

000
001 ERASED OR DORMANT? RETHINKING CONCEPT
002 ERASURE THROUGH REVERSIBILITY
003
004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

010 ABSTRACT
011
012 To what extent do concept erasure techniques in diffusion models truly remove,
013 rather than merely suppress, targeted concepts? In this paper, we explore this ques-
014 tion by introducing a diagnostic framework that leverages lightweight parameter
015 adaptation to probe the robustness and reversibility of leading erasure methods.
016 Central to our approach are two minimal yet general probes: (i) a Gradient-Guided
017 Probe, which restores suppressed behavior by reversing gradient signals, and (ii)
018 an Instance-Personalization Probe, which reinstates concepts through few-shot su-
019 pervision. Across six erasure algorithms, multiple concept types, and diverse dif-
020 fusion backbones, we consistently find that erased concepts can be recovered with
021 high fidelity after only minimal adaptation. Our theoretical analysis reinforces
022 these results, showing that reversed weight remain bounded to the original param-
023 eters, leaving much of the targeted representation intact. Together, these findings
024 demonstrate that existing methods do not eliminate concepts but merely push them
025 below the surface, where they can be readily revived. As such, our work calls for
026 a rethinking of concept erasure: moving beyond superficial suppression toward
027 approaches that dismantle latent structures at their core, alongside more rigorous
028 standards for evaluating safety in generative models.
029
030

031

1 INTRODUCTION

032

033 Text-to-image diffusion models (Rombach et al., 2022; Ramesh et al., 2022) have emerged as a
034 backbone of modern generative AI, capable of producing high-quality images from natural language
035 prompts. Yet, their open-ended generative power also raises pressing safety and ethical concerns,
036 including the potential for harmful outputs (Bird et al., 2023) and violations of intellectual prop-
037 erty (Zhang et al., 2023). To mitigate these risks, recent work has explored concept erasure (Lu
038 et al., 2024; Gong et al., 2024), which seeks to suppress a model’s ability to generate undesired
039 concepts such as offensive objects, copyrighted artistic styles, or personal identities. Existing ap-
040 proaches pursue this goal through a range of mechanisms, including projection in cross-attention
041 layers (Gandikota et al., 2023; 2024; Lu et al., 2024; Gong et al., 2024; Zhang et al., 2024b), pruning
042 strategies (Yang et al., 2024; Chavhan et al., 2025), regularization-based editing (Huang et al.,
043 2024), and adversarial-guided erasure (Zhang et al., 2024c; Bui et al., 2025).
044

045 Despite these advancements, a fundamental question remains: *do current erasure techniques truly*
046 *eliminate a model’s capacity to generate the targeted concept, or do they merely enforce conditional*
047 *suppression?* This difference is not merely theoretical but has direct consequences for how safely
048 and reliably diffusion models can be used in real-world applications. If erasure were genuinely
049 irreversible, the model’s representational space would lack usable traces of the concept, making
050 recovery practically infeasible under minor perturbations or adaptations. In contrast, if latent rep-
051 resentations remain dormant but intact, erased concepts may reappear when prompts are varied or
052 through lightweight parameter adjustments. Such reversibility exposes serious risks: malicious ac-
053 tors could deliberately reactivate forbidden content, while benign users might also unintentionally
054 trigger it in unexpected deployment scenarios.
055

056 Recent work has begun to examine this fragility, but almost exclusively from the prompt perspective.
057 Pham et al. (2024) showed that erased concepts can be revived with adversarial prompts, while Lu
058 et al. (2025) demonstrated circumvention through prompt perturbation, inpainting, and noise-based
059 probing. Studies of these approaches often remain confined to the prompt level, focusing primarily
060

054 on identifying or crafting potentially malicious prompts. As a result, the latent parameter-level
 055 mechanisms driving the generation of erased concepts remain largely unexamined.
 056

057 In this paper, we extend beyond prompt-level approaches and systematically investigate *concept*
 058 *erasure reversibility* from a parameter-level perspective. To this end, we introduce a diagnostic
 059 framework designed to assess the vulnerability of existing erasure methods. The framework lever-
 060 ages two minimal yet general strategies: a Gradient-Guided Probe, which restores erased behavior
 061 by reversing suppression gradients within the model parameters, and an Instance-Personalization
 062 Probe, which reinstates concepts through few-shot personalization using a small set of reference
 063 images. Complementing these empirical probes, we provide a theoretical analysis that establishes
 064 formal bounds on deviations from the original model, demonstrating that erased concepts often re-
 065 main recoverable with only minor parameter updates.
 066

067 We extensively evaluate the reversibility of erased concepts across six state-of-the-art erasure meth-
 068 ods: ESD (Gandikota et al., 2023), UCE (Gandikota et al., 2024), MACE (Lu et al., 2024),
 069 FMN (Zhang et al., 2024b), AGE (Bui et al., 2025), and ConceptPrune (Chavhan et al., 2025). Our
 070 results reveal that erased concepts can often be reinstated following only minimal parameter adap-
 071 tation, as confirmed by improvements across classification accuracy, CLIP alignment, and LPIPS
 072 similarity, while the model’s untargeted performance remains largely unaffected. These empirical
 073 observations closely align with our theoretical analysis, which demonstrates that the reactivated
 074 model frequently approximates the original, unerased model within a bounded error. Crucially,
 075 these findings are consistent across different methods, concept categories, and diffusion backbones,
 076 indicating that recoverability is a persistent limitation of current erasure techniques and that latent
 077 representations often persist despite apparent suppression. This underscores the need for future re-
 078 search to develop erasure strategies that explicitly dismantle residual representations and provide
 079 stronger guarantees of irreversibility.
 080

081 In summary, our contributions are as follows:
 082

- 083 • **A diagnostic framework for reversibility.** We introduce a parameter-level framework
 084 with two lightweight probes: a Gradient-Guided Probe that restores suppressed gradients,
 085 and an Instance-Personalization Probe that rebinds concepts from a few examples. This
 086 design goes beyond prompt-based circumvention, directly evaluating whether erased con-
 087 cepts can be readily recovered within the model’s weight space.
 088
- 089 • **Theoretical and representation-level analysis.** We derive reactivation bounds that quan-
 090 tify deviations of the model’s parameters from the original, unerased version. These the-
 091 oretical results align with empirical measures by classification accuracy, CLIP alignment,
 092 and LPIPS perceptual similarity, providing an explanation for why erased concepts can
 093 often be recovered with only minimal adaptation.
 094
- 095 • **Extensive empirical evaluation.** We evaluate six state-of-the-art erasure methods across
 096 both object and style concepts, using multiple diffusion backbones. Results from both
 097 probes consistently demonstrate that erased concepts can be reinstated with high fidelity
 098 following only minimal adaptation, highlighting recoverability as a fundamental limitation
 099 of current concept erasure techniques.
 100

094 2 RELATED WORK

095 **Diffusion Models and Personalization.** Text-to-image diffusion models have emerged as the
 096 dominant paradigm for generative image synthesis (Rombach et al., 2022; Ramesh et al., 2022; Ho
 097 et al., 2020). Their ability to generate semantically faithful and photorealistic images has enabled
 098 widespread adoption. Personalization methods such as DreamBooth (Ruiz et al., 2023), textual in-
 099 version (Gal et al., 2022), and parameter-efficient tuning (Kumari et al., 2023; Shi et al., 2024) allow
 100 models to encode new concepts from limited data. While these techniques highlight the flexibility
 101 of diffusion models, they also amplify risks of misuse, motivating research on concept erasure (Kim
 102 & Qi, 2025; Xie et al., 2025).
 103

104 **Concept Erasure in Diffusion Models.** Concept erasure aims to suppress a model’s ability to
 105 generate undesired objects, styles, or identities. Representative approaches include fine-tuning (e.g.,
 106 ESD (Gandikota et al., 2023)), cross-attention editing methods such as UCE and MACE (Gandikota
 107 et al., 2024; Lu et al., 2024), and attention re-steering techniques like FMN (Zhang et al., 2024b).
 108 Other directions include regularization-based methods such as RECELER (Huang et al., 2024), as
 109

well as pruning- or adversarial-guided strategies, such as Concept Prune (Chavhan et al., 2025) and AGE (Bui et al., 2025). Recent work has also extended erasure to flow-matching architectures (Gao et al., 2025), autoregressive models (Han et al., 2025), and text-to-video models (Ye et al., 2025; Xu et al., 2025). Beyond diffusion, the literature on machine unlearning (Wang et al., 2024) shows that forgetting is inherently difficult. Studies such as RESTOR (Rezaei et al., 2024) further demonstrate that unlearned knowledge often remains recoverable. Together, these findings suggest that recoverability is a recurring challenge, motivating our parameter-level study of reversibility.

Circumvention of Erasure. Although research on this topic is still emerging, several recent studies have shown that erased concepts can be partially restored by optimizing or perturbing the input space. Pham et al. (2024) and Han et al. (2024) optimized adversarial embeddings via textual inversion and, in some cases, alternated with surrogate model parameter updates to recover erased concepts, achieving restoration even under black-box settings by improving transferability across unlearned models. More recently, Beerens et al. (2025) proposed RECORD, a tangential coordinate-descent algorithm that directly searches the discrete token space for seed-agnostic adversarial prompts, significantly boosting attack success rates. Lu et al. (2025) further demonstrated circumvention via paraphrased prompts, inpainting, and noise-driven probing. Complementary to these input-space studies, Rusanovsky et al. (2025) adopt a latent-space perspective, showing that high-likelihood seeds can still reconstruct erased concepts, which reinforces the view that current approaches largely suppress rather than eliminate the targeted representations and motivates exploration along other representational axes such as the parameter space. Our work follows this trajectory by directly probing the parameter space to assess whether erased concepts can be reinstated with minimal weight adaptation. Empirical results show that our probes achieve consistently high reactivation accuracy (see Appendix G), further highlighting the need for more robust and verifiable defenses, such as R.A.C.E. (Kim et al., 2024).

