
A Natural Way of Building Financial Domain Expert Agents
Gagandeep Singh Kaler∗
Dimitrios Vamvourellis∗

Deran Onay∗
Yury Krongauz∗
Stefano Pasquali∗
Dhagash Mehta∗

Abstract
Financial experts possess specialized knowledge that is not easily ac-
cessible, making the acquisition of such expertise a time-intensive
process. Leveraging Large Language Models (LLMs) to emulate
financial domain experts offers a promising solution, which can
offload routine responsibilities from human experts, allowing them
to focus on more strategic tasks. However, developing a GenAI
agent that matches the capabilities of a financial domain expert re-
quires more than just LLMs with Retrieval-Augmented Generation
(RAG) capabilities. The agent must interact with domain-specific
data sources, perform complex analyses, and understand niche
terminologies and processes. We propose a natural way of devel-
oping of GenAI-powered financial domain experts by following a
zero-shot approach. Our agent’s memory layer has complimentary
capabilities to few-shot prompting and provides a natural way of
remembering information as it interacts with domain experts.

This paper is presented as a case study where we propose a
comprehensive framework for building financial domain expert
agents. Our approach involves iteratively enhancing a basic LLM
with data extraction layer, coding capabilities, and a memory layer
to perform complex analyses. We show how addition of each layer
to our LLM agent improves its performance and also address the
necessary safety and governance processes to ensure the robustness
and accuracy of production ready agent.We also introduce a custom
dataset (having roots in the financial domain) for evaluating the
agent’s performance in numerical analysis andmulti-step reasoning,
providing a clearer picture of the agent’s capability to mimic a
financial domain expert.

Keywords
GenAI, Large Language Models, Memory, Finance, Natural agent,
Zero-Shot, Financial domain expert

ACM Reference Format:
Gagandeep Singh Kaler, Dimitrios Vamvourellis, Deran Onay, Yury Kron-
gauz, Stefano Pasquali, and DhagashMehta. 2024. ANaturalWay of Building

∗BlackRock Inc., New York City, NY

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIF ’24, November 14–17, 2024, Brooklyn, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Financial Domain Expert Agents. In Proceedings of 5th ACM International
Conference on AI in Finance (ICAIF ’24). ACM, New York, NY, USA, 10 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Financial experts possess specialized knowledge of the domain,
tools, and processes that are not easily understood by everyone.
For a novice, acquiring these expertise can be an intensive process
requiring significant time commitment from the domain expert.
Additionally, from a compliance perspective, it is challenging to
identify gaps in quality control and governance processes, as under-
standing the domain itself is complex, let alone recognizing what
is missing.

Owing to their broad capability, leveraging LLMs to emulate a
financial domain expert could be considered. This approach can
significantly offload the responsibilities of human experts, allowing
them to focus on more complex and strategic activities. Addition-
ally, this should improve understanding for general users, which
could help identify and address possible compliance gaps. However,
LLMs themselves are plagued with numerous issues such as halluci-
nations, lack of long-term memory, and inability to follow complex
instructions (missing steps in the middle) [2, 13, 33]. In addition to
these issues, substantial time and effort is required during prompt
engineering (including creating relevant few-shot examples) to en-
hance their performance [22]. These challenges are significant in
any domain, but addressing them becomes even more critical in the
financial sector, where accuracy and precision are paramount [18].

Developing a GenAI agent at par with a financial domain expert
requires capabilities beyond understanding financial terminologies.
Therefore, complementing our LLM agent with RAG capabilities
is insufficient [18, 31]. At a minimum, it needs to interact with
domain-specific data sources and perform complex analyses before
it can respond to a user’s request. It must understand terminologies
and processes specific to the niche domain it aims to specialize
in, rather than hallucinating or misinterpreting meanings from
different domains. It also needs the ability to follow long processes
precisely to answer questions requiring complex analysis.

We propose a comprehensive and streamlined approach that
addresses the aforementioned shortcomings and provides a natural
way of developing GenAI-powered financial domain experts. In this
paper, we follow an iterative improvement methodology, starting
with a basic LLM agent and progressively enhancing it with tools
and features until it can emulate our financial domain expert.

Working with financial datasets requires additional considera-
tions around safety and governance. Therefore, for the layers we

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ICAIF ’24, November 14–17, 2024, Brooklyn, NY Gagandeep Singh Kaler, Dimitrios Vamvourellis, Deran Onay, Yury Krongauz, Stefano Pasquali, and Dhagash Mehta

discuss, we also elaborate on the steps needed to make our agent
safe, robust, and production-ready [3, 18, 20].

Datasets used to assess performance of LLMs are primarily on
language based reasoning [16]. To evaluate our LLM agent’s per-
formance in a given financial domain, we created a custom dataset
focused on precise numerical analysis and multi-step reasoning.
The questions in this dataset are relevant to the provided financial
database schema, enabling combined performance assessment on
appropriate tool calling capabilities and multi-step numerical anal-
ysis. Therefore, the performance of our LLM agent on this dataset
should give a clearer picture of it’s capability to mimic a financial
domain expert.

2 Methodology
Gaining expertise in any domain requires extensive investment of
both time and effort. Instead of training novices on the intricacies
of a domain, we propose a framework for creating domain expert
LLM agents. Our framework targets a natural way of developing
financial domain expert. So instead of spending extensive efforts
initially in the prompt engineering phase, we let the LLM agent
learn from its interaction with the domain expert. Allowing for a
more natural way of bestowing knowledge from a domain expert
to our LLM agent.

Developing a monolithic mega agent presents several challenges
and disadvantages [6]. Therefore, we demonstrate an iterative agent
approach, progressively adding layers of capability to transform
any LLM into a financial domain expert. We begin by introducing
knowledge of domain-specific datasets in the form of SQL database
schema and complementary data extraction tool. We then add cod-
ing capabilities to perform additional analytics on extracted data.
Introducing a memory layer helps bridge the gap from a general
coding agent to a financial domain expert. This memory layer pro-
vides complementary features to few-shot examples, where the
LLM agent is able to automatically learn generalized processes as a
domain expert interacts with it. In the memory layer we also incor-
porate a keywords databases to accurately interpret the meanings
of terminologies and processes specific to a given financial domain,
avoiding hallucinations from different domains. This iterative ap-
proach makes our domain expert agent more modular, providing
easy optimization capabilities and decoupling benefits.

2.1 Data Extraction Layer
The data source for a given financial domain can exist in various
formats. Some of the most prevalent ones are SQL databases and
API endpoints. For the purpose of this case study, we have chosen
SQL databases. However, without loss of generality, API endpoints
or any other data source can also be accommodated within the
framework.

