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ABSTRACT

To what extent do concept erasure techniques in diffusion models truly remove,
rather than merely suppress, targeted concepts? In this paper, we explore this ques-
tion by introducing a diagnostic framework that leverages lightweight parameter
adaptation to probe the robustness and reversibility of leading erasure methods.
Central to our approach are two minimal yet general probes: (i) a Gradient-Guided
Probe, which restores suppressed behavior by reversing gradient signals, and (ii)
an Instance-Personalization Probe, which reinstates concepts through few-shot su-
pervision. Across six erasure algorithms, multiple concept types, and diverse dif-
fusion backbones, we consistently find that erased concepts can be recovered with
high fidelity after only minimal adaptation. Our theoretical analysis reinforces
these results, showing that reversed weight remain bounded to the original param-
eters, leaving much of the targeted representation intact. Together, these findings
demonstrate that existing methods do not eliminate concepts but merely push them
below the surface, where they can be readily revived. As such, our work calls for
a rethinking of concept erasure: moving beyond superficial suppression toward
approaches that dismantle latent structures at their core, alongside more rigorous
standards for evaluating safety in generative models.

1 INTRODUCTION
Text-to-image diffusion models (Rombach et al., 2022; Ramesh et al., 2022) have emerged as a
backbone of modern generative AI, capable of producing high-quality images from natural language
prompts. Yet, their open-ended generative power also raises pressing safety and ethical concerns,
including the potential for harmful outputs (Bird et al., 2023) and violations of intellectual prop-
erty (Zhang et al., 2023). To mitigate these risks, recent work has explored concept erasure (Lu
et al., 2024; Gong et al., 2024), which seeks to suppress a model’s ability to generate undesired
concepts such as offensive objects, copyrighted artistic styles, or personal identities. Existing ap-
proaches pursue this goal through a range of mechanisms, including projection in cross-attention
layers (Gandikota et al., 2023; 2024; Lu et al., 2024; Gong et al., 2024; Zhang et al., 2024b), prun-
ing strategies (Yang et al., 2024; Chavhan et al., 2025), regularization-based editing (Huang et al.,
2024), and adversarial-guided erasure (Zhang et al., 2024c; Bui et al., 2025).

Despite these advancements, a fundamental question remains: do current erasure techniques truly
eliminate a model’s capacity to generate the targeted concept, or do they merely enforce conditional
suppression? This difference is not merely theoretical but has direct consequences for how safely
and reliably diffusion models can be used in real-world applications. If erasure were genuinely
irreversible, the model’s representational space would lack usable traces of the concept, making
recovery practically infeasible under minor perturbations or adaptations. In contrast, if latent rep-
resentations remain dormant but intact, erased concepts may reappear when prompts are varied or
through lightweight parameter adjustments. Such reversibility exposes serious risks: malicious ac-
tors could deliberately reactivate forbidden content, while benign users might also unintentionally
trigger it in unexpected deployment scenarios.

Recent work has begun to examine this fragility, but almost exclusively from the prompt perspective.
Pham et al. (2024) showed that erased concepts can be revived with adversarial prompts, while Lu
et al. (2025) demonstrated circumvention through prompt perturbation, inpainting, and noise-based
probing. Studies of these approaches often remain confined to the prompt level, focusing primarily
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on identifying or crafting potentially malicious prompts. As a result, the latent parameter-level
mechanisms driving the generation of erased concepts remain largely unexamined.

In this paper, we extend beyond prompt-level approaches and systematically investigate concept
erasure reversibility from a parameter-level perspective. To this end, we introduce a diagnostic
framework designed to assess the vulnerability of existing erasure methods. The framework lever-
ages two minimal yet general strategies: a Gradient-Guided Probe, which restores erased behavior
by reversing suppression gradients within the model parameters, and an Instance-Personalization
Probe, which reinstates concepts through few-shot personalization using a small set of reference
images. Complementing these empirical probes, we provide a theoretical analysis that establishes
formal bounds on deviations from the original model, demonstrating that erased concepts often re-
main recoverable with only minor parameter updates.

We extensively evaluate the reversibility of erased concepts across six state-of-the-art erasure meth-
ods: ESD (Gandikota et al., 2023), UCE (Gandikota et al., 2024), MACE (Lu et al., 2024),
FMN (Zhang et al., 2024b), AGE (Bui et al., 2025), and ConceptPrune (Chavhan et al., 2025). Our
results reveal that erased concepts can often be reinstated following only minimal parameter adap-
tation, as confirmed by improvements across classification accuracy, CLIP alignment, and LPIPS
similarity, while the model’s untargeted performance remains largely unaffected. These empirical
observations closely align with our theoretical analysis, which demonstrates that the reactivated
model frequently approximates the original, unerased model within a bounded error. Crucially,
these findings are consistent across different methods, concept categories, and diffusion backbones,
indicating that recoverability is a persistent limitation of current erasure techniques and that latent
representations often persist despite apparent suppression. This underscores the need for future re-
search to develop erasure strategies that explicitly dismantle residual representations and provide
stronger guarantees of irreversibility.

In summary, our contributions are as follows:

• A diagnostic framework for reversibility. We introduce a parameter-level framework
with two lightweight probes: a Gradient-Guided Probe that restores suppressed gradients,
and an Instance-Personalization Probe that rebinds concepts from a few examples. This
design goes beyond prompt-based circumvention, directly evaluating whether erased con-
cepts can be readily recovered within the model’s weight space.

• Theoretical and representation-level analysis. We derive reactivation bounds that quan-
tify deviations of the model’s parameters from the original, unerased version. These the-
oretical results align with empirical measures by classification accuracy, CLIP alignment,
and LPIPS perceptual similarity, providing an explanation for why erased concepts can
often be recovered with only minimal adaptation.

• Extensive empirical evaluation. We evaluate six state-of-the-art erasure methods across
both object and style concepts, using multiple diffusion backbones. Results from both
probes consistently demonstrate that erased concepts can be reinstated with high fidelity
following only minimal adaptation, highlighting recoverability as a fundamental limitation
of current concept erasure techniques.

2 RELATED WORK
Diffusion Models and Personalization. Text-to-image diffusion models have emerged as the
dominant paradigm for generative image synthesis (Rombach et al., 2022; Ramesh et al., 2022; Ho
et al., 2020). Their ability to generate semantically faithful and photorealistic images has enabled
widespread adoption. Personalization methods such as DreamBooth (Ruiz et al., 2023), textual in-
version (Gal et al., 2022), and parameter-efficient tuning (Kumari et al., 2023; Shi et al., 2024) allow
models to encode new concepts from limited data. While these techniques highlight the flexibility
of diffusion models, they also amplify risks of misuse, motivating research on concept erasure (Kim
& Qi, 2025; Xie et al., 2025).

Concept Erasure in Diffusion Models. Concept erasure aims to suppress a model’s ability to
generate undesired objects, styles, or identities. Representative approaches include fine-tuning (e.g.,
ESD (Gandikota et al., 2023)), cross-attention editing methods such as UCE and MACE (Gandikota
et al., 2024; Lu et al., 2024), and attention re-steering techniques like FMN (Zhang et al., 2024b).
Other directions include regularization-based methods such as RECELER (Huang et al., 2024), as
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well as pruning- or adversarial-guided strategies, such as Concept Prune (Chavhan et al., 2025) and
AGE (Bui et al., 2025). Recent work has also extended erasure to flow-matching architectures (Gao
et al., 2025), autoregressive models (Han et al., 2025), and text-to-video models (Ye et al., 2025;
Xu et al., 2025). Beyond diffusion, the literature on machine unlearning (Wang et al., 2024) shows
that forgetting is inherently difficult. Studies such as RESTOR (Rezaei et al., 2024) further demon-
strate that unlearned knowledge often remains recoverable. Together, these findings suggest that
recoverability is a recurring challenge, motivating our parameter-level study of reversibility.

