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ABSTRACT

The Linux kernel is a critical system, serving as the foundation for numerous
systems. Bugs in the Linux kernel can cause serious consequences, affecting
billions of users. Fault localization (FL), which aims at identifying the
buggy code elements in software, plays an essential role in software quality
assurance. While recent LLM agents have achieved promising accuracy in
FL on recent benchmarks like SWE-bench, it remains unclear how well these
methods perform in the Linux kernel, where FL is much more challenging
due to the large-scale code base, limited observability, and diverse impact
factors. In this paper, we introduce LINUXFLBENCH, a FL benchmark
constructed from real-world Linux kernel bugs. We conduct an empirical
study to assess the performance of state-of-the-art LLM agents on the Linux
kernel. Our initial results reveal that existing agents struggle with this task,
achieving a best top-1 accuracy of only 41.6% at file level. To address this
challenge, we propose LINUXFLT, an enhancement framework designed to
improve FL effectiveness of LLM agents for the Linux kernel. LINUXFL™
substantially improves the FL accuracy of all studied agents (e.g., 7.2% -
11.2% accuracy increase) with minimal costs.

1 INTRODUCTION

The Linux kernel is a critical system which serves as the foundation for numerous operating
systems, servers, and embedded systems, and has evolved over decades with contributions
from thousands of developers and billions of users (The Linux Foundation, 2020). Given
the widespread adoption of the Linux kernel, bugs in the Linux kernel can cause serious
consequences, affecting a vast number of users. Therefore, extensive research has been ded-
icated to developing antomated software quality assurance techniques (e.g., testing (Bligh
& Whitcroft, 2006; Chen et all, 2013; Yang et _al), 2025h) and debugging (Bissyandé et all,
2012; Edge, 2019; Serrano et al), 2020; Jeong et al), 2023)) specifically for the Linux kernel.

Fault localization (FL), which aims at identifying the buggy code elements (e.g., files or
functions) in software, plays a critical role in software quality assurance. Given the codebase
of the buggy software and the bug report (e.g., a user-reported bug symptom description),
automated FL techniques return a list of buggy code elements ranked by their suspiciousness
(i.e., the probability of being buggy). In particular, accurate FL is a prerequisite for bug
fixing, as a bug cannot be resolved without correctly identifying the faulty code location.

Traditional FL techniques mainly leverage heuristics (Abreu et al), 2006; Wong et all, 2014b)
or information retrieval (IR) (Zhou et al), 012; Saha et al), 2013) to identify buggy code
elements. More recently, with the advance in large language models (LLMs), LLM agents [Liu
et al) (2024) have demonstrated remarkable accuracy in FL. Equipped with tool invocation,
agents can autonomously navigate codebases to_identify the buggy location. For example,
the state-of-the-art agents such as SWE-Agent (Yang et al|, 2024), AutoCodeRover (Zhang
et al), 2024), Agentless (Xia et all, 2024), achieve around _70% accuracy jn localizing buggy
files for Python software in the benchmark SWE-bench (Jimenez et all, 2024).

Although achieving promising FL effectiveness, existing agents have been mainly evaluated
on general software at moderate scales. It remains unclear how existing agents perform
in complex, large-scale software systems like the Linux kernel. In particular, FL in Linux
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kernel is more challenging than general software due to the following factors. (1) Large-
scale Codebase: the Linux kernel has a massive codebase significantly larger than general
software. For example, the v5.8 release of Linux kernel includes over 69K files and 28M lines
of code (The Linux Foundation, 2020), which is over 30 times the scale of even the largest
project in the most widely-used benchmark SWE-bench. (2) Limited Observability: given
the real-time nature of the Linux kernel with the need to minimize overhead, the kernel
restricts the use of instrumentation and logging mechanisms during runtime. Additionally,
the kernel operates in a privileged mode, isolated from user space. As a result, user-reported
bug descriptions often lack detailed runtime information and debugging hints, creating a
significant gap between the user description and the actual root causes. (3) Diverse Impact
Factors: kernel bugs are influenced by a wide range of factors, including hardware variability
(e.g., architectural configurations) and runtime variability (e.g., system load or timing).
These factors lead to an exponentially large reasoning space to accurately diagnose the root
causes of errors. Given the unique challenges and the importance of the kernel, this work
aims at investigating the FL effectiveness of state-of-the-art LLM agents on the Linux kernel.

