh1
ETTh2
Weather
Electricity
Traffic
NFM

Figure 7: The number of parameters in NFM (dashed line: 27K) and FITS (colour bars) for different
length of the prediction horizons (lookback of 720 for all cases except for ETTh1 for which the
lookback window is 360). The number of parameters in FITS is to yield the results in the main
performance table.

We provide an additional discussion on a recent time series model, Frequency Interpolation Time
Series analysis baseline (FITS), that is introduced on the same principle of frequency-domain
manipulation as NFM.

FITS is designed with a single complex-valued linear layer to directly learn the linear interpolation
or extrapolation from input frequency spectrum as analysed in Section 3.1. It is equipped with a
heuristic low-pass filter which restricts the spectrum and further reduces the model complexity. While
FITS achieves an elevated degree of lightweight-ness with competing performance in some time
series tasks, there present several limitations to be improved for broader utilization.

• FITS cannot model multivariate time series. With its simplified architecture, it relies on
channel-independent modelling (Nie et al., 2022) which does not model correlation between
channels, thus its application is limited to univariate scenarios only.

• FITS is a linear model operating directly in frequency domain, and thus its expressiveness
and learning capacity are largely limited. This is especially disadvantageous when it comes
to modelling large-scale dataset and more complex patterns. Moreover, the complexity of
FITS itself without a low-pass filter increases exponentially with the length of inputs and
target outputs (there is a trade-off between giving up some information and resolving the
complexity with the use of a low-pass filter). This characteristic does not allow FITS to
stay compact in many practical scenarios with more complex and/or long time series whose
major frequencies spread in wide spectrum. This is well shown from the foreacsting results
on electricity and traffic datasets (Table 7). In Figure 6, we also provide the overall number
of parameters in NFM and FITS used in forecasting task. Taking any lower cut-off frequency
for the low-pass filters in the datasets like ETTh2, elctricity, and traffic to make FITS more
compact leads to considerable performance drops.

• As discussed in the main body of this work, one natural advantage gained from modelling
time series directly in the Fourier domain is that the learned function can be more robust to
dealing with change in discretization of input data. These features, however, are difficult to

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

be fully exploited in FITS due to the static nature of the model (not able to deal with variable
length of time series). Although the adoption of a low-pass filter mitigates this issue by
allowing to handle any length of input sequence longer than the period of cut-off, defaulting
a model with a heuristic low-pass filter is not always practical. It discards the information of
all higher frequency components, and thus costs performance. Indeed, in our experiment,
the performance with full spectrum is consistently better than that with restricted spectrum.

To address the aforementioned limitations in FITS, entirely renovating the model would be necessary.
In one sense, NFM is a complete renovation and generalization of FITS with a compact, lightweight,
and adaptive deep feature learning module. It is not only designed to model both multivariate and
univariate time series but scalable to learn more complex patterns in data. Notably, NFM can be
implemented in a very compact form (less than 40K for all tasks in the experiments) regardless of
the input and target output length and performs consistently well in various time series tasks. This
feature of NFM stands out the compactness of FITS and other linear models like (Zeng et al., 2023) -
the compactness with respect to performance of FITS would only be better than NFM in some unique
cases where the processed input length is sufficiently short and/or an effective heuristic low-pass filter
with low cut-off frequency can be chosen.

B APPENDIX: ANALYSIS OF NEURAL FOURIER FILTER DESIGNS

⊕

𝑴𝒂𝒕𝒓𝒊𝒙 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏

𝑯𝒂𝒅𝒂𝒎𝒂𝒓𝒅 𝒑𝒓𝒐𝒅𝒖𝒄𝒕⨀

⨂

𝑭𝑵𝑶 𝑨𝑭𝑵𝑶
s heads

𝑴
𝑳

𝑷
𝟏

𝑴
𝑳

𝑷
𝒔

(𝐾𝐿, 𝑑)

𝑠 ∗ 𝑀𝐿𝑃(𝑑/𝑠, 𝑑/𝑠)

(𝐾𝐿, 𝑑)

⋯

(𝐾𝐿, 𝑑, 𝑑)

𝑮𝑭𝑵 𝑨𝑭𝑭

(𝐾𝐿, 𝑑)
(𝑑)(𝐾𝐿, 𝑑)

(𝐾𝐿, 𝑑)

𝑰𝑵𝑭𝑭

⨀

𝑾[𝟎]

𝑾[𝑲𝑳 − 𝟏]

𝒁[𝒌] .
.

.

⨂

𝑾[𝟎]

𝑾[𝑲𝑳 − 𝟏]

𝒁[𝒌] .
.

.

⨀ 𝒄[𝒌]

𝑴𝑳𝑷𝟏

𝒁[𝒌]

(𝑑)(𝐾𝐿, 𝑑)

⨀ 𝒄[𝒌]𝒁[𝒌]

𝒁[𝒌] ⨂

 𝜙 𝜏 [𝑘]

𝑍0[𝑘]

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔𝑐

⋯

𝑴𝑳𝑷𝒔

𝑠 ∗ 𝑀𝐿𝑃(𝑑/𝑠, 𝑑/𝑠)

𝑴𝑳𝑷(𝒅, 𝒅)

Figure 8: Overview of different NFF designs.

NFFs can mainly be found in the context of operator learning to solve PDEs and global token mixing
as an efficient alternative to attention mechanism in vision tasks. Here, we summarize the existing
NFFs from design perspective as shown in Figure 7 and compare them with NFM.

FNO (Li et al., 2020) is designed with per-mode matrix multiplication. Such per-mode param-
eterization allows the model to be expressive with large learning capacity. However, the model
can also be easily over-parameterized and thus the advantage comes with a high risk of overfittig.
Moreover, the inhibitive number of parameters can be incurred when the model needs to deal with
long sequences. Besides, the per-mode parameterization essentially prevents the model from being
adaptive to handling variable-size inputs unless a heuristic low-pass filter is integrated.

