
Thinking in Many Modes: How Composite Reasoning
Elevates Large Language Model Performance with

Limited Data

Zishan Ahmad
PhiLabs, Quantiphi Inc

Bengaluru, India
zishan.ahmad@quantiphi.com

Saisubramaniam Gopalakrishnan
PhiLabs, Quantiphi Inc

Bengaluru, India
gopalakrishnan.saisubramaniam@quantiphi.com

Abstract

Large Language Models (LLMs), despite their remarkable capabilities, rely on
singular, pre-dominant reasoning paradigms, hindering their performance on in-
tricate problems that demand diverse cognitive strategies. To address this, we
introduce Composite Reasoning (CR), a novel reasoning approach empowering
LLMs to dynamically explore and combine multiple reasoning styles like deduc-
tive, inductive, and abductive for more nuanced problem-solving. Evaluated on
scientific and medical question-answering benchmarks, our approach outperforms
existing baselines like Chain-of-Thought (CoT) and also surpasses the accuracy
of DeepSeek-R1 style reasoning (SR) capabilities, while demonstrating superior
sample efficiency and adequate token usage. Notably, CR adaptively emphasizes
domain-appropriate reasoning styles. It prioritizes abductive and deductive reason-
ing for medical question answering, but shifts to causal, deductive, and inductive
methods for scientific reasoning. Our findings highlight that by cultivating inter-
nal reasoning style diversity, LLMs acquire more robust, adaptive, and efficient
problem-solving abilities.

1 Introduction

The remarkable progress in Large Language Models (LLMs) has led to significant advancements in
natural language understanding and generation, largely due to their enhanced reasoning capabilities.
While traditional approaches often rely on a single dominant reasoning paradigm, we hypothesize that
enabling LLMs to leverage a diverse repertoire of reasoning strategies—such as deductive, inductive,
abductive, and decompositional reasoning—can lead to more robust and accurate performance,
particularly on complex tasks.

Recent state-of-the-art LLMs often employ Chain-of-Thought (CoT) prompting Wei et al. [2022],
which elicits a step-by-step reasoning process. While effective, this process frequently exhibits
a predominantly deductive flow. Our work, however, builds on the understanding that real-world
problems demand greater flexibility, potentially requiring models to dynamically synthesize different
reasoning methods. Previous efforts have explored enhancing LLM reasoning through improved
decoding Wang et al. [2022], incorporating external knowledge Liu et al. [2023], or using techniques
like self-consistency Naik et al. [2023]. However, there has been limited exploration of explicitly
encouraging models to internally explore and integrate multiple distinct reasoning strategies during
problem-solving.

To address this gap, we propose a novel composite reasoning (CR) approach. Our method encourages
LLMs to explore and combine different reasoning strategies, allowing the model to consider multiple
perspectives and pathways for more accurate and well-supported answers. We evaluate this approach
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Figure 1: Example of Composite Reasoning style for a MedMCQA Question

using parameter-efficient fine-tuning (PEFT) techniques like LoRA Hu et al. [2022] and Group
Relative Policy Optimization (GRPO) Shao et al. [2024] to assess performance in resource-constrained
settings.

We conduct extensive experiments on three challenging and diverse datasets: MedMCQA Pal et al.
[2022], MedXpertQA Zuo et al. [2025], and ARC-Complex Clark et al. [2018]. All fine-tuning
and training were conducted using a maximum of 1,500 samples per dataset. We compare our CR
strategy against standard CoT and a Standard Reasoning (SR) approach, demonstrating a compelling
performance advantage. Furthermore, we show that GRPO with an outcome-based reward function
(based solely on answer correctness) allows our CR approach to implicitly foster a more flexible and
multi-faceted reasoning process that adapts to the specific demands of each domain.

We summarize our key contributions as follows: (i). A novel composite-reasoning approach that
encourages LLMs to explore and adapt multiple reasoning strategies, (ii). We demonstrate the
effectiveness of this approach on three challenging datasets within a resource-constrained training
setting (maximum 1,500 samples), highlighting its superior sample efficiency, (iii). We show that
GRPO with an outcome-based reward effectively guides our CR approach to explore and tailor diverse
reasoning strategies to domain-specific needs, and (iv). Our results indicate significant performance
improvements over standard CoT and SR baselines, highlighting the benefits of CR in terms of
accuracy and token effectiveness in resource-constrained scenarios.

2 Methodology

This section details our experimental framework, which investigates the performance of our Composite
Reasoning (CR) approach under resource constraints. All fine-tuning and training stages used a
maximum of 1,500 samples from the official training splits of each dataset. We evaluate our models
on the official test sets of ARC-Complex (1,119 questions), MedMCQA (4,183 questions) and
MedXpertQA (950 questions).