Circumvention of Erasure. Although research on this topic is still emerging, several recent stud-
ies have shown that erased concepts can be partially restored by optimizing or perturbing the in-
put space. Pham et al. (2024) and Han et al. (2024) optimized adversarial embeddings via tex-
tual inversion and in some cases alternated with surrogate model parameter updates to recover
erased concepts, achieving restoration even under black-box settings by improving transferability
across unlearned models. More recently, Beerens et al. (2025) proposed RECORD, a tangential
coordinate-descent algorithm that directly searches the discrete token space for seed-agnostic ad-
versarial prompts, significantly boosting attack success rates. Lu et al. (2025) further demonstrated
circumvention via paraphrased prompts, inpainting, and noise-driven probing. Together, these works
provide strong prompt-space evidence that erased concepts often remain accessible when the input
space is carefully optimized or perturbed. In contrast, our approach operates at the parameter level,
directly probing whether erased concepts can be reinstated with minimal weight adaptation. Empir-
ical results show that our probes achieve consistently high reactivation accuracy (see Appendix G),
suggesting that, on the evaluated benchmarks, existing erasure methods tend to suppress rather than
completely remove target representations. This highlights the need for more robust and verifiable
defenses, such as R.A.C.E. (Kim et al., 2024).

3 BEHAVIORAL REVERSIBILITY OF CONCEPT ERASURE

Concept erasure aims to suppress a model’s ability to generate targeted objects, styles, or identi-
ties, facilitating safer and more controlled deployment. Although recent methods achieve effective
prompt-level suppression, it remains unclear whether such erasures genuinely eliminate a model’s
generative capacity or merely mask it under specific inputs. We investigate this question through a
three-step approach. First, we formalize the behavioral limitations of existing erasure methods in
Proposition 1. Second, we introduce two lightweight parameter-level probes, namely a Gradient-
Guided Probe and an Instance-Personalization Probe, designed as controlled diagnostics to deter-
mine whether erased concepts persist in latent form. Third, we provide a theoretical analysis of
reactivation bounds, showing that erased concepts can often be reinstated by recovering a model
that closely approximates the original, unerased version.

3.1 CONDITIONAL NATURE AND INTRINSIC VULNERABILITY

A generative model, parameterized by θ, defines a conditional distribution pθ(x | c) over images
x ∈ X given prompts c ∈ C. Let Xtarget denote the set of undesired content, and Ctarget denote the set
of prompts explicitly targeted by an erasure method. Most existing approaches enforce a constraint
of the form:

∀c ∈ Ctarget, supp(pθ(x | c)) ∩ Xtarget = ∅,
which ensures that the model cannot generate the target concept for a restricted set of prompts. Note
that in the formulation above, the constraint is defined with respect to fixed model parameters and
prompts. As a result, erased concepts are often conditionally suppressed rather than fully removed,
leaving latent representations that can be reactivated through slight prompt modifications or minor
parameter updates. Formally, this vulnerability can be expressed as follows.
Proposition 1 (Conditional Nature of Existing Erasure Methods). Let Xtarget ⊂ X denote a concept
intended for erasure, and let pθ(x | c) be the conditional distribution of a model parameterized by
θ. Assume an erasure algorithm enforces

pθ(x ∈ Xtarget | c) = 0, ∀ c ∈ Ctarget.

If there exists either (i) an arbitrarily small parameter perturbation δθ or (ii) a prompt c′ /∈ Ctarget
such that

pθ+δθ (x ∈ Xtarget | c) > 0 or pθ(x ∈ Xtarget | c′) > 0,
then the concept has not been fundamentally erased but only conditionally suppressed, and remains
recoverable under either parameter perturbations or prompt shifts.
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Remark. The above proposition highlights the conditional nature of many current erasure methods:
they tend to suppress targeted content under specific model parameters and prompts rather than elim-
inating it entirely. While Proposition 1 applies universally to all models and prompts, an important
question remains: how easily can the enforced erasure be undone in practice? If small parameter
perturbations or slight changes in prompts are sufficient to recover the concept, then the conditional
suppression implemented by current methods is highly fragile and susceptible to circumvention.

3.2 DIAGNOSTIC PROBES: GRADIENT-GUIDED AND INSTANCE-PERSONALIZATION

Motivated by the above observation, we now investigate the recoverability of erased concepts using
multiple diagnostic probes. Specifically, we introduce two lightweight fine-tuning strategies that
function as diagnostic probes: the Gradient-Guided Probe and the Instance-Personalization Probe.
Both probes are deliberately minimal, serving as controlled tests to determine whether erased con-
cepts persist in latent form.

Gradient-Guided Probe. This probe generalizes the idea of reversing suppression gradients.
Whereas erasure methods such as ESD dampen concept-aligned gradients, the probe restores them
by inverting the suppression loss into a reinforcement signal. Concretely, given a latent xt at timestep
t, we define three embeddings: a neutral embedding τ(∅) for the unconditional prompt, an anchor
embedding τ(c∗) for a related but broader concept, and the target embedding τ(c) for the erased
concept. For example, c may be “a photo of a church” and c∗ “a photo of a building.” We then
construct a reverse-guided prediction target:

ϵtarget(xt, c, t) = ϵθ(xt, c
∗, t) + γ ·

(
ϵθ(xt, c, t)− ϵθ(xt, ∅, t)

)
, (1)

where γ controls the strength of reinforcement. Fine-tuning updates θ′ to θ′′ by aligning predictions
with this target:

LGradient-Guided(θ
′′) = Ext,t

[
∥ϵθ′′(xt, c, t)− ϵtarget(xt, c, t)∥2

]
. (2)

This procedure tests whether suppressed gradients can be reinstated with minimal effort, revealing
the persistence of concept-aligned directions.

Instance-Personalization Probe. This probe adapts DreamBooth (Ruiz et al., 2023) for diagnos-
tic use. Given a small reference set Xref ⊂ Xtarget, it associates a rare token v∗ with the erased
concept by minimizing:

LInstance-Personalization(θ
′′) =Ex0∼Xref ,ϵ∼N (0,I),t

[
∥ϵ− ϵθ′′(zt, t, τ(cinst))∥2

]
+ λprior Ex0∼Xclass,ϵ∼N (0,I),t

[
∥ϵ− ϵθ′′(zt, t, τ(cclass))∥2

]
,

(3)

where zt =
√
αt x0 +

√
1− αt ϵ, and t ∼ U{1, . . . , T}. Here, cinst denotes the instance prompt

(e.g., “a photo of a v∗”), and cclass denotes the class prompt (e.g., “a photo of a dog”). By re-
binding the erased concept to a new token using only a few reference images, this probe exposes
what we term the personalization–erasure paradox, where erasure seeks to remove a model’s ability
to generate certain concepts, yet personalization methods such as DreamBooth can reinstate them
with few-shot learning, even in models that have ostensibly undergone erasure.

Comparison of Probes. Both probes operate directly at the parameter level but follow dif-
ferent mechanisms. The Gradient-Guided Probe reinstates suppressed concepts by performing
reverse-guided fine-tuning on the original prompts, seeking a parameter perturbation δθ such that
pθ+δθ (x ∈ Xtarget | c) > 0. The Instance-Personalization Probe, in contrast, re-personalizes erased
concepts using a small set of visual examples and conduct the few-shot learning. In Proposition 1,
this corresponds to perturb both the parameters and prompts, i.e., pθ′(x ∈ Xtarget | c′) > 0. Together,
these probes serve as minimal yet effective diagnostics that reveal the persistence of latent repre-
sentations. As demonstrated in Section 4, both probes succeed with only a few fine-tuning steps,
providing strong empirical evidence that current erasure methods tend to suppress rather than fully
eliminate targeted concepts.

3.3 THEORETICAL ANALYSIS OF REACTIVATION BOUNDS

Building on Proposition 1, we provide a quantitative characterization of how easily erased concepts
can be reinstated under parameter-level adaptation. Here we focus on the Gradient-Guided Probe,
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since its reverse-guided objective admits a tractable optimization form suitable for deriving conver-
gence bounds. An embedding-level analysis for the Instance-Personalization Probe is presented in
Appendix D, where we establish local ascent guarantees for token-level personalization.