GFN (Rao et al., 2021) also adopts per-mode multiplication but of entry-wise operation (i.e., depth-
wise global convolution). While this features GFN with more efficient parameterization than FNO it

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

raises another concern of landing no channel-mixing operation in learning and may limit the model’s
expressivity. Additionally, due to the per-mode parameterization, GFN is limited to a scenario where
the input length is static as well, hence it is less suitable for time-series tasks. Note that FEDformer
(Zhou et al., 2022b) and FourierGNN (Yi et al., 2024a) are good examples of GFN adapted to time
series problems with random frequency masking and just a single set of filter coefficients, respectively,
which resolve the issue with the static input length but would still suffer from the lack of expressivity.

AFNO (Guibas et al., 2021) handles variable-size inputs and achieves channel mixing simply by
having a single parameterization (1×1 convolution + non-linearity + soft-shrinkage function) and
sharing its weights across all frequency modes in spectrum. AFNO can essentially be seen as a
generalization of FNO and GFN with a block-diagonal (i.e., multi-head) structure, Note that FreTS
(Yi et al., 2024b) adopts AFNO. However, it trades off expressivity (i.e., there is no principled way
for AFNO with a single shared network to learn discriminative feature across frequency modes)
over efficiency and flexibility to handling variable-size inputs. Besides, a soft shrinkage function is
adopted in AFNO as a regularization to encourage sparsity, with which we, however, consistently
observe a performance drop on time series tasks in all NFFs including INFF as well.

The weights of the filter (i.e., filter coefficients) in the above works are all shared across different
instances. Unfortunately, this poses a concern that the models can struggle to learn complex patterns
across different instances that reside upon different underlying spectrum.

AFF (Huang et al., 2023) addresses this by altering the use of neural network from directly parameter-
ized filter coefficients to a hypernetwork (Ha et al., 2017) that yields the filter coefficients dynamically
according to each input instance.

Based on the above analysis, one remaining gap in the current NFFs we found is how to design a
filter that is aware of each mode separately in spectrum, namely "mode-adaptive", and modulate them
locally in efficient way. As discussed, FNO and GFN achieve such mode-adaptivity by instantiating
the filter coefficients separately for each mode. However, this way not only makes the operation static
(due to fixed parameterization) but also come at the cost of significantly increasing the number of
parameters (especially, when operating matrix multiplication as in FNO) with the input length. On
the other hand, AFNO and AFF do not account for the mode-adaptivity while simply sharing filter
coefficients for all modes.

Our proposed INFF essentially gives a solution to this matter without sacrificing other favourable
NFFs’ characteristics. We achieve this by leveraging an INR (Sitzmann et al., 2019a; Tancik et al.,
2020b; Sitzmann et al., 2020), a neural-based technique to reformulate a direct representation of
interests into a more compact form of implicit representation. Especially, in INFF, the per-mode
parameterization of a Fourier filter is turned into a process of learning to encode an abstract and
implicit representation of the whole filter coefficients in spectrum. Thus, it is possible to draw
unique filter coefficients for any frequency modes within the bandwidth at the cost of only a single
parameterization, which largely contributes to achieving high compactness in NFM.

C APPENDIX: SYNTHETIC DATA FOR INFF VISUALIZATION

We synthesize simple single-channel band-limited signals x of K classes by composing M = S +R
frequency components within its Nyquist frequency, fnyquist = fx/2. For kth class, we first create a
signal from a set of fixed S frequency components {fk

1 , ..., f
k
S} of the class that are randomly chosen

from a frequency range [fA, fB(< fnyquist)]. Then, we further combine the signal with different sets
of R frequency components {f1, ..., fR} drawn randomly from U{1, ..., fnyquist} to create different
variants of the class signal. This generation of kth class signal is expressed as follows:

xk(τ) =

S∑
i=1

Ak
i sin(2πf

k
i τ + θki) +

R∑
j=1

Ajsin(2πfjτ + θj) + δ(τ) (10)

where A ∼ U(0, 1) and θ are amplitude and phase components, respectively, and δ ∼ N(0, σ2) is
gaussian noise. For the synthetic data used in experiment, we set θ to a constant value, K = 10,
S = 20, and R = 40 and for each class signal we generate 100 sequence samples of length N = 2000
(with Tx = 1 and fx = N).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D APPENDIX: IMPLEMENTATION AND EXPERIMENTAL DETAILS

D.1 IMPLICIT NEURAL REPRESENTATIONS IN NFM

INR is parameterized by a neural network and trained to represent a target instance as a continuous
function that maps grid-based representations (e.g., spatial coordinates or temporal locations), τ ∈
Rdin , to the corresponding feature representations. A general formulation of INRs, ϕ : Rdin → Rd,
is based on a L layers MLP and can be expressed as follows (Yüce et al., 2022):

z
(0)
INR = γ(τ),

z
(l)
INR = α(l)(W (l)z

(l−1)
INR + b(l)), (l = 1, ..., A− 1)

ϕ(τ) = W (L)z
(A−1)
INR + b(A)

(11)

where γ : Rdin → Rh0 is an initial feature encoding function, and W (l) ∈ Rhl×hl−1 , b(l) ∈ Rhl , and
α(l) are weights, bias, and an element-wise non-linear activation, respectively. For the INR layer in
LFT and INFF modules of NFM, we opt for SIREN Sitzmann et al. (2020) - a MLP with α = sin(·)
and z

(0)
INR = sin(w0(W

(0)r + b(0))), where w0 is a constant that controls the frequency region of
the activation.

Implementing the ϕ(·) solely based on SIREN requires putting a care on finding a good w0 to deal
with spectral bias - a tendency of MLPs towards prioritizing learning low-frequency components
of the features (Rahaman et al., 2019). In order to alleviate this, as in (Kim et al., 2023) we further
incorporate Fourier features (Tancik et al., 2020a; Mildenhall et al., 2021) into the ϕ(·) by replacing the
γ(τ) = sin(w0(W

(0)τ+b(0))) with [sin(2πa1τ), cos(2πa1τ), ..., sin(2πah0/2τ), cos(2πah0/2τ)]

where we sample {ai}h0/2
i=1 ∼ N (0, 128).

In the experiments, we find that small ϕ works sufficiently well and do not see any noticeable
improvements with larger ϕ in performance. For all tasks, we implement ϕ in LFT and INFF with
the same settings - the temporal locations τ sampled equidistantly from the range [−1, 1], dimension
of the input temporal location din = 1, the number of layers A = 3, and hidden unit dimension
h0 → h1(32) → h2(32) → h3(d), where h0 varies with datasets.