We investigate three distinct reasoning paradigms for which initial trajectories were generated using a
base Qwen-2.5-7B-Instruct model (except for SR, which was sourced from Deepseek-r1-7B Guo
et al. [2025]).

2.1 Supervised Fine-Tuning (SFT) with LoRA

1. Chain-of-Thought (CoT) Wei et al. [2022]: This is the conventional method for eliciting
sequential reasoning. The intuition is to prompt the model to “think step-by-step”, which
often leads to a logical, deductive-like progression that can improve accuracy on complex
tasks.
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Method Reasoning ARC-C MedMCQA MedXpertQA
Accuracy Avg Token Length Accuracy Avg Token Length Accuracy Avg Token Length

Prompt

Direct 60.06% 38 45.88% 42 5% 35
CoT 73.7% 254 52.77% 205 8% 287
SR† 80.54% 515 48.96% 619 7.9% 1,139
CR 83.10% 316 54.62% 335 7.8% 398

SFT
CoT 92.31% 252 55.35% 207 14.34% 282
SR 75.20% 518 50.96% 612 11% 1,146
CR 92.22% 320 55.20% 338 14.1% 405

GRPO
CoT 89.5% 249 55.10% 189 13.1% 412
SR† 78.42% 524 49.23% 601 9.1% 1,110
CR 90.35% 331 55.84% 331 10.08% 426

SFT + GRPO
CoT 93.85% 247 55.74% 208 14.63% 479
SR 80.20% 518 51.80% 617 11.47% 1,112
CR 94.99% 339 56.30% 313 15.9% 549

Table 1: Exact-Match Accuracy (%) on ARC-Complex, MedMCQA and MedXpertQA datasets across
reasoning strategies and methods, with output token lengths. Best in bold. † experiments on Deepseek-r1-7B;
others on Qwen2.5-7B-Instruct.

2. Standard Reasoning (SR): This baseline uses high-quality, pre-generated reasoning tra-
jectories from Deepseek-r1-7B model. The purpose here is to test whether distilling a
highly-polished reasoning style from a powerful external source is an effective fine-tuning
strategy, even in a low-data setting.

3. Composite Reasoning (CR): Our approach explicitly prompts the model to dynamically
explore and synthesize diverse reasoning strategies. The intuition behind this is to move
beyond a single, linear thought process. It encourages the model to leverage a full “toolkit”
of reasoning, including hypothesis generation (abduction), generalization (induction), and
logical breakdowns (decomposition), thereby making it more adaptable to a wider range of
problems. An illustrative example of a CR-generated thought process, showcasing these
characteristics with annotated reasoning styles, is presented in Figure 1.

We finetune the base LLM using Supervised Fine-Tuning (SFT) using Low-Rank Adaptation (LoRA)
on these generated trajectories. The intuition of SFT is to teach the model to imitate the reasoning
styles we curated for each paradigm. This process essentially instills the desired “thinking patterns”
(CoT, SR, or CR) into the model’s behavior. Following SFT, we applied Group Relative Policy
Optimization (GRPO) Shao et al. [2024], a reinforcement learning algorithm tailored for scenarios
with sparse rewards. The core intuition of using GRPO with an outcome-based reward is to let the
model self-refine its reasoning process based on a simple, yet powerful, signal: whether the final
answer is correct or not. This encourages the model to generate reasoning that is not just plausible,
but pragmatically effective at solving the task, without needing complex human-in-the-loop reward
modeling for each reasoning step.

3 Results and Analysis

We present our empirical results on the ARC-Complex (ARC-C), MedMCQA, and MedXpertQA
datasets. We analyze the performance of our proposed Composite Reasoning (CR) approach against
Chain-of-Thought (CoT) and Standard Reasoning (SR) baselines. The detailed accuracy scores
and average token lengths are presented in Table 1. In the direct zero-shot prompting setting,
our Composite Reasoning (CR) prompt consistently outperforms standard Direct Prompting and
CoT across all three datasets. While CR is slightly outperformed by SR on the highly complex
MedXpertQA dataset (7.8% vs. 7.9%), this initial advantage on the other two datasets demonstrates
the effectiveness of our prompt in eliciting stronger baseline reasoning. As indicated by the low
overall accuracy scores, MedXpertQA is a significantly more difficult task requiring a higher level
of domain-specific reasoning, which is reflected in the extremely verbose nature of the SR model’s
initial trajectories on this dataset (1,139 average tokens).