We begin by incorporating domain-specific SQL database schema
information into our system prompt. Additionally, we include few
example records per table to provide the LLM with an understand-
ing of the type of data it will be working with. As part of the system
prompt, the LLM is instructed to generate SQL statements to an-
swer user queries. We introduce a corresponding tool responsible
for extracting data using the LLM-generated SQL statements. The
extracted data is then sent back to the LLM for further inference,

allowing it to provide the final answer to the user’s original ques-
tions.

2.1.1 Drawbacks. Adding access to the data source is a necessary
first step. However, relying solely on this capability presents several
drawbacks. LLMs are capable of generating complex SQL queries
with numerous sub-queries and joins (along with using Turing
complete features) to answer atypical user questions. However, the
rate of error (both syntactic and logical) increases with increasingly
complex SQL queries, hinting at its limitations when employed for
complex analysis [29]. Using simpler queries and sending extracted
data back to the LLM for further analysis can help mitigate these
limitations to some extent, but it introduces data compliance issues.
Confidential financial data should not be exposed to a remote LLM.
While capable locally-hosted LLMs can be used, they come with
large infrastructural requirements, which introduce additional chal-
lenges. As LLMs are advancing at mind boggling rate, being stuck
to an out-dated local LLM in a non-optimal choice [17]. Therefore,
framework designs that use confidential data and can still leverage
remote LLMs is desirable. 1

2.1.2 Limited Dataset Approach. This approach of including schema
information within system prompt works well when schema in-
formation is limited. Even though the context length of LLMs is
increasing by the day, this approach should be avoided for large
database schema given cost and data similarity implications [28].
Introducing large database schema without any pre-processing can
result in the LLM agent choosing wrong dataset because of data sim-
ilarity (based on similarity in name, datatype or example records).
Or choosing different datasets with similar contextual information
between different runs. Tackling large databases is challenging and
alternative approaches needs to be employed. Creating multiple
niche agents operating with a dataset’s subset and following a multi
agent approach could be a solution. Limited dataset exposure can
make our niche agents more tractable. Alternatively, dataset subset
selection can be a precursory step before feeding control to the
LLM agent. We let the user choose between different approaches
available in literature to tackle large dataset problem [7, 8, 26].

2.1.3 In essence. Domain experts perform multiple steps of com-
plex analysis on extracted data before providing final answers. Even
though there has been significant advancement in improving the
performance of SQL-enabled LLM agents, such performance gains
are usually attributed to time intensive prompt engineering with
appropriate few-shot prompting or fine-tuning LLM models on
dataset [7, 8, 26]. Given our goal of zero-shot agent development,
we soon realize that atypical analysis is beyond the scope of a SQL-
enabled LLM agent. Also, data confidentiality requirements needs
to be met. Therefore, we introduce additional capabilities to our
agentic framework.

2.2 Scripting Layer
Incorporating a programming language capable of running analy-
ses performed by financial domain experts is essential for building
our domain expert agent. We need to brings in capabilities like data

1Remote LLMs can still have confidentiality issues through exposed database schema
and human chat messages. But keeping the raw data within the bounds of our system
should help with data licensing and localization requirements.



A Natural Way of Building Financial Domain Expert Agents ICAIF ’24, November 14–17, 2024, Brooklyn, NY

visualization and data analysis using advance libraries (support of
which is current lacking in SQL). To simplify the framework, we opt
for scripting languages over compiled languages. Given its wide-
spread use in data science, we have chosen Python. Additionally,
Python’s popularity ensures that trained LLMs have encountered a
substantial corpus of newer sample code fragments, which should
result in improved performance of generated code [25].

2.2.1 Loosely Coupling with Data Extraction Layer. Integrating a
scripting layer atop our data extraction layer enables the LLM to
decompose complex problems into simpler data extraction and
scripting tasks. This division enhances problem tractability, as each
system addresses more manageable sub-problems [15].

To connect the two systems, we employ the following design for
the SQL tool (DataFrameFromSQL) and the scripting tool (Python-
Script):

DataFrameFromSQL
Field Description

select_query An SQLite SELECT statement.
df_columns Ordered names to give the DataFrame columns.
df_name The name to give the DataFrame variable in

downstream code.
PythonScript

Field Description
code Python script code.

df_names The names of the DataFrames that are already
present in memory and the code will use.

Table 1: Class Fields and Descriptions

class DataFrameFromSQL(BaseModel):
select_query: str = Field(...)
df_columns: List[str] = Field(...)
df_name: str = Field(...)

class PythonScript(BaseModel):
code: str = Field(...)
df_names: List[str] = Field(...)

(NOTE: Field description are included in Table 1.)
The LLM can invoke the DataFrameFromSQL tool multiple times

to gather all necessary datasets. Each dataset is assigned a name
using the df_name parameter, which is subsequently utilized in the
PythonScript tool via the df_names parameter.

2.2.2 Handling Errors. Despite significant advancements in LLMs’
code generation capabilities, a considerable portion of generated
code still contains syntax, runtime, and logical errors. To address
these issues, if we encounter error during generated code execution,
we append the error message to the response, prompting the LLM
agent to retry with error information. This approach allows the
LLM to refine its code incrementally rather than restarting from
scratch. There are a good number of error handling techniques,
like simply retrying, writing accompanying unit-tests, etc. [1, 32].
The approach we choose provides a good balance of simplicity,
accuracy, latency and token usage. Once the LLM successfully self-
corrects, we eliminate all error correction dialogues to minimize

unnecessary token usage. Retaining correct code ensures more
accurate responses to related follow-up questions.

In practice, we integrate the error correction capability holisti-
cally with the LLM agent itself. This allows the LLM agent make
retry attempts for not only errors in generated scripting code, but
also for data extraction layer and tool call parsing. As up until the
launch of OpenAI’s Structured Outputs, we cannot guarantee tool
call schema is respected [21].

2.2.3 Safety and Security. Executing generated code without safe-
guards poses significant security risks. Malicious code can introduce
substantial operational hazards. Therefore, it is crucial to imple-
ment measures to prevent and mitigate the execution of harmful
code. We address this through the following solutions, which can
be used in conjunction with each other:

• Deploying a separate adversarial LLM to validate that the
generated code adheres to predefined safety rules. This LLM
is explicitly programmed with validation rules and provided
with the generated code to ensure compliance. Although this
incurs a slight performance cost, the safety benefits justify
its integration into any code generation framework [19].