D.2 INPUT PROJECTION

Instead of the projecting input temporal features x to initial hidden embeddings x̄ solely through a
matrix multiplication and passing down to the main processing modules, we combine it with non-
linear projection of a periodic activation using the same formulation as SIREN shown in Appendix
D.1.

x̄ = Wlx+W (2)
n (sin(w(W (1)

n x+ b(1)n))) (12)

where Wl ∈ Rd×c, W (1)
n ∈ R∗×c, W (2)

n ∈ Rd×∗, b(1)n ∈ R∗, and w is a frequency scaling factor.
From the experiments, we find that relying solely on the projection through Wl was not effective for
both channel-independent and multi-channel cases - this could be due to the inherent information
sparsity of time series when working out of the features of each temporal location independently
(Li et al., 2023; Nie et al., 2022). A natural alleviation as a very common practice to this, especially
with Transformer-based models but not limited to, is to employ patchification (e.g., Nie et al. (2022))
before the projection. However, this brings in a concern. While patchification reliefs the information
sparsity in the inputs by forcing to reform them with a strong inductive bias of some "locality", the
process is essentially sensitive to the change in temporal structure (e.g., resolution and arrangement)
of the input time series. Thus, this factor hinders learning continuous-time characteristics in models.

Regarding learning, the projection in Eq.12 can be seen to be enriching each temporal feature
(point-wise input token) independently through initial channel mixing at different periods. In the
experiments, we see that the performance of NFM improves by a noticeable margin across all
datasets and tasks. We use both sine and cosine activation and set w simply to 1 (with higher w the
performance tends to degrade in our experiments).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.3 GENERAL IMPLEMENTATION AND HYPERPARAMETER CONFIGURATIONS

Table 5: Hyperparameter settings for different experiments. ADs denotes all anomaly detection
datasets. Note that the batch size of the forecasting datasets is set large as channel-independence is
applied.

Params ETTm1&2 ETTh1&2 Weather Electricity Traffic SpeechCommand ADs

Raw MFCC

Epochs 40 40 40 40 40 300 300 150
Batch 1792 896 1680 1648 1648 160 240 128
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Weight Decay - - - - - - - -
LR scheduler - - - cosine cosine cosine cosine -
Learning rate (×e−4) 2.0 1.5 2.5 3.5 → 1.5 3.5 → 1.5 7.5 → 3.5 5.0 → 2.5 1.0
Dropout 0.05∼0.35 0.05∼0.35 0.15 0.15 0.15 0.05 0.25 -
Patience 6 6 6 3 3 30 30 10
Mixer blocks 1 1 1 1 1 2 2 1
Hidden size (d) 36 36 36 36 36 32 32 8
h0 32 32 32 32 32 32 32 16
Predictor P(·) d → 1 d → 1 d → 1 d → 1 d → 1 d → 10 d → 10 d → 1

For all experiments, we use the same NFM backbone without a single architectural modification
and equip it with a task-specific feature-to-feature linear projection. The hyper-parameter settings
(empirically chosen) are specialized for each task as shown in Table 5.

D.4 EXPERIMENTAL SETUP: FORECASTING

Long-term times-series forecasting task (mf = 1 and mτ > 1) is conducted on 7 benchmark
datasets (Zhou et al., 2021), including 4 ETTs (7 channels), Weather (21 channels), Electricity (321
channels), and Traffic (862 channels) datasets. We use a lookback window of 720 (N = 720) for
all datasets except for ETTh1 for which N = 360 in NFM to make prediction over 4 horizons
{96, 192, 360, 720}. For data setup, see Appendix D.8.

We adopt the canonical modelling strategy (Xu et al., 2023; Zeng et al., 2023; Nie et al., 2022) of 1)
channel-independence modelling and 2) a simple normalization trick to inputs and the final outputs
for dealing with distribution shift caused by non-stationarity in complex time series data. For the
latter, we adopt a recent popular choice of it, Reversible Instance Normalization (RevIN) (Kim et al.,
2021). Meanwhile, in NFM, we also found that the normalization trick with only mean statistics
works far better than with RevIN for some datasets, leading to more stable training and no early
saturation to low performance regime. We use only mean statistics as the normalization trick in
forecasting on ETTm2 and ETTh2 datasets.

Forecasting baseline results. We compare the result of NFM with that of 5 SOTA forecasting
models, including FITS (Xu et al., 2023), N-Linear (Zeng et al., 2023), iTransformer (Liu et al.,
2023), PatchTST (Nie et al., 2022), TimesNet (Wu et al., 2022). For fair comparison, we collect
the best performed results (of single prediction head but not channel-wise prediction heads) and
adopted them after conducting a confirmation experiment using their official implementation (FITS1,
PatchTST2, and N-Linear3). We replace them with our result if the difference was over ±5%. Note
that, as different models will have different regime for optimal lookback windows (although in
general, sufficiently longer lookback would yield better results with larger the receptive field), we
do not necessarily equalize the length of lookback window, and accordingly we do not compare
the performance of the models with respect to different lookback window. For iTransformer4, we
report new forecasting results made on the lookback window of 720 as the originally reported results
were made with the lookback window of 96 and the performance of iTransformer is better in this
setting. For TimesNet5, we use the lookback window of 96 (same as the original work) as we observe

1https://anonymous.4open.science/r/FITS
2https://github.com/yuqinie98/PatchTST
3https://github.com/cure-lab/LTSF-Linear
4https://github.com/thuml/iTransformer
5https://github.com/thuml/timesnet

19

https://anonymous.4open.science/r/FITS
https://github.com/yuqinie98/PatchTST
https://github.com/cure-lab/LTSF-Linear
https://github.com/thuml/iTransformer
https://github.com/thuml/timesnet

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

consistently better performance with 96 over 720. Besides, we account only for the main results of
the forecasting models made with "a single predictor" instead of channel-wise predictors for a fair
comparison and due to its impracticality. For FITS, we use the hyperparameters that the official work
used for their final results but not 10K parameter setup (cut-off frequency and output frequency of
around 100), because with which the performance of FITS is no longer comparable with SOTAs.