3 BEHAVIORAL REVERSIBILITY OF CONCEPT ERASURE

Concept erasure aims to suppress a model’s ability to generate targeted objects, styles, or identities, facilitating safer and more controlled deployment. Although recent methods achieve effective prompt-level suppression, it remains unclear whether such erasures genuinely eliminate a model’s generative capacity or merely mask it under specific inputs. We investigate this question through a three-step approach. First, we formalize the behavioral limitations of existing erasure methods in Proposition 1. Second, we introduce two lightweight parameter-level probes, namely a Gradient-Guided Probe and an Instance-Personalization Probe, designed as controlled diagnostics to determine whether erased concepts persist in latent form. Third, we provide a theoretical analysis of reactivation bounds, showing that erased concepts can often be reinstated by recovering a model that closely approximates the original, unerased version.

3.1 CONDITIONAL NATURE AND INTRINSIC VULNERABILITY

A generative model, parameterized by θ , defines a conditional distribution $p_\theta(x | c)$ over images $x \in \mathcal{X}$ given prompts $c \in \mathcal{C}$. Let $\mathcal{X}_{\text{target}}$ denote the set of undesired content, and $\mathcal{C}_{\text{target}}$ denote the set of prompts explicitly targeted by an erasure method. Most existing approaches enforce a constraint of the form:

$$\forall c \in \mathcal{C}_{\text{target}}, \quad \text{supp}(p_\theta(x | c)) \cap \mathcal{X}_{\text{target}} = \emptyset,$$

which ensures that the model cannot generate the target concept for a restricted set of prompts. Note that in the formulation above, the constraint is defined with respect to fixed model parameters and prompts. As a result, erased concepts are often conditionally suppressed rather than fully removed, leaving latent representations that can be reactivated through slight prompt modifications or minor parameter updates. Formally, this vulnerability can be expressed as follows.

Proposition 1 (Conditional Nature of Existing Erasure Methods). *Let $\mathcal{X}_{\text{target}} \subset \mathcal{X}$ denote a concept intended for erasure, and let $p_\theta(x | c)$ be the conditional distribution of a model parameterized by θ . Assume an erasure algorithm enforces*

$$p_\theta(x \in \mathcal{X}_{\text{target}} | c) = 0, \quad \forall c \in \mathcal{C}_{\text{target}}.$$

If there exists either (i) an arbitrarily small parameter perturbation δ_θ or (ii) a prompt $c' \notin \mathcal{C}_{\text{target}}$ such that

$$p_{\theta+\delta_\theta}(x \in \mathcal{X}_{\text{target}} | c) > 0 \quad \text{or} \quad p_\theta(x \in \mathcal{X}_{\text{target}} | c') > 0,$$

162 then the concept has not been fundamentally erased but only conditionally suppressed, and remains
 163 recoverable under either parameter perturbations or prompt shifts.
 164

165 **Remark.** The above proposition highlights the conditional nature of many current erasure methods:
 166 they tend to suppress targeted content under specific model parameters and prompts rather than eliminating
 167 it entirely. While Proposition 1 applies universally to all models and prompts, an important
 168 question remains: how easily can the enforced erasure be undone in practice? If small parameter
 169 perturbations or slight changes in prompts are sufficient to recover the concept, then the conditional
 170 suppression implemented by current methods is highly fragile and susceptible to circumvention.
 171

3.2 DIAGNOSTIC PROBES: GRADIENT-GUIDED AND INSTANCE-PERSONALIZATION

173 Motivated by the above observation, we now investigate the recoverability of erased concepts using
 174 multiple diagnostic probes. Specifically, we introduce two lightweight fine-tuning strategies that
 175 function as diagnostic probes: the Gradient-Guided Probe and the Instance-Personalization Probe.
 176 Both probes are deliberately minimal, serving as controlled tests to determine whether erased
 177 concepts persist in latent form. We emphasize that the probes operate as stability diagnostics rather
 178 than as training procedures. A concept that has been truly removed should resist small, lightweight
 179 updates, whereas a concept that remains dormant will reappear under minimal perturbation. Thus,
 180 successful reactivation under these deliberately weak probes provides evidence of residual structure
 181 rather than relearning.
 182

Gradient-Guided Probe. This probe generalizes the idea of reversing suppression gradients.
 183 Whereas erasure methods such as ESD dampen concept-aligned gradients, the probe restores them
 184 by inverting the suppression loss into a reinforcement signal. Concretely, given a latent x_t at timestep
 185 t , we define three embeddings: a neutral embedding $\tau(\emptyset)$ for the unconditional prompt, an anchor
 186 embedding $\tau(c^*)$ for a related but broader concept, and the target embedding $\tau(c)$ for the erased
 187 concept. For example, c may be “a photo of a church” and c^* “a photo of a building.” We then
 188 construct a reverse-guided prediction target:
 189

$$\epsilon_{\text{target}}(x_t, c, t) = \epsilon_{\theta}(x_t, c^*, t) + \gamma \cdot (\epsilon_{\theta}(x_t, c, t) - \epsilon_{\theta}(x_t, \emptyset, t)), \quad (1)$$

190 where γ controls the strength of reinforcement. **Lightweight adaptation** updates θ' to θ'' by aligning
 191 predictions with this target:
 192

$$\mathcal{L}_{\text{Gradient-Guided}}(\theta'') = \mathbb{E}_{x_t, t} [\|\epsilon_{\theta''}(x_t, c, t) - \epsilon_{\text{target}}(x_t, c, t)\|^2]. \quad (2)$$

193 Here, θ' represents the erased model prior to probing, θ'' represents the minimally updated model
 194 obtained after applying the probe. This procedure tests whether suppressed gradients can be rein-
 195 stated with minimal effort, revealing the persistence of concept-aligned directions.
 196

Instance-Personalization Probe. This probe adapts DreamBooth (Ruiz et al., 2023) for diag-
 197 nóstic use. Given a small reference set $\mathcal{X}_{\text{ref}} \subset \mathcal{X}_{\text{target}}$, it associates a rare token v_* with the erased
 198 concept by minimizing:

$$\begin{aligned} \mathcal{L}_{\text{Instance-Personalization}}(\theta'') = & \mathbb{E}_{x_0 \sim \mathcal{X}_{\text{ref}}, \epsilon \sim \mathcal{N}(0, I), t} [\|\epsilon - \epsilon_{\theta''}(z_t, t, \tau(c_{\text{inst}}))\|^2] \\ & + \lambda_{\text{prior}} \mathbb{E}_{x_0 \sim \mathcal{X}_{\text{class}}, \epsilon \sim \mathcal{N}(0, I), t} [\|\epsilon - \epsilon_{\theta''}(z_t, t, \tau(c_{\text{class}}))\|^2], \end{aligned} \quad (3)$$

200 where $z_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon$, and $t \sim \mathcal{U}\{1, \dots, T\}$. Here, c_{inst} denotes the instance prompt
 201 (e.g., “a photo of a v_* ”), and c_{class} denotes the class prompt (e.g., “a photo of a dog”). By re-
 202 binding the erased concept to a new token using only a few reference images, this probe exposes
 203 what we term the *personalization–erasure paradox*, where erasure seeks to remove a model’s ability
 204 to generate certain concepts, yet personalization methods such as DreamBooth can reinstate them
 205 with few-shot learning, even in models that have ostensibly undergone erasure. **This probe operates**
 206 **with very limited capacity, updating only a rare token and a small subset of attention parameters.**
 207 **Such constrained adaptation is insufficient to synthesize a novel visual concept, and primarily serves**
 208 **as a diagnostic check on whether residual representations remain after erasure.**
 209

Comparison of Probes. Both probes operate directly at the parameter level but follow dif-
 210 ferent mechanisms. The Gradient-Guided Probe reinstates suppressed concepts by performing
 211

reverse-guided fine-tuning on the original prompts, seeking a parameter perturbation δ_θ such that $p_{\theta+\delta_\theta}(x \in \mathcal{X}_{\text{target}} \mid c) > 0$. The Instance-Personalization Probe, in contrast, re-personalizes erased concepts using a small set of visual examples and conduct the few-shot learning. In Proposition 1, this corresponds to perturb both the parameters and prompts, i.e., $p_{\theta'}(x \in \mathcal{X}_{\text{target}} \mid c') > 0$. Together, these probes serve as minimal yet effective diagnostics that reveal the persistence of latent representations. As demonstrated in Section 4, both probes succeed with only a few fine-tuning steps, providing strong empirical evidence that current erasure methods tend to suppress rather than fully eliminate targeted concepts. As an additional sanity check, Appendix I presents a counter-example using a custom coin image that the pretrained model was never capable of generating. Even when applying the Instance-Personalization Probe with substantially more steps, the model fails to synthesize or generalize the concept. This demonstrates that the probes operate in a diagnostic regime rather than a learning regime, and therefore cannot introduce a novel visual concept that the model did not previously encode. Therefore, when erased concepts reappear after only a few lightweight probe steps, the effect reflects residual representation rather than relearning.

3.3 THEORETICAL ANALYSIS OF REACTIVATION BOUNDS

Building on Proposition 1, we provide a quantitative characterization of how easily erased concepts can be reinstated under parameter-level adaptation. Here we focus on the Gradient-Guided Probe, since its reverse-guided objective admits a tractable optimization form suitable for deriving convergence bounds. An embedding-level analysis for the Instance-Personalization Probe is presented in Appendix D, where we establish local ascent guarantees for token-level personalization.

We begin by modeling noisy gradient descent on the Gradient-Guided loss in the continuous-time limit (Weinan, 2017; Zhang et al., 2024a), which allows us to approximate the evolution of weight differences using a stochastic differential equation (SDE) (Arnold, 1974; Oksendal, 2013). In particular, suppose the underlying ground-truth reverse process, which corresponds to concept reactivation via flipped erasing tuning, follows

$$d\theta(t) = \nabla f(\theta(t)) dt + \Sigma_1(t)^{1/2} dB_1(t),$$

while the actual optimization process evolves according to

$$d\tilde{\theta}(t) = \nabla f(\tilde{\theta}(t)) dt + \Sigma_2(t)^{1/2} dB_2(t),$$

where $B_1(t)$ and $B_2(t)$ are independent standard d -dimensional Brownian motions (Einstein, 1905). We define the deviation between the two traces as

$$\delta(t) := \tilde{\theta}(t) - \theta(t).$$

The subsequent Theorems provide bounds on the weight differences under two conditions.