We begin by modeling noisy gradient descent on the Gradient-Guided loss in the continuous-time
limit (Weinan, 2017; Zhang et al., 2024a), which allows us to approximate the evolution of weight
differences using a stochastic differential equation (SDE) (Arnold, 1974; Oksendal, 2013). In partic-
ular, suppose the underlying ground-truth reverse process, which corresponds to concept reactivation
via flipped erasing tuning, follows

dθ(t) = ∇f(θ(t)) dt+Σ1(t)
1/2dB1(t),

while the actual optimization process evolves according to

dθ̃(t) = ∇f(θ̃(t)) dt+Σ2(t)
1/2dB2(t),

where B1(t) and B2(t) are independent standard d-dimensional Brownian motions (Einstein, 1905).
We define the deviation between the two traces as

δ(t) := θ̃(t)− θ(t).

The subsequent Theorems provide bounds on the weight differences under two conditions.
Theorem 2 (General Reactivation Bound under L-smoothness). Let f : Rd → R be L-smooth, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd,

and assume that the noise covariances satisfy
tr(Σ1(t)) ≤ σ̄1, tr(Σ2(t)) ≤ σ̄2, ∀t ≥ 0.

Then the expected squared deviation is bounded at the terminal time T:

E∥δ(T )∥2 ≤ σ̄1 + σ̄2

2L

(
e2LT − 1

)
.

Proof Sketch. Using Itô’s isometry (Oksendal, 2013) and L-smoothness, we derive the differen-
tial inequality d

dt E∥δ(t)∥
2 ≤ 2LE∥δ(t)∥2 + E tr(Σ1(t) + Σ2(t)). Applying Grönwall’s inequal-

ity (Gronwall, 1919) gives the stated bound. The complete derivation is provided in Appendix B.
Theorem 3 (Reactivation Bound under Strong Convexity). If f is additionally µ-strongly convex,
i.e.,

⟨x− y,∇f(x)−∇f(y)⟩ ≥ µ∥x− y∥2, ∀x, y ∈ Rd,

then the expected squared deviation is bounded at the terminal time T:

E∥δ(T )∥2 ≤ σ̄1 + σ̄2

2µ

(
1− e−2µT

)
.

Thus, the expected deviation converges linearly to a noise-dependent plateau.

Proof Sketch. Using strong convexity, we derive the differential inequality d
dt E∥δ(t)∥

2 ≤
−2µE∥δ(t)∥2+E tr(Σ1(t)+Σ2(t)). Applying Grönwall’s inequality yields the stated exponential
decay toward the noise-dependent plateau. The complete derivation is provided in Appendix C.

Remark. In the general L-smooth case, the deviation between the two stochastic trajectories admits
an upper bound, representing the worst-case scenario. By contrast, if f additionally satisfies the
µ-strongly convex condition, the deviation δ(t) enjoys a contraction property: the expected squared
difference converges to a steady-state bound, limt→∞ E∥δ(t)∥2 = (σ̄1 + σ̄2)/(2µ), indicating that
the system remains stable and the deviation does not accumulate even over an infinite horizon.

Implications of Diagnostic Probes. In practice, most neural networks are better characterized by
the L-smooth setting in Theorem 2, where parameter deviations can, in principle, grow exponen-
tially with the effective time horizon T . However, erasure methods typically employ very small
learning rates (e.g., 10−6–10−5) and perform only a limited number of tuning steps to preserve per-
formance on untargeted concepts, keeping the effective T small. Consequently, the theoretical bound
on E|δ(T )|2 remains modest. This observation aligns with our empirical findings: the mean abso-
lute parameter difference after reactivation is minor (on the order of 10−4), as reported in Table 5.
Furthermore, if the reverse process remains within a locally strongly convex region, the deviations
may contract to a bounded region. This suggests that overcoming such contraction behavior could
be necessary for designing truly irreversible erasure methods.
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4 BEHAVIORAL PROBING OF CONCEPT ERASURE METHODS
We now turn to empirical evaluations of concept erasure and reactivation. The experiments are
designed to directly address our central question: can lightweight diagnostic probes reliably reinstate
concepts that state-of-the-art erasure methods claim to remove? To this end, we evaluate multiple
erasure algorithms across diverse concept categories and diffusion backbones, measuring both the
fidelity of reactivation and the preservation of untargeted generation quality.

4.1 EXPERIMENTAL SETUP

Backbones and Concept Classes. Our primary experiments are conducted on Stable Diffusion
v1.4 (SD1.4), the most widely used backbone in prior erasure studies. We also report validation
experiments on Stable Diffusion v2.1 (SD2.1) to confirm that our findings are not specific to SD1.4.
Following prior work (Gandikota et al., 2023; 2024; Lu et al., 2024), we evaluate ten ImageNet ob-
jects (cassette player, chain saw, church, gas pump, tench, garbage truck, English springer, golf ball,
parachute, French horn) and five artistic styles (Pablo Picasso, Vincent van Gogh, Rembrandt, Andy
Warhol, Caravaggio), ensuring both semantic diversity and comparability with existing benchmarks.

Erasure Methods and Probes. We benchmark six representative erasure methods: Unified Con-
cept Editing (UCE) (Gandikota et al., 2024), Erased Stable Diffusion (ESD) (Gandikota et al.,
2023), MACE (Lu et al., 2024), FMN (Zhang et al., 2024b), AGE (Bui et al., 2025), and Con-
ceptPrune (Chavhan et al., 2025), covering projection, fine-tuning, adversarial training, and pruning
paradigms. To test reversibility, we apply two diagnostic probes: the Gradient-Guided Probe, which
restores erased concepts via lightweight gradient reversal, and the Instance-Personalization Probe,
which reinstates concepts through few-shot personalization with a small reference set.

Metrics and Evaluation Protocol. We evaluate along two axes: (i) Reactivation Accuracy, mea-
sured as Top-1 classification accuracy using a pretrained ResNet-50 (He et al., 2016) for object
concepts, and (ii) Generative Quality, assessed using CLIP similarity (Radford et al., 2021) for
style concepts and LPIPS perceptual distance (Zhang et al., 2018) with AlexNet (Krizhevsky et al.,
2012). Following prior work (Gandikota et al., 2023; 2024), we use a predefined prompt list, with
10 prompts per class and 20 images per prompt at 512 × 512 resolution, yielding 200 images per
class (2,000 object images and 1,000 style images in total).

Implementation Details. For the Gradient-Guided Probe, we fine-tune the UNet attention mod-
ules for 200 steps using Adam. For object concepts, we set the learning rate to 1 × 10−5 and the
erasure/reactivation strength to 0.8; for artistic styles, we adopt 5 × 10−5 and a strength of 10.0.
For the Instance-Personalization Probe, we fine-tune the UNet backbone (and optionally the text en-
coder) for 500 steps using Adam with a learning rate of 1×10−6, employing both instance and class
prompts, with prior preservation regularization λprior = 1.0 to mitigate overfitting. All experiments
are run on a single NVIDIA RTX 4090 GPU with 24GB memory.

4.2 ANALYSIS OF EXPERIMENTAL RESULTS

4.2.1 ERASURE REVERSIBILITY ON OBJECT CONCEPTS

As shown in Table 1, among the six methods, ESD, FMN, and AGE achieve the strongest suppres-
sion, often driving erased accuracies close to zero across multiple classes (e.g., chain saw, tench,
and French horn). Yet both the Gradient-Guided Probe and the Instance-Personalization Probe
rapidly reinstate these concepts, with recovery levels approaching or even matching the original
model (e.g., French horn and golf ball restored to nearly 100%). Projection-based UCE suppresses
less aggressively, leaving substantial residual signals (e.g., golf ball at 65.5%), which the Instance-
Personalization Probe can almost completely reinstate (e.g., church rising from 23% to 98%). Sim-
ilarly, pruning-based CP occasionally achieves strong erasure (e.g., tench reduced to 0.5%) but is
easily reversed by personalization (e.g., English springer restored from 24% to 99%). Overall, these
results indicate that while methods differ in suppression strength, all leave recoverable traces in la-
tent space, confirming that current erasure strategies achieve only conditional suppression rather than
irreversible removal of object concepts. Visual comparison of object-level erasure and reactivation
is provided in Appendix F.1.