Forecasting baseline results at different sampling rate. Regarding the experiments of forecasting
with different sampling rate in Section 4.2, surprisingly, none of the forecasting baseline models can
deal with varying-length time series inputs. This is due to their prediction head whose parameters are
subject to the initial input length, thus not allowing the estimation directly from downsampled input
sequences. While this can be overcome in FITS - by having downsampled factors up to the training
cut-off frequency or by posing a lower cut-off frequency during testing time, this task is not directly
applicable to PatchTST and N-Linear that working in time domain. A common practice to this is
to resample the downsampled input sequences to match the resolution back (i.e., by upsampling).
We simply do this by interpolating the downsampled input sequences through zero-padding them in
frequency domain (equivalent to applying a sinc kernel in time domain). Note that the resolution of
the target prediction remains unchanged (e.g., the case of forecasting on ETTm1 with SR=1/4 can be
seen as predicting ETTm1 from ETTh1).

D.5 EXPERIMENTAL SETUP: CLASSIFICATION

For classification, we follow the same experimental setup used in CKconv (Romero et al., 2021) and
S4 (Gu et al., 2021). For data setup, see Appendix D.8.

Classification baseline results. Learning a function-to-function mapping given discrete signals
is a desirable property for models to generalize models across different challenging scenarios of
time series analysis. Several works have addressed it, modelling continuously evolving dynamics in
hidden states (Chen et al., 2018; Rubanova et al., 2019; Morrill et al., 2021; De Brouwer et al., 2019)
and a stochastic mapping (Ziegler & Rush, 2019; Deng et al., 2020). On the other hand, this property
can also be achieved by simply modelling data directly in Fourier domain with the fact that the DFT
provides a function of frequency as samples of a new "functional" representation of the time-domain
discrete signals. Intuitively, working explicitly with the frequency samples of discrete signals can be
equivalently seen as working with their continuous-time elements in function space. To show this
(especially, in the scenario of testing at different sampling rate), we compare the results of NFM with
8 baseline models (7 continuous-time models and 1 Transformer), including ODE-RNN (Rubanova
et al., 2019), GRU-∆t (Kidger et al., 2020), GRU-ODE (De Brouwer et al., 2019), NCDE (Kidger
et al., 2020), NRDE (Morrill et al., 2021)), S4, CKConv, and vanilla Transformer (Vaswani et al.,
2017). The results were collected and verified using the implementations in CKconv6 and S47.

D.6 EXPERIMENTAL SETUP: ANOMALY DETECTION

We employ 4 popular anomaly detection benchmark datasets, including SMD (Server Machine
Dataset, (Su et al., 2019)), PSM (Pooled Server Metrics, (Abdulaal et al., 2021)), MSL (Mars Science
Laboratory rover, (Su et al., 2019)) SMAP (Soil Moisture Active Passive satellite, (Su et al., 2019)),
and follow the well-established experimental protocol in (Shen et al., 2020) and the evaluation
methodology in (Xu et al., 2021a). We use the same setup used in the work (Xu et al., 2021a) - a
window of length 100 for all datasets and baselines, and anomaly ratio (%) of 1.0 (MSL), 1.0 (PSM),
1.0 (SMAP), and 0.5 (SMD). Besides, since we workin in physical space of the time series, we apply
channel-independent modelling and input normalization trick just like in forecasting task. For data
setup, see Appendix D.8.

6https://github.com/dwromero/ckconv
7https://github.com/state-spaces/s4/tree/main

20

https://github.com/dwromero/ckconv
https://github.com/state-spaces/s4/tree/main

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Anomaly detection baseline results. We compare the results of NFM with 6 SOTA baselines,
including vanilla Transformer (Vaswani et al., 2017), PatchTST (Nie et al., 2022), TimesNet (Wu
et al., 2022), ADformer (Xu et al., 2021a), N-linear (Zeng et al., 2023), and FITS (Xu et al., 2023).
For the baseline results, we follow the same evaluation methodology used in (Wu et al., 2022; Xu
et al., 2021a) and produced the results, using the implementations in TimesNet, ADformer8, and FITS.
Meanwhile, it is important to point out that there were some flaws (in training/validation/training data
assignment, computing anomaly threshold, and estimation) in their (all three) official experimental
codes that affect the final results. The fixed code samples are available in our repository, and all
results in anomaly detection were made again with the fixed codes.

D.7 OPTIMIZATIONS

Original sequence Downsampled sequence

NFM

Reconstruction

NFM

E
v
al

u
at

e

fu
ll

 s
eq

u
en

ce

Input sequence

(Downsampled or original)

Training Testing

Figure 9: Training and testing framework for anomaly detection task in NFM.

Forecasting. Given an input lookback sequence of length N , x[n ∈ IN] (fx = N and Tx = 1), the
aim in forecasting task is to predict a future horizon of a desired length. While most of existing models
(Zeng et al., 2023; Liu et al., 2023; Nie et al., 2022; Wu et al., 2022) directly outputs only the target
horizon given the input lookback sequence, NFM yields a whole extrapolated sequence (frequency-
domain interpolation with mt = L/N) of length L = N + horizon, ŷ[n ∈ IL] (fy = fx and Ty =

Tx+
horizon

fy
). During training, we supervise NFM over the whole extrapolated sequence in both time

domain and frequency domain against its ground truth y[n ∈ IL] = {x[N ∈ IN], x[N], . . . , x[L−1]}.
Note that we observe that NFM in forecasting task performs consistently better when optimized in
both time domain and frequency domain. We opt for the standard time-domain loss function LTD,
MSE, and for the frequency domain loss function LFD we modify the focal frequency loss (Xie
et al., 2022; Jiang et al., 2021) used for the recovery of image spectrum and adapt it for time series.