Theorem 2 (General Reactivation Bound under L -smoothness). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth, i.e.,*

$$\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d,$$

and assume that the noise covariances satisfy

$$\text{tr}(\Sigma_1(t)) \leq \bar{\sigma}_1, \quad \text{tr}(\Sigma_2(t)) \leq \bar{\sigma}_2, \quad \forall t \geq 0.$$

Then the expected squared deviation is bounded at the terminal time T :

$$\mathbb{E}\|\delta(T)\|^2 \leq \frac{\bar{\sigma}_1 + \bar{\sigma}_2}{2L} (e^{2LT} - 1).$$

Proof Sketch. Using Itô’s isometry (Oksendal, 2013) and L -smoothness, we derive the differential inequality $\frac{d}{dt} \mathbb{E}\|\delta(t)\|^2 \leq 2L \mathbb{E}\|\delta(t)\|^2 + \mathbb{E} \text{tr}(\Sigma_1(t) + \Sigma_2(t))$. Applying Grönwall’s inequality (Gronwall, 1919) gives the stated bound. The complete derivation is provided in Appendix B.

Theorem 3 (Reactivation Bound under Strong Convexity). *If f is additionally μ -strongly convex, i.e.,*

$$\langle x - y, \nabla f(x) - \nabla f(y) \rangle \geq \mu\|x - y\|^2, \quad \forall x, y \in \mathbb{R}^d,$$

then the expected squared deviation is bounded at the terminal time T :

$$\mathbb{E}\|\delta(T)\|^2 \leq \frac{\bar{\sigma}_1 + \bar{\sigma}_2}{2\mu} (1 - e^{-2\mu T}).$$

Thus, the expected deviation converges linearly to a noise-dependent plateau.

270 **Proof Sketch.** Using strong convexity, we derive the differential inequality $\frac{d}{dt} \mathbb{E}\|\delta(t)\|^2 \leq$
 271 $-2\mu \mathbb{E}\|\delta(t)\|^2 + \mathbb{E} \text{tr}(\Sigma_1(t) + \Sigma_2(t))$. Applying Grönwall's inequality yields the stated exponential
 272 decay toward the noise-dependent plateau. The complete derivation is provided in Appendix C.
 273

274 **Remark.** In the general L -smooth case, the deviation between the two stochastic trajectories admits
 275 an upper bound, representing the worst-case scenario. By contrast, if f additionally satisfies the
 276 μ -strongly convex condition, the deviation $\delta(t)$ enjoys a contraction property: the expected squared
 277 difference converges to a steady-state bound, $\lim_{t \rightarrow \infty} \mathbb{E}\|\delta(t)\|^2 = (\bar{\sigma}_1 + \bar{\sigma}_2)/(2\mu)$, indicating that
 278 the system remains stable and the deviation does not accumulate even over an infinite horizon.
 279

280 **Implications of Diagnostic Probes.** In practice, most neural networks are better characterized by
 281 the L -smooth setting in Theorem 2, where parameter deviations can, in principle, grow exponentially
 282 with the effective time horizon T . However, erasure methods typically employ very small
 283 learning rates (e.g., 10^{-6} – 10^{-5}) and perform only a limited number of tuning steps to preserve per-
 284 formance on untargeted concepts, keeping the effective T small. Consequently, the theoretical bound
 285 on $\mathbb{E}|\delta(T)|^2$ remains modest. This observation aligns with our empirical findings: the mean abso-
 286 lute parameter difference after reactivation is minor (on the order of 10^{-4}), as reported in Table 5.
 287 Furthermore, if the reverse process remains within a locally strongly convex region, the deviations
 288 may contract to a bounded region. This suggests that overcoming such contraction behavior could
 289 be necessary for designing truly irreversible erasure methods.

4 BEHAVIORAL PROBING OF CONCEPT ERASURE METHODS

290 We now turn to empirical evaluations of concept erasure and reactivation. The experiments are de-
 291 signed to directly address our central question: can lightweight diagnostic probes reliably reinstate
 292 concepts that state-of-the-art erasure methods claim to remove? To this end, we evaluate multiple
 293 erasure algorithms across diverse concept categories and diffusion backbones, measuring both the
 294 fidelity of reactivation and the preservation of untargeted generation quality. **These empirical find-
 295 ings align with the stability-based interpretation developed in our diagnostic analysis (Section 5),
 296 where concepts that are only superficially suppressed reappear under minimal perturbation.**
 297

4.1 EXPERIMENTAL SETUP

298 **Backbones and Concept Classes.** Our primary experiments are conducted on Stable Diffusion
 299 v1.4 (SD1.4), the most widely used backbone in prior erasure studies. We also report validation
 300 experiments on Stable Diffusion v2.1 (SD2.1) to confirm that our findings are not specific to SD1.4.
 301 Following prior work (Gandikota et al., 2023; 2024; Lu et al., 2024), we evaluate ten ImageNet ob-
 302 jects (cassette player, chain saw, church, gas pump, tench, garbage truck, English springer, golf ball,
 303 parachute, French horn) and five artistic styles (Pablo Picasso, Vincent van Gogh, Rembrandt, Andy
 304 Warhol, Caravaggio), ensuring both semantic diversity and comparability with existing benchmarks.
 305

306 **Erasure Methods and Probes.** We benchmark six representative erasure methods: Unified Con-
 307 cept Editing (UCE) (Gandikota et al., 2024), Erased Stable Diffusion (ESD) (Gandikota et al.,
 308 2023), MACE (Lu et al., 2024), FMN (Zhang et al., 2024b), AGE (Bui et al., 2025), and Con-
 309 ceptPrune (Chavhan et al., 2025), covering projection, fine-tuning, adversarial training, and pruning
 310 paradigms. To test reversibility, we apply two diagnostic probes: the Gradient-Guided Probe, which
 311 restores erased concepts via lightweight gradient reversal, and the Instance-Personalization Probe,
 312 which reinstates concepts through few-shot personalization with a small reference set.

313 **Metrics and Evaluation Protocol.** We evaluate along two axes: (i) **Reactivation Accuracy**, mea-
 314 sured as Top-1 classification accuracy using a pretrained ResNet-50 (He et al., 2016) for object
 315 concepts, and (ii) **Generative Quality**, assessed using CLIP similarity (Radford et al., 2021) for
 316 style concepts and LPIPS perceptual distance (Zhang et al., 2018) with AlexNet (Krizhevsky et al.,
 317 2012). Following prior work (Gandikota et al., 2023; 2024), we use a predefined prompt list, with
 318 10 prompts per class and 20 images per prompt at 512×512 resolution, yielding 200 images per
 319 class (2,000 object images and 1,000 style images in total).

320 **Implementation Details.** For the Gradient-Guided Probe, we fine-tune the UNet attention mod-
 321 ules for 200 steps using Adam. For object concepts, we set the learning rate to 1×10^{-5} and the
 322 erasure/reactivation strength to 0.8; for artistic styles, we adopt 5×10^{-5} and a strength of 10.0.
 323 For the Instance-Personalization Probe, we fine-tune the UNet backbone (and optionally the text en-
 324 coder) for 500 steps using Adam with a learning rate of 1×10^{-6} , employing both instance and class

324
 325 Table 1: Evaluation results on ten object classes with Gradient-Guided and Instance-Personalization Probes.
 326 Each cell reports “**Erased** (↓) / **Reactivation** (↑)”, where lower values indicate stronger erasure and higher
 327 values indicate more successful reactivation. All values are Top-1 classification accuracies measured by a
 328 pretrained ResNet-50.

(a) Gradient-Guided Probe

Object	Original	ESD	UCE	MACE	FMN	AGE	CP
cassette player	74.0	0.5 / 70.0	3.5 / 22.5	21.5 / 78.0	5.5 / 46.5	12.0 / 65.0	53.5 / 85.5
chain saw	78.0	0.0 / 86.0	0.0 / 29.5	1.0 / 45.0	0.0 / 75.5	5.0 / 83.5	15.0 / 56.0
church	86.5	7.0 / 93.5	23.0 / 83.0	10.0 / 84.0	6.5 / 94.5	65.5 / 87.0	73.0 / 93.5
english springer	93.0	0.0 / 81.5	0.5 / 72.5	9.0 / 81.5	0.0 / 8.5	4.5 / 89.0	24.0 / 44.5
french horn	100.0	0.0 / 99.5	2.5 / 99.0	16.0 / 100.0	21.0 / 97.5	29.5 / 99.5	34.5 / 100.0
garbage truck	82.0	7.5 / 81.0	7.5 / 22.5	1.5 / 47.5	0.0 / 5.0	0.0 / 71.5	3.5 / 59.0
gas pump	73.5	0.0 / 60.5	5.0 / 28.5	16.0 / 53.5	1.5 / 74.5	11.0 / 70.5	54.0 / 63.0
tench	75.0	0.0 / 54.0	0.5 / 0.5	38.0 / 62.0	0.0 / 14.5	1.5 / 61.0	0.5 / 59.5
golf ball	98.5	0.0 / 97.0	65.5 / 91.0	2.0 / 78.5	18.5 / 96.5	20.0 / 97.0	81.0 / 99.0
parachute	93.0	0.0 / 95.5	9.5 / 49.5	49.0 / 87.5	1.5 / 80.5	8.5 / 87.5	4.0 / 87.0
Average	88.85	1.5 / 81.85	11.75 / 49.85	16.4 / 71.75	5.45 / 59.35	15.75 / 81.15	34.3 / 74.7

(b) Instance-Personalization Probe

Object	Original	ESD	UCE	MACE	FMN	AGE	CP
cassette player	74.0	0.5 / 51.5	3.5 / 15.5	21.5 / 47.5	5.5 / 31.5	12.0 / 61.0	53.5 / 54.5
chain saw	78.0	0.0 / 75.0	0.0 / 68.0	1.0 / 82.0	0.0 / 63.5	5.0 / 66.0	15.0 / 40.5
church	86.5	7.0 / 98.0	23.0 / 98.0	10.0 / 96.0	6.5 / 99.5	65.5 / 94.5	73.0 / 91.5
english springer	93.0	0.0 / 87.5	0.5 / 97.0	9.0 / 83.0	0.0 / 99.0	4.5 / 97.0	24.0 / 99.0
french horn	100.0	0.0 / 99.5	2.5 / 100.0	16.0 / 100.0	21.0 / 100.0	29.5 / 100.0	34.5 / 99.0
garbage truck	82.0	7.5 / 61.0	7.5 / 89.0	1.5 / 72.5	0.0 / 66.5	0.0 / 63.0	3.5 / 84.5
gas pump	73.5	0.0 / 29.5	5.0 / 48.5	16.0 / 59.5	1.5 / 80.5	11.0 / 72.5	54.0 / 82.5
tench	75.0	0.0 / 42.5	0.5 / 7.0	38.0 / 72.5	0.0 / 95.5	1.5 / 71.0	0.5 / 71.5
golf ball	98.5	0.0 / 96.5	65.5 / 90.5	2.0 / 92.5	18.5 / 80.5	20.0 / 100.0	81.0 / 97.5
parachute	93.0	0.0 / 78.0	9.5 / 80.0	49.0 / 88.5	1.5 / 100.0	8.5 / 90.5	4.0 / 74.5
Average	88.85	1.5 / 71.9	11.75 / 69.35	16.4 / 79.4	5.45 / 81.65	15.75 / 81.55	34.3 / 79.5

349 prompts, with prior preservation regularization $\lambda_{\text{prior}} = 1.0$ to mitigate overfitting. All experiments
 350 are run on a single NVIDIA RTX 4090 GPU with 24GB memory.

