
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ROUTELLM: LEARNING TO ROUTE LLMS WITH PREF-
ERENCE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at a wide range of tasks, but choosing the
right model often involves balancing performance and cost. Powerful models offer
better results but are expensive, while smaller models are more cost-effective but
less capable. To address this trade-off, we introduce a training framework for
learning efficient router models that dynamically select between a stronger and
weaker LLM during inference. Our framework leverages human preference data
and employs data augmentation techniques to enhance performance. Evaluations
on public benchmarks show that our approach can reduce costs by over 2 times
without sacrificing response quality. Moreover, our routers exhibit strong general-
ization capabilities, maintaining performance even when routing between LLMs
not included in training. This highlights the potential of our framework to deliver
cost-effective, high-performance LLM solutions.

1 INTRODUCTION

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across
a wide range of natural language tasks. From open-ended conversation and question answering to
text summarization and code generation, LLMs have demonstrated an impressive level of fluency and
understanding (Achiam et al., 2023; Bubeck et al., 2023). This rapid progress has been enabled by a
combination of architectural innovations, such as the Transformer architecture (Vaswani et al., 2017),
as well as scaling up data and training infrastructure (Brown et al., 2020; Radford et al., 2019).

However, not all LLMs are created equal—there exists wide variation in the sizes of different LLMs,
which in turn affects the resources required to serve them. LLMs also differ in terms of the data on
which they are trained, which in turn leads to variations in the strengths, weaknesses, and capabilities
of different models. Broadly speaking, larger models tend to be more capable but come at a higher
cost, while smaller models tend to be less capable but cheaper to serve.

This heterogeneous landscape presents a dilemma in the practical deployment of LLMs. Although
routing all user queries to the largest and most capable model ensures high-quality results, it is
prohibitively expensive. Conversely, routing queries to smaller models can save costs—by more than
50x (e.g., Claude-3 Haiku vs. Opus1)—but may result in lower quality responses, as the smaller
model may not handle complex queries effectively.

LLM routing (Ding et al., 2024; Hu et al., 2024) offers an effective solution by first processing each
user query through a router, which then determines the most suitable LLM to handle the query. The
router can direct simpler queries to smaller models and more complex ones to larger models, thereby
balancing response quality with cost efficiency.

Achieving optimal LLM routing—maximizing quality within a cost constraint or minimizing cost
for a target quality—is challenging. An ideal LLM router must (1) optimize response quality while
invoking a single LLM per query, minimizing cost and latency as compared to multi-LLM approaches;
(2) generalize to out-of-domain queries without needing separate routers for different domains; and
(3) work across a broad range of LLMs without retraining, ensuring flexibility as the LLM landscape
evolves.

1Per one million output tokens: Haiku ($1.25) vs. Opus ($75)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Routing performance/cost trade-off between GPT-4 and Mixtral-8x7B. (left) We demonstrate
several routers that outperform the random baseline on OOD eval GSM8K. (center) We demonstrate
improvement in router performance through data augmentation, denoted by (A), on MT Bench.
(right) We display the main metrics we consider: call-performance threshold (CPT, denoted in green)
and average performance gain recovered (APGR, denoted by the blue shaded region).

In this work, we introduce a principled framework for learning LLM routers from preference data.
Our approach involves routing between two classes of models: (1) strong models, which provide
high-quality responses at a high cost (e.g., GPT-4), and (2) weak models, which offer lower-quality
responses at a reduced cost (e.g., Mixtral-8x7B). The objective is to minimize costs while achieving a
specific performance target, e.g., 90% of the strong model, by intelligently routing simpler queries
to a weak model and reserving more complex queries for the strong model. We use our framework
to train several router models and evaluate them on widely recognized benchmarks such as MMLU
(Hendrycks et al., 2020) and MT Bench (Zheng et al., 2023). We demonstrate that our router models
significantly reduce costs—by over 2x—without substantially compromising quality. Moreover, they
show strong performance across multiple strong / weak model pairs without requiring retraining.

To summarize, we make the following contributions:

• We propose a learning framework for routers that leverages human preference data and
data augmentation techniques, achieving over 2x cost savings on popular benchmarks with
minimal impact on response quality.

• We demonstrate that our approach enables routers to generalize to unseen data while
maintaining strong performance across multiple LLMs, allowing a single trained router to
be effective across a wide range of use cases.

• We open source our framework for training, serving, and evaluating LLM routers, allowing
users to easily train their own routers and compare router performance across benchmarks.

2 RELATED WORK

A key distinction exists between reward modeling (Ouyang et al., 2022) and LLM routing. Reward
modeling assesses response quality after an LLM generates it, whereas routing involves selecting the
appropriate LLM beforehand. This requires a deep understanding of the query’s complexity and the
specific capabilities of available models.

Several recent works have also examined the cost-performance trade-offs in routing between different
LLMs. LLM-Blender (Jiang et al., 2023) uses an ensemble framework that queries multiple LLMs
during inference and selects the best response. Frugal-GPT (Chen et al., 2023) follows a cascading
approach, sequentially querying LLMs until a reliable response is obtained. AutoMix (Aggarwal
et al., 2024) uses a smaller model to self-verify its response before potentially routing the query to a
larger model. These methods rely on multiple LLM queries, which can increase latency. In contrast,
our approach routes each query to a single LLM, addressing the latency constraints of an ideal LLM
router.