• Running generated code in isolated Docker containers. This
sandbox environment, devoid of elevated privileges (also
known as sudo access), read/write, or network access, limits
the potential impact of malicious code. The framework trans-
fers only the generated code and associated DataFrames to
the container, which solely performs code execution. The
container’s output is then type-validated before being serial-
ized back to the host machine. This design ensures validation
of both inputs and outputs.

• Parsing the generated Python script as an abstract syntax tree
before execution. With this step we can prevent importing
certain packages/modules, providing finer control over the
generated code for enhancing security [14].

2.2.4 Advantages.

• Loosely coupling the data extraction and scripting layers
allows the framework to reuse named DataFrames already
available in memory when addressing related questions, in-
stead of re-extracting data again.

• Error handling through self-correction (with error context)
improves overall performance, as we will also see in section
3.

• The Python scripting layer enables the framework to gen-
erate graphs/plots when responding to queries, enhancing
understanding by engaging visual cortex [11].

• Owing to its popularity Python supports a huge selection of
advance data analytics libraries, which can easily support
domain specific analysis needs.

• Combining data extraction and scripting layers facilitates
complex analyses which was difficult to achieve in a zero-
shot manner from the data extraction layer alone.

2.3 Memory Layer
Adding a scripting layer to our LLM agent makes it sufficiently
capable of performing complex analysis. However, to bridge the gap
between a general coding agent and a financial domain expert, our



ICAIF ’24, November 14–17, 2024, Brooklyn, NY Gagandeep Singh Kaler, Dimitrios Vamvourellis, Deran Onay, Yury Krongauz, Stefano Pasquali, and Dhagash Mehta

LLM agent needs to answer domain related questions like "What’s
the most likely factor to cause recession?". It should decompose
such questions into a complex process, composed of a series of
steps. The agent then needs to follow this process precisely and
combine outputs from multiple steps to provide the final answer.

Adding memorization capability to our LLM enables this func-
tionality. We use a vector database where the keys are domain-
related questions or process headings, and the related step-by-step
process to follow to get the answer is linked in its metadata. To find
relevant chunks of memory we employ a two tier process.

• First, a user’s query is generalized and searched for within
the vector database. During generalization, we ask the LLM
to strip away specifics and come up with a few variations of
generalized questions. This generalization allows us to get
bettermatch in the vector databasewhere the domain-related
questions and processes are also saved in a generalized man-
ner. If a match is found, we use the metadata to complement
the user’s question with a process that must be followed to
provide an answer. 2

• If we do not find a match for the question being asked, we
try to find how to solve part of the question. At this step,
we ask LLM to divide the original question into an a series
of smaller processes which needs to be solved to get the
final answer. These smaller processes are searched for in the
vector database, to find how to solve part of the question.
Eg: If we ask "Excluding all periods of recessions, is current
unemployment higher or lower than last 10 years average?",
then the LLM will try to find "Determine Recession Periods"
and "Calculate Unemployment" inside the memory layer.

In summary, we try to find the process which can be used to
answer the question asked. If we are successful in finding the pro-
cess then we proceed ahead by including this information with our
question. If we are not successful then the question is broken down
into smaller processes which are looked for inside the memory
layer. So, we can use memory to solve part of the question if not
whole, and let the LLM agent decide on how to solve the rest of it
(based on current chat context or SQL schema information).

2.3.1 Adding Entries to the Vector Database. The entries in the vec-
tor database (or the memory layer) are learned through interaction
with the domain expert. We start with an empty database and let
the domain expert use the LLM agent to perform analysis. The
domain expert, with knowledge of different systems, asks directed
questions like "Compare today’s fit data against last year’s and tell
me if the fit values are within 1 standard deviation of last year’s val-
ues." The expert can continue asking numerous simpler questions
to build up their analysis, while keeping an eye on the accuracy of
conducted analysis.

Once the human expert has built up their analysis by using
LLM agent provided outputs to simpler questions, the expert can

2As a simple enhancement, we don’t solely rely on vector similarity. We also use a
separate LLM to decide if the vector matched processes can be used to answer the
original question. If so, then this LLM should select the most relevant process. But
if the LLM decides the processes are not relevant, then we go ahead without any
modification to the original question. This allows us to enhance the relevance of our
vector matched selections, while spending less time on optimizing vector database
using other techniques.

ask the LLM agent to remember their analysis. 3 This is when a
SaveIntoMemory tool is called, which triggers a series of steps in
the memorization process:

• The LLM agent summarizes the entire history of interaction
between the human expert and itself as a series of steps to
be followed to get to the final answer.

• These steps are summarized in a generalized fashion, where
any specifics are replaced with variables. This is analogous to
creating a functionwith variables in contrast to remembering
a fixed recipe.

• The LLM agent then creates a related generalized process
heading based on the chat history, so it can be used to refer
to this process. Alternatively, the human expert can provide
their own process heading for more precision.

• Finally the generalized process heading is added to the vec-
tor database with its metadata linking to the generalized
summarized steps which should be followed to get the final
answer.

• While saving entry to the vector database, if there’s a match
with an existing entry then the user is notified. This allows
the user to choose between rewriting memory (if the new
process is better), or ignoring new entry (if the old process
is similar), or provide a different process heading (if they
want to keep both). Depending on the needs of the system,
more sophisticated memory models can be employed to en-
hance this layer and users can take inspiration from existing
literature [5, 24, 30, 33].

This is a more natural process of memorization when compared
to creating few-shot examples, which can provide similar func-
tionality. The interaction of domain expert with the LLM agent
is similar to interaction with a capable novice, who remembers
complex processes when asked to. This is in line with our goal of
a natural way for building LLM agents, where no time is invested
up front for prompt engineering or creating few-shot examples.
But, the LLM agents capability keeps expanding as domain experts
interact with it.

2.3.2 Domain Specific Knowledge Layer. Adding the layers of capa-
bilities so far allows our LLM agent to perform complex analysis as
a domain expert would. However, there is still a gap that needs ad-
dressing before we can truly claim that our LLM agent can become
a domain expert. In any domain, there are keyword terminologies
(both internal and publicly known) which should be used precisely
to perform correct analysis. If not provided with the exact mean-
ing, our LLM agent might hallucinate or infer meaning from other
domains. We address this issue by adding a question rephrasing
capabilities which:

• Ask our LLM to identify keywords whose meaning cannot
be exactly inferred from chat history or data schema.

• Finds themeaning of these keywords in the keyword databases.
We use a combination of both traditional database and a vec-
tor database to first try to exactly match keywords, post
which remaining are searched for in a semantic fashion
within the vector database.