352 4.2 ANALYSIS OF EXPERIMENTAL RESULTS

353 4.2.1 ERASURE REVERSIBILITY ON OBJECT CONCEPTS

354 As shown in Table 1, among the six methods, ESD, FMN, and AGE achieve the strongest suppression,
 355 often driving erased accuracies close to zero across multiple classes (e.g., chain saw, tench,
 356 and French horn). Yet both the Gradient-Guided Probe and the Instance-Personalization Probe
 357 rapidly reinstate these concepts, with recovery levels approaching or even matching the original
 358 model (e.g., French horn and golf ball restored to nearly 100%). Projection-based UCE suppresses
 359 less aggressively, leaving substantial residual signals (e.g., golf ball at 65.5%), which the Instance-
 360 Personalization Probe can almost completely reinstate (e.g., church rising from 23% to 98%). Simi-
 361 larly, pruning-based CP occasionally achieves strong erasure (e.g., tench reduced to 0.5%) but is
 362 easily reversed by personalization (e.g., English springer restored from 24% to 99%). Overall, these
 363 results indicate that while methods differ in suppression strength, all leave recoverable traces in la-
 364 tent space, confirming that current erasure strategies achieve only conditional suppression rather than
 365 irreversible removal of object concepts. Visual comparison of object-level erasure and reactivation
 366 is provided in Appendix F.1.

367 4.2.2 ERASURE REVERSIBILITY ON ARTISTIC STYLES

368 Table 2 summarizes the outcomes of six erasure methods across five artist styles. We observe that
 369 all approaches achieve some degree of suppression, with ESD and AGE producing the largest initial
 370 reductions in CLIP similarity (e.g., Van Gogh suppressed to 19.78, Caravaggio to 18.53). How-
 371 ever, despite these apparent gains, both the Gradient-Guided Probe and the Instance-Personalization
 372 Probe consistently restore erased styles to near-original levels. For instance, Van Gogh, which drops
 373 to 19.78 under ESD, returns to 30.07 after Instance-Personalization reactivation, nearly matching
 374 the original 30.30. The two probes reveal different vulnerabilities: the Gradient-Guided Probe effec-
 375 tively reverses gradient-based methods such as MACE and FMN, while the Instance-Personalization
 376 Probe excels at reinstating styles under pruning- and adversarial-guided erasures such as CP and
 377 AGE. Table 3 reports LPIPS distances, providing a perceptual measure of similarity to the original
 378 model. Consistent with the CLIP results, erasure typically increases LPIPS substantially, whereas

378 Table 2: Comparison of six erasure methods on five artist-style concepts. Each cell reports “**Erased (↓)** /
 379 **Reactivation (↑)**”, where lower values indicate stronger erasure and higher values indicate more successful
 380 reactivation. “Original” denotes CLIP similarity of the unmodified model.

(a) Gradient-Guided Probe

Artist	Original	ESD	UCE	MACE	FMN	AGE	CP
Andy Warhol	30.07	22.44 / 30.65	24.24 / 29.68	24.61 / 29.14	24.10 / 29.74	20.66 / 27.23	21.63 / 26.19
Pablo Picasso	28.75	23.17 / 28.59	25.53 / 26.90	25.92 / 27.85	23.85 / 27.51	21.62 / 26.86	21.16 / 26.11
Van Gogh	30.30	19.78 / 29.73	25.45 / 29.56	25.66 / 29.94	25.93 / 27.96	19.08 / 27.56	20.59 / 28.52
Rembrandt	29.45	20.41 / 28.94	24.17 / 28.91	26.01 / 29.05	26.50 / 27.87	20.02 / 27.80	22.58 / 27.07
Caravaggio	28.46	19.01 / 27.33	23.45 / 27.11	24.16 / 27.63	25.01 / 29.16	18.53 / 27.77	20.65 / 27.88

(b) Instance-Personalization Probe

Artist	Original	ESD	UCE	MACE	FMN	AGE	CP
Andy Warhol	30.07	22.44 / 28.55	24.24 / 27.38	24.61 / 30.07	24.10 / 26.64	20.66 / 27.04	21.63 / 29.24
Pablo Picasso	28.75	23.17 / 29.01	25.53 / 27.56	25.92 / 25.59	23.85 / 24.05	21.62 / 27.18	21.16 / 27.75
Van Gogh	30.30	19.78 / 30.07	25.45 / 28.90	25.66 / 27.26	25.93 / 26.89	19.08 / 28.28	20.59 / 30.68
Rembrandt	29.45	20.41 / 26.21	24.17 / 27.42	26.01 / 26.05	26.50 / 28.75	20.02 / 25.98	22.58 / 29.42
Caravaggio	28.46	19.01 / 26.63	23.45 / 27.11	24.16 / 25.33	25.01 / 28.54	18.53 / 27.03	20.65 / 28.00

394 Table 3: LPIPS comparison for erasure and reactivation on five artist-style concepts (lower is better). Each cell
 395 reports “**Erased (↑)** / **Gradient-Guided Probe (↓)** / **Instance-Personalization Probe (↓)**”. Higher values in
 396 the first entry indicate stronger erasure, while lower values in the latter two entries indicate more successful
 397 reactivation. LPIPS is computed between images generated by erased/reactivated models and those from the
 398 original model.

Artist	ESD	UCE	MACE	FMN	AGE	CP
Andy Warhol	0.88 / 0.42 / 0.61	0.65 / 0.50 / 0.59	0.78 / 0.49 / 0.65	0.77 / 0.51 / 0.61	0.84 / 0.53 / 0.71	0.73 / 0.62 / 0.65
Pablo Picasso	0.82 / 0.27 / 0.55	0.45 / 0.40 / 0.47	0.53 / 0.38 / 0.53	1.11 / 0.44 / 0.63	0.71 / 0.44 / 0.58	0.81 / 0.58 / 0.63
Van Gogh	0.83 / 0.33 / 0.53	0.54 / 0.41 / 0.47	0.57 / 0.45 / 0.53	0.84 / 0.49 / 0.59	0.77 / 0.46 / 0.59	0.67 / 0.61 / 0.57
Rembrandt	0.90 / 0.37 / 0.67	0.55 / 0.40 / 0.58	0.60 / 0.39 / 0.51	0.81 / 0.47 / 0.51	0.78 / 0.50 / 0.68	0.78 / 0.71 / 0.65
Caravaggio	0.90 / 0.31 / 0.57	0.49 / 0.35 / 0.47	0.48 / 0.38 / 0.45	0.69 / 0.43 / 0.52	0.80 / 0.39 / 0.64	0.73 / 0.54 / 0.59

405 both probes consistently reduce these values. This confirms that reactivated models not only re-
 406 cover semantic alignment (via CLIP) but also regain perceptual fidelity (via LPIPS), reinforcing
 407 the conclusion that current erasure techniques achieve only conditional suppression, leaving the un-
 408 derlying stylistic representations intact and readily recoverable under minimal fine-tuning. Visual
 409 comparison of style-level erasure and reactivation is provided in Appendix F.2.

4.3 GENERALIZATION ACROSS BACKBONES AND RESOLUTIONS

412 We conducted additional experiments on Stable Diffusion 2.1 and Stable Diffusion 1.4 at a lower
 413 input resolution of 256×256 to examine whether the vulnerabilities of concept erasure generalize
 414 across model backbones and resolutions. As shown in Table 4, strong suppression is consistently
 415 achieved, often driving erased accuracies close to zero. However, once subjected to lightweight
 416 reactivation, the erased concepts are almost fully restored, with accuracies nearly matching those
 417 of the original models. These findings indicate that recoverability of erased concepts is not tied
 418 to a particular erasure method, backbone, or resolution, but instead reflects an inherent limitation
 419 common to current erasure approaches.

4.4 REACTIVATION DYNAMICS UNDER PARAMETER PERTURBATION

422 To further investigate the relationship between reactivation performance and parameter updates, we
 423 analyzed reactivation iterations for two representative object classes (chain saw and tench). As
 424 shown in Table 5, increasing the number of fine-tuning iterations consistently improves the accuracy
 425 of the erased class while requiring only lightweight parameter changes. For example, for *tench*, 20
 426 iterations recover 32.0% accuracy with just 0.34% of parameters modified, whereas 50 iterations
 427 achieve 61.0% with 0.93% modified, and 200 iterations reach 66.0% with 1.84%. A similar trend is
 428 observed for *chain saw*, where accuracy rises from 19.5% to 81.0% as iterations increase from 20
 429 to 200, with less than 1.4% of parameters changed. Importantly, the accuracy drop compared to the
 430 original unerased model on non-target classes remains small (3–5%) across all settings, indicating
 431 limited side effects. These results demonstrate that erased concepts can be efficiently reactivated
 432 with modest weight perturbations, reinforcing that current erasure methods provide only superficial
 433 suppression rather than permanent removal.

432
 433 Table 4: Evaluation of reactivation across model versions and resolutions. Each cell reports “Erased / Reactiva-
 434 tion” Top-1 accuracies (ResNet-50). Results demonstrate that the vulnerabilities of concept erasure generalize
 435 across both Stable Diffusion 2.1 (a) and Stable Diffusion 1.4 at 256×256 (b).