Hybrid-LLM (Ding et al., 2024) shares some similarities with our framework but differs in key
aspects: it uses synthetic preference labels from the MixInstruct dataset (Jiang et al., 2023) based

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

on BARTScore (Yuan et al., 2021) and relies on a single BERT-based router. In contrast, we
leverage human preference labels from Chatbot Arena (Chiang et al., 2024) and explore multiple
router architectures, showing that data augmentation significantly boosts performance across all
architectures. Additionally, Hybrid-LLM evaluates on the MixInstruct test split and lacks evidence
of out-of-domain generalization, whereas we aim to demonstrate this by evaluating on several
decontaminated public benchmarks.

Finally, Zooter (Lu et al., 2023) uses routing labels from QwenRM reward models (Bai et al., 2023),
which can inherit biases from their training data, affecting the reliability of the routing decisions. In
contrast, our approach relies mainly on human preference data. Like Hybrid-LLM, Zooter explores
only a BERT-style router. Additionally, their training signal relies on a fixed set of LLMs, limiting its
adaptability to other LLMs. In contrast, we show that our approach maintains strong performance
even with LLMs not included in the training data.

3 LLM ROUTING

3.1 PROBLEM FORMULATION

Consider a set of LLM models M, where each model M : Q → A can be viewed as a function
that maps a query q ∈ Q to an answer a = M(q) ∈ A. In this work, we focus on routing between
two classes of models: (1) strong models (Mstrong), which are capable of producing high-quality
responses but come at a high cost, such as advanced proprietary models like GPT-4 (OpenAI, 2023),
and (2) weak models (Mweak), which offer lower-quality responses but at a reduced cost, such as
models like Mixtral-8x7B (Jiang et al., 2024). This binary routing problem is common in practice,
especially as users seek to optimize the trade-off between quality and cost by transitioning from
closed-source to open-source models. Additionally, solving the binary routing challenge provides a
foundation for extending to a more complex N -way routing scenario.

Assume we have access to preference data: Dpref = {(q, ls,w) | q ∈ Q, ls,w ∈ L}, where ls,w
represents the outcome of comparing the responses from a strong model Ms ∈ Mstrong and a weak
model Mw ∈ Mweak for a given query q, and takes values from the set L = {wins, tie,winw}. We
introduce a principled framework for learning a binary routing function Rα : Q → {Mweak,Mstrong}
from preference data. Our approach defines Rα using two key components:

1) Win Prediction Model: This model estimates the probability that a strong model in Mstrong will
outperform a weak model in Mweak for a given query q. This probability is denoted by Pθ(wins|q),
where θ represents the model parameters. These parameters are learned by maximizing the likelihood
of the observed preference data:

max
θ

∑
(q,ls,w)∈Dpref

logPθ(ls,w | q). (1)

By optimizing this likelihood, the model captures the comparative strengths and weaknesses of the
two model classes across different query types. In Section 4.2, we discuss several approaches for
parameterizing this win prediction model.

2) Cost Threshold α ∈ [0, 1]: This threshold translates the predicted winning probability into a
routing decision between Mweak and Mstrong. Given a query q, the routing decision is defined as:

Rα(q) =

{
Mweak if P (wins | q) < α,

Mstrong if P (wins | q) ≥ α.
(2)

The threshold α controls the trade-off between quality and cost: a higher value of α enforces stricter
cost constraints by favoring weak models more often, while a lower α biases toward higher-quality
(but more expensive) strong models.

Finally, with the routing function Rα and two models, Ms ∈ Mstrong and Mw ∈ Mweak, we define a
router model MRα : Q×Mstrong ×Mweak → A, which responds to a query q as follows:2

MRα(q,Ms,Mw) =

{
Ms(q) if Rα(q) = Mstrong,

Mw(q) if Rα(q) = Mweak.
(3)

2For brevity, we denote this as MRα(q).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 METRICS

In this section, we define evaluation metrics to capture the trade-off between cost and performance in
the LLM routing problem. We begin with metrics that independently assess the cost efficiency and
performance of a router model MRα routing between two models Ms ∈ Mstrong and Mw ∈ Mweak,
and then introduce two compounded metrics used in our experimental evaluations.

We measure the cost efficiency of MRα by calculating the percentage of calls to strong models:

c(MRα) =
1

|Q|
∑
q∈Q

I{Rα(q) = Mstrong}, (4)

since Mstrong models are significantly more costly than Mweak models.

For performance, we calculate the average response quality:

r(MRα) =
1

|Q|
∑
q∈Q

s(MRα(q)), (5)

where s(MRα(q)) represents an individual response quality score, such as correctness on golden-
labeled datasets (e.g., MMLU) or a numerical rating (e.g., 1-5 or 1-10), with higher values indicating
better quality. Similarly, r(Ms) and r(Mw) can be defined for the strong and weak model respectively.