3A concrete example is shown in appendix B.



A Natural Way of Building Financial Domain Expert Agents ICAIF ’24, November 14–17, 2024, Brooklyn, NY

Figure 1: Architecture of GenAI Powered Financial Domain
Expert Agent.

• Rephrases the user’s question with the found meaning so
there is less ambiguity in how the user’s question needs to
be interpreted.

If the rephrased question still has unknown keywords or if the
databases have no additional information about the requested key-
words, then the LLM agent asks the user for clarification instead
of hallucinating meaning. This creates a human-in-the-loop LLM
agent, where a new keywords are also introduced in the databases
as humans provide more context [12]. Addressing hallucinations
is an important facet of building reliable LLM agents, which is a
critical requirement for building financial domain expert agents
[18].

2.4 Bringing it All Together
We start with the architecture as described in Figure 1 with no
information added to memory databases. The only piece of domain
specific knowledge the LLM agent has, is the provided SQL data-
base schema. At this stage, the LLM agent is capable of leveraging
data extraction and coding layers to perform simpler analysis. A
domain expert uses these capabilities to performing analysis as
they usually would for their day-to-day work, correcting the LLM
when required. The interaction continues with follow up questions
till the expert is satisfied with the final result of their multi-step
analysis. Then the domain expert asks the LLM agent to remember
the process, which triggers the memorization process. This allows
the LLM agent to performing more complex multi-step analysis for
simpler questions (or processes) saved in its memory. At any point
if the LLM agent is unable to infer meaning of certain keywords
it looks into the keywords databases (which starts empty) and re-
frames user’s question by injecting found meaning, so there is less
ambiguity. The LLM agent gets back to the user for clarity if the
meaning cannot be found in its memory and stores this meaning
in keywords databases for subsequent interactions.

Building expert agents requires working with domain-specific
knowledge. Instead of manually feeding in complex processes or the
meanings of keywords, we let our LLM learn from its interaction
with a domain expert. This allows for a more natural interaction
with the LLM agent instead of investing efforts into prompt engi-
neering or creating relevant few-shot examples upfront.

Building LLM agent layer by layer instead of as a monolithic
mega-agent also provides easy decoupling and optimization bene-
fits:

• Decoupling sub-agents allows for easy replacement of mod-
ular parts to adapt to different use cases [15]. For example,
interacting with an API instead of an SQL database, or using
different language than python, or using different memory
models for process memorization etc.

• Individual layer’s prompt optimization using DSPy [10].
DSPy allows for algorithmic prompt optimization by relying
on example dataset. Optimization monolithic mega-agent
(with several tools and functionality) is much harder in both
prompt optimization and example dataset creation. Prompt
optimization for decoupled sub-agents in their own isolated
context is more tractable. So more focus can be made on the
layer whose performance needs improvement. This allows
us to quickly improve our decoupled agent’s performance
for faster deployment.

3 Performance Testing and Benefits
3.1 Dataset Creation
Performance assessment of our financial domain expert is depen-
dent on defining the domain within which it is tested. This consists
of two parts. First, is the domain specific SQL database. Second, is
the set of questions against which its accuracy will be measured.

3.1.1 SQL Database. Our database contains multiple tables of
macroeconomic data extracted from publicly available FRED dataset
(See appendix A.1) [4]. There are several tables including time-series
data for Consumer Price Index (CPI), Gross Domestic Product (GDP),
money supply, rates, popular stock index and unemployment. Using
public datasets should allow interested user to verify LLM agents
performance as described in this paper.

3.1.2 Performance Evaluation Dataset. To effectively evaluate our
LLM agent’s performance, it must be tested on appropriate datasets.
Unlike traditional LLM applications, which often rely on datasets for
language-based reasoning, financial domain expert agents require
testing focused on precise numerical analysis and multi-step reason-
ing. To address this, we developed a dataset specifically designed
for our needs. For reference, we draw inspiration from articles,
where they created their own datasets to assess their domain spe-
cific performance [9, 27]. The questions in this dataset are relevant
to the provided database schema, enabling combined performance
assessment on appropriate tool calling capabilities and multi-step
numerical analysis. The performance of our LLM agent on this
dataset should give a clearer picture of its capability to mimic a
financial domain expert.

Performance evaluation dataset contains 30 questions related to
these macroeconomic datasets. (See appendix A.2). These questions
require multi-step analysis before coming to the correct answer
and are inspired by practitioners use of such macroeconomic time-
series.

3.2 Performance Comparison
We test the performance of our LLM agent under different sets of
features available to it.4 The performance is divided into four parts,
specifically:
4All testing was performed using gpt-4o (with temperature set to 0) for chat model
and text-embedding-3-large for embedding model.



ICAIF ’24, November 14–17, 2024, Brooklyn, NY Gagandeep Singh Kaler, Dimitrios Vamvourellis, Deran Onay, Yury Krongauz, Stefano Pasquali, and Dhagash Mehta

Figure 2: Performance comparison

• Data Extraction Layer : The LLM agent has access only to the
data extraction layer. It can run analysis on the extracted
data to reach the final answer. There are data leak concerns
with this approach as highlighted in section 2.1. But for the
sake of performance testing on public dataset we ran this
analysis.

• Data Extraction Layer + Coding Layer (with no retry): In this
part, we introduce coding layer without retries when it en-
counters errors. The LLM agent does not have access to
the output data (from data extraction and coding layers), as
architecturally it’s displayed to the user directly from the
python code.

• Data Extraction Layer + Coding Layer (with retries): Same as
previous part, but we let the LLM agent retry few number of
times in case of syntactic or runtime errors. As highlighted
in section 2.2.2, we include error message to let the LLM
agent use this information to correct the error made.

• Data Extraction Layer + Coding Layer (with retries) + Memory
Layer: Finally we run performance comparison by adding
memory layer. In this step relevant memory chunks contain-
ing step-by-step process to solve all or part of the question
is added inside the chat context, as described in section 2.3.

Figure 2 shows a box plot of percentage of performance evalu-
ation questions (as described in section 3.1.2) answered correctly
over several runs. 5 We look at the overall performance on our
evaluation questions to look at the capability of LLM agent under
different stages of capability. From Figure 2 we can see that:

• With just Data Extraction Layer we are able to successfully
answer ∼ 29.29% of time. From appendix A.2 we can see the
kind of questions the LLM agent has to answer are challeng-
ing for a simple SQL agent. It has been shown in literature

5For every tested question, we passed answer format requirement (as part of the
prompt) to the LLM agent. The output from our LLM agent is passed to a secondary
LLM along with answer format requirements for reformatting if required. So not
adhering to output format does not count as a failure. We also do a manual validation
of the outputs post this process. The final results are then matched exactly, except for
floats which are matched till 2𝑛𝑑 precision digit.

that the performance of SQL agent can be improved by in-
cluding relevant few-shot examples or by fine-tuning the
LLM [23, 29]. But given the zero-shot architecture chosen
for the development of domain experts, we were bound to
perform sub-optimally here.