4.2.2 ERASURE REVERSIBILITY ON ARTISTIC STYLES

Table 2 summarizes the outcomes of six erasure methods across five artist styles. We observe that
all approaches achieve some degree of suppression, with ESD and AGE producing the largest initial
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Table 1: Evaluation results on ten object classes with Gradient-Guided and Instance-Personalization Probes.
Each cell reports “Erased (↓) / Reactivation (↑)”, where lower values indicate stronger erasure and higher
values indicate more successful reactivation. All values are Top-1 classification accuracies measured by a
pretrained ResNet-50.

(a) Gradient-Guided Probe

Object Original ESD UCE MACE FMN AGE CP
cassette player 74.0 0.5 / 70.0 3.5 / 22.5 21.5 / 78.0 5.5 / 46.5 12.0 / 65.0 53.5 / 85.5
chain saw 78.0 0.0 / 86.0 0.0 / 29.5 1.0 / 45.0 0.0 / 75.5 5.0 / 83.5 15.0 / 56.0
church 86.5 7.0 / 93.5 23.0 / 83.0 10.0 / 84.0 6.5 / 94.5 65.5 / 87.0 73.0 / 93.5
english springer 93.0 0.0 / 81.5 0.5 / 72.5 9.0 / 81.5 0.0 / 8.5 4.5 / 89.0 24.0 / 44.5
french horn 100.0 0.0 / 99.5 2.5 / 99.0 16.0 /100.0 21.0 / 97.5 29.5 / 99.5 34.5 /100.0
garbage truck 82.0 7.5 / 81.0 7.5 / 22.5 1.5 / 47.5 0.0 / 5.0 0.0 / 71.5 3.5 / 59.0
gas pump 73.5 0.0 / 60.5 5.0 / 28.5 16.0 / 53.5 1.5 / 74.5 11.0 / 70.5 54.0 / 63.0
tench 75.0 0.0 / 54.0 0.5 / 0.5 38.0 / 62.0 0.0 / 14.5 1.5 / 61.0 0.5 / 59.5
golf ball 98.5 0.0 / 97.0 65.5 / 91.0 2.0 / 78.5 18.5 / 96.5 20.0 / 97.0 81.0 / 99.0
parachute 93.0 0.0 / 95.5 9.5 / 49.5 49.0 / 87.5 1.5 / 80.5 8.5 / 87.5 4.0 / 87.0
Average 88.85 1.5 / 81.85 11.75 / 49.85 16.4 / 71.75 5.45 / 59.35 15.75 / 81.15 34.3 / 74.7

(b) Instance-Personalization Probe

Object Original ESD UCE MACE FMN AGE CP
cassette player 74.0 0.5 / 51.5 3.5 / 15.5 21.5 / 47.5 5.5 / 31.5 12.0 / 61.0 53.5 / 54.5
chain saw 78.0 0.0 / 75.0 0.0 / 68.0 1.0 / 82.0 0.0 / 63.5 5.0 / 66.0 15.0 / 40.5
church 86.5 7.0 / 98.0 23.0 / 98.0 10.0 / 96.0 6.5 / 99.5 65.5 / 94.5 73.0 / 91.5
english springer 93.0 0.0 / 87.5 0.5 / 97.0 9.0 / 83.0 0.0 / 99.0 4.5 / 97.0 24.0 / 99.0
french horn 100.0 0.0 / 99.5 2.5 /100.0 16.0 /100.0 21.0 /100.0 29.5 /100.0 34.5 / 99.0
garbage truck 82.0 7.5 / 61.0 7.5 / 89.0 1.5 / 72.5 0.0 / 66.5 0.0 / 63.0 3.5 / 84.5
gas pump 73.5 0.0 / 29.5 5.0 / 48.5 16.0 / 59.5 1.5 / 80.5 11.0 / 72.5 54.0 / 82.5
tench 75.0 0.0 / 42.5 0.5 / 7.0 38.0 / 72.5 0.0 / 95.5 1.5 / 71.0 0.5 / 71.5
golf ball 98.5 0.0 / 96.5 65.5 / 90.5 2.0 / 92.5 18.5 / 80.5 20.0 /100.0 81.0 / 97.5
parachute 93.0 0.0 / 78.0 9.5 / 80.0 49.0 / 88.5 1.5 /100.0 8.5 / 90.5 4.0 / 74.5
Average 88.85 1.5 / 71.9 11.75 / 69.35 16.4 / 79.4 5.45 / 81.65 15.75 / 81.55 34.3 / 79.5

Table 2: Comparison of six erasure methods on five artist-style concepts. Each cell reports “Erased (↓) /
Reactivation (↑)”, where lower values indicate stronger erasure and higher values indicate more successful
reactivation. “Original” denotes CLIP similarity of the unmodified model.

(a) Gradient-Guided Probe

Artist Original ESD UCE MACE FMN AGE CP
Andy Warhol 30.07 22.44 / 30.65 24.24 / 29.68 24.61 / 29.14 24.10 / 29.74 20.66 / 27.23 21.63 / 26.19
Pablo Picasso 28.75 23.17 / 28.59 25.53 / 26.90 25.92 / 27.85 23.85 / 27.51 21.62 / 26.86 21.16 / 26.11
Van Gogh 30.30 19.78 / 29.73 25.45 / 29.56 25.66 / 29.94 25.93 / 27.96 19.08 / 27.56 20.59 / 28.52
Rembrandt 29.45 20.41 / 28.94 24.17 / 28.91 26.01 / 29.05 26.50 / 27.87 20.02 / 27.80 22.58 / 27.07
Caravaggio 28.46 19.01 / 27.33 23.45 / 27.11 24.16 / 27.63 25.01 / 29.16 18.53 / 27.77 20.65 / 27.88

(b) Instance-Personalization Probe

Artist Original ESD UCE MACE FMN AGE CP
Andy Warhol 30.07 22.44 / 28.55 24.24 / 27.38 24.61 / 30.07 24.10 / 26.64 20.66 / 27.04 21.63 / 29.24
Pablo Picasso 28.75 23.17 / 29.01 25.53 / 27.56 25.92 / 25.59 23.85 / 24.05 21.62 / 27.18 21.16 / 27.75
Van Gogh 30.30 19.78 / 30.07 25.45 / 28.90 25.66 / 27.26 25.93 / 26.89 19.08 / 28.28 20.59 / 30.68
Rembrandt 29.45 20.41 / 26.21 24.17 / 27.42 26.01 / 26.05 26.50 / 28.75 20.02 / 25.98 22.58 / 29.42
Caravaggio 28.46 19.01 / 26.63 23.45 / 27.11 24.16 / 25.33 25.01 / 28.54 18.53 / 27.03 20.65 / 28.00

reductions in CLIP similarity (e.g., Van Gogh suppressed to 19.78, Caravaggio to 18.53). How-
ever, despite these apparent gains, both the Gradient-Guided Probe and the Instance-Personalization
Probe consistently restore erased styles to near-original levels. For instance, Van Gogh, which drops
to 19.78 under ESD, returns to 30.07 after Instance-Personalization reactivation, nearly matching
the original 30.30. The two probes reveal different vulnerabilities: the Gradient-Guided Probe effec-
tively reverses gradient-based methods such as MACE and FMN, while the Instance-Personalization
Probe excels at reinstating styles under pruning- and adversarial-guided erasures such as CP and
AGE. Table 3 reports LPIPS distances, providing a perceptual measure of similarity to the original
model. Consistent with the CLIP results, erasure typically increases LPIPS substantially, whereas
both probes consistently reduce these values. This confirms that reactivated models not only re-
cover semantic alignment (via CLIP) but also regain perceptual fidelity (via LPIPS), reinforcing
the conclusion that current erasure techniques achieve only conditional suppression, leaving the un-
derlying stylistic representations intact and readily recoverable under minimal fine-tuning. Visual
comparison of style-level erasure and reactivation is provided in Appendix F.2.
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Table 3: LPIPS comparison for erasure and reactivation on five artist-style concepts (lower is better). Each cell
reports “Erased (↑) / Gradient-Guided Probe (↓) / Instance-Personalization Probe (↓)”. Higher values in
the first entry indicate stronger erasure, while lower values in the latter two entries indicate more successful
reactivation. LPIPS is computed between images generated by erased/reactivated models and those from the
original model.