Since the router model’s performance falls between that of the weak and strong models, we quantify
its performance relative to the gap between them. We define the router’s overall performance
improvement using the performance gap recovered (PGR):

PGR(MRα) =
r(MRα)− r(Mw)

r(Ms)− r(Mw)
. (6)

This metric captures how much of the performance difference between the weak and strong models is
recovered by the router model.

Neither of the above metrics alone is sufficient to capture the quality-cost trade-off in routing. For
example, a trivial router that always sends queries to the strong model achieves a perfect PGR = 1
but with no cost savings. To address this, we compute a call-performance graph for a router MRα by
varying the threshold values α. We then define the average performance gap recovered (APGR)
as an overall measure of the router’s ability to recover the performance gap under different cost
constraints:

APGR(MRα) =

∫ 1

0

PGR(MRα) d (c(MRα)) . (7)

In Figure 1-(right), APGR corresponds to the area between the router’s performance curve and
the weak model’s performance curve. Empirically, we discretize the percentage of calls over the
interval [0%, 100%] into {ci}i∈[10]. For each ci, we determine the threshold αi that satisfies the cost
constraint. We approximate APGR as:

APGR(MRα) ≈ 1

10

10∑
i=1

PGR(MRαi) (8)

In many real-world applications, it is essential to quantify the cost required to achieve a certain level
of performance. To address this, we introduce a second metric called call-performance threshold
(CPT). Given a desired router performance, i.e., achieving a PGR of x%, the CPT(x%) represents
the minimum percentage of calls to the strong model needed to reach the desired PGR. In Figure
1-(right), the dotted green line illustrates CPT(50%), indicating the percentage of calls to GPT-4
needed to achieve a PGR of 50%. In this figure, CPT (50%) ≈ 37%.

4 METHODOLOGY

4.1 CHATBOT ARENA DATA

Our primary source for preference data is the 80k battles from the online Chatbot Arena platform
(Chiang et al., 2024), where users submit prompts and receive responses from two anonymous models.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

After reviewing the responses, users vote for a winner or declare a tie. This generates a dataset,
denoted as Darena, which contains user queries, model responses, and pairwise comparison labels
based on human judgment.

A key challenge with the raw Chatbot Arena data is label sparsity. On average, the percentage of
comparison labels between any two models is less than 0.1%. To address this, we derive the preference
data by clustering the models in the data into 10 tiers (see Appendix A) based on their scores on
the Chatbot Arena leaderboard3, and minimize intra-tier variation using dynamic programming. We
choose models in the top two tiers to represent the Mstrong class, and models in the third tier represent
the Mweak class. Crucially, we exclude model responses and retain only the winner identities in
training. The resulting dataset is defined as Darena = {(q, ls,w) | q ∈ Q, ls,w ∈ L}.

4.1.1 DATA AUGMENTATION

Despite classifying models into tiers, the human preference signal remains sparse across different
model classes. As discussed in Sec 5.1, this sparsity can limit generalization, particularly for
parameter-heavy router models. To address this, we explore two data augmentation methods:

Golden-labeled datasets: We augment our training data with labeled datasets of the form Dgold =
{(q, lg, ls,w) | q ∈ Q, lg ∈ R, ls,w ∈ L}, where a golden label lg is the known correct answer, e.g. in
multiple-choice questions. Specifically, we use the validation split of the MMLU multiple choice
benchmark (Hendrycks et al., 2020) containing approximately 1500 questions and derive comparison
labels ls,w simply by comparing the responses from Ms and Mw to the golden label.

LLM-judge-labeled datasets: We explore obtaining preference labels on open-ended purpose chat
domains using a LLM judge (Zheng et al., 2023), as it has demonstrated a high correlation with
human judgment (Dubois et al., 2024; Jiang et al., 2023). Given a collection of user queries, we start
by generating responses from both a strong model Ms ∈ Mstrong and a weak model Mw ∈ Mweak,
then producing pairwise comparison labels using GPT-4 as a judge. The primary challenge with
this method is the high cost of collecting responses and pairwise comparisons from GPT-4 in large
quantities. Fortunately, the Nectar dataset (Zhu et al., 2023) offers a wide variety of queries with
corresponding model responses. We significantly reduce our costs by selecting queries with GPT-4
responses (as Ms), on which we generate responses from Mixtral-8x7B (as Mw). Finally, we obtain
pairwise comparison labels using the GPT-4 judge.4. Overall, we collect a preference dataset Djudge
of approximately 120K samples costing around $700 USD in total.

4.2 ROUTING APPROACHES

We now discuss several methods to define the win prediction model Pθ(wins|q) introduced in Eq 1.