• Whenwe introduce Coding Layer, our performance improves
to ∼ 53.57%, as the LLM agent is able to use coding skills to
divide the larger problem into simpler data extraction and
coding problems. We can also see that introducing retries
(on syntactic or runtime failures) leads to further improve-
ment in performance to ∼ 66.79%, which is inline with our
expectations.

• Introducing Memory Layer, improves our expected perfor-
mance to ∼ 82.86%. 9 out of 30 questions are aided partly by
this Memory Layer. The Memory Layer only provides partial
help while solving these 9 questions, where only part of the
question is aided by the provided memory. The LLM agent
still has to do further multi-step analysis to come to the final
result. See appendix B for details on this included memory
chunk.

One might argue that this is an unfair comparison. But the goal
of this comparison is to show the marginal benefits each iterative
layer brings, within the realm of zero-shot agent creation. Improv-
ing capability of any layer will push the frontier of performance
for all subsequent iterative layers. So, if the developer improves ca-
pabilities of Data Extraction layer, by including few-shot examples
or fine-tuning LLMs or using other state-of-the-art techniques, the
capabilities of subsequent layers will also increase leading to better
overall performance with all layers combined.

TheMemory layer provides complementary functionality to few-
shot prompting, where the agent learns about processes to solve
questions and meanings of keywords. Within our dataset we have
used only one chunk of memory, which describes recession calcu-
lation process. To keep the comparison between "without Memory
Layer" agents and "with Memory Layer" agents fair, we include the
following textual description for "withoutMemory Layer" agents: A
recession is typically defined as two consecutive quarters of negative
real GDP growth. Recession starts at then start of second downfall, and
ends at the period before GDP growth resumes. To mimic a financial
domain expert, our LLM agent needs to perform precise calculations
respecting exact dates and periods. Describing the aforementioned
textual description as a series of steps (as shown in Figure 5 and
described in appendix B) leaves less ambiguity on how it is to be
interpreted. Thereby helping improve accuracy over more complex
tasks.

3.2.1 Complex vs Simpler Tasks. Questions in our performance
evaluation dataset are divided into two categories, complex and
simpler. Even though both categories require multi-step analysis to
get to the final answer, complex questions have at least one of the
following characteristic:

• They require analysis on different datasets, where analy-
sis output of one dataset is used to run analysis on second
dataset, before final answer can be produced.

• They need to follow precise step-by-step numerical, date and
period based calculations to get the final answer. Questions
related to recession calculations fall under this category.



A Natural Way of Building Financial Domain Expert Agents ICAIF ’24, November 14–17, 2024, Brooklyn, NY

Figure 3: Complex vs Simpler Analysis Questions Perfor-
mance Comparison

Summarized By Correct Answers (%) Failure (%)
LLM Agent 100% 0%
Human ∼ 19.75% ∼ 18.52%

Human (with nudging) ∼ 27.16% ∼ 16.05%
Table 2: LLM Agent Summarized vs Human Summarized
Accuracy on Long Form Analysis.

From Figure 3 we can see that performance improvement for
Simpler Analysis increases significantly when moving from Data
Extraction Layer to + Coding Layer (without retries) to + Coding Layer
(with retries), because of improved capability and error correction.
But there is insignificant change between + Coding Layer (with
retries) and + Memory Layer and we are able to get over ∼ 84.12%
accuracy. Highlighting that a good fraction of simpler questions
can be answered accurately without any memory layer. This result
is significant as we need a base set of capability, which is used
(as building blocks) to create more complex processes, which in
turn can be saved into memory to add capability to answer more
complex questions.

For Complex Analysis, we see insignificant change between +
Coding Layer (without retries) and + Coding Layer (with retries), as
complex problems are more likely to be wrong without following a
precise (process possibly stored in memory). So being wrong post
successful code execution gives similar performance to failing to
produce results. But we see a significant increase in performance
when + Memory Layer is added. Going from ∼ 36.36% to ∼ 79.09%
accuracy with addition of memory. Demonstrating the advantages
of using memory layer for complex analysis, even when used to
solve a part of the process (see appendix B for details on included
memory chunk). This benefit becomes evenmore pronounced when
the entire process can be loaded from memory, as we will see in
next section.

3.3 Long form analysis
We describe long form analysis as the ability to follow a series
of steps precisely to get at the final answer. Recession calculation
process stored in memory layer is a good example of such long form
analysis. Table 2 shows comparison between LLM agent summarized
steps and human summarized steps for long form analysis based on
recession calculation process. LLM summarized steps are exactly as
used in memory layer (see appendix B). Human summarized steps
come from human messages which were sent to the LLM agent to
create new memory (see appendix B.1).

From Table 2, we can see the following:
• LLM Agent summarized results are always correct across
several runs with different parameters. This also gives confi-
dence that memory used for exact calculations should see
significant reduction in hallucinations. So, if we had cre-
ated memory for all 30 questions in our dataset, we should
see much better results than using memory for part of our
multi-step analysis (as done currently).

• Human summarized results are accurate ∼ 19.75% of the
time and fails ∼ 18.52% of time (despite several retries). On
analyzing the results, we found the incorrect answers were
mostly off by 1 period of analysis.

• Human summarized steps with nudging was used to try to
fix the 1 period deviation resulting in wrong answer. This
helped improve the correct results to ∼ 27.16%, showing
improvements attributing to prompt-engineering. 6

Evenwith human summarized steps with nudging, the results are
still far inferior to what LLM agent summarized process highlight-
ing sub-optimal prompt-engineering. This highlights well known
drawback of LLM where steps in the middle are missed [13].

Given our goal is development of domain expert in zero-shot
realm, our focus has been on avoiding prompt-engineering. Even
though this analysis was done for a single use-case, for our goal
and use-cases LLM agent summarized steps is a much preferred
alternative. More analysis needs to be performed for a conclusive
decision, but we keep that option open for future work.

Based on our test, we found that LLM agent’s summarizing of
the process in its own words leads to much better performance.
This memorization process is superior both in terms of learning and
reproducing. It replaces time-intensive prompt optimization with
interactive chat with a responsive LLM agent. The agent can handle
longer processes without forgetting steps in the middle, compared
to human-summarized steps [13].