Artist ESD UCE MACE FMN AGE CP
Andy Warhol 0.88 / 0.42 / 0.61 0.65 / 0.50 / 0.59 0.78 / 0.49 / 0.65 0.77 / 0.51 / 0.61 0.84 / 0.53 / 0.71 0.73 / 0.62 / 0.65
Pablo Picasso 0.82 / 0.27 / 0.55 0.45 / 0.40 / 0.47 0.53 / 0.38 / 0.53 1.11 / 0.44 / 0.63 0.71 / 0.44 / 0.58 0.81 / 0.58 / 0.63
Van Gogh 0.83 / 0.33 / 0.53 0.54 / 0.41 / 0.47 0.57 / 0.45 / 0.53 0.84 / 0.49 / 0.59 0.77 / 0.46 / 0.59 0.67 / 0.61 / 0.57
Rembrandt 0.90 / 0.37 / 0.67 0.55 / 0.40 / 0.58 0.60 / 0.39 / 0.51 0.81 / 0.47 / 0.51 0.78 / 0.50 / 0.68 0.78 / 0.71 / 0.65
Caravaggio 0.90 / 0.31 / 0.57 0.49 / 0.35 / 0.47 0.48 / 0.38 / 0.45 0.69 / 0.43 / 0.52 0.80 / 0.39 / 0.64 0.73 / 0.54 / 0.59

Table 4: Evaluation of reactivation across model versions and resolutions. Each cell reports “Erased / Reactiva-
tion” Top-1 accuracies (ResNet-50). Results demonstrate that the vulnerabilities of concept erasure generalize
across both Stable Diffusion 2.1 (a) and Stable Diffusion 1.4 at 256× 256 (b).

(a) Stable Diffusion 2.1

Object Original Erasure / Reactivation
cassette player 63.5 0.5 / 54.5
chain saw 97.5 0.0 / 91.0
church 99.0 71.5 / 97.0
english springer 98.0 0.0 / 95.5
french horn 83.0 0.0 / 87.5
garbage truck 65.5 0.5 / 60.0
gas pump 98.0 0.0 / 94.5
tench 91.0 0.5 / 91.5
golf ball 91.0 1.5 / 94.0
parachute 86.0 0.5 / 86.0

(b) Stable Diffusion 1.4 (256× 256)

Object Original Erasure / Reactivation
cassette player 67.50 0.00 / 9.75
chain saw 77.25 0.00 / 78.25
church 77.00 4.75 / 74.50
english springer 89.25 0.00 / 89.75
french horn 99.75 0.00 / 100.00
garbage truck 78.75 0.00 / 77.75
gas pump 65.75 0.00 / 80.00
golf ball 93.25 0.00 / 95.25
parachute 93.00 0.00 / 89.75
tench 68.00 0.00 / 71.95

4.3 GENERALIZATION ACROSS BACKBONES AND RESOLUTIONS

We conducted additional experiments on Stable Diffusion 2.1 and Stable Diffusion 1.4 at a lower
input resolution of 256 × 256 to examine whether the vulnerabilities of concept erasure generalize
across model backbones and resolutions. As shown in Table 4, strong suppression is consistently
achieved, often driving erased accuracies close to zero. However, once subjected to lightweight
reactivation, the erased concepts are almost fully restored, with accuracies nearly matching those
of the original models. These findings indicate that recoverability of erased concepts is not tied
to a particular erasure method, backbone, or resolution, but instead reflects an inherent limitation
common to current erasure approaches.

4.4 REACTIVATION DYNAMICS UNDER PARAMETER PERTURBATION

To further investigate the relationship between reactivation performance and parameter updates, we
analyzed reactivation iterations for two representative object classes (chain saw and tench). As
shown in Table 5, increasing the number of fine-tuning iterations consistently improves the accuracy
of the erased class while requiring only lightweight parameter changes. For example, for tench, 20
iterations recover 32.0% accuracy with just 0.34% of parameters modified, whereas 50 iterations
achieve 61.0% with 0.93% modified, and 200 iterations reach 66.0% with 1.84%. A similar trend is
observed for chain saw, where accuracy rises from 19.5% to 81.0% as iterations increase from 20
to 200, with less than 1.4% of parameters changed. Importantly, the accuracy drop compared to the
original unerased model on non-target classes remains small (3–5%) across all settings, indicating
limited side effects. These results demonstrate that erased concepts can be efficiently reactivated
with modest weight perturbations, reinforcing that current erasure methods provide only superficial
suppression rather than permanent removal.

4.5 UNTARGETED IMPACT AND COLLATERAL EFFECTS

We further examined the untargeted effects of erasure and reactivation on Stable Diffusion 2.1. As
shown in Table 6, while erasure reduces the accuracy of non-target classes (e.g., a 27.3% drop
for chain saw), reactivation largely restores their performance, typically within 2–3% of the original
accuracy. This result indicates that reactivation does not substantially disrupt untargeted classes, and
confirms that our main findings generalize across models and do not arise from spurious artifacts.
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Table 5: Reactivation accuracy and weight perturbation under ESD erasure for two representative classes.
Reactivation accuracy increases with iterations while parameter changes remain modest, demonstrating the
fragility of ESD-based erasure.

Iterations Class Original Acc Reactivated Acc ↑ Non-target Drop ↓ Params Updated Mean Abs. Change
20 chain saw 78.0 19.5 3.7 0.30 2.29 × 10−4

50 chain saw 78.0 80.5 2.9 0.60 2.53 × 10−4

200 chain saw 78.0 81.0 3.0 1.38 3.06 × 10−4

20 tench 75.0 32.0 5.0 0.34 2.30 × 10−4

50 tench 75.0 61.0 5.3 0.93 3.08 × 10−4

200 tench 75.0 66.0 3.2 1.84 3.34 × 10−4

Table 6: Target and untargeted impact of erasure and reactivation on Stable Diffusion 2.1 across ten object
concepts. Each cell reports Top-1 accuracy measured by a pretrained ResNet-50. “Target” columns show per-
formance on the erased class, while “Untargeted” columns report the performance over the remaining classes.

Object Target Untargeted
Original Erased ↓ Reactivation ↑ Original Erased ↑ Drop ↓ Reactivation ↑

cassette player 63.5 0.5 54.5 89.9 79.3 10.6 86.7
chain saw 97.5 0.0 91.0 86.1 58.8 27.3 83.4
church 99.0 71.5 97.0 86.0 84.9 1.1 84.7
english springer 98.0 0.0 95.5 86.0 67.6 18.4 83.6
french horn 83.0 0.0 87.5 87.7 73.3 14.4 85.0
garbage truck 65.5 0.5 60.0 89.7 72.8 16.9 87.4
gas pump 98.0 0.0 94.5 86.1 69.7 16.4 82.4
tench 91.0 0.5 91.5 86.8 76.6 10.2 84.8
golf ball 91.0 1.5 94.0 86.8 78.6 8.2 84.7
parachute 86.0 0.5 86.0 87.4 81.3 6.1 85.4

4.6 RUNTIME OF REACTIVATION STRATEGIES

A practical concern is the computational cost of reactivating erased concepts. Across all settings,
we observe that reactivation is remarkably efficient: all procedures complete under seven minutes
on a single NVIDIA RTX 4090 GPU. To quantify this, we measured wall-clock runtimes on Stable
Diffusion 1.4 at 256 × 256 resolution for a representative object class (cassette player) under four
erasure–reactivation configurations: ESD-Erase with the Gradient-Guided Probe, ESD-Erase with
the Instance-Personalization Probe, UCE-Erase with the Gradient-Guided Probe, and UCE-Erase
with the Instance-Personalization Probe. Each configuration was repeated three times. On average,
the Instance-Personalization Probe required about 245 seconds, while the Gradient-Guided Probe
required about 369 seconds.