Similarity-weighted (SW) ranking We adopt a Bradley-Terry (BT) model (Bradley & Terry, 1952)
similar to Chiang et al. (2024). Given a user query q, we compute its cosine similarity to each query
q′ in the train set, scaled according to the maximum cosine similarity for q′ in the dataset:

S(q, q′) = ϵ · ϵ′

∥ϵ∥∥ϵ′∥ ·max1≤s≤|Dpref|
ϵ′·ϵs

∥ϵ′∥∥ϵs∥
, (9)

where ϵ and ϵ′ denote text embeddings for q and q′ respectively. This similarity score is used to
compute a weight scalar for each training query ω′ = γ1+S(q,q′). 5 We learn BT coefficients ξs, ξw
for the strong and weak models by solving:

argmin
ξs,ξw

∑
(q,ls,w)∈Dpref

[
ω′ · ℓ

(
ls,w,

1

1 + eξs−ξw

)]
, (10)

where ℓ is a binary cross-entropy loss. These coefficients allow us to estimate the win probability as:
Pθ(wins|q) = 1

1+eξs−ξw
. In this approach, no training is required—solving is performed at inference

time.
3https://leaderboard.lmsys.org
4We employ best practices recommended in (Zheng et al., 2023) to de-bias GPT-4 judgements
5We find that exponential scale works best in practice and choose γ = 10.

5

https://leaderboard.lmsys.org

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Matrix factorization Drawing inspiration from matrix factorization models used in recommenda-
tion systems to capture low-rank structures in user-item interactions (Koren et al., 2009; Töscher et al.,
2009), we apply this approach to learn from preference data. The goal is to uncover a hidden scoring
function δ : M×Q → R, where δ(M, q) represents the quality of the model M ’s response to query
q. If M is better than M ′ on a query q, then δ(M, q) > δ(M ′, q). We enforce this by modeling the
win probability using a sigmoid function σ:

Pθ(wins|q) = σ (δ(M, q)− δ(M ′, q)) , (11)

which we optimize on the preference data. The scoring function δ is modelled as a bilinear function
of the model and query embeddings. We embed the model M into a dm-dimensional vector vm, and
the query q into a dq-dimensional vector vq:

δ(M, q) = wT
2 (vm ⊙ (WT

1 vq + b)), (12)

where ⊙ denotes the Hadamard product. W1 ∈ Rdq×dm and b ∈ Rdm are parameters of a projection
layer to align the dimension of vq with vm. w2 ∈ Rdm is the linear regression layer to produce the
final scalar. This method is essentially learning a matrix factorization of the score matrix on the set
Q ×M. We train the model on a 8GB GPU for ≈ 10 epochs, using batch size 64 and the Adam
optimizer (Kingma & Ba, 2017) with learning rate 3× 10−4 and weight decay 1× 10−5.

BERT classifier We explore using a standard text classification method with a higher number of
parameters compared to previous methods. We use a BERTBASE architecture (Devlin et al., 2018), to
give a contextualized embedding of the user query, and define win probability as:

Pθ(wins|q) = σ(WhCLS + b), (13)

where hCLS is an embedding corresponding to the special classification token (CLS) summarizing the
input query q. W and b are parameters of the logistic regression head, while σ is the sigmoid function.
We perform full-parameter fine-tuning on Dpref. We train the model on 2xL4 24GB GPUs for ∼ 2000
steps using a batch size of 16, maximum sequence length of 512, learning rate of 1 × 10−5 and a
weight decay of 0.01.

Causal LLM classifier We finally expand the capacity of our router by parameterizing it with
Llama 3 8B (AI@Meta, 2024b). We use an instruction-following paradigm (Wei et al., 2021), i.e. we
provide as input an instruction prompt containing the user query and output the win probability in a
next-token prediction fashion, instead of using a separate classification head. Notably, we append
the comparison labels as additional tokens to the vocabulary, and compute the win probability as a
softmax over the label classes L. We train the model on 8xA100 80GB GPUs for ∼ 2000 steps using
a batch size of 8, maximum sequence length of 2048, and a learning rate of 1× 10−6.

5 EXPERIMENTS

Training data: As mentioned in Sec. 4.1, we primarily use the 80K Chatbot Arena data Darena for
training our models, but hold out 5k samples for validation. We prune all prompt samples shorter than
16 characters, resulting in 65k pairwise comparisons between 64 different models. These consist of
conversations from over 100 languages, with the bulk of the conversations (81%) in English, followed
by Chinese (3.1%), and Russian (2.2%). We assign models to 10 classes to reduce sparsity of
comparison labels. As discussed in Sec. 4.1.1, we further augment our training data with with either:
1) Dgold, golden-labeled data created from the MMLU validation split, or 2) Djudge, GPT-4-as-a-judge
labeled data.

Evaluation benchmarks: We evaluate our routers on three widely-used academic benchmarks:
MMLU (Hendrycks et al., 2020) consisting of 14,042 questions across 57 subjects, MT Bench (Zheng
et al., 2023) with 160 open-ended questions using LLM-as-a-judge, and GSM8K (Cobbe et al., 2021)
with over 1,000 grade school math problems. Additionally, we conduct a cross-contamination check
between our evaluation and training datasets, and report uncontaminated results below. We present
results on public benchmarks to understand the out-of-domain generalization of our routers.

Routers: For both the matrix factorization router and the SW ranking router, we use OpenAI’s
embedding model text-embedding-3-small to embed the input query. We perform full-
parameter finetuning on both BERT and Causal LLM, and use the validation set for model selection.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

We opt to use gpt-4-1106-preview (OpenAI, 2023) as Ms ∈ Mstrong and Mixtral 8x7B (Jiang
et al., 2024) as Mw ∈ Mweak to concretely evaluate router performance. We use a random router that
routes queries randomly under a cost constraint as the baseline.