4 Conclusion
In this case study we looked at a natural way of building financial
domain expert agents. We demonstrate how capabilities of a basic
LLM can be improved by adding data extraction layer, coding layer
and a memory layer. We show how iteratively adding each layer of
capability improves the performance and also address the necessary
safety and governance processes to ensure robustness and accuracy
of the agent.

6With prompt engineering we should be able to get much better results than what we
have here. But given we are working under the realm of zero-shot prompting, we did
not invest more time engineering our prompt for a singular case, when memory layer
gives us a clear win.



ICAIF ’24, November 14–17, 2024, Brooklyn, NY Gagandeep Singh Kaler, Dimitrios Vamvourellis, Deran Onay, Yury Krongauz, Stefano Pasquali, and Dhagash Mehta

For natural development of our LLM agent, we took a zero-
shot approach to avoid the intensive process of creating few-shot
examples upfront. Our memory layer provides complimentary ca-
pabilities to few-shot prompting. Which allows the LLM agent to
remember interactions with domain expert, improving its capabili-
ties on similar tasks. Thereby, providing a more natural approach
for creating expert agents from a general coding agents.

For our zero-shot LLM agent, we saw that introducing coding
layer (in addition to data extraction layer) results in improved accu-
racy by diving a complex task into shared responsibility between
data extraction and coding layers. Coding layer also brings in capa-
bilities like generating graph/plots and the ability to use advance
data analytics libraries. These feature-set are part of the arsenal
used by domain experts in their day-to-day analysis. Therefore,
enriching out LLM agents with such capabilities, brings them a step
closer to emulating a domain expert. The memory layer shows clear
benefits when performing complex analysis by achieving higher
accuracy in such tasks, even when memory is supporting just part
of the multi-step analysis. These benefits should become more pro-
nounced when using memory layer for all steps in the multi-step
analysis. We also saw benefits of the memory layer, where LLM
agent summarized steps are less prone to missing steps in the mid-
dle, even though more evidence is needed to conclusively back this
claim, and is left for future work. Overall, based on the results of
our LLM agent on the financial domain dataset, we can claim that
the architecture presented in this paper presents several advantages
and it presents a natural way of building financial domain expert
agents.

5 Acknowledgment
The views expressed here are those of the authors alone and not of
BlackRock, Inc.

References
[1] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya, Mark

Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.
2024. Automated Unit Test Improvement using Large Language Models at Meta.
arXiv preprint arXiv:2402.09171 (2024). https://arxiv.org/abs/2402.09171

[2] Sourav Banerjee, Ayushi Agarwal, and Saloni Singla. 2024. LLMs Will Always
Hallucinate, and We Need to Live With This. arXiv preprint arXiv:2409.05746
(2024). https://arxiv.org/abs/2409.05746v1

[3] McKinsey & Company. 2024. Capturing the full value of generative AI in banking.
(2024). https://www.mckinsey.com/industries/financial-services/our-insights/
capturing-the-full-value-of-generative-ai-in-banking

[4] Federal Reserve Bank of St. Louis. 2024. Federal Reserve Economic Data (FRED).
https://fred.stlouisfed.org/

[5] Zafeirios Fountas, Martin A. Benfeghoul, Adnan Oomerjee, Fenia Christopoulou,
Gerasimos Lampouras, Haitham Bou-Ammar, and Jun Wang. 2024. Human-like
Episodic Memory for Infinite Context LLMs. arXiv preprint arXiv:2407.09450
(2024). https://arxiv.org/abs/2407.09450

[6] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V.
Chawla, Olaf Wiest, and Xiangliang Zhang. 2024. Large Language Model
based Multi-Agents: A Survey of Progress and Challenges. arXiv preprint
arXiv:2402.01680 (2024). https://arxiv.org/abs/2402.01680

[7] Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao
Huang. 2024. Knowledge-to-SQL: Enhancing SQL Generation with Data Expert
LLM. arXiv preprint arXiv:2402.11517 (2024). https://arxiv.org/abs/2402.11517

[8] Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, YifanWei, Shizhu
He, Lifu Huang, Xiao Liu, Jun Zhao, and Kang Liu. 2024. Enhancing Text-to-SQL
Capabilities of Large Language Models with Knowledge Injection. arXiv preprint
arXiv:2409.15907 (2024). https://arxiv.org/abs/2409.15907

[9] Aditya Kalyanpur, Kailash Karthik Saravanakumar, Victor Barres, CJ McFate,
Lori Moon, Nati Seifu, Maksim Eremeev, Jose Barrera, Abraham Bautista-Castillo,
Eric Brown, and David Ferrucci. 2024. Multi-step Inference over Unstructured
Data. arXiv preprint arXiv:2406.17987 (2024). https://arxiv.org/abs/2406.17987

[10] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi,
Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. 2023.
DSPy: CompilingDeclarative LanguageModel Calls into Self-Improving Pipelines.
arXiv preprint arXiv:2310.03714 (2023). https://arxiv.org/abs/2310.03714

[11] Jill H. Larkin and Herbert A. Simon. 1987. Why a Diagram is (Sometimes)
Worth Ten Thousand Words. Cognitive Science 11, 1 (1987), 65–100. https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6708.1987.tb00863.x

[12] Erran Li, Nitish Joshi, and Kumar Chellapilla. 2023. ImproveMulti-Hop Reasoning
in LLMs by Learning from Rich Human Feedback. AWS Machine Learning Blog
(2023). https://aws.amazon.com/blogs/machine-learning/improve-multi-hop-
reasoning-in-llms-by-learning-from-rich-human-feedback/

[13] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. arXiv preprint arXiv:2307.03172 (2023). https://arxiv.org/abs/
2307.03172

[14] Li Ma, Huihong Yang, Jianxiong Xu, Zexian Yang, Qidi Lao, and Dong Yuan. 2022.
Code Analysis with Static Application Security Testing for Python Program.
Journal of Signal Processing Systems 94 (2022), 1169–1182. https://link.springer.
com/article/10.1007/s11265-022-01740-z

[15] Robert C. Martin. 2003. The Single Responsibility Principle. https://
solidprinciples.org/docs/single-responsibility-principle/detailed-explanation

[16] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large Language Models: A
Survey. arXiv preprint arXiv:2402.06196 (2024). https://arxiv.org/abs/2402.06196

[17] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,
Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2024. A Com-
prehensive Overview of Large Language Models. arXiv preprint arXiv:2307.06435
(2024). https://arxiv.org/abs/2307.06435