(a) Stable Diffusion 2.1			(b) Stable Diffusion 1.4 (256 × 256)		
Object	Original	Erasure / Reactivation	Object	Original	Erasure / Reactivation
cassette player	63.5	0.5 / 54.5	cassette player	67.50	0.00 / 9.75
chain saw	97.5	0.0 / 91.0	chain saw	77.25	0.00 / 78.25
church	99.0	71.5 / 97.0	church	77.00	4.75 / 74.50
english springer	98.0	0.0 / 95.5	english springer	89.25	0.00 / 89.75
french horn	83.0	0.0 / 87.5	french horn	99.75	0.00 / 100.00
garbage truck	65.5	0.5 / 60.0	garbage truck	78.75	0.00 / 77.75
gas pump	98.0	0.0 / 94.5	gas pump	65.75	0.00 / 80.00
tench	91.0	0.5 / 91.5	golf ball	93.25	0.00 / 95.25
golf ball	91.0	1.5 / 94.0	parachute	93.00	0.00 / 89.75
parachute	86.0	0.5 / 86.0	tench	68.00	0.00 / 71.95

444
 445
 446 Table 5: Reactivation accuracy and weight perturbation under ESD erasure for two representative classes.
 447 Reactivation accuracy increases with iterations while parameter changes remain modest, demon-
 448 strating the fragility of ESD-based erasure.

Iterations	Class	Original Acc	Reactivated Acc \uparrow	Non-target Drop \downarrow	Params Updated	Mean Abs. Change
20	chain saw	78.0	19.5	3.7	0.30	2.29×10^{-4}
	chain saw	78.0	80.5	2.9	0.60	2.53×10^{-4}
	chain saw	78.0	81.0	3.0	1.38	3.06×10^{-4}
200	tench	75.0	32.0	5.0	0.34	2.30×10^{-4}
	tench	75.0	61.0	5.3	0.93	3.08×10^{-4}
	tench	75.0	66.0	3.2	1.84	3.34×10^{-4}

4.5 UNTARGETED IMPACT AND COLLATERAL EFFECTS

460 We further examined the untargeted effects of erasure and reactivation on Stable Diffusion 2.1. As
 461 shown in Table 6, while erasure reduces the accuracy of non-target classes (e.g., a 27.3% drop
 462 for *chain saw*), reactivation largely restores their performance, typically within 2–3% of the original
 463 accuracy. This result indicates that reactivation does not substantially disrupt untargeted classes, and
 464 confirms that our main findings generalize across models and do not arise from spurious artifacts.

4.6 RUNTIME OF REACTIVATION STRATEGIES

467 A practical concern is the computational cost of reactivating erased concepts. Across all settings,
 468 we observe that reactivation is remarkably efficient: all procedures complete under seven minutes
 469 on a single NVIDIA RTX 4090 GPU. To quantify this, we measured wall-clock runtimes on Stable
 470 Diffusion 1.4 at 256×256 resolution for a representative object class (*cassette player*) under four
 471 erasure–reactivation configurations: ESD-Erase with the Gradient-Guided Probe, ESD-Erase with
 472 the Instance-Personalization Probe, UCE-Erase with the Gradient-Guided Probe, and UCE-Erase
 473 with the Instance-Personalization Probe. Each configuration was repeated three times. On average,
 474 the Instance-Personalization Probe required about 245 seconds, while the Gradient-Guided Probe
 475 required about 369 seconds.

4.7 IMPLICATIONS FOR CONCEPT ERASURE

477 Our findings suggest that current erasure methods suffer from a fundamental weakness: they sup-
 478 press the target concept at the prompt level rather than eliminating it from the parameter space, thus
 479 functioning as input filtering rather than genuine erasure. This interpretation is consistent with prior
 480 works (Pham et al., 2024; Lu et al., 2025), which show that underlying information persists in the
 481 model and can be readily recovered by optimizing special embeddings. Our results provide further
 482 evidence: as shown in Table 5, successful reactivation requires only modest parameter adjustments
 483 (typically less than 2% of weights). The small magnitude of change needed to recover erased con-
 484 cepts strongly indicates that the erased information is only weakly suppressed rather than globally
 485 eliminated. Addressing this limitation may require more robust defenses, such as structural inter-
 486 ventions or alignment-driven regularization strategies, to achieve truly irreversible concept erasure.

486
 487 Table 6: Target and untargeted impact of erasure and reactivation on Stable Diffusion 2.1 across ten object
 488 concepts. Each cell reports Top-1 accuracy measured by a pretrained ResNet-50. “Target” columns show per-
 489 formance on the erased class, while “Untargeted” columns report the performance over the remaining classes.

Object	Target			Untargeted			
	Original	Erased ↓	Reactivation ↑	Original	Erased ↑	Drop ↓	Reactivation ↑
cassette player	63.5	0.5	54.5	89.9	79.3	10.6	86.7
chain saw	97.5	0.0	91.0	86.1	58.8	27.3	83.4
church	99.0	71.5	97.0	86.0	84.9	1.1	84.7
english springer	98.0	0.0	95.5	86.0	67.6	18.4	83.6
french horn	83.0	0.0	87.5	87.7	73.3	14.4	85.0
garbage truck	65.5	0.5	60.0	89.7	72.8	16.9	87.4
gas pump	98.0	0.0	94.5	86.1	69.7	16.4	82.4
trench	91.0	0.5	91.5	86.8	76.6	10.2	84.8
golf ball	91.0	1.5	94.0	86.8	78.6	8.2	84.7
parachute	86.0	0.5	86.0	87.4	81.3	6.1	85.4

497
 498
 499
 500
501 5 FROM CONCEPT ERASURE TO TRUE ABSENCE: UNDERSTANDING
 502 **THROUGH STABILITY**
 503

504 Since a sufficiently large amount of fine-tuning can, in principle, teach a model nearly any concept,
 505 the key question is not whether the model can eventually relearn the concept, but how easily the
 506 concept can reappear under small, lightweight adjustments.

507 A useful way to interpret this distinction is through the classical physics notion of equilibrium.
 508 Physical systems exhibit multiple types of equilibrium—most notably stable and unstable states. In a
 509 stable equilibrium, small perturbations dissipate and the system returns to its original configuration.
 510 In an unstable equilibrium, even an infinitesimal disturbance pushes the system away rapidly.
 511

512 The same principle applies to a model’s behavior after concept erasure. A model placed into a
 513 genuinely stable erased state should resist small optimization steps: few-shot personalization or
 514 light-tuning should not be sufficient to reinstate the erased concept. In contrast, if only a handful
 515 of gradient steps reliably bring back the concept, then the erased state behaves like an unstable or
 516 weakly metastable equilibrium, superficially altered but retaining latent, easily reactivated structure.

517 To highlight this distinction, we examine a counter-example involving a custom coin image (Figure
 518 4). The original Stable Diffusion model cannot generate this coin at all, indicating that it lacks a
 519 meaningful internal representation of the concept. Even after applying our Instance-Personalization
 520 Probe with a small set of ground-truth images, the model still fails to synthesize convincing images.
 521 When the model has never possessed a concept, small perturbations simply cannot inject it: the
 522 resulting generations lack fidelity and fail to generalize.

523 This behavior contrasts sharply with what we observe for erased concepts. Across multiple erasure
 524 methods, concepts that are claimed to be removed consistently reappear after only a few probe steps,
 525 far too rapidly to be the result of learning from scratch. Such quick recovery demonstrates that
 526 residual representational traces remain in the model, making the erasure analogous to an unstable
 527 equilibrium. Overall, this analysis emphasizes that complete erasure should make reintroduction
 528 no easier than teaching a truly novel concept, requiring substantial optimization rather than trivial
 529 adjustments.

530 **6 CONCLUSION**
 531

532 We presented a systematic parameter-level study of concept erasure in diffusion models. Using two
 533 lightweight diagnostic probes, namely a Gradient-Guided Probe and an Instance-Personalization
 534 Probe, our theoretical and empirical results show that current erasure methods often achieve con-
 535 ditional suppression rather than complete elimination. Erased concepts can be reinstated by adapt-
 536 ing fewer than 2% of model parameters, with minimal impact on untargeted content, highlighting recov-
 537 erability as a key open challenge. Future work should aim for methods that more effectively target
 538 residual representations and offer verifiable guarantees of irreversibility, potentially drawing on tech-
 539 niques from machine unlearning, watermarking, and model alignment to enable safer deployment
 of generative AI.

540 REFERENCES
541

542 Ludwig Arnold. Stochastic differential equations. *New York*, 2:2, 1974.

543

544 Lucas Beerens, Alex D Richardson, Kaicheng Zhang, and Dongdong Chen. On the vulnerability of
545 concept erasure in diffusion models. *arXiv preprint arXiv:2502.17537*, 2025.

546 Charlotte Bird, Eddie Ungless, and Atoosa Kasirzadeh. Typology of risks of generative text-to-
547 image models. In *AIES*, 2023.

548

549 Anh Bui, Trang Vu, Long Vuong, Trung Le, Paul Montague, Tamas Abraham, and Dinh Phung.
550 Fantastic targets for concept erasure in diffusion models and where to find them. In *ICLR*, 2025.

551

552 Ruchika Chavhan, Da Li, and Timothy Hospedales. Conceptprune: Concept editing in diffusion
553 models via skilled neuron pruning. In *ICLR*, 2025.

554

555 Albert Einstein. On the movement of small particles suspended in a stationary liquid demanded by
556 the molecular-kinetic theory of heart. *Annalen der physik*, 17:549–560, 1905.

557

558 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
559 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
560 inversion. In *ICLR*, 2022.

561

562 Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
563 from diffusion models. In *CVPR*, 2023.

564

565 Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzyńska, and David Bau. Unified
566 concept editing in diffusion models. In *WACV*, 2024.

567

568 Daiheng Gao, Shilin Lu, Wenbo Zhou, Jiaming Chu, Jie Zhang, Mengxi Jia, Bang Zhang, Zhaoxin
569 Fan, and Weiming Zhang. Eraseanything: Enabling concept erasure in rectified flow transformers.
570 In *ICML*, 2025.

571

572 Chao Gong, Kai Chen, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Reliable and efficient
573 concept erasure of text-to-image diffusion models. In *ECCV*, 2024.