Supervised Fine-Tuning (SFT) using only 1,500 samples substantially enhances all strategies. Notably,
CR SFT and CoT SFT achieve strong, competitive results, significantly outperforming SR SFT on
all three datasets. The addition of GRPO to the SFT-tuned models consistently yields the highest
performance. The CR SFT + GRPO configuration achieves the highest accuracy on both ARC-C
(94.99%) and MedMCQA (56.30%), and it secures the top performance on MedXpertQA (15.9%).
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Model MedMCQA Acc. (%)
BioMistral-7B 40.2

OpenBioLLM-8B 54.1
ChatDoctor 31.5

PMC-LLaMA-7B 29.8
Baize-Healthcare 31.3
MedAlpaca-7B 32.9
Meditron-7B 31.1

PMC-LLaMA-13B 37.7
MedAlpaca-13B 35.7
ClinicalCamel 45.8

Huatuo-7B 24.8
HuatuoGPT-o1-8B 60.4

HuatuoGPT-o1-8B w/o RL 57.9
UltraMedical-8B 58.3

CR Prompt 54.62
CR SFT 55.20

CR GRPO 55.84
CR SFT + GRPO 56.30

Table 2: MedMCQA accuracy (%) comparison with existing baseline models from the 7-13B parameter size
category. Note that CR is trained on only 1,500 training samples as compared to HuatuoGPT-o1 (40k samples)
and UltraMedical (410k samples), yet remains competitive.

This demonstrates the potent synergy of CR with SFT and subsequent outcome-based reward tuning,
enabling the model to explore and optimize reasoning paths better than CoT and SR to reach peak
performance with limited training data. This synergy is particularly evident when analyzing the
performance gain on the challenging MedXpertQA dataset. On this task, our CR method achieves a
substantial gain of 8.1% (from 7.8% to 15.9%), which is significantly larger than the gains of CoT
(6.63%) and SR (3.57%). This contrasts with the MedMCQA dataset, where the gain is more modest
(1.68%), suggesting that CR’s ability to learn from limited data is most pronounced when the problem
requires deep, non-memorization-based reasoning.

Analysis of reasoning chain lengths reveals a compelling accuracy-verbosity trade-off. As noted, SR
produces the longest reasoning paths, but this verbosity does not translate to higher accuracy in our
fine-tuning setup. While CoT is generally the most concise, CR strikes a better balance, achieving
superior accuracy with moderately longer but more effective reasoning chains. For the highly complex
MedXpertQA dataset, the average token counts for both CR and CoT increase after GRPO training
(from 405 to 549 for CR, and 282 to 479 for CoT), indicating that the models are generating more
detailed reasoning to solve the harder problems. This suggests that GRPO optimizes CR towards
more token-effective reasoning on simpler tasks while encouraging necessary verbosity for complex
ones.

The sample efficiency of our method is particularly noteworthy on the MedMCQA dataset. As shown
in Table 2, our CR SFT + GRPO model achieves an accuracy of 56.30%. This is highly competitive
with medical LLMs like HuatuoGPT-o1-8B and UltraMedical-8B, despite our model being trained
on only 1,500 samples, a small fraction of the 40k and 410k domain specific samples, respectively,
used by those baselines. This highlights the remarkable sample efficiency of our CR approach. The
analysis of reasoning style dynamics (visualized in Figures 2 and 3 in the Appendix) reveals that
GRPO selectively modifies the problem-solving approaches of our models in a domain-dependent
manner. For a more detailed discussion of these stylistic shifts, refer to Appendix A.3.

4 Conclusion

In this work, we introduce Composite Reasoning (CR), a method that enhances LLMs’ complex rea-
soning by encouraging the exploration and integration of diverse strategies. In a resource-constrained
(1,500-sample) LoRA-based fine-tuning setup on challenging datasets, including ARC-Complex,
MedMCQA, and the highly demanding MedXpertQA, our CR approach consistently outperforms
standard Chain-of-Thought (CoT) and Standard Reasoning (SR) baselines. This performance is
particularly noteworthy on the most difficult tasks, where CR, combined with GRPO-based fine-
tuning, achieves a significantly greater performance gain than other methods. Our experiments
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underscore CR’s remarkable sample efficiency, allowing it to compete with domain-specific LLMs on
MedMCQA despite using orders of magnitude less training data. By encouraging diverse reasoning
strategies like deductive, inductive, abductive, etc., our findings show that LLMs can develop more
robust, adaptive, and effective problem-solving skills.
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A Appendix