[18] Yuqi Nie, Yaxuan Kong, Xiaowen Dong, John M. Mulvey, H. Vincent Poor, Qing-
song Wen, and Stefan Zohren. 2024. A Survey of Large Language Models
for Financial Applications: Progress, Prospects and Challenges. arXiv preprint
arXiv:2406.11903 (2024). https://arxiv.org/abs/2406.11903

[19] Ana Nunez, Nafis Tanveer Islam, Sumit Kumar Jha, and Peyman Najafirad. 2024.
AutoSafeCoder: A Multi-Agent Framework for Securing LLM Code Generation
through Static Analysis and Fuzz Testing. arXiv preprint arXiv:2409.10737 (2024).
https://arxiv.org/abs/2409.10737

[20] Department of Energy. 2024. Department of Energy Generative Artificial Intelli-
gence Reference Guide. (2024). https://www.energy.gov/cio/department-energy-
generative-artificial-intelligence-reference-guide

[21] OpenAI. 2024. Introducing Structured Outputs in the API. https://openai.com/
index/introducing-structured-outputs-in-the-api/

[22] Kun Qian, Yisi Sang, Farima Fatahi Bayat, Anton Belyi, Xianqi Chu, Yash Govind,
Samira Khorshidi, Rahul Khot, Katherine Luna, Azadeh Nikfarjam, Xiaoguang Qi,
Fei Wu, Xianhan Zhang, and Yunyao Li. 2024. APE: Active Learning-based Tool-
ing for Finding Informative Few-shot Examples for LLM-based Entity Matching.
arXiv preprint arXiv:2408.04637 (2024). https://arxiv.org/abs/2408.04637

[23] Jane Smith and Emily Johnson. 2023. Fine-Tuning Language Models for Context-
Specific SQL Query Generation. arXiv preprint arXiv:2312.02251 (2023). https:
//arxiv.org/abs/2312.02251

[24] John Smith, Emily Johnson, andMichael Brown. 2024. MemoryMatters: The Need
to Improve Long-Term Memory in LLM-Agents. AAAI Conference on Artificial
Intelligence (2024). https://ojs.aaai.org/index.php/AAAI-SS/article/download/
27688/27461/31739

[25] TIOBE Software. 2024. TIOBE Programming Community Index for October 2024.
https://www.tiobe.com/tiobe-index/

[26] Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun
Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, Wang Zhao,
Fan Zhou, Danrui Qi, Hong Yi, Shaodong Liu, and Faqiang Chen. 2023. DB-GPT:
Empowering Database Interactions with Private Large Language Models. arXiv
preprint arXiv:2312.17449 (2023). https://arxiv.org/abs/2312.17449

[27] Yi Yang, Yixuan Tang, and Kar Yan Tam. 2023. InvestLM: A Large Language
Model for Investment using Financial Domain Instruction Tuning. arXiv preprint
arXiv:2309.13064 (2023). https://arxiv.org/abs/2309.13064

[28] Yijiong Yu, Xiufa Ma, Jianwei Fang, Zhi Xu, Guangyao Su, Jiancheng Wang,
Yongfeng Huang, Zhixiao Qi, Wei Wang, Weifeng Liu, Ran Chen, and Ji Pei. 2024.
Hyper-multi-step: The Truth Behind Difficult Long-context Tasks. arXiv preprint
arXiv:2410.04422 (2024). https://arxiv.org/abs/2410.04422

[29] Wei Zhang and John Doe. 2024. Evaluating LLMs for Text-to-SQL Generation
With Complex SQL Workload. arXiv preprint arXiv:2407.19517 (2024). https:
//arxiv.org/abs/2407.19517

[30] Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu,
Zhenhua Dong, and Ji-Rong Wen. 2024. A Survey on the Memory Mechanism of
Large Language Model based Agents. arXiv preprint arXiv:2404.13501v1 (2024).
https://arxiv.org/abs/2404.13501v1

[31] Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K. Qiu, and Lili Qiu.
2024. Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive
Survey on How to Make your LLMs use External Data More Wisely. arXiv

https://arxiv.org/abs/2402.09171
https://arxiv.org/abs/2409.05746v1
https://www.mckinsey.com/industries/financial-services/our-insights/capturing-the-full-value-of-generative-ai-in-banking
https://www.mckinsey.com/industries/financial-services/our-insights/capturing-the-full-value-of-generative-ai-in-banking
https://fred.stlouisfed.org/
https://arxiv.org/abs/2407.09450
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2409.15907
https://arxiv.org/abs/2406.17987
https://arxiv.org/abs/2310.03714
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6708.1987.tb00863.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-6708.1987.tb00863.x
https://aws.amazon.com/blogs/machine-learning/improve-multi-hop-reasoning-in-llms-by-learning-from-rich-human-feedback/
https://aws.amazon.com/blogs/machine-learning/improve-multi-hop-reasoning-in-llms-by-learning-from-rich-human-feedback/
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://link.springer.com/article/10.1007/s11265-022-01740-z
https://link.springer.com/article/10.1007/s11265-022-01740-z
https://solidprinciples.org/docs/single-responsibility-principle/detailed-explanation
https://solidprinciples.org/docs/single-responsibility-principle/detailed-explanation
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2406.11903
https://arxiv.org/abs/2409.10737
https://www.energy.gov/cio/department-energy-generative-artificial-intelligence-reference-guide
https://www.energy.gov/cio/department-energy-generative-artificial-intelligence-reference-guide
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://arxiv.org/abs/2408.04637
https://arxiv.org/abs/2312.02251
https://arxiv.org/abs/2312.02251
https://ojs.aaai.org/index.php/AAAI-SS/article/download/27688/27461/31739
https://ojs.aaai.org/index.php/AAAI-SS/article/download/27688/27461/31739
https://www.tiobe.com/tiobe-index/
https://arxiv.org/abs/2312.17449
https://arxiv.org/abs/2309.13064
https://arxiv.org/abs/2410.04422
https://arxiv.org/abs/2407.19517
https://arxiv.org/abs/2407.19517
https://arxiv.org/abs/2404.13501v1


A Natural Way of Building Financial Domain Expert Agents ICAIF ’24, November 14–17, 2024, Brooklyn, NY

Figure 4: FRED Datasets

preprint arXiv:2409.14924 (2024). https://arxiv.org/abs/2409.14924
[32] Kunhao Zheng, Juliette Decugis, Jonas Gehring, Taco Cohen, Benjamin Ne-

grevergne, and Gabriel Synnaeve. 2024. What Makes Large Language Models
Reason in (Multi-Turn) Code Generation? arXiv preprint arXiv:2410.08105 (2024).
https://arxiv.org/abs/2410.08105

[33] Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. 2023. Mem-
oryBank: Enhancing Large Language Models with Long-Term Memory. arXiv
preprint arXiv:2305.10250 (2023). https://arxiv.org/abs/2305.10250

A Dataset
A.1 SQL Database
We extracted the macroeconomic time-series from FRED and added
them to corresponding tables as indicated in Figure 4 [4]. We have a
mix of both long and wide format tables, to make the performance
evaluation more challenging.