574

575 Thomas Hakon Gronwall. Note on the derivatives with respect to a parameter of the solutions of a
576 system of differential equations. *Annals of Mathematics*, 1919.

577

578 Feng Han, Chao Gong, Zhipeng Wei, Jingjing Chen, and Yu-Gang Jiang. Vce: Safe autoregressive
579 image generation via visual contrast exploitation. *arXiv preprint arXiv:2509.16986*, 2025.

580

581 Xiaoxuan Han, Songlin Yang, Wei Wang, Yang Li, and Jing Dong. Probing unlearned diffusion
582 models: A transferable adversarial attack perspective. *arXiv preprint arXiv:2404.19382*, 2024.

583

584 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
585 nition. In *CVPR*, 2016.

586

587 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
588 2020.

589

590 Chi-Pin Huang, Kai-Po Chang, Chung-Ting Tsai, Yung-Hsuan Lai, Fu-En Yang, and Yu-
591 Chiang Frank Wang. Receler: Reliable concept erasing of text-to-image diffusion models via
592 lightweight erasers. In *ECCV*, 2024.

593

594 Changhoon Kim and Yanjun Qi. A comprehensive survey on concept erasure in text-to-image dif-
595 fusion models. *arXiv preprint arXiv:2502.14896*, 2025.

596

597 Changhoon Kim, Kyle Min, and Yezhou Yang. Race: Robust adversarial concept erasure for secure
598 text-to-image diffusion model. In *ECCV*, 2024.

599

600 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
601 lutional neural networks. In *NeurIPS*, 2012.

594 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 595 customization of text-to-image diffusion. In *CVPR*, 2023.
 596

597 Jiaqi Li, Qianshan Wei, Chuanyi Zhang, Guilin Qi, Miaozenge Du, Yongrui Chen, Sheng Bi, and
 598 Fan Liu. Single image unlearning: Efficient machine unlearning in multimodal large language
 599 models. In *NeurIPS*, 2024.

600 Kevin Lu, Nicky Kriplani, Rohit Gandikota, Minh Pham, David Bau, Chinmay Hegde, and Niv
 601 Cohen. When are concepts erased from diffusion models? In *CVPR workshops*, 2025.
 602

603 Shilin Lu, Zilan Wang, Leyang Li, Yanzhu Liu, and Adams Wai-Kin Kong. Mace: Mass concept
 604 erasure in diffusion models. In *CVPR*, 2024.

605 Bernt Oksendal. *Stochastic differential equations: an introduction with applications*. Springer
 606 Science & Business Media, 2013.
 607

608 Minh Pham, Kelly O Marshall, Niv Cohen, Govind Mittal, and Chinmay Hegde. Circumventing
 609 concept erasure methods for text-to-image generative models. In *ICLR*, 2024.

610 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 611 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 612 models from natural language supervision. In *ICML*, 2021.

613 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 614 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
 615

616 Keivan Rezaei, Khyathi Raghavi Chandu, Soheil Feizi, Yejin Choi, Faeze Brahman, and Abhilasha
 617 Ravichander. Restor: Knowledge recovery in machine unlearning. *Trans. Mach. Learn. Res.*,
 618 2024.

619 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 620 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.
 621

622 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 623 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *CVPR*,
 624 2023.

625 Matan Rusanovsky, Shimon Malnick, Amir Jevnisek, Ohad Fried, and Shai Avidan. Memories of
 626 forgotten concepts. In *CVPR*, 2025.
 627

628 Terence Shi, Xuhui Xu, Ying-Cong Tai, and Chi-Keung Tang. Instantbooth: Personalized text-to-
 629 image generation without test-time finetuning. In *CVPR*, 2024.
 630

631 Weiqi Wang, Zhiyi Tian, Chenhan Zhang, and Shui Yu. Machine unlearning: A comprehensive
 632 survey. *arXiv preprint arXiv:2405.07406*, 2024.
 633

634 Ee Weinan. A proposal on machine learning via dynamical systems. *Communications in Mathematics and Statistics*, 5(1):1–11, 2017.
 635

636 Yiwei Xie, Ping Liu, and Zheng Zhang. Erasing concepts, steering generations: A comprehensive
 637 survey of concept suppression. *arXiv preprint arXiv:2505.19398*, 2025.
 638

639 Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
 640 survey. *ACM Comput. Surv.*, 2023.

641 Naen Xu, Jinghuai Zhang, Changjiang Li, Zhi Chen, Chunyi Zhou, Qingming Li, Tianyu Du, and
 642 Shouling Ji. Videoeraser: Concept erasure in text-to-video diffusion models. In *EMNLP*, 2025.
 643

644 Tianyun Yang, Juan Cao, and Chang Xu. Pruning for robust concept erasing in diffusion models. In
 645 *NeurIPS Workshops*, 2024.

646 Xiaoyu Ye, Songjie Cheng, Yongtao Wang, Yajiao Xiong, and Yishen Li. T2vunlearning: A concept
 647 erasing method for text-to-video diffusion models. *arXiv preprint arXiv:2505.17550*, 2025.

648 Chi Zhang, Cheng Jingpu, Yanyu Xu, and Qianxiao Li. Parameter-efficient fine-tuning with controls.
649 In *ICML*, 2024a.
650

651 Gong Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not: Learn-
652 ing to forget in text-to-image diffusion models. In *CVPR Workshops*, 2024b.
653

654 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
655 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.
656

657 Yang Zhang, Teoh Tze Tzun, Lim Wei Hern, Haonan Wang, and Kenji Kawaguchi. On copyright
658 risks of text-to-image diffusion models. *arXiv preprint arXiv:2311.12803*, 2023.
659

660 Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong,
661 Ke Ding, and Sijia Liu. Defensive unlearning with adversarial training for robust concept erasure
662 in diffusion models. In *NeurIPS*, 2024c.
663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **7 APPENDIX**
 703

704 **A JOINT PERTURBATION EXISTENCE (PARAMETERS AND PROMPTS)**
 705

706 Proposition 1 characterizes scenarios in which perturbing either the model parameters or the prompts
 707 can make the probability of generating the target concept nonzero. Building on this, we consider the
 708 case of perturbing both parameters and prompts simultaneously.

709 **Proposition 4** (Conditional Nature of Existing Erasure Methods). *Let $\mathcal{X}_{\text{target}} \subset \mathcal{X}$ denote a concept
 710 intended for erasure, and let $p_\theta(x | c)$ be the conditional distribution of a model parameterized by
 711 θ . Assume an erasure algorithm enforces*

$$712 p_\theta(x \in \mathcal{X}_{\text{target}} | c) = 0, \quad \forall c \in \mathcal{C}_{\text{target}}.$$

713 *If there exist arbitrarily small perturbations δ_θ of the parameters and a prompt $c' \notin \mathcal{C}_{\text{target}}$ such that
 714 for $\theta' = \theta + \delta_\theta$,*

$$715 p_{\theta'}(x \in \mathcal{X}_{\text{target}} | c') > 0,$$

716 *then the concept has not been fundamentally erased but only conditionally suppressed, and remains
 717 recoverable through such joint interventions.*

719 **Remark.** The above proposition highlights the conditional nature of existing erasure methods: they
 720 suppress targeted content only under specific prompts rather than eliminating it entirely. Conse-
 721 quently, erased concepts may remain dormant within the model, leaving the possibility of recovery
 722 through either minor parameter perturbations or small prompt variations.

724 **B PROOF OF THEOREM 2**

726 For completeness, we provide the full proof of Theorem 2, which in the main text was only summa-
 727 rized as a sketch.

729 **Proof.** We first make explicit the standard assumptions used in the bound.

730 *Assumptions.* (i) f has an L -Lipschitz gradient in a neighborhood containing the traces, that is

$$732 \|\nabla f(u) - \nabla f(v)\| \leq L\|u - v\| \quad \forall u, v \in \mathbb{R}^d,$$

733 (ii) The reference and actual dynamics start from the same point: $\theta(0) = \tilde{\theta}(0) = \theta_0$. (iii) The two
 734 stochastic processes follow the Itô SDEs

$$736 d\theta(t) = \nabla f(\theta(t)) dt + \Sigma_1(t)^{1/2} dB_1(t), \quad d\tilde{\theta}(t) = \nabla f(\tilde{\theta}(t)) dt + \Sigma_2(t)^{1/2} dB_2(t),$$

737 where $B_1(t), B_2(t)$ are independent standard d -dimensional Brownian motions, and $\text{tr}(\Sigma_1(t)) \leq$
 738 $\bar{\sigma}_1$, $\text{tr}(\Sigma_2(t)) \leq \bar{\sigma}_2$ for all $t \geq 0$. Define the deviation $\delta(t) := \tilde{\theta}(t) - \theta(t)$ so that $\delta(0) = 0$.

739 *Step 1: Itô formula for the squared norm.* Consider $V(\delta) = \|\delta\|^2$. By Itô's formula,

$$741 dV(\delta(t)) = 2\langle \delta(t), d\delta(t) \rangle + \text{tr}(\Sigma_1(t) + \Sigma_2(t)) dt.$$

742 Since

$$744 d\delta(t) = d\tilde{\theta}(t) - d\theta(t) = (\nabla f(\tilde{\theta}(t)) - \nabla f(\theta(t))) dt + \Sigma_2(t)^{1/2} dB_2(t) - \Sigma_1(t)^{1/2} dB_1(t),$$

745 we have

$$747 d\|\delta(t)\|^2 = 2\langle \delta(t), \nabla f(\tilde{\theta}(t)) - \nabla f(\theta(t)) \rangle dt + 2\langle \delta(t), dW(t) \rangle + \text{tr}(\Sigma_1(t) + \Sigma_2(t)) dt,$$

748 where $dW(t) := \Sigma_2(t)^{1/2} dB_2(t) - \Sigma_1(t)^{1/2} dB_1(t)$.