A.1 Experimental Setup

All experiments were conducted on a single NVIDIA A100 80GB GPU. All our experiments are
based on Qwen-2.5-7B and Deepseek-r1-7B models both containing around 7 billion parameters.
Each SFT training took around 7 hours on a single GPU, while GRPO tuning varied took between
24-48 hours for different experiments. We employed a consistent configuration across both the
Supervised Fine-Tuning (SFT) and Generalized Reinforcement Preference Optimization (GRPO)
phases. LoRA adapters were configured with a rank r = 32 and an alpha α = 64, resulting in a
scaling factor s = α/r = 2. The target modules for LoRA integration included the following linear
layers: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, and down_proj. These modules
correspond to the query, key, value, and output projection layers in the attention blocks, as well as the
feed-forward network components within the transformer architecture. During the SFT phase, we
used a learning rate of 10−4, a batch size of 8, and trained for 12 epochs. The optimizer employed
was AdamW with a weight decay of 0.001, and the learning rate scheduler followed a linear warmup
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with decay strategy. In the GRPO phase, a new LoRA adapter was trained using a learning rate of
10−4, a batch size of 2, and for 1,500 training steps. The optimizer and scheduler mirrored those
used in the SFT phase. This standardized set-up ensured consistency and comparability across our
experimental evaluations. All the implementation was done in python utilizing unsloth, huggingface,
trl and vllm packages.

A.2 Loss Functions and Optimization

The Supervised Fine-Tuning (SFT) process aims to minimize the standard auto-regressive language
modeling loss (cross-entropy) over the reasoning trajectories. Let θbase represent the frozen parameters
of the base model and θLoRA represent the trainable LoRA adapter parameters. The SFT loss function
is given by:

(1)LSFT(θLoRA) = −
|Dtrain|∑
j=1

Lj∑
i=1

logP (tj,i|tj,1, . . . , tj,i−1; θbase, θLoRA)

where Dtrain is the training set and Lj is the length of the trajectory Tj .

For the GRPO phase, a new LoRA adapter was trained with weights ϕ. The policy LLM is denoted
as πϕ. For each input prompt x from the training dataset, the policy πϕ generates a group of M
distinct reasoning trajectories τ (m)M

m=1. A binary reward R(τ) ∈ 0, 1 was assigned to each trajectory
τ based on the exact match correctness of its final answer. The trajectory within the group of M
generations that achieved the highest reward (i.e., a correct answer, if any) was identified as τ∗:

τ∗ = argmax
τ∈τ(m)M

m=1

R(τ) (2)

GRPO updates the policy by comparing the rewards of trajectories within each group. The optimiza-
tion objective is to maximize the expected relative reward, which encourages the model to favor
trajectories with higher relative rewards without relying on an explicit value function.

A.3 Detailed Analysis of Reasoning Style Dynamics

The shift in reasoning style distribution due to GRPO, as depicted in the MedMCQA chart (Figure 3)
compared to the ARC-C chart (Figure 2), underscores how simply using outcome-based optimization
adapts reasoning strategies to domain-specific demands, often showing a stylistic alignment with
human cognitive approaches.

On MedMCQA—a domain demanding diagnostic inference—Composite Reasoning with GRPO
(CR-LoRA+GRPO) markedly amplifies Abductive reasoning (inferring best explanations) and De-
ductive reasoning (applying medical rules), making them the dominant styles. By contrast, on
ARC-C, GRPO’s CR primarily boosts Deductive and Causal reasoning, with only a modest uptick
in Abductive and a stronger rise in Inductive reasoning. Chain-of-Thought post-GRPO on MedM-
CQA also increases Abductive and Deductive usage, but doesn’t reach the peaks achieved by CR.
Likewise, on ARC-C, GRPO steers CR toward Causal, Deductive, Decompositional, and Induc-
tive reasoning—reflecting the general science emphasis on cause-effect, logical breakdown, and
generalization—while Abductive reasoning remains less prominent than in the medical setting.

The Standard Reasoning (SR) strategy, on MedMCQA, much like on ARC-C, shows a less adaptive
pattern post-GRPO, with several of its initially high general reasoning styles (like Causal and
Comparative) potentially decreasing or not being effectively channeled into medically critical styles
like Abductive reasoning.

This domain-dependent adaptation is synergistic with human expert reasoning. Physicians often
employ a hypothetico-deductive process, generating hypotheses (abduction) and testing them against
evidence and knowledge (deduction) Elstein et al. [1978]. The strong performance of the CR model
and its post-GRPO reasoning profile in MedMCQA, with its emphasis on abductive and deductive
styles, suggest that it learns to emulate these effective human diagnostic strategies more closely
than other methods. Similarly, the broader scientific reasoning profile seen on ARC-C reflects the
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Figure 2: Analysis of reasoning strategies across the three trajectory types before and after applying GRPO tuning to the LoRA-tuned model
on ARC-C dataset

Figure 3: Analysis of reasoning strategies across the three trajectory types before and after applying GRPO tuning to the LoRA-tuned model
on MedMCQA dataset

varied approaches humans use for general science problem-solving. The CR framework’s flexibility,
therefore, seems to allow GRPO to better identify and amplify the most effective, domain-appropriate
human-like reasoning strategies.
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