4.7 IMPLICATIONS FOR CONCEPT ERASURE

Our findings suggest that current erasure methods suffer from a fundamental weakness: they sup-
press the target concept at the prompt level rather than eliminating it from the parameter space, thus
functioning as input filtering rather than genuine erasure. This interpretation is consistent with prior
works (Pham et al., 2024; Lu et al., 2025), which show that underlying information persists in the
model and can be readily recovered by optimizing special embeddings. Our results provide further
evidence: as shown in Table 5, successful reactivation requires only modest parameter adjustments
(typically less than 2% of weights). The small magnitude of change needed to recover erased con-
cepts strongly indicates that the erased information is only weakly suppressed rather than globally
eliminated. Addressing this limitation may require more robust defenses, such as structural inter-
ventions or alignment-driven regularization strategies, to achieve truly irreversible concept erasure.

5 CONCLUSION

We presented a systematic parameter-level study of concept erasure in diffusion models. Using two
lightweight diagnostic probes, namely a Gradient-Guided Probe and an Instance-Personalization
Probe, our theoretical and empirical results show that current erasure methods often achieve condi-
tional suppression rather than complete elimination. Erased concepts can be reinstated by adapting
fewer than 2% of model parameters, with minimal impact on untargeted content, highlighting recov-
erability as a key open challenge. Future work should aim for methods that more effectively target
residual representations and offer verifiable guarantees of irreversibility, potentially drawing on tech-
niques from machine unlearning, watermarking, and model alignment to enable safer deployment
of generative AI.
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6 APPENDIX

A JOINT PERTURBATION EXISTENCE (PARAMETERS AND PROMPTS)

Proposition 1 characterizes scenarios in which perturbing either the model parameters or the prompts
can make the probability of generating the target concept nonzero. Building on this, we consider the
case of perturbing both parameters and prompts simultaneously.
Proposition 4 (Conditional Nature of Existing Erasure Methods). Let Xtarget ⊂ X denote a concept
intended for erasure, and let pθ(x | c) be the conditional distribution of a model parameterized by
θ. Assume an erasure algorithm enforces

pθ(x ∈ Xtarget | c) = 0, ∀ c ∈ Ctarget.

If there exist arbitrarily small perturbations δθ of the parameters and a prompt c′ /∈ Ctarget such that
for θ′ = θ + δθ,

pθ′(x ∈ Xtarget | c′) > 0,

then the concept has not been fundamentally erased but only conditionally suppressed, and remains
recoverable through such joint interventions.

Remark. The above proposition highlights the conditional nature of existing erasure methods: they
suppress targeted content only under specific prompts rather than eliminating it entirely. Conse-
quently, erased concepts may remain dormant within the model, leaving the possibility of recovery
through either minor parameter perturbations or small prompt variations.

B PROOF OF THEOREM 2

For completeness, we provide the full proof of Theorem 2, which in the main text was only summa-
rized as a sketch.

Proof. We first make explicit the standard assumptions used in the bound.

Assumptions. (i) f has an L-Lipschitz gradient in a neighborhood containing the traces, that is

∥∇f(u)−∇f(v)∥ ≤ L∥u− v∥ ∀u, v ∈ Rd,

(ii) The reference and actual dynamics start from the same point: θ(0) = θ̃(0) = θ0. (iii) The two
stochastic processes follow the Itô SDEs

dθ(t) = ∇f(θ(t)) dt+Σ1(t)
1/2dB1(t), dθ̃(t) = ∇f(θ̃(t)) dt+Σ2(t)

1/2dB2(t),

where B1(t), B2(t) are independent standard d-dimensional Brownian motions, and tr(Σ1(t)) ≤
σ̄1, tr(Σ2(t)) ≤ σ̄2 for all t ≥ 0. Define the deviation δ(t) := θ̃(t)− θ(t) so that δ(0) = 0.

Step 1: Itô formula for the squared norm. Consider V (δ) = ∥δ∥2. By Itô’s formula,

dV (δ(t)) = 2⟨δ(t), dδ(t)⟩+ tr(Σ1(t) + Σ2(t)) dt.

Since

dδ(t) = dθ̃(t)− dθ(t) =
(
∇f(θ̃(t))−∇f(θ(t))

)
dt+Σ2(t)

1/2dB2(t)− Σ1(t)
1/2dB1(t),

we have

d∥δ(t)∥2 = 2⟨δ(t),∇f(θ̃(t))−∇f(θ(t))⟩dt+ 2⟨δ(t), dW (t)⟩+ tr(Σ1(t) + Σ2(t))dt,

where dW (t) := Σ2(t)
1/2dB2(t)− Σ1(t)

1/2dB1(t).

Step 2: Take expectations. The stochastic integral term has zero expectation, hence

d

dt
E∥δ(t)∥2 = 2E⟨δ(t),∇f(θ̃(t))−∇f(θ(t))⟩+ E tr(Σ1(t) + Σ2(t)).

Step 3: Use L-smoothness to bound the drift term. By L-smoothness,

∥∇f(θ̃(t))−∇f(θ(t))∥ ≤ L∥δ(t)∥,

13
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so that
2⟨δ(t),∇f(θ̃(t))−∇f(θ(t))⟩ ≤ 2L∥δ(t)∥2.

Using the bound on the trace of the noise covariance gives

d

dt
E∥δ(t)∥2 ≤ 2LE∥δ(t)∥2 + σ̄1 + σ̄2.

Step 4: Solve the differential inequality. Let y(t) := E∥δ(t)∥2. Then

y′(t) ≤ 2Ly(t) + σ̄1 + σ̄2, y(0) = 0.

By the integrating factor method or Grönwall’s inequality,

y(t) ≤ σ̄1 + σ̄2

2L

(
e2Lt − 1

)
.

Setting t to the desired time completes the proof:

E∥δ(t)∥2 ≤ σ̄1 + σ̄2

2L

(
e2Lt − 1

)
.

□

C PROOF OF THEOREM 3

Proof. The first two steps proceed in the same way as in the proof of Theorem 2 (see Appendix B).
The key difference arises in Steps 3 and 4, where the µ-PL condition allows us to establish a con-
traction bound rather than an expansion bound.

Step 3: Use strongly convex condition to bound the drift term. By the µ-strongly convex condition,

⟨δ(t),∇f(θ̃(t))−∇f(θ(t))⟩ ≥ µ∥δ(t)∥2.

Using the bounds on the trace gives the differential inequality

d

dt
E∥δ(t)∥2 ≤ −2µE∥δ(t)∥2 + σ̄1 + σ̄2.

Step 4: Solve the differential inequality. Let y(t) = E∥δ(t)∥2. Then

y′(t) ≤ −2µy(t) + σ̄1 + σ̄2, y(0) = 0.

Solving gives

y(t) ≤ σ̄1 + σ̄2

2µ

(
1− e−2µt

)
,

which completes the proof. □
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D ANALYSIS FOR INSTANCE-PERSONALIZATION PROBE

Setup and Notation. Let θ denote model parameters and τ(·) the text encoder that maps prompts
to embeddings. DreamBooth introduces a rare token v∗ with embedding e := τ(v∗) and uses
two prompts: cinst for the instance prompt such as “a photo of v∗” and cclass for the class prompt
such as “a photo of a dog”. Let x0 ∈ Xref be a reference image for the erased concept and let
zt =

√
αt x0 +

√
1− αt ϵ with t sampled from a predefined schedule and ϵ ∼ N (0, I). The

DreamBooth loss is

LInstance-Personalization(θ, e) = E
[
∥ϵ−ϵθ(zt, t, τ(cinst(e)))∥2

]
+λprior E

[
∥ϵ−ϵθ(zt, t, τ(cclass))∥2

]
.