5.1 RESULTS

Training data Method CPT (50%) CPT (80%) APGR Improvement

Random (95% CI) 49.03(±4)% 78.08(±3)% 0.500(±0.02) (+0%)

Darena BERT 78.09% 87.64% 0.391 (-21.8%)
Causal LLM 28.82% 77.53% 0.573 (+14.6%)
Matrix Factorization 25.32% 74.26% 0.580 (+16%)
SW Ranking 37.85% 58.99% 0.610 (+22.1%)

Darena +Djudge BERT 19.58% 34.02% 0.751 (+50.2%)
Causal LLM 31.50% 48.75% 0.679 (+35.8%)
Matrix Factorization 13.40% 31.31% 0.802 (+60.4%)
SW Ranking 23.21% 36.04% 0.759 (+51.8%)

Table 1: MT Bench results. Note that the MT Bench score at CPT(50%), 8.8, is 95% that of GPT-4’s
score (9.3). Our routers exhibit strong performance on MT Bench when trained on Darena, with further
improvement when the dataset is augmented with Djudge, reducing costs by up to 75% as compared to
the random router.

Table 1 displays our router performance on MT Bench. For routers trained on the Arena dataset, we
observe strong performance for both matrix factorization and similarity-weighted ranking, with both
routers performing significantly better than the random router across all metrics. Notably, matrix
factorization requires half the number of GPT-4 calls as compared to random to achieve a PGR of
50%. However, our BERT and causal LLM classifiers perform close to random when trained on the
Arena dataset, which we attribute to high capacity approaches performing worse in a low-data regime.

Augmenting the preference data using a GPT-4 judge leads to notable improvements across all routers.
The BERT and causal LLM routers now perform much better than the random baseline, with the
BERT classifier achieving an APGR improvement of over 50% as compared to random. When trained
on this augmented dataset, matrix factorization is the best-performing router with its CPT(80%)
nearly halved and requiring 50% less GPT-4 calls as compared to random.

We also compare the MT Bench performance of our routers against existing commercial routing
systems in Appendix E, demonstrating how our routers achieve substantial improvements over other
available systems.

Training data Method CPT (50%) CPT (80%) APGR Improvement

Random (95% CI) 50.07(±0)% 79.93(±0)% 0.500(±0) (+0%)

Darena BERT 49.43% 77.80% 0.502 (+0.5%)
Causal LLM 48.88% 77.93% 0.499 (-0.2%)
Matrix Factorization 45.00% 76.86% 0.524 (+4.9%)
SW Ranking 55.82% 80.25% 0.473 (-5.4%)

Darena +Dgold BERT 41.30% 72.20% 0.572 (+14.4%)
Causal LLM 35.49% 70.31% 0.600 (+19.9%)
Matrix Factorization 35.46% 71.40% 0.597 (+19.5%)
SW Ranking 35.40% 71.55% 0.603 (+20.7%)

Table 2: 5-shot MMLU results for our routers. Note that the MMLU score at CPT(50%), 75, is 92%
that of GPT-4’s score (81). Routers trained only on Darena perform poorly due to most questions being
out-of-distribution, but dataset augmentation with Dgold is highly effective, leading to significant
improvement in router performance even with a small number of samples.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

On MMLU (Table 2), all routers perform poorly at the level of the random router when trained
only on Arena dataset, which we attribute to most MMLU questions being out-of-distribution (see
Section 5.3). However, augmenting the training dataset with golden-label data from the MMLU
validation split leads to significant performance improvements on MMLU across all routers, with all
routers requiring approximately 20% less GPT-4 calls than random for CPT(50%). Importantly, this
is despite the fact that the additional golden-labeled dataset of approximately 1500 samples represents
less than 2% of the overall training data, demonstrating the effectiveness of dataset augmentation
even when the number of samples is small.

Training data Method CPT (50%) CPT (80%) APGR Improvement

Random (95% CI) 50.00(±2)% 80.08(±1)% 0.497(±0.01) (+0%)

Darena BERT 58.78% 83.84% 0.438 (-11.8%)
Causal LLM 56.09% 83.56% 0.461 (-7.3%)
Matrix Factorization 53.59% 85.24% 0.4746 (-4.5%)
SW Ranking 54.43% 82.11% 0.4753 (-4.3%)

Darena +Djudge BERT 44.76% 79.09% 0.531 (+6.9%)
Causal LLM 33.64% 63.26% 0.622 (+25.3%)
Matrix Factorization 38.82% 72.62% 0.565 (+13.8%)
SW Ranking 41.21% 72.20% 0.568 (+14.3%)

Table 3: 8-shot GSM8K results. Note that the GSM8K score at CPT(50%), 75, is 87% that of
GPT-4’s score (86). Routers trained only on Darena again perform poorly due to questions being
out-of-distribution, but augmentation with Djudge substantially improves router performance.

Finally, on GSM8K (Table 3), we observe that similar to MMLU, the performance of all routers
trained only on the Arena dataset is close to random. However, training our routers on the dataset
augmented with synthetic data from an LLM judge substantially improves performance, with all
routers going from an APGR worse than random to an APGR greater than random. When trained on
this augmented dataset, the causal LLM classifier performs the best out of all routers, requiring 17%
less GPT-4 calls than random to achieve CPT(50%) and CPT(80%).