Benchmark. We first build a new benchmark LINUXFLBENCH of 250 real-world FL tasks
for the Linux kernel. Each FL task in LINUXFLBENCH includes a user-submitted bug
report, the buggy Linux kernel codebase, and the ground-truth buggy locations based on
the associated commit patches. LINUXFLBENCH involves a wide range of Linux kernel
bugs, spanning over 120 Linux kernel versions and 66 different kernel components. The
FL tasks are significantly more challenging than those in SWE-bench, as evidenced by the
substantially larger codebases (10-30x more files and lines of code) and more complex bug
reports (approximately 1.5x more words).

Empirical Study. On LINUXFLBENCH, we make the first attempt to evaluate state-of-
the-art LLM agents in localizing Linux kernel bugs. Our results reveal the limited FL
effectiveness (e.g., 36.8% - 41.6% accuracy) of existing agents in the Linux kernel; such a
FL accuracy is much lower than their performance on general software systems (a 16.7%
- 31.9% accuracy drop from SWE-bench). We further perform bad case analysis and find
that existing agents mainly miss the buggy files as they fail to capture the related files or to
cover complete root causes of kernel bugs. The results indicate that FL in the Linux kernel
is indeed a more challenging task, highlighting the need for building more advanced agents
to localize bugs in large and complex software systems like the Linux kernel.

Technique. Inspired by our study above, we further propose an enhancing framework
LINUXFL™T, which improves the FL effectiveness of existing agents for the Linux kernel.
LINUXFL™ incorporates two expansion strategies to refine the prediction results of existing
agents: directory-aware expansion to include buggy files based on the repository structure,
and potential cause expansion to identify buggy files based on the additional bug knowledge
from Linux kernel mailing list (LKML) (Kernel.org, 2025b). Our evaluation results show
that LINUXFL™ can substantially improve the FL accuracy of all studied agents (e.g., 7.2%
- 11.2% accuracy increase) with minimal costs. Moreover, the ablation analysis confirms the
contribution of each expansion strategies.

2 BACKGROUND AND RELATED WORK

FL Task Definition. Given the bug report and codebase, FL techniques identify buggy
code elements (e.g., files or functions). Formally, let a codebase be represented as a set of
code elements, C = {ce1,cea,...,cen}, where N denotes the total number of code elements.
A bug report BR typically includes a title, a description, and optional metadata (e.g.,
component and hardware information in the context of Linux kernel), and can be expressed
as BR = (title, desc, meta). A FL task can be modeled as: FL : BR,C — list(C), where
list(C) denotes a list of code elements that ranked by their probabilities of being buggy.

Existing FL techniques. FL techniques have been extensively studied in literature:

e Coverage-based FL. Besides bug reports, some F1. techniques leverage test. coverage to
identify buggy locations, such as SBFL_(Abreu et_all, 2006; Wong et all, 2014b), GNN-
based FL (Lou et al), 2021), AutoFL (Kang et all, 2024), and AgentFL (Qin et al), 2024).
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Table 1: Existing Benchmarks for Software Maintenance

Benchmark Language # Repo # Bugs Data Source Linux-Related User-reported

Defects4J (Just.et all, 2014) Java 17 854 Bug Tracking Systems X
Linux-3.16 (Saha et all. 2014) C 1 1,548 Bug Tracking Systems v v
SWE-bench (Jimenez et all, 2024) Python 12 2,294 GitHub Pull Requests X 4
FAUN-Eval-fix_ (Hu et all, 2024) Multiple 17 300 GitHub Pull Requests/Issues X v
KBENCHSYZ (Mathai et all, 2024) C 113 279 Fuzzing-Detected Crashes v X
Loc-Bench (Chen et all, 2025) Python 165 560 GitHub Issues X v
SWE-lancer (Miserendino et all, 2025) Python 1 1,488 Upwork Issues X v
LinuxFLBench C 120 250 Bug Tracking Systems v v

However, coverage and executable failure-triggering tests are not always available in prac-
tice. Especially for the large systems like Linux kernel, users report bugs by textually
describing the error symptoms. Therefore, coverage-based FL cannot be applied to the
Linux kernel when only bug reports are available, which thus is not included in this work.

o Information Retrieval (IR) Based FL. FL can be formulated as an information re-
trieval (IR) problem, where a bug report serves as a query to rank code files by relevance.
Existing IR-based FL_techniques use various similarity measures, such as Vector Space
Model (VSM) (Zhou et all, 2012; Saha et al), 2013; 2014; Wang & Ld, 2014; Wong et al,,
2014a), Dirichlet. Language Model (DLM) (Sisman et_all, 2017), or deep learning ap-
proaches (Huo et al|, 021}; Ciborowska & Damevski, 2022; Mohsen et all, 2023). In this
work, we empirically evaluate IR-based FL in the Linux kernel.

o Agent-based FL. Recent advances in LLM agents have shown strong performance in
software maintenance tasks, including FL. For instance, SWE-Agent (Yang et al|, 2024)
incorporates a custom-built Agent-Computer Interface to navigate entire repositories; Au-
toCodeRover (Zhang et al), 2024) equips LLMs with code search capabilities to retrieve
relevant code contexts; Agentless (Xia et al), 2024) refines the localization process by
restricting the decision-making autonomy of agents. In this work, we not only make the
first attempt to empirically evaluate existing agents in the Linux kernel, but also propose
a framework to enhance their performance in this challenging domain.