8https://github.com/thuml/Anomaly-Transformer

21

https://github.com/thuml/Anomaly-Transformer

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

LForecasting = λ
1

L

L−1∑
n=0

||ŷ[n]− y[n]||2︸ ︷︷ ︸
LTD

+ (1− λ)
1

KL

KL−1∑
k=0

((ŶReal[k]− YReal[k])
2 + (ŶImag[k]− YImag[k])

2)1/2︸ ︷︷ ︸
LFD

(13)

where YReal and YImag are the real and imaginary part of the frequency representation of the
sequence y, and λ (we set λ = 0.5) controls the contribution of the frequency-domain loss. As
seen, the distance metric in LFD considers both amplitude (the contribution of each frequency
component to the time-domain signal) and phase (temporal delay introduced by each frequency
component) information by operating on both real and imaginary parts of the complex frequency
representation. Importantly, one can see that the time-domain objective is local as applied point
wise and the frequency-domain objective is global with the fact that each frequency component is
a summary about the entirety of the sequence at different periods. Hence, this encourages more
faithful construction for the extrapolated sequence as a whole. We argue that this is a reason for NFM
working the best when both domains’ objective is incorporated.

Classification. In classification setup, given pairs of the sequence x of length N and the class label
y ∈ {1, . . . ,K}, the NFM backbone yields the latent features z[n ∈ IL] = y(n/fy), that resides on
the same timespan (Ty = Tx) as x, with respect to the class information. We train the NFM backbone
with a linear classifier (global average pooling + a fully-connected layer) and optimize them using
the standard classification loss function, Cross Entropy.

Anomaly detection. In anomaly detection task, the aim of NFM is to learn the dominant contexts
(i.e., normal contexts) of the input sequences in unsupervised manner (i.e., no anomaly label is
available). Then, during testing time, the learned sequence-wise normal contexts are used as a
standard to establish a decision boundary for anomaly, and the elements of the sequences are
evaluated within the corresponding contexts. To achieve this, we frame the objective of NFM as
a context learning (see Figure 8) and train NFM to learn as faithful contexts as possible. More
specifically, given the sequence x[n ∈ IN], we downsample (at equidistant sampling rate against
the original discretization) it by a downsampling factor dr. Denoting the downsampled sequence
xd[n ∈ INd

] where Nd = N/dr (i.e., fxd
= fx/dr and mf = dr), the NFM takes in xd as input and

is trained to reconstruct the full original sequence x̂[n ∈ IN] on both MSE loss (LTD) and the focal
frequency loss (LFD) as follows:

LAD = λ
1

N

N−1∑
n=0

||x̂[n]− x[n]||2︸ ︷︷ ︸
LTD

+ (1− λ)
1

KN

KN−1∑
k=0

((X̂Real[k]−XReal[k])
2 + (X̂Imag[k]−XImag[k])

2)1/2︸ ︷︷ ︸
LFD

(14)

We set λ = 0.5, and the LFD is only applied during training time and not used in any steps of
anomaly detection. Besides, it is noteworthy that during the testing time, inputs can be any of original
or downsampled version of candidate sequence with resolution-invariance property of NFM, and
the evaluation of the sequence points for normality is made on the full length between the original
sequence and the restored sequence of the input candidate. Additionally, we note that NFM requires
no single architectural modification to adopt the above formulation or changing the above formulation
to full reconstruction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.8 SUMMARY OF DATASETS

Table 6: Summary of data settings. SC: SpeechCommand, AD: Anomaly detection, and CLS:
Classification.

Tasks Dataset channels Train / Val / Test N / L Num.Class Domain

Fo
re

ca
st

in
g

ETTm1 7 60%/20%/20% (720, 720, 720, 720) / - Temperature(816, 912, 1056, 1480)

ETTm2 7 60%/20%/20% (720, 720, 720, 720) / - Temperature(816, 912, 1056, 1480)

ETTh1 7 60%/20%/20% (360, 360, 360, 360) / - Temperature(452, 552, 696, 1080)

ETTh2 7 60%/20%/20% (720, 720, 720, 720) / - Temperature(816, 912, 1056, 1480)

Weather 21 70%/20%/10% (720, 720, 720, 720) / - Weather(816, 912, 1056, 1480)

Electricity 321 70%/20%/10% (720, 720, 720, 720) / - Electricity(816, 912, 1056, 1480)

Traffic 862 70%/20%/10% (720, 720, 720, 720) / - Transportation(816, 912, 1056, 1480)

A
D

SMD 38 80%/20%/ - 50/100 2 Server Machine
MSL 55 80%/20%/ - 50/100 2 Spacecraft

SMAP 25 80%/20%/ - 50/100 2 Spacecraft
PSM 25 80%/20%/ - 50/100 2 Server Machine

C
L

S SC-raw 1 70%/15%/15% 16000/ - 10 Speech
SC-MFCC 20 70%/15%/15% 161/ - 10 Speech

E APPENDIX: ADDITIONAL EXPERIMENTS AND ANALYSIS

Here, we provide extra experimental results and analysis omitted in the main work due to the limited
work space.

E.1 FULL FORECASTING RESULTS

Discussion on the number of parameters. With the prevalence of chunk-to-chunk prediction in the
forecasting community, one practice in the deep forecasting baselines is to adopt a prediction head
that acts on temporal dimension. Note that the linear models (FITS and N-Linear) naturally fall in
this as they by themselves are the prediction head operating on the input time series. Due to this, they
scale poorly with the length of horizons as well as the length of lookback window. For example, more
than 95% of the learnable weights in PatchTST for L = 720 surprisingly belongs to the single "wide"
prediction head of 8.3M parameters against 0.4M parameters in its Transformer-based backbone.
In contrast, the prediction head used in NFM is feature-to-feature projection and the number of
parameters in NFM is completely independent from the length of input sequence and prediction
horizon. Importantly, we highlight that this aspect completely decouples the contribution of the linear
head in modelling sequence and further validates the effectiveness of NFM to modelling temporal
dependency unlike the other deep forecasting baselines that are equipped with a wide linear predictor.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 7: Full long-term forecasting results, where the best results are in bold and the second best
are underlined. The number of parameters of the baselines are computed based on their original
hyper-parameter setting.