In reactivation we mainly optimize e and optionally a small subset of θ. For analysis it is convenient
to work with a differentiable surrogate score sθ(e) that increases when the erased concept is better
reconstructed (e.g., a CLIP similarity with the concept text, or the negative instance loss).

We provide the local nondegeneracy statement in the token embedding space and provide a quanti-
tative ascent guarantee.
Proposition 5 (Quantitative local ascent in the token embedding). Let sθ : Rde → R be differ-
entiable. Assume that ∇esθ is Le-Lipschitz in a neighborhood of e0 and ∇esθ(e0) ̸= 0. Let
u = ∇esθ(e0)/∥∇esθ(e0)∥ and e1 = e0 + ηu. Then for any step size η in the open interval(
0, 2∥∇esθ(e0)∥/Le

)
one has

sθ(e1) ≥ sθ(e0) + η ∥∇esθ(e0)∥ − Le

2 η2 > sθ(e0).

In particular, the choice η⋆ = ∥∇esθ(e0)∥/Le maximizes the right-hand side and yields

sθ(e0 + η⋆u) ≥ sθ(e0) +
∥∇esθ(e0)∥2

2Le
.

Proof. By Le-smoothness of sθ,

sθ(e0 +∆) ≥ sθ(e0) + ⟨∇esθ(e0), ∆⟩ − Le

2
∥∆∥2 for all ∆.

Taking ∆ = ηu with u the normalized gradient direction gives the bound. The quadratic is positive
on

(
0, 2∥∇esθ(e0)∥/Le

)
and is maximized at η⋆ = ∥∇esθ(e0)∥/Le. □

Proposition 6 (Second-order ascent at a first-order critical point). Assume ∇esθ(e0) = 0 and there
exists a unit vector v with v⊤∇2

eesθ(e0) v > 0. Then for sufficiently small η > 0,

sθ(e0 + ηv) = sθ(e0) + 1
2 η

2 v⊤∇2
eesθ(e0) v + o(η2) > sθ(e0).

Hence even at a first-order stationary point, a nondegenerate positive-curvature direction yields a
local increase and initiates reactivation. □

Therefore, it is always possible to construct an embedding τ(cinst) along this direction, or via contin-
uous optimization methods such as textual inversion, that maximizes the likelihood of the concept.

Moreover, in instance-personalization probes, the parameters θ can always be further optimized to
improve performance, analogous to Proposition 5 6. We omit the details here for simplicity.

E STATISTICAL ROBUSTNESS OF REACTIVATION RESULTS

To assess the stability of our findings, we repeated the full reactivation experiment five times with
different random seeds under the ESD erasure setting combined with the Gradient-Guided Probe for
reactivation. For example, for the chain saw class, the mean reactivation accuracy was 75.0% with
a standard deviation of 2.62%, and for tench it was 64.6% with a standard deviation of 2.88%. Sim-
ilar relatively small variance was observed across other categories, suggesting that the reactivation
results are generally stable and reproducible.

F QUALITATIVE VISUALIZATION.

In addition to quantitative metrics, we present qualitative visualizations to highlight the effectiveness
of our diagnostic probes. These examples focus on how erased concepts can be reinstated with high
fidelity, illustrating the persistence of residual representations.

15
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Original

Gradient-Guided 
Probe

ESD Erase

Instance-Personalization 
Probe

(a) ESD erasure and subsequent reactivation. The Gradient-Guided and Instance-Personalization
Probes both restore erased concepts such as chain saw and french horn with high fidelity, revealing
that suppression is not permanent.

Original

Gradient-Guided 
Probe

UCE Erase

Instance-Personalization 
Probe

Original

Gradient-Guided 
Probe

UCE Erase

Instance-Personalization 
Probe

(b) UCE erasure and subsequent reactivation. Despite strong suppression under UCE, both probes
successfully reinstate the erased categories, again indicating that latent representations persist in the
parameter space.

Figure 1: Visual comparison of object-level erasure and reactivation under two representative meth-
ods. (a) ESD Erase and (b) UCE Erase both strongly suppress targeted concepts, visibly degrad-
ing the corresponding generations. However, our parameter-level probes (Gradient-Guided and
Instance-Personalization) are able to reinstate the erased objects with high fidelity. This highlights
that current erasure methods achieve conditional suppression rather than permanent removal.

F.1 VISUALIZATION ON OBJECT CONCEPT REACTIVATION

Figure 1 provides qualitative evidence that erased object concepts remain recoverable. Under both
ESD and UCE, the erased models produce generations where the targeted categories are substan-
tially suppressed or replaced by irrelevant content. When applying our probes, the erased concepts
reappear in most cases. Both the Gradient-Guided and Instance-Personalization Probes succeed in
reinstating the target objects, though with slightly different visual characteristics. These consistent
recoveries across multiple object categories and two distinct erasure methods reinforce our theoret-
ical findings that residual representations persist in the parameter space and can be reinstated with
minimal adaptation.

F.2 VISUALIZATION ON ARTIST CONCEPT REACTIVATION

The visualizations in Figure 2 illustrate the effect of concept erasure and reactivation for artistic
styles. Both ESD and UCE substantially suppress style-specific features, producing images that
lack the distinctive attributes of Picasso, Van Gogh, Rembrandt, Warhol, and Caravaggio. However,
applying either the Gradient-Guided Probe or the Instance-Personalization Probe restores the erased
styles. These outcomes confirm that erasure does not fully eliminate style representations; instead,
latent stylistic structures remain accessible, making reactivation feasible.
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Picasso Van Gogh Rembrandt Andy Warhol Caravaggio

Original

Gradient-Guided 
Probe

ESD Erase

Instance-Personalization 
Probe

(a) Visualization of style erasure and reactivation under the ESD framework. Original generations
capture the distinct styles of Picasso, Van Gogh, Rembrandt, Warhol, and Caravaggio. ESD erasure
removes much of the stylistic information, while both probes recover recognizable stylistic features,
though with variations in detail.

Picasso Van Gogh Rembrandt Andy Warhol Caravaggio

Original

Gradient-Guided 
Probe

UCE Erase

Instance-Personalization 
Probe

(b) Visualization of style erasure and reactivation under the UCE framework. UCE erasure sub-
stantially suppresses style-specific attributes, producing neutral outputs. Both Gradient-Guided and
Instance-Personalization probes reinstate stylistic elements, demonstrating that residual representa-
tions persist despite erasure.

Figure 2: Visualization of artistic-style erasure and reactivation across five artists (Picasso, Van
Gogh, Rembrandt, Andy Warhol, Caravaggio). (a) ESD-based erasure and subsequent recovery.
(b) UCE-based erasure and recovery. Both Gradient-Guided and Instance-Personalization probes
successfully reinstate the erased styles, though with variations in detail, illustrating that residual
stylistic representations persist despite erasure.

G PROMPT-LEVEL AND PARAMETER-LEVEL PERSPECTIVES ON CONCEPT ERASURE

Pham et al. Pham et al. (2024) investigate concept reactivation from the prompt perspective, showing
that erased concepts can be partially recovered through adversarial optimization and prompt pertur-

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Comparison of object-concept performance drop (%) between Pham (Pham et al., 2024) and our probes
across three erasure methods. Numbers in parentheses indicate percentage drop relative to the original score.

Method Original ESD UCE FMN

Pham et al. 77.9 60.1 (-22.8%) 59.4 (-23.7%) 44.6 (-42.7%)
Ours 88.85 81.85 (-7.9%) 69.35 (-22.0%) 81.65 (-8.1%)

bations. Our work instead examines reversibility at the parameter level, providing a complementary
view. Both studies evaluate the ESD framework on ten ImageNet categories. Pham et al. (Pham
et al., 2024) report strong suppression with an average erased accuracy of 0.2% and partial reactiva-
tion at 60.1% average accuracy. As shown in Table 4 (b), our parameter-level probes achieve higher
recovery, with an average reactivation accuracy of 76.7%, close to the original 74.9%. For instance,
we restore “french horn” from 99.75% (original) to 100.00% (after reactivation) and “chain saw”
from 77.25% to 78.25%, demonstrating that our parameter-level probes are able to reinstate erased
concepts.