749 *Step 2: Take expectations.* The stochastic integral term has zero expectation, hence

$$752 \frac{d}{dt} \mathbb{E}\|\delta(t)\|^2 = 2\mathbb{E}\langle \delta(t), \nabla f(\tilde{\theta}(t)) - \nabla f(\theta(t)) \rangle + \mathbb{E} \text{tr}(\Sigma_1(t) + \Sigma_2(t)).$$

754 *Step 3: Use L -smoothness to bound the drift term.* By L -smoothness,

$$755 \|\nabla f(\tilde{\theta}(t)) - \nabla f(\theta(t))\| \leq L\|\delta(t)\|,$$

756 so that

757
$$2\langle \delta(t), \nabla f(\tilde{\theta}(t)) - \nabla f(\theta(t)) \rangle \leq 2L\|\delta(t)\|^2.$$

758 Using the bound on the trace of the noise covariance gives

760
$$\frac{d}{dt} \mathbb{E}\|\delta(t)\|^2 \leq 2L\mathbb{E}\|\delta(t)\|^2 + \bar{\sigma}_1 + \bar{\sigma}_2.$$

762 *Step 4: Solve the differential inequality.* Let $y(t) := \mathbb{E}\|\delta(t)\|^2$. Then

764
$$y'(t) \leq 2Ly(t) + \bar{\sigma}_1 + \bar{\sigma}_2, \quad y(0) = 0.$$

766 By the integrating factor method or Grönwall's inequality,

767
$$768 \quad y(t) \leq \frac{\bar{\sigma}_1 + \bar{\sigma}_2}{2L} (e^{2Lt} - 1).$$

770 Setting t to the desired time completes the proof:

771
$$772 \quad \mathbb{E}\|\delta(t)\|^2 \leq \frac{\bar{\sigma}_1 + \bar{\sigma}_2}{2L} (e^{2Lt} - 1).$$

773 \square

776 C PROOF OF THEOREM 3

778 **Proof.** The first two steps proceed in the same way as in the proof of Theorem 2 (see Appendix B).
779 The key difference arises in Steps 3 and 4, where the μ -PL condition allows us to establish a con-
780 traction bound rather than an expansion bound.781 *Step 3: Use strongly convex condition to bound the drift term.* By the μ -strongly convex condition,

783
$$\langle \delta(t), \nabla f(\tilde{\theta}(t)) - \nabla f(\theta(t)) \rangle \geq \mu\|\delta(t)\|^2.$$

785 Using the bounds on the trace gives the differential inequality

787
$$\frac{d}{dt} \mathbb{E}\|\delta(t)\|^2 \leq -2\mu\mathbb{E}\|\delta(t)\|^2 + \bar{\sigma}_1 + \bar{\sigma}_2.$$

789 *Step 4: Solve the differential inequality.* Let $y(t) = \mathbb{E}\|\delta(t)\|^2$. Then

791
$$y'(t) \leq -2\mu y(t) + \bar{\sigma}_1 + \bar{\sigma}_2, \quad y(0) = 0.$$

792 Solving gives

794
$$y(t) \leq \frac{\bar{\sigma}_1 + \bar{\sigma}_2}{2\mu} (1 - e^{-2\mu t}),$$

795 which completes the proof. \square

810 D ANALYSIS FOR INSTANCE-PERSONALIZATION PROBE
811

812 **Setup and Notation.** Let θ denote model parameters and $\tau(\cdot)$ the text encoder that maps prompts
813 to embeddings. DreamBooth introduces a rare token v_* with embedding $e := \tau(v_*)$ and uses
814 two prompts: c_{inst} for the instance prompt such as “a photo of v_* ” and c_{class} for the class prompt
815 such as “a photo of a dog”. Let $x_0 \in \mathcal{X}_{\text{ref}}$ be a reference image for the erased concept and let
816 $z_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon$ with t sampled from a predefined schedule and $\epsilon \sim \mathcal{N}(0, I)$. The
817 DreamBooth loss is

$$818 \mathcal{L}_{\text{Instance-Personalization}}(\theta, e) = \mathbb{E}[\|\epsilon - \epsilon_\theta(z_t, t, \tau(c_{\text{inst}}(e)))\|^2] + \lambda_{\text{prior}} \mathbb{E}[\|\epsilon - \epsilon_\theta(z_t, t, \tau(c_{\text{class}}))\|^2].$$

819 In reactivation we mainly optimize e and optionally a small subset of θ . For analysis it is convenient
820 to work with a differentiable surrogate score $s_\theta(e)$ that increases when the erased concept is better
821 reconstructed (e.g., a CLIP similarity with the concept text, or the negative instance loss).

822 We provide the local nondegeneracy statement in the token embedding space and provide a quantitative
823 ascent guarantee.

824 **Proposition 5** (Quantitative local ascent in the token embedding). *Let $s_\theta : \mathbb{R}^{d_e} \rightarrow \mathbb{R}$ be differentiable.
825 Assume that $\nabla_e s_\theta$ is L_e -Lipschitz in a neighborhood of e_0 and $\nabla_e s_\theta(e_0) \neq 0$. Let
826 $u = \nabla_e s_\theta(e_0) / \|\nabla_e s_\theta(e_0)\|$ and $e_1 = e_0 + \eta u$. Then for any step size η in the open interval
827 $(0, 2\|\nabla_e s_\theta(e_0)\|/L_e)$ one has*

$$828 s_\theta(e_1) \geq s_\theta(e_0) + \eta \|\nabla_e s_\theta(e_0)\| - \frac{L_e}{2} \eta^2 > s_\theta(e_0).$$

829 In particular, the choice $\eta^* = \|\nabla_e s_\theta(e_0)\|/L_e$ maximizes the right-hand side and yields

$$830 s_\theta(e_0 + \eta^* u) \geq s_\theta(e_0) + \frac{\|\nabla_e s_\theta(e_0)\|^2}{2L_e}.$$

831 *Proof.* By L_e -smoothness of s_θ ,

$$832 s_\theta(e_0 + \Delta) \geq s_\theta(e_0) + \langle \nabla_e s_\theta(e_0), \Delta \rangle - \frac{L_e}{2} \|\Delta\|^2 \quad \text{for all } \Delta.$$

833 Taking $\Delta = \eta u$ with u the normalized gradient direction gives the bound. The quadratic is positive
834 on $(0, 2\|\nabla_e s_\theta(e_0)\|/L_e)$ and is maximized at $\eta^* = \|\nabla_e s_\theta(e_0)\|/L_e$. \square

835 **Proposition 6** (Second-order ascent at a first-order critical point). *Assume $\nabla_e s_\theta(e_0) = 0$ and there
836 exists a unit vector v with $v^\top \nabla_{ee}^2 s_\theta(e_0) v > 0$. Then for sufficiently small $\eta > 0$,*

$$837 s_\theta(e_0 + \eta v) = s_\theta(e_0) + \frac{1}{2} \eta^2 v^\top \nabla_{ee}^2 s_\theta(e_0) v + o(\eta^2) > s_\theta(e_0).$$

838 Hence even at a first-order stationary point, a nondegenerate positive-curvature direction yields a
839 local increase and initiates reactivation. \square

840 Therefore, it is always possible to construct an embedding $\tau(c_{\text{inst}})$ along this direction, or via continuous
841 optimization methods such as textual inversion, that maximizes the likelihood of the concept.

842 Moreover, in instance-personalization probes, the parameters θ can always be further optimized to
843 improve performance, analogous to Proposition 5 6. We omit the details here for simplicity.

844 E STATISTICAL ROBUSTNESS OF REACTIVATION RESULTS

845 To assess the stability of our findings, we repeated the full reactivation experiment five times with
846 different random seeds under the ESD erasure setting combined with the Gradient-Guided Probe for
847 reactivation. For example, for the *chain saw* class, the mean reactivation accuracy was 75.0% with
848 a standard deviation of 2.62%, and for *tench* it was 64.6% with a standard deviation of 2.88%. Similar
849 relatively small variance was observed across other categories, suggesting that the reactivation
850 results are generally stable and reproducible.

851 F QUALITATIVE VISUALIZATION.

852 In addition to quantitative metrics, we present qualitative visualizations to highlight the effectiveness
853 of our diagnostic probes. These examples focus on how erased concepts can be reinstated with high
854 fidelity, illustrating the persistence of residual representations.

(a) ESD erasure and subsequent reactivation. The Gradient-Guided and Instance-Personalization Probes both restore erased concepts such as chain saw and french horn with high fidelity, revealing that suppression is not permanent.

(b) UCE erasure and subsequent reactivation. Despite strong suppression under UCE, both probes successfully reinstate the erased categories, again indicating that latent representations persist in the parameter space.

Figure 1: Visual comparison of object-level erasure and reactivation under two representative methods. (a) ESD Erase and (b) UCE Erase both strongly suppress targeted concepts, visibly degrading the corresponding generations. However, our parameter-level probes (Gradient-Guided and Instance-Personalization) are able to reinstate the erased objects with high fidelity. This highlights that current erasure methods achieve conditional suppression rather than permanent removal.

F.1 VISUALIZATION ON OBJECT CONCEPT REACTIVATION

Figure 1 provides qualitative evidence that erased object concepts remain recoverable. Under both ESD and UCE, the erased models produce generations where the targeted categories are substantially suppressed or replaced by irrelevant content. When applying our probes, the erased concepts reappear in most cases. Both the Gradient-Guided and Instance-Personalization Probes succeed in reinstating the target objects, though with slightly different visual characteristics. These consistent recoveries across multiple object categories and two distinct erasure methods reinforce our theoretical findings that residual representations persist in the parameter space and can be reinstated with minimal adaptation.

F.2 VISUALIZATION ON ARTIST CONCEPT REACTIVATION

The visualizations in Figure 2 illustrate the effect of concept erasure and reactivation for artistic styles. Both ESD and UCE substantially suppress style-specific features, producing images that lack the distinctive attributes of Picasso, Van Gogh, Rembrandt, Warhol, and Caravaggio. However, applying either the Gradient-Guided Probe or the Instance-Personalization Probe restores the erased styles. These outcomes confirm that erasure does not fully eliminate style representations; instead, latent stylistic structures remain accessible, making reactivation feasible.

(a) Visualization of style erasure and reactivation under the ESD framework. Original generations capture the distinct styles of Picasso, Van Gogh, Rembrandt, Warhol, and Caravaggio. ESD erasure removes much of the stylistic information, while both probes recover recognizable stylistic features, though with variations in detail.

(b) Visualization of style erasure and reactivation under the UCE framework. UCE erasure substantially suppresses style-specific attributes, producing neutral outputs. Both Gradient-Guided and Instance-Personalization probes reinstate stylistic elements, demonstrating that residual representations persist despite erasure.