NFM FITS N-Linear iTransformer PatchTST TimesNet
(27K) (∼0.2M) (∼0.5M) (∼5.3M) (∼8.7M) (∼0.3B)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.286 0.338 0.309 0.352 0.306 0.348 0.319 0.367 0.293 0.346 0.338 0.375
192 0.326 0.364 0.338 0.369 0.349 0.375 0.347 0.389 0.333 0.370 0.374 0.387
336 0.362 0.384 0.366 0.385 0.375 0.388 0.382 0.409 0.369 0.392 0.410 0.411
720 0.406 0.414 0.415 0.412 0.433 0.422 0.437 0.440 0.416 0.420 0.478 0.450

E
T

T
m

2 96 0.160 0.250 0.163 0.254 0.167 0.255 0.180 0.274 0.166 0.256 0.187 0.267
192 0.221 0.291 0.217 0.291 0.221 0.293 0.243 0.316 0.223 0.296 0.249 0.309
336 0.271 0.326 0.268 0.326 0.274 0.327 0.299 0.352 0.274 0.329 0.321 0.351
720 0.349 0.378 0.349 0.379 0.368 0.384 0.382 0.404 0.362 0.385 0.408 0.403

E
T

T
h1

96 0.363 0.389 0.372 0.395 0.374 0.394 0.392 0.423 0.370 0.400 0.384 0.402
192 0.404 0.413 0.404 0.413 0.408 0.415 0.428 0.447 0.413 0.429 0.436 0.429
336 0.420 0.422 0.427 0.427 0.429 0.427 0.494 0.488 0.422 0.440 0.491 0.469
720 0.442 0.457 0.424 0.446 0.440 0.453 0.699 0.606 0.447 0.468 0.521 0.500

E
T

T
h2

96 0.281 0.341 0.271 0.337 0.277 0.338 0.304 0.364 0.274 0.337 0.340 0.374
192 0.350 0.387 0.332 0.374 0.344 0.381 0.432 0.435 0.341 0.382 0.402 0.414
336 0.377 0.416 0.354 0.395 0.357 0.400 0.443 0.451 0.329 0.384 0.452 0.452
720 0.414 0.455 0.378 0.423 0.394 0.436 0.441 0.469 0.379 0.422 0.462 0.468

W
ea

th
er 96 0.154 0.203 0.169 0.224 0.182 0.232 0.173 0.227 0.149 0.198 0.172 0.220

192 0.198 0.246 0.213 0.261 0.225 0.269 0.219 0.262 0.194 0.241 0.219 0.261
336 0.245 0.281 0.259 0.296 0.271 0.301 0.283 0.310 0.245 0.282 0.280 0.306
720 0.312 0.331 0.321 0.340 0.338 0.348 0.344 0.355 0.314 0.334 0.365 0.359

E
le

ct
ri

ci
ty 96 0.131 0.222 0.135 0.231 0.141 0.237 0.132 0.227 0.129 0.222 0.168 0.272

192 0.147 0.240 0.149 0.244 0.154 0.248 0.155 0.252 0.147 0.240 0.184 0.289
336 0.163 0.256 0.165 0.261 0.171 0.265 0.170 0.267 0.163 0.259 0.198 0.300
720 0.194 0.284 0.203 0.293 0.210 0.297 0.195 0.289 0.197 0.290 0.220 0.320

Tr
af

fic

96 0.367 0.249 0.386 0.269 0.410 0.279 0.344 0.254 0.360 0.249 0.593 0.321
192 0.377 0.252 0.398 0.274 0.423 0.284 0.366 0.265 0.379 0.256 0.617 0.336
336 0.392 0.259 0.410 0.278 0.435 0.290 0.381 0.273 0.392 0.264 0.629 0.336
720 0.427 0.279 0.448 0.296 0.464 0.307 0.413 0.287 0.432 0.286 0.640 0.350

E.2 FULL ANOMALY RESULTS

Table 8: Time series anomaly detection results on 4 datasets. The higher the three metrics, including
the precision (P), recall (R), and F1-score (F1) in percentage, are, better the performance.

Model (params) SMD MSL SMAP PSM

P R F1 P R F1 P R F1 P R F1

Transformer (0.2M) 68.40 85.37 75.95 88.11 76.55 81.93 89.37 57.12 69.70 99.96 79.80 88.75
PatchTST (0.2M) 80.33 83.96 82.11 84.33 77.01 80.51 92.22 55.27 69.11 98.78 93.38 96.00
TimesNet (∼28M) 82.67 83.88 83.27 87.45 76.65 81.70 89.07 62.17 73.23 98.42 96.20 97.30
ADformer*(4.8M) 68.79 85.86 76.38 88.68 75.87 81.78 91.85 58.11 71.18 99.98 71.15 83.14
N-Linear (10K) 78.94 84.89 81.81 86.55 76.43 81.18 89.85 54.05 67.50 98.47 93.22 95.77
FITS (1.3K) 79.90 83.52 81.67 86.85 75.49 80.77 88.47 50.22 64.07 98.74 94.55 96.60
NFM (6.6K) 86.82 81.96 84.32 88.72 77.11 82.46 90.12 58.87 70.88 98.92 96.91 97.51

* The joint criterion in ADformer is replaced with the simple reconstruction error to compute anomaly score for fair comparison.

E.3 FULL RESULTS OF FORECASTING AT DIFFERENT INPUT RESOLUTION

In practice, it is not rare to encounter a scenario where a system undergoes or necessitates a change
in sampling rate for signals being monitored by a model. Such change does not affect the underlying
temporal dynamic of the signals (i.e., the same solution) but brings in a positional alternation in
the sequences of our observations, greatly affecting the performance of the model. To this end, we
conduct forecasting on the input time series sampled at "unseen" discretization rate (this experiment
is made for the first time in our work). Overall, the full results in Table 9 demonstrates the resolution-
invariance property of NFM that can be highly valuable in practical applications.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 9: Full forecasting results (MSE) and performance drops (%) at different testing-time sampling
rate, where SR= f test

x /f train
x . The best performance is in blue and the least performance drop in

red.