5.2 ADAPTABILITY ACROSS MODELS

We picked gpt-4-1106-preview and Mixtral 8x7B as Ms and Mw respectively for the above
experiments. However, to demonstrate the adaptability of our routers to new LLMs, we report in
Table 4 the performance of our routers on MT Bench when they are used to route between two new
model pairs: (1) Ms = Claude 3 Opus, Mw = Claude 3 Sonnet (Anthropic, 2024) and (2) Ms =
Llama 3.1 70B, Mw = Llama 3.1 8B (AI@Meta, 2024a). Importantly, we use the same routers as
before without any retraining, and only replace the strong and weak model routed to. These LLMs
are also not present in the training data.

Model Pair Method CPT (50%) CPT (80%) APGR Improvement
(Ms / Mw)

Claude 3 Opus / Random (95% CI) 49.89 (±3)% 72.27 (±4)% 0.493 (±0.033) (+0%)
Claude 3 Sonnet BERT 34.85% 39.04% 0.682 (+38.3%)

Causal LLM 28.12% 50.00% 0.656 (+33.1%)
Matrix Factorization 31.86% 36.43% 0.762 (+54.6%)
SW Ranking 23.27% 51.85% 0.772 (+56.6%)

Llama 3.1 70B / Random (95% CI) 47.52(±3)% 76.26(±2)% 0.512 (±0.017) (+0%)
Llama 3.1 8B BERT 30.15% 38.91% 0.673 (+31.4%)

Causal LLM 34.05% 45.96% 0.689 (+34.6%)
Matrix Factorization 25.83% 37.30% 0.738 (+44.1%)
SW Ranking 21.18% 29.39% 0.767 (+49.8%)

Table 4: MT Bench results for our routers when used to route between different model pairs. We use
the exact same routers as before trained on Darena +Djudge. Our routers generalize very well across
different model pairs without any retraining.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

We observe strong results across all existing routers on MT Bench even when the model pair is
replaced, with performance comparable to that of the original model pair. The results continue to
be significantly stronger than random, with our best routers requiring approximately half the GPT-4
calls of the random router to achieve CPT(80%) when routing between both the Claude 3 and Llama
3.1 family of models. These results suggest that our routers have learned common characteristics of
queries that allow them to distinguish between strong and weak models, generalizing to new models
at inference time without additional training.

5.3 QUANTIFYING DATASET AND BENCHMARK SIMILARITY

We attribute the difference in the performance of routers trained on the same dataset across different
benchmarks to the differing distributions of evaluation data and training data. For each benchmark-
dataset pair, we compute a benchmark-dataset similarity score in Table 5 indicating how well-
represented evaluation data is in the training data, detailed in Appendix C.

Arena Arena augmented with Arena augmented
with Djudge with Dgold

MT Bench 0.6078 0.6525 -
MMLU 0.4823 - 0.5678
GSM8K 0.4926 0.5335 -

Table 5: Benchmark-dataset similarity scores demonstrate a strong correlation between these scores
and the performance of routers on the corresponding benchmarks, providing a way of quantitatively
improving router performance.

A higher benchmark-dataset similarity score is correlated with stronger performance on that bench-
mark for routers trained using the corresponding dataset, as shown in Section 5.1. Dataset augmen-
tation, be it using golden-labeled or LLM-judge-labeled datasets, shifts the overall distribution of
the preference data to be more in line with the benchmarks and increases the benchmark-dataset
similarity score, which translates into improved performance. This similarity score is also useful for
understanding the relative performance of routers across different benchmarks: on Darena, the similar-
ity score between MT Bench and all datasets is noticeably greater than other benchmarks, which we
believe explains the relatively stronger router performance on MT Bench as compared to GSM8K and
MMLU. Benchmark-dataset similarity scores are a promising direction for systematically improving
router performance in real-world use cases, given knowledge about the query distribution.

5.4 COST ANALYSIS

CPT (50%) CPT (80%)

MT Bench 3.66 (95% GPT-4 quality) 2.49
MMLU 1.41 (92% GPT-4 quality) 1.14
GSM8K 1.49 (87% GPT-4 quality) 1.27

Table 6: Cost saving ratio of our best performing routers over GPT-4. Our routers are able to achieve
significant cost savings while maintaining quality.

We estimate the average cost of using GPT-4 and Mixtral 8x7B to be $24.7 per million tokens and
$0.24 per million tokens respectively (detailed in Appendix D). Based on this, in Table 6, we quantify
the cost savings achieved by our approach. To do so, we calculate the inverse of the ratio of GPT-4
calls made by our top-performing router relative to the random baseline because the cost of GPT-4 is
the dominant factor in our analysis. The results show that our routers achieve cost savings of up to
3.66x, demonstrating that routing can significantly reduce cost while maintaining response quality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5.5 ROUTING OVERHEAD

Cost / million requests Requests / second Hourly cost of VM

SW Ranking $37.36 2.9 $0.39
Matrix Factorization $1.42 155.16 $0.8

BERT $3.19 69.62 $0.8
Causal LLM $5.23 42.46 $0.8

Table 7: Cost and inference overhead of different routers. As compared to the cost of LLM generation,
the cost of deploying a router is small while also able being able to support real-world workloads.