A.2 Performance Evaluation Dataset
Below we list a sample of 15 questions (out of 30 total) used dur-
ing performance evaluation. These questions require multi-step
analysis before coming to the correct answer and are inspired by
practitioners use of such macroeconomic time-series.

• When did the latest recession start and how long did it last?

Figure 5: Example of Memory for Recession Calculations

• What was the unemployment rate at the start of latest reces-
sion?

• How many recessions happened in the last 30 years?
• In the last 20 years, what percentage of time did real GDP
beat real potential GDP?

• How many times did the GDP cross 20,000 billion?
• Using 6m moving average, how many times did unemploy-
ment cross 8%?

• What’s the average unemployment for the last 10 years ex-
cluding periods of recession? Also exclude 2 quarters before
recession start and 2 quarters after recession end, before
your analysis.

• Excluding all periods of recessions, is current unemployment
higher or lower than last 10 years average?

• In what year did CPI value cross 200?
• In the last 20 years, when was inflation the highest?
• What’s the correlation between inflation calculated from CPI
with 5 year break-even inflation rate, in the last 10 years?

• In the last 10 years, how many times did the CPI value kept
dipping before increasing?

• What is the inflation contribution because of Food and En-
ergy in March 2022?

• What was the latest date when the yield curve got inverted?
• What’s the correlation between federal funds rate and un-
employment?

https://arxiv.org/abs/2409.14924
https://arxiv.org/abs/2410.08105
https://arxiv.org/abs/2305.10250


ICAIF ’24, November 14–17, 2024, Brooklyn, NY Gagandeep Singh Kaler, Dimitrios Vamvourellis, Deran Onay, Yury Krongauz, Stefano Pasquali, and Dhagash Mehta

B Memory Example
As highlighted in section 2.3, the memorization process summarizes
the history of interaction and saves it in a generalized fashion.
Figure 5 shows how memory related to recession calculation looks
like. This memory is injected into questions requiring any sort of
recession calculation, to provide the LLM agent with a recipe for
accurately calculation of recession metrics.

Its important to highlight that memory is only being used to
help with part of a question and it needs to be used in conjunction
with additional analysis to come to the final answer. For example
from our performance dataset, recession memory is being used for
questions like:

• When did the latest recession start and how long did it last?
• What was the unemployment rate at the start of latest reces-
sion?

• How many recessions happened in the last 30 years?
• What’s the average unemployment for the last 10 years ex-
cluding periods of recession? Also exclude 2 quarters before
recession start and 2 quarters after recession end, before
your analysis.

For a memory to be pulled into LLM agent’s chat context, the
LLM agent has to make a decision on what calculations needs to be
performed. If it determined "Recession Calculation" as a required
piece, it does a semantic search on memory vector database and
pulls the matching vector results into the LLM agent’s chat context.

Even though we could have asked our LLM agent to create mem-
ory for all asked question, we looked at a realistic scenario where
memory is created for general processes and it is used to answer
questions requiring additional analytics. Thus, we have used only
this singular piece of "recession calculation" memory which is used
by 9 out of 30 questions. The remaining 21 questions should have
identical performance between without memory and with mem-
ory. This demonstrates a realistic use-case where the LLM agent
becomes smart not on exact tasks, but on any task having overlap
with processes already saved in memory.

B.1 Human Messages Used to Create Memory
Example

As highlighted before, the memory creation process involves a
human expert interacting with the LLM agent. The human expert
asks simpler questions and gets a feedback response from the LLM
agent as its response to the simpler question. The expert can correct
the agent generated output by providing more context, therefore
reducing ambiguity in their original statement. The expert can keep
using outputs of previous steps to build a more complex processes.
Once the expert is satisfied with the outputs of their interaction,
they can ask the LLM agent to remember the process. Doing so
results in the LLM agent summarizing the entire history of their
current interaction and creates a memory record inside the vector
database.

The following human messages were provided to the LLM agent
to generate recession calculation memory as described above.

• A recession is defined as having two consecutive periods
of real GDP decline. Create a table with time-series of real

Figure 6: Comparison of Total Time and Total Token Usage
(for 30 questions)

GDP and column indicating the total number of periods of
continuous GDP decline from year 2000.

• Continuous decline should go down to 0 when GDP in-
creases.

• Now using the information in continuous decline column,
determine when recession started. It happened when when
continuous decline becomes equal to 2.

• Also determine when recession ended. Recession ends when
continuous decline goes from >=2 to 0. It’s the period before
the continuous decline value goes to 0.

• Indicate both recession started and recession ended as boolean
against date within the table.

• Based on the columns created tell me when the recession
started, when it ended and how long was the recession for
in months.

• Now remember this process for me against "Recession Cal-
culation".

We can see that during memorization the specifics (like year
2000) were generalized before saving into memory. Memorization
also included chunks of SQL and python code to remove ambiguity,
which as we see from results of section 3.3 is quite important.

C Latency and Token Usage
From Figure 6 we can make the following observations:

• The latency/run-time and total token usage with just Data
Extraction Layer is high, because we have to send back the
extracted dataset for analysis by the LLM. Which is not the
case for others as any analysis is done locally in code. It’s also
worth noting that with just Data Extraction Layer there were
2 questions for which tokens sent in request was higher than
limit supported token context gpt-4o model, which result in
failure. These cases were not included in our token usage
plot.

• Our token usage is already quite high in the base case (of
+ Coding Layer (Without Retries). This is partly because of
including SQL database schema information in memory.


	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Extraction Layer
	2.2 Scripting Layer
	2.3 Memory Layer
	2.4 Bringing it All Together

	3 Performance Testing and Benefits
	3.1 Dataset Creation
	3.2 Performance Comparison
	3.3 Long form analysis

	4 Conclusion
	5 Acknowledgment
	References
	A Dataset
	A.1 SQL Database
	A.2 Performance Evaluation Dataset

	B Memory Example
	B.1 Human Messages Used to Create Memory Example

	C Latency and Token Usage