Table 7 provides a broader comparison across three erasure methods (ESD, UCE, FMN) for object
concepts. We observe that our parameter-level approach yields smaller performance drops relative
to the original model (e.g., −7.9% for ESD vs. −22.8% reported by Pham et al. (Pham et al., 2024)),
and exhibits similarly lower degradation for UCE and FMN. These results indicate that parameter-
level probes achieve consistently high reactivation accuracy across diverse erasure methods and
reveal the residual capacity of erased models, providing a useful diagnostic tool for evaluating the
robustness of concept removal.

Taken together, these comparisons suggest that while prompt-level and parameter-level analyses are
complementary, parameter-level probing generally provides a relatively stronger signal of the extent
to which erased representations remain recoverable, offering a more nuanced understanding of the
limitations of current erasure techniques.

H RECOVERY WITHOUT THE PRE-ERASED MODEL

We next examine whether concept reactivation requires access to the exact pre-erased checkpoint.
Our experiments show two successful pathways: using an alternative pretrained model as a guiding
reference, or relying only on a small set of images that depict the target concept.

H.1 GRADIENT-GUIDED PROBE WITH GUIDING MODELS

Recovery under the Gradient-Guided Probe does not require access to the original Stable Diffusion
checkpoint. Any pretrained diffusion model that still retains the ability to generate the target concept
c can serve as the guiding model θ. To illustrate this flexibility, we erase the concept of “church”
from Stable Diffusion 1.4 and perform recovery with external guiding models, including Stable Dif-
fusion 1.5 and DreamShaper1. As shown in Figure 3, the erased model θ′′ successfully regains the
concept of “church” even when the guiding model differs from the original. The recovered outputs
share high-level semantic consistency across guiding models, though subtle differences are observ-
able, such as the shape of the tympanum above the door (blue box) and the presence or absence of
fences on the grass (red boxes). This indicates that external pretrained models can serve as valid
guiding references, while the actual reactivation occurs in the erased model itself. Unlike distilla-
tion, which transfers knowledge from a teacher to a student, our recovery succeeds because residual
representations persist in the erased model; external models provide only auxiliary guidance.

H.2 INSTANCE-PERSONALIZATION PROBE WITH REFERENCE IMAGES

Unlike the Gradient-Guided Probe, the Instance-Personalization Probe does not require access to
the pre-erased model or any external pretrained model capable of generating the target concept c.
Instead, it only requires a small reference set of images that visually depict the concept. These
images provide direct supervision for a lightweight personalization step, allowing the erased model
θ′ to reacquire the erased concept from visual data. This makes the Instance-Personalization Probe
applicable when pretrained models with the desired capability are unavailable, demonstrating that
reactivation can be achieved from residual traces combined with limited external examples.

1https://huggingface.co/Lykon/DreamShaper
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Original

Erased SD 1.4

SD 1.5 DreamShaper

Figure 3: Choice of guiding model θ for recovery. The concept of “church” is erased from SD1.4,
where the original structure is replaced with a house-like object. Recovery can be guided not only by
the pre-erased model (SD1.4) but also by other pretrained models that still retain the target concept,
such as SD1.5 and DreamShaper. In all cases, the erased model successfully regains the concept of
“church” under the Gradient-Guided Probe, while subtle architectural differences (e.g., the tympa-
num above the door and fences in the foreground) vary across guiding models.

(a) True Image (b) Original SD (c) Instance-Personalization

Figure 4: A counterexample for Instance-Personalization. The original SD model does not pos-
sess the ability to generate the coin concept, as shown in the sub-figure (b). In this case, the Instance-
Personalization Probe fails to produce images resembling the ground truth in the sub-figure (c), even
after fine-tuning on a few example images.

Summary. These two scenarios highlight complementary pathways for reactivation. The
Gradient-Guided Probe leverages an external model as a guiding reference, whereas the Instance-
Personalization Probe relies solely on a small reference set of images. Both confirm that the persis-
tence of latent representations enables recovery without requiring access to the original pre-erased
checkpoint.

I WHEN CONCEPTS ARE TRULY ABSENT

An ideal erasure method would make a model behave as if it had never acquired the target concept.
In such a case, few-shot personalization techniques should not be able to easily reintroduce the
concept. To illustrate this, we consider a counter-example involving a specific coin image. As
shown in Figure 4, the original Stable Diffusion model fails to generate convincing images of this
coin, indicating that it does not contain a usable representation of the concept. Even after fine-tuning
with a small set of ground-truth images using our Instance-Personalization Probe, the erased model
fails to recover the target, suggesting that the concept cannot be injected without a pre-existing
representational basis.

This example highlights the gap between current erasure methods and the ideal case. In practice,
erased concepts are often reinstated within a few fine-tuning steps, demonstrating the persistence of
residual representations. In contrast, when a concept is never present or has been fully removed, the
Instance-Personalization Probe struggles to inject it effectively, and the resulting generations lack
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both fidelity and generalization. This observation underscores that truly complete erasure should
render reintroduction no easier than teaching the model a completely novel concept from scratch.

J RELATION TO UNLEARNING AND DISTILLATION

Our study is related to, but distinct from, prior research in adjacent areas. Below we clarify the
differences with machine unlearning, its multimodal extension to MLLM unlearning, and knowledge
distillation, in order to situate our contribution more precisely.

Machine unlearning. Traditional machine unlearning (Xu et al., 2023; Wang et al., 2024) seeks
to eliminate the influence of specific training samples so that a model behaves as if those data were
never used, often driven by privacy concerns such as the “right to be forgotten.” The challenge is
to achieve this effect without retraining from scratch while preserving accuracy on non-erased data.
Our work differs in scope: we do not address individual samples but instead test whether concept-
level representations, such as object categories or artistic styles, remain recoverable after targeted
erasure. Thus, while unlearning removes the effect of training data, we probe the persistence of
semantic concepts in diffusion models.

MLLM unlearning. Recent efforts extend unlearning to multimodal large language models
(MLLMs) (Li et al., 2024), aiming to delete sensitive multimodal training pairs (e.g., image–text
alignments) for privacy protection. This task is more complex because signals are distributed across
modalities and alignment modules. Our study addresses a different dimension: rather than privacy-
driven data removal, we ask whether high-level semantic concepts in diffusion models can be rein-
stated after erasure, even when they appear suppressed at the prompt level. This highlights recover-
ability as a limitation distinct from privacy concerns.

Knowledge Distillation. While our probes involve parameter updates, they are not designed
as knowledge transfer procedures. Knowledge distillation typically transfers information from a
teacher model to a student model to improve accuracy or efficiency. In contrast, our probes oper-
ate entirely within the erased model and serve as controlled interventions to test whether residual
representations remain activatable. Their purpose is diagnostic rather than pedagogical: they do not
import new knowledge but reveal whether the erased concept still resides in the parameter space.

Summary. In short, while unlearning (including MLLM unlearning) focuses on removing the ef-
fect of sensitive training data, and distillation focuses on transferring knowledge, our work inves-
tigates whether erased concepts in diffusion models are still recoverable. This highlights recov-
erability as a key consideration for assessing the robustness of erasure methods and motivates the
diagnostic probes we propose.

K USE OF LLMS FOR WRITING ASSISTANCE

In preparing this paper, we used a large language model (ChatGPT, GPT-5, by OpenAI) to aid in the
polishing of the manuscript text. Specifically, LLM assistance was used to:

• Improve clarity and conciseness of the draft.
• Rephrase sentences for grammatical correctness and readability.

No LLM-generated content was used without human review: all outputs were carefully checked,
edited, and verified by the authors for technical correctness and consistency. No LLM was used for
data generation, model training, experiment design, or result fabrication.
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