Dataset Horizon NFM FITS N-Linear PatchTST

1/4 1/6 1/4 1/6 1/4 1/6 1/4 1/6

ETTm1

96
0.299 0.319 0.348 0.368 0.436 0.482 0.394 0.434

(4.5 ↓) (11.5 ↓) (12.6 ↓) (19.1 ↓) (42.5 ↓) (57.5 ↓) (34.5 ↓) (48.5 ↓)

192
0.339 0.349 0.363 0.377 0.444 0.481 0.386 0.412

(4.0 ↓) (7.1 ↓) (7.4 ↓) (11.5 ↓) (27.2 ↓) (37.8 ↓) (15.9 ↓) (23.7 ↓)

336
0.363 0.369 0.384 0.392 0.457 0.497 0.394 0.412

(0.3 ↓) (2.1 ↓) (4.9 ↓) (7.1 ↓) (21.9 ↓) (32.5 ↓) (6.8 ↓) (11.7 ↓)

720
0.407 0.414 0.426 0.437 0.469 0.471 0.433 0.443

(0.2 ↓) (2.0 ↓) (2.9 ↓) (5.3 ↓) (8.3 ↓) (8.8 ↓) (4.1 ↓) (6.5 ↓)

ETTm2

96
0.179 0.189 0.198 0.216 0.251 0.281 0.232 0.265

(11.9 ↓) (18.2 ↓) (21.5 ↓) (31.7 ↓) (50.3 ↓) (68.3 ↓) (39.8 ↓) (59.6 ↓)

192
0.230 0.239 0.240 0.258 0.267 0.284 0.264 0.287

(4.1 ↓) (8.1 ↓) (10.6 ↓) (16.2 ↓) (20.8 ↓) (28.5 ↓) (18.4 ↓) (28.7 ↓)

336
0.281 0.287 0.288 0.300 0.307 0.331 0.297 0.311

(3.7 ↓) (6.0 ↓) (7.5 ↓) (11.9 ↓) (12.0 ↓) (20.8 ↓) (8.4 ↓) (13.5 ↓)

720
0.356 0.358 0.356 0.364 0.409 0.422 0.382 0.396

(2.0 ↓) (2.6 ↓) (2.0 ↓) (4.3 ↓) (11.1 ↓) (14.7 ↓) (5.5 ↓) (9.4 ↓)

Weather

96
0.164 0.173 0.182 0.195 0.268 0.280 0.212 0.236

(6.5 ↓) (12.3 ↓) (7.7 ↓) (14.8 ↓) (47.3 ↓) (53.8 ↓) (42.3 ↓) (58.4 ↓)

192
0.209 0.219 0.222 0.233 0.271 0.288 0.261 0.282

(5.6 ↓) (10.6 ↓) (4.2 ↓) (9.4 ↓) (20.4 ↓) (28.0 ↓) (34.5 ↓) (45.4 ↓)

336
0.253 0.258 0.265 0.272 0.296 0.308 0.278 0.292

(3.3 ↓) (5.3 ↓) (2.3 ↓) (5.0 ↓) (9.2 ↓) (13.7 ↓) (13.5 ↓) (19.2 ↓)

720
0.315 0.318 0.325 0.329 0.351 0.364 0.329 0.335

(1.0 ↓) (1.9 ↓) (1.2 ↓) (2.5 ↓) (3.8 ↓) (7.7 ↓) (4.8 ↓) (6.7 ↓)

Analysis. Especially, we observe that the models operating fully on frequency domain (NFM and
FITS) are much more robust to the change in sampling rate as learning a function-to-function mapping,
than those operating on time domain (PatchTST and N-Linear). Interestingly, the performance
degradation with unseen sampling rate tends to be more significant in forecasting over short horizons
(with the same lookback length) and relatively minor over long horizons in all models. This tendency
could be a strong indication that the forecasting models, including NFM, become more reliant on
the global context (or similarly, low frequency regime) of the lookback window and less focusing
on the local details (or similarly, high frequency regime) in the window as the predicting horizon
gets longer. In this sense, the results imply that NFM is not the one that leverages local features
in optimal way but is less prone to the local variations than the others. In the future, integrating a
mechanism that encourages learning more of local features (high-frequency information) into models
could potentially improve the forecasting ability in the long horizon cases as well as the short horizon
cases.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E.4 FULL TABULAR RESULTS ON COMPARISON OF NFM WITH DIFFERENT ABLATION CASES

Table 10: Tabular results of the ablation study on ETTm1. We use the same set up used in Table 5 for
all cases and the number of heads = 2 for AFNO and AFF.

Horizon Metric INFF LFT

× Naive LFT FNO AFNO GFN AFF

96

MSE 0.296 0.292 0.286 0.289 0.291 0.303 0.292
MAE 0.348 0.343 0.338 0.347 0.347 0.349 0.346
FLOP (G) 0.076 0.076 0.082 0.069 0.090 0.066 0.090
PMU (GB) 0.029 0.030 0.030 0.030 0.032 0.025 0.033
Params (M) 0.021 0.036 0.027 0.435 0.020 0.029 0.020

192

MSE 0.335 0.330 0.326 0.330 0.338 0.338 0.340
MAE 0.370 0.364 0.364 0.367 0.374 0.372 0.372
FLOP (G) 0.085 0.085 0.089 0.080 0.099 0.072 0.099
PMU (GB) 0.031 0.033 0.033 0.033 0.035 0.027 0.036
Params (M) 0.021 0.039 0.027 0.484 0.020 0.030 0.020

336

MSE 0.372 0.366 0.362 0.365 0.371 0.383 0.369
MAE 0.396 0.387 0.384 0.390 0.391 0.394 0.393
FLOP (G) 0.096 0.096 0.101 0.089 0.112 0.081 0.113
PMU (GB) 0.036 0.036 0.037 0.038 0.039 0.030 0.040
Params (M) 0.021 0.039 0.027 0.557 0.020 0.033 0.020

720

MSE 0.421 0.421 0.406 0.431 0.413 0.427 0.407
MAE 0.422 0.419 0.414 0.424 0.414 0.420 0.421
FLOP (G) 0.119 0.119 0.128 0.115 0.146 0.105 0.147
PMU (GB) 0.047 0.048 0.048 0.051 0.038 0.051 0.053
Params (M) 0.021 0.043 0.027 0.557 0.020 0.039 0.020

Table 11: Tabular results of the ablation study on SpeechCommand. We use
the same set up used in Table 5 for all cases and the number of heads = 2 for
AFNO and AFF.