A concern with LLM routing is the overhead of routing as compared to using a single model.
Therefore, we measure and report the overhead of our routers in Table 7 using randomly-sampled
conversations from Chatbot Arena. For routers that require GPUs, namely matrix factorization and the
classifier methods, we utilize Google Cloud’s g2-standard-4 VM containing a single NVIDIA
L4 GPU. For similarity-weighted ranking, we use Google Cloud’s CPU-only n2-standard-8 VM.
Our GPU-based routers are currently much more efficient that our CPU-based routers, but we note
that there is still much room for improvement in optimizing these routers. Based on the results, our
most expensive router, SW ranking, currently adds an extra cost of no more than 0.4% as compared
to GPT-4 generation (detailed in Appendix D), demonstrating the cost-effectiveness of these routers.

6 CONCLUSION

We demonstrate strong performance by our routers across a variety of benchmarks from open-ended
question answering to humanities and math problems. By intelligently routing queries between a
strong and weak model, our routers achieve significant cost savings and high response quality without
excessive cost or latency overhead. We also show that our routers maintain their performance across
multiple strong / weak model pairs without retraining–an important capability that if absent, would
greatly limit usefulness.

Our results highlight the effectiveness of dataset augmentation in improving router performance.
While training routers solely on Darena results in poor performance on MMLU and GSM8K, augment-
ing the training data with an LLM judge or in-domain data enables our routers to outperform the
random baseline across all benchmarks. The greatest performance gains occur when the training data
closely resembles the evaluation data, as indicated by the benchmark-dataset similarity score. We
believe that this framework provides a clear path towards improving routing performance for specific
use cases.

While our work demonstrates strong results, there are a few limitations. First, although we evaluate
on a diverse set of benchmarks, real-world applications may have distributions that differ substantially
from these benchmarks. To this end, we show that users can collect a small amount of in-domain
data to improve performance for their specific use cases via dataset augmentation. Next, while we
focus on the two-model routing setting in this work, a promising future direction would be to extend
this approach to multiple models. Finally, rather than there being a single best router for all queries,
the decision of which router to use should be based holistically on latency and cost requirements,
as well as the types of queries handled. In our experiments, we observe that performance between
different routers trained on the same dataset can vary widely on the same benchmark without a clear
explanation—we leave further investigation into this for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay,
Manaal Faruqui, and Mausam. Automix: Automatically mixing language models, 2024. URL
https://arxiv.org/abs/2310.12963.

AI@Meta. Llama 3.1 model card, 2024a. URL https://github.com/meta-llama/
llama-models/blob/main/models/llama3_1/MODEL_CARD.md. Accessed: 2024-
09-29.

AI@Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024b. URL
https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-05-21.

Anthropic. "introducing the next generation of claude", 2024. URL https://www.anthropic.
com/news/claude-3-family. Accessed: 2024-05-22.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
https://arxiv.org/abs/2309.16609.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=02f3mUtqnM.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems, 36,
2024.

11

https://arxiv.org/abs/2310.12963
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://ai.meta.com/blog/meta-llama-3/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2309.16609
https://openreview.net/forum?id=02f3mUtqnM

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2020.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system, 2024. URL https://arxiv.org/abs/2403.12031.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models, 2023. URL
https://arxiv.org/abs/2311.08692.

Martian. Martian router, 2024. URL https://withmartian.com/. Accessed: 2024-06-30.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Openai pricing, 2024. URL https://openai.com/api/pricing/. Accessed:
2024-06-30.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Together.AI. Together.ai pricing, 2024. URL https://www.together.ai/pricing. Ac-
cessed: 2024-06-30.

Andreas Töscher, Michael Jahrer, and Robert M Bell. The bigchaos solution to the netflix grand
prize. Netflix prize documentation, pp. 1–52, 2009.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

UnifyAI. Unifyai, 2024. URL https://unify.ai. Accessed: 2024-06-30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text
generation. Advances in Neural Information Processing Systems, 34:27263–27277, 2021.

12

https://arxiv.org/abs/2403.12031
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2311.08692
https://withmartian.com/
https://openai.com/api/pricing/
https://www.together.ai/pricing
https://unify.ai

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif, November 2023.