Benchmarks for Software Maintenance. As FL is a key sub-task in software mainte-
nance, we revisit existing software maintenance benchmarks in Table [Il. The majority of
existing benchmarks focus on general software systems in Java or Python. In contrast, our
benchmark LINUXFLBENCH specifically targets the large-scale system Linux kernel. Only
two prior benchmarks involve the kernel: Linux-3.16 (Saha et all, 2014), which is limited to
a single old version, and KBENCHSYZ (Mathai et al), 2024), which collects Syzkaller (Google,
2025)-detected crash bugs. LINUXFLBENCH differs by (1) covering a wider range of ker-
nel versions, (2) including diverse real-world bug types beyond crashes (e.g., functionality
and performance bugs), and (3) sourcing all bugs from user reports rather than automated
fuzzing. Thus, LINUXFLBENCH complements existing efforts by offering a more compre-
hensive benchmark for evaluating advanced FL techniques in the Linux kernel.

3 LiNnuxFLBENcH: A FLL BENCHMARK FOR LINUX KERNEL

LINUXFLBENCH is a new benchmark of 250 real-world Linux kernel FL tasks.

3.1 CONSTRUCTION OF LINUXFLBENCH

LINUXFLBENCH is constructed through three phases, as described in Appendix @

Step 1: Bug Report Collection. We collected Linux kernel bug reports from Kernel.org
Bugzilla (Kernel.org, 2025a) up to December 31, 2024. Each report includes a title, descrip-
tion, and relevant metadata (e.g., kernel version, environment). To ensure code availability,
we retained only reports linked to kernel versions hosted on the official Linux website (Ker-
nel.org, 20250). For ground-truth reliability, we required reports marked as “CLOSED” and
“CODE_ FIX” in the bug tracking system. Furthermore, we included only bug reports with
patches attached, enabling us to identify the buggy locations based on the patch information.
In total, we collected 2,138 bug reports during this step.

Step 2: Buggy Location Identification. For each collected bug report, we identified
the location modified in the developer-committed patch as the ground-truth buggy location.
Specifically, we traversed source files with the extensions .c or .h, skipping other file types
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such as README or Makefile. Following SWE-bench-lite (bimenez et alj, l2024|), we kept
only unambiguous cases where exactly one file was modified to ensured the reliability of the
ground truth. After this step, 635 bug reports with identified buggy files were obtained.

Step 3: Manual Inspection. To further ensure quality, we manually reviewed the col-
lected data. Three human annotators checked each bug as follows: (1) bug reports without
actual bugs (e.g., those that primarily submit patches) were excluded; (2) bug reports with
sufficient information (e.g., clear natural language descriptions or detailed system logs) were
retained; (3) bug reports that explicitly mentioned buggy locations or fix solutions were ex-
cluded. As a result, the final dataset comprises 250 high-quality FL tasks, and each task
includes a bug report, the buggy codebase, and the ground-truth buggy file and method(s).
A detailed sample is shown in Appendix @

3.2 CHARACTERISTICS OF LINUXFLBENCH

LiNUXFLBENCH presents challenging tasks with complex bug reports and large-scale code-
base, offering multidimensional diversity across kernel versions, products, and bug types.

privers (4240 Table 2: Task Scales of LINUXFLBENCH and SWE-
bench.
| Process Management (0.8%) Bcnchmark Bug Descrlptlon COdebase

ACPI (24.4%)— SCSi Drivers (1.6%) # Words # Files # Lines
\ m;g"{“&j;:f”" Mean LINUXFLBENCH 283.1 28,808  11,492K

“”‘1‘”3"’ @4%) SWE-bench* 195.1 3,010 438K

Networking (4.0%)

File System (8.4%) \0 . Pewerzlowanage:ent (4.8%) Max LiNuXFLBENCH 5,139 67,073  28,178K

0/Storage (1:2%) SWE-bench* 4,477 5890 886K

Figure 1: Task Distribution across " Source: SWE-bench (Jimenez et al), 2024).
Products

Scale. Table E compares the scale of tasks in LINUXFLBENCH and SWE-bench. Our dataset
is more challenging, with the codebase tens of times larger and bug reports that are more
detailed and complex. We also compare stack trace lengths, the presence of bug location in
bug reports, and the sizes of buggy files and golden patches, all of which furthe derscore
the greater complexity of our dataset. More details are provided in Appendix @l

Products. Fig. EI shows the distribution of LINUXFLBENCH across kernel products (i.e.,
high-level categories defined in Bugzilla). In particular, bugs span 16 products, with Drivers,
ACPI, and File System being the largest categories. At a finer granularity, the benchmark
covers a diverse set of 66 components, with the most frequent being network-wireless (6.4%),
Video (6.0%), Network (5.2%), Power-Battery (4.8%), and Sound (4.4%).