SR Metric INFF LFT

× Naive LFT FNO AFNO GFN AFF

1.0 ACC (%) 79.4 82.6 90.9 84.8 84.7 86.2 88.4
0.5 ACC (%) 74.1 78.6 90.4 75.0 82.4 78.0 85.8

FLOP (G) 0.480 0.480 0.487 0.383 0.478 0.330 0.478
PMU (GB) 0.183 0.183 0.188 0.395 0.175 0.135 0.178
Params (M) 0.031 0.286 0.035 16.4 0.031 0.533 0.031

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.5 STATISTICAL SIGNIFICANCE ON THE MAIN RESULTS WITH DIFFERENT RANDOM SEEDS

0.284

0.285

0.286

0.287

0.288

M
SE

96
0.286 ± 1.6e-03

0.3254

0.3256

0.3258

0.3260

0.3262

M
SE

192
0.326 ± 3.4e-04

0.3614

0.3616

0.3618

0.3620

0.3622

0.3624

0.3626

0.3628

M
SE

336
0.362 ± 6.0e-04

0.4045

0.4050

0.4055

0.4060

0.4065

0.4070

0.4075

0.4080

M
SE

720
0.406 ± 1.4e-03

(a) ETTm1

0.158

0.159

0.160

0.161

0.162

0.163

M
SE

96
0.160 ± 2.2e-03

0.2205

0.2210

0.2215

0.2220

0.2225

0.2230

0.2235

0.2240

0.2245

M
SE

192
0.222 ± 1.7e-03

0.2695

0.2700

0.2705

0.2710

0.2715

0.2720

0.2725

0.2730

0.2735

M
SE

336
0.271 ± 1.4e-03

0.348

0.349

0.350

0.351

0.352

M
SE

720
0.349 ± 1.7e-03

(b) ETTm2

0.360

0.361

0.362

0.363

0.364

0.365

M
SE

96
0.362 ± 1.8e-03

0.40325

0.40350

0.40375

0.40400

0.40425

0.40450

0.40475

0.40500

0.40525

M
SE

192
0.404 ± 8.5e-04

0.4194

0.4196

0.4198

0.4200

0.4202

0.4204

0.4206

0.4208

M
SE

336
0.420 ± 5.6e-04

0.440

0.442

0.444

0.446

0.448

0.450

0.452

M
SE

720
0.445 ± 4.8e-03

(c) ETTh1

0.2804

0.2806

0.2808

0.2810

0.2812

0.2814

0.2816

0.2818

M
SE

96
0.281 ± 5.7e-04

0.346

0.348

0.350

0.352

0.354

M
SE

192
0.349 ± 3.1e-03

0.3765

0.3770

0.3775

0.3780

0.3785

0.3790

M
SE

336
0.378 ± 9.9e-04

0.412

0.413

0.414

0.415

0.416

0.417

M
SE

720
0.414 ± 2.3e-03

(d) ETTh2

0.1530

0.1535

0.1540

0.1545

0.1550

0.1555

0.1560

M
SE

96
0.155 ± 1.2e-03

0.1985

0.1990

0.1995

0.2000

0.2005

0.2010

0.2015

M
SE

192
0.200 ± 1.2e-03

0.2435

0.2440

0.2445

0.2450

0.2455

M
SE

336
0.244 ± 9.6e-04

0.3120

0.3122

0.3124

0.3126

0.3128

M
SE

720
0.312 ± 3.8e-04

(e) Weather

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.1300

0.1305

0.1310

0.1315

0.1320

M
SE

96
0.131 ± 9.5e-04

0.1450

0.1455

0.1460

0.1465

0.1470

0.1475

M
SE

192
0.146 ± 1.1e-03

0.1624

0.1626

0.1628

0.1630

0.1632

0.1634

0.1636

0.1638

M
SE

336
0.163 ± 5.7e-04

0.1925

0.1930

0.1935

0.1940

0.1945

M
SE

720
0.194 ± 9.4e-04

(f) Electricity

0.3650

0.3655

0.3660

0.3665

0.3670

0.3675

M
SE

96
0.367 ± 9.5e-04

0.3764

0.3766

0.3768

0.3770

0.3772

0.3774

0.3776
M

SE

192
0.377 ± 5.8e-04

0.3915

0.3920

0.3925

0.3930

0.3935

M
SE

336
0.392 ± 7.6e-04

0.4255

0.4260

0.4265

0.4270

M
SE

720
0.427 ± 8.2e-04

(g) Traffic

90.00

90.25

90.50

90.75

91.00

91.25

91.50

91.75

AC
C

(%
)

SC-raw
90.782 ± 9.0e-01

93.0

93.5

94.0

94.5

95.0

95.5

AC
C

(%
)

SC-MFCC
94.343 ± 9.9e-01

84.15

84.20

84.25

84.30

84.35

84.40

F1
-s

co
re

SMD
84.241 ± 1.1e-01

82.3

82.4

82.5

82.6

F1
-s

co
re

MSL
82.496 ± 1.7e-01

70.80

70.82

70.84

70.86

70.88

F1
-s

co
re

SMAP
70.839 ± 4.5e-02

97.35

97.40

97.45

97.50

97.55

97.60

97.65

97.70

97.75

F1
-s

co
re

PSM
97.524 ± 1.5e-01

(h) SC and anomaly detection results

Figure 10: Statistical significance on the main experimental results computed by repeating the main
experiments with different random seeds. The number in the title of forecasting results (a) ∼ (g)
indicates prediction horizon, and the legend in each box plot mean± std.

28

	Introduction
	Related work
	Neural Fourier modelling
	Overview of NFM
	Learnable frequency tokens
	Implicit neural Fourier filter

	Experiments
	Time series modelling
	Evaluation at different discretization rates
	Exploration of NFM

	Conclusion
	Appendix: Comparison with FITS
	Appendix: Analysis of neural Fourier filter designs
	Appendix: Synthetic data for INFF visualization
	Appendix: Implementation and experimental details
	Implicit neural representations in NFM
	Input projection
	General implementation and hyperparameter configurations
	Experimental setup: Forecasting
	Experimental setup: Classification
	Experimental setup: Anomaly detection
	Optimizations
	Summary of datasets

	Appendix: Additional experiments and analysis
	Full forecasting results
	Full anomaly results
	Full results of forecasting at different input resolution
	Full tabular results on comparison of NFM with different ablation cases
	Statistical significance on the main results with different random seeds