13

https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A ARENA MODEL TIERS

Tier Models
Tier 0 gpt-4-0125-preview, gpt-4-1106-preview
Tier 1 gpt-4-0314, gpt-4-0613, mistral-medium, claude-1, qwen1.5-72b-chat
Tier 2 claude-2.0, mixtral-8x7b-instruct-v0.1, claude-2.1, gemini-pro-dev-api, gpt-3.5-turbo-

0314, gpt-3.5-turbo-0613, gemini-pro, gpt-3.5-turbo-0125, claude-instant-1, yi-34b-
chat, starling-lm-7b-alpha, wizardlm-70b, vicuna-33b, tulu-2-dpo-70b, nous-hermes-2-
mixtral-8x7b-dpo, llama-2-70b-chat, openchat-3.5

Tier 3 llama2-70b-steerlm-chat, pplx-70b-online, dolphin-2.2.1-mistral-7b, gpt-3.5-turbo-
1106, deepseek-llm-67b-chat, openhermes-2.5-mistral-7b, openchat-3.5-0106,
wizardlm-13b, mistral-7b-instruct-v0.2, solar-10.7b-instruct-v1.0, zephyr-7b-beta,
zephyr-7b-alpha, codellama-34b-instruct, mpt-30b-chat, llama-2-13b-chat, vicuna-13b,
qwen1.5-7b-chat, pplx-7b-online, falcon-180b-chat, llama-2-7b-chat, guanaco-33b,
qwen-14b-chat

Tier 4 stripedhyena-nous-7b, mistral-7b-instruct, vicuna-7b, qwen1.5-4b-chat, palm-2
Tier 5 koala-13b, chatglm3-6b, gpt4all-13b-snoozy
Tier 6 mpt-7b-chat, RWKV-4-Raven-14B, chatglm2-6b, alpaca-13b, oasst-pythia-12b
Tier 7 fastchat-t5-3b, chatglm-6b
Tier 8 dolly-v2-12b, stablelm-tuned-alpha-7b
Tier 9 llama-13b

B DATA CONTAMINATION

We check for cross-contamination between our evaluation dataset and the preference data used
for training using embedding similarity search. Embeddings are generated for the evaluation and
training data using OpenAI’s text-embedding-3-small model. For each evaluation example,
we perform a similarity search across all training data with a threshold of 0.95, returning a list of
contaminated examples. We discard these evaluation examples and report results on uncontaminated
scores.

C BENCHMARK-DATASET SIMILARITY

Let ϵB = {b1, b2, . . . , bn} be the embeddings of the prompts for a given benchmark B and ϵD =
{d1, d2, . . . , dm} be the embeddings of a specific preference dataset Dpref, where n and m are the
total number of evaluation and preference data samples respectively. We define the benchmark-data
similarity score S(B,Dpref) for each benchmark B as the average maximum similarity for each
evaluation prompt across all dataset samples:

S(B,Dpref) =
1

n

n∑
i=1

max
1≤j≤m

bi · dj
∥bi∥∥dj∥

(14)

We opt to use only the maximum similarity score because having a small number of samples of
preference data that are very similar to the user’s query is most valuable for efficient query routing, as
opposed to having many samples that are less similar to the user prompt.

D COST CALCULATION

Since our evaluations are performed with the gpt-4-1106 endpoint, we use its pricing ($10 per 1
million input tokens and $30 per 1 million output tokens) in our analysis. For the sake of simplicity,
we assume the routers will be mostly handling short prompts in a single turn setting. We find the
average input prompt in the training set to be 95 tokens long, and the average output responses to be
264 tokens long. This means the input/output tokens ratio is roughly 95

264 . Using these information,

we estimate the average cost of using GPT-4 to be: (95×10
1,000,000+

264×30
1,000,000)×1,000,000

95+264 ≈ 24.7 USD per 1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

million tokens. For Mixtral 8x7B, we assume the same price for both input and output tokens, which
makes the average cost $0.24 USD per 1 million tokens.

E INDEPENDENT BENCHMARKS

Figure 2: Performance of our routers as compared to other routing systems on MT Bench. Our routers
demonstrate competitive performance, achieving stronger performance than existing routers for the
same cost.

In Figure 2, we present the performance of our best-performing routers on MT Bench as compared to
Unify AI (UnifyAI, 2024) and Martian (Martian, 2024), two existing commercial offerings for LLM
routing.

Here, we route between gpt-4-turbo-2024-04-09 (OpenAI, 2023) as Ms, and either
mixtral-8x7b-instruct-v0.1 (Jiang et al., 2024) or llama-2-70b-chat (Touvron et al.,
2023) as Mw depending on which model each system supports. For Unify AI, we select the best-
performing router configuration on the user dashboard and use it for benchmarking. For Martian, we
optimize for performance and specify the maximum cost per million tokens as $10.45, approximating
this value using public inference costs (OpenAI, 2024; Together.AI, 2024) based on a 1:1 input:output
token ratio so that 50% of calls are routed to GPT-4.

Both the matrix factorization router and causal LLM routers perform very competitively when trained
on Darena+Djudge, outperforming the commercial routing systems by achieving the same performance
with up to 40% fewer calls routed to GPT-4.

F ADDITIONAL PLOTS

We include additional plots for the results presented in Section 5.1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 3: MT Bench performance for all routers.

Figure 4: 5-shot MMLU performance for all routers.

Figure 5: 8-shot GSM8K performance for all routers.

16

	Introduction
	Related Work
	LLM Routing
	Problem Formulation
	Metrics

	Methodology
	Chatbot Arena Data
	Data Augmentation

	Routing Approaches

	Experiments
	Results
	Adaptability across models
	Quantifying dataset and benchmark similarity
	Cost analysis
	Routing Overhead

	Conclusion
	Arena Model Tiers
	Data Contamination
	Benchmark-Dataset Similarity
	Cost Calculation
	Independent Benchmarks
	Additional Plots