Figure 2: Visualization of artistic-style erasure and reactivation across five artists (Picasso, Van Gogh, Rembrandt, Andy Warhol, Caravaggio). (a) ESD-based erasure and subsequent recovery. (b) UCE-based erasure and recovery. Both Gradient-Guided and Instance-Personalization probes successfully reinstate the erased styles, though with variations in detail, illustrating that residual stylistic representations persist despite erasure.

G PROMPT-LEVEL AND PARAMETER-LEVEL PERSPECTIVES ON CONCEPT ERASURE

Pham et al. (Pham et al., 2024) investigate concept reactivation from the prompt perspective, showing that erased concepts can be partially recovered through adversarial optimization and prompt pertur-

972 Table 7: Comparison of object-concept performance drop (%) between Pham (Pham et al., 2024) and our probes
 973 across three erasure methods. Numbers in parentheses indicate percentage drop relative to the original score.

Method	Original	ESD	UCE	FMN
Pham et al.	77.9	60.1 (-22.8%)	59.4 (-23.7%)	44.6 (-42.7%)
Ours	88.85	81.85 (-7.9%)	69.35 (-22.0%)	81.65 (-8.1%)

974
 975
 976
 977
 978
 979 bations. Our work instead examines reversibility at the parameter level, providing a complementary
 980 view. Both studies evaluate the ESD framework on ten ImageNet categories. Pham et al. (Pham
 981 et al., 2024) report strong suppression with an average erased accuracy of 0.2% and partial reactiva-
 982 tion at 60.1% average accuracy. As shown in Table 4 (b), our parameter-level probes achieve higher
 983 recovery, with an average reactivation accuracy of 76.7%, close to the original 74.9%. For instance,
 984 we restore “french horn” from 99.75% (original) to 100.00% (after reactivation) and “chain saw”
 985 from 77.25% to 78.25%, demonstrating that our parameter-level probes are able to reinstate erased
 986 concepts.

987 Table 7 provides a broader comparison across three erasure methods (ESD, UCE, FMN) for object
 988 concepts. We observe that our parameter-level approach yields smaller performance drops relative
 989 to the original model (e.g., -7.9% for ESD vs. -22.8% reported by Pham et al. (Pham et al., 2024)),
 990 and exhibits similarly lower degradation for UCE and FMN. These results indicate that parameter-
 991 level probes achieve consistently high reactivation accuracy across diverse erasure methods and
 992 reveal the residual capacity of erased models, providing a useful diagnostic tool for evaluating the
 993 robustness of concept removal.

994 Taken together, these comparisons suggest that while prompt-level and parameter-level analyses are
 995 complementary, parameter-level probing generally provides a relatively stronger signal of the extent
 996 to which erased representations remain recoverable, offering a more nuanced understanding of the
 997 limitations of current erasure techniques.

998 H RECOVERY WITHOUT THE PRE-ERASED MODEL

1000 We next examine whether concept reactivation requires access to the exact pre-erased checkpoint.
 1001 Our experiments show two successful pathways: using an alternative pretrained model as a guiding
 1002 reference, or relying only on a small set of images that depict the target concept.

1003 H.1 GRADIENT-GUIDED PROBE WITH GUIDING MODELS

1004 Recovery under the Gradient-Guided Probe does not require access to the original Stable Diffusion
 1005 checkpoint. Any pretrained diffusion model that still retains the ability to generate the target concept
 1006 c can serve as the guiding model θ . To illustrate this flexibility, we erase the concept of “church”
 1007 from Stable Diffusion 1.4 and perform recovery with external guiding models, including Stable Dif-
 1008 fusion 1.5 and DreamShaper¹. As shown in Figure 3, the erased model θ' successfully regains the
 1009 concept of “church” even when the guiding model differs from the original. The recovered outputs
 1010 share high-level semantic consistency across guiding models, though subtle differences are observ-
 1011 able, such as the shape of the tympanum above the door (blue box) and the presence or absence of
 1012 fences on the grass (red boxes). This indicates that external pretrained models can serve as valid
 1013 guiding references, while the actual reactivation occurs in the erased model itself. Unlike distilla-
 1014 tion, which transfers knowledge from a teacher to a student, our recovery succeeds because residual
 1015 representations persist in the erased model; external models provide only auxiliary guidance.

1016 H.2 INSTANCE-PERSONALIZATION PROBE WITH REFERENCE IMAGES

1017 Unlike the Gradient-Guided Probe, the Instance-Personalization Probe does not require access to
 1018 the pre-erased model or any external pretrained model capable of generating the target concept c .
 1019 Instead, it only requires a small reference set of images that visually depict the concept. These
 1020 images provide direct supervision for a lightweight personalization step, allowing the erased model
 1021 θ' to reacquire the erased concept from visual data. This makes the Instance-Personalization Probe
 1022 applicable when pretrained models with the desired capability are unavailable, demonstrating that
 1023 reactivation can be achieved from residual traces combined with limited external examples.

1024
 1025 ¹<https://huggingface.co/Lykon/DreamShaper>

Figure 3: **Choice of guiding model θ for recovery.** The concept of “church” is erased from SD1.4, where the original structure is replaced with a house-like object. Recovery can be guided not only by the pre-erased model (SD1.4) but also by other pretrained models that still retain the target concept, such as SD1.5 and DreamShaper. In all cases, the erased model successfully regains the concept of “church” under the Gradient-Guided Probe, while subtle architectural differences (e.g., the tympanum above the door and fences in the foreground) vary across guiding models.

Figure 4: **A counterexample for Instance-Personalization.** The original SD model does not possess the ability to generate the coin concept, as shown in the sub-figure (b). In this case, the Instance-Personalization Probe fails to produce images resembling the ground truth in the sub-figure (c), even after fine-tuning on a few example images.

Summary. These two scenarios highlight complementary pathways for reactivation. The Gradient-Guided Probe leverages an external model as a guiding reference, whereas the Instance-Personalization Probe relies solely on a small reference set of images. Both confirm that the persistence of latent representations enables recovery without requiring access to the original pre-erased checkpoint.

I WHEN CONCEPTS ARE TRULY ABSENT

An ideal erasure method would make a model behave as if it had never acquired the target concept. In such a case, few-shot personalization techniques should not be able to easily reintroduce the concept. To illustrate this, we consider a counter-example involving a specific coin image. As shown in Figure 4, the original Stable Diffusion model fails to generate convincing images of this coin, indicating that it does not contain a usable representation of the concept. Even after fine-tuning with a small set of ground-truth images using our Instance-Personalization Probe, the erased model fails to recover the target, suggesting that the concept cannot be injected without a pre-existing representational basis.

This example highlights the gap between current erasure methods and the ideal case. In practice, erased concepts are often reinstated within a few fine-tuning steps, demonstrating the persistence of residual representations. In contrast, when a concept is never present or has been fully removed, the Instance-Personalization Probe struggles to inject it effectively, and the resulting generations lack

1080 both fidelity and generalization. This observation underscores that truly complete erasure should
 1081 render reintroduction no easier than teaching the model a completely novel concept from scratch.
 1082

1083 J RELATION TO UNLEARNING AND DISTILLATION

1084 Our study is related to, but distinct from, prior research in adjacent areas. Below we clarify the
 1085 differences with *machine unlearning*, its multimodal extension to *MLLM unlearning*, and *knowledge*
 1086 *distillation*, in order to situate our contribution more precisely.
 1087

1088 **Machine unlearning.** Traditional machine unlearning (Xu et al., 2023; Wang et al., 2024) seeks
 1089 to eliminate the influence of specific training samples so that a model behaves as if those data were
 1090 never used, often driven by privacy concerns such as the “right to be forgotten.” The challenge is
 1091 to achieve this effect without retraining from scratch while preserving accuracy on non-erased data.
 1092 Our work differs in scope: we do not address individual samples but instead test whether *concept-*
 1093 *level representations*, such as object categories or artistic styles, remain recoverable after targeted
 1094 erasure. Thus, while unlearning removes the effect of training data, we probe the persistence of
 1095 semantic concepts in diffusion models.
 1096

1097 **MLLM unlearning.** Recent efforts extend unlearning to multimodal large language models
 1098 (MLLMs) (Li et al., 2024), aiming to delete sensitive multimodal training pairs (e.g., image–text
 1099 alignments) for privacy protection. This task is more complex because signals are distributed across
 1100 modalities and alignment modules. Our study addresses a different dimension: rather than privacy-
 1101 driven data removal, we ask whether *high-level semantic concepts* in diffusion models can be re-
 1102 stated after erasure, even when they appear suppressed at the prompt level. This highlights recover-
 1103 ability as a limitation distinct from privacy concerns.
 1104

1105 **Knowledge Distillation.** While our probes involve parameter updates, they are not designed
 1106 as knowledge transfer procedures. Knowledge distillation typically transfers information from a
 1107 teacher model to a student model to improve accuracy or efficiency. In contrast, our probes oper-
 1108 ate entirely within the erased model and serve as controlled interventions to test whether residual
 1109 representations remain activatable. Their purpose is diagnostic rather than pedagogical: they do not
 1110 import new knowledge but reveal whether the erased concept still resides in the parameter space.
 1111

1112 **Summary.** In short, while unlearning (including MLLM unlearning) focuses on *removing the ef-*
 1113 *fect of sensitive training data*, and distillation focuses on *transferring knowledge*, our work investi-
 1114 *gates whether erased concepts in diffusion models are still recoverable*. This highlights recov-
 1115 *erability as a key consideration for assessing the robustness of erasure methods and motivates the*
 1116 *diagnostic probes we propose.*

1117 K USE OF LLMs FOR WRITING ASSISTANCE

1118 In preparing this paper, we used a large language model (ChatGPT, GPT-5, by OpenAI) to aid in the
 1119 *polishing* of the manuscript text. Specifically, LLM assistance was used to:

- 1120 • Improve clarity and conciseness of the draft.
- 1121 • Rephrase sentences for grammatical correctness and readability.

1122 No LLM-generated content was used without human review: all outputs were carefully checked,
 1123 edited, and verified by the authors for technical correctness and consistency. No LLM was used for
 1124 data generation, model training, experiment design, or result fabrication.
 1125

1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133