Versions. The Linux kernel has evolved over several decades, resulting in the release of
numerous versions. LINUXFLBENCH captures this temporal diversity by including bugs
from a broad range of kernel versions, covering a total of 120 distinct versions.

Bug Types. LINUXFLBENCH encompasses a broad spectrum of bugs by symptoms and
causes. Symptomatically, it includes common issues such as system crashes (14.8%), power
malfunctions (13.6%), and network failures (10.8%). Causally, frequent sources are hardware
configuration faults (19.6%), memory defects (15.6%), and data handling errors (15.2%).

4 EVALUATION OF LLM AGENTS ON LINUXFLBENCH

We empirically evaluate SOTA LLM agents on LINUXFLBENCH to investigate their FL
effectiveness in the Linux kernel.

4.1 STUDY SETUP

-

Studied Baselines. (1) LLM agents. W%sm_d;uhﬁje ‘A LLM agents, i.e WE-
Agent ([Yang et all, 2024), AutoCodeRover (Zhang et al), 2024), and Agentless (,




Under review as a conference paper at ICLR 2026

2024), as they are fully open-sourced and achieve high effectiveness in recent software mainte-
nance leaderboard (SWE-bench, 2025). All agents are equipped with GPT-40 (gpt-40-2024-
08-06) as backbone LLMs (OpenAl, 2024). The detailed implementation of these agents is
in Appendix (0. (2) IR-based baselines. For comparison, we also include traditional IR-based
FL baselines for comparison. Specifically, we include the classic IR-based methods BuglLoca-
tor (Zhou et al), 2012) and BLUIR. (Saha et al}, 2013), along with widely nsed IR. technigues
such as BM25 (Robertson et all, [1995) and Sentence-BERT (Reimers & Gurevych, 2019).

Evaluation Metrics. In line with previous FL work (Xia & Ld, 2023; Zhou et all, 2012;
Saha et all, 2014), we include the widely-used metrics like recall at top-k (k = 1, 5, 10) and
the Mean Reciprocal Rank (MRR) to evaluate the FL effectiveness.

4.2 QUANTITATIVE ANALYSIS

Table E shows the overall file-level FL effectiveness of studied techniques on LINUXF LBENCH.

Comparison with IR-based methods. Table 3: FL effectiveness on LINUXFLBENCH.
Overall, existing agents outperform all tra-

ditional IR methods, indicating the benefits ~_Methods Recall@l Recall@5 Recall@l0 MRR
P o soluti i identifvine b BM25 0.168 0.328 0.396 0.231
rom agentic solutions in identifying buggy  pugLocator 0.127 0.209 0.272 0.215
locations for large scale systems. For in- ~ BLUR 0.228 0.317 0.404 0.321
. Sentence-BERT 0.056 0.136 0.180 0.090

stance, SWE-Agent achieves the best effec- —swragen 0.416 0.552 0584 0.476
tiveness with an M of 0.4 significantl AutoCodeRover 0.388 0.496 0.496 0.435
RR of 0.476, sig Y Agentloss 0.368 0.492 0.504 0.419

surpassing other methods. Among IR meth-
ods, BLUIR performs the best, but only with an MRR of 0.321.

Comparison with general software system. Although outperforming traditional IR
methods, existing agents still exhibit limited overall effectiveness on Linux kernel. For
instance, even the best-performing SWE-Agent only achieves a top-1 recall of only 0.416 on
LiNUXFLBENCH, which is much lower than when it is applied to general software systems
(i.e., SWE-bench). In particular, Fig.l] compares the FL effectiveness of agents in Linux
systems (i.e., on LINUXFLBENCH) and in general software systems (i.e,, on SWE-bench).
The reported SWE-bench results are from previous work (Xia et al), 2024). We can observe
a marked performance decline for all the LLM agents on LINUXFLBENCH compared to
SWE-bench, with recall values decreasing by more than 0.15. Such an effectiveness drop
underscores the heightened challenges associated with FL in the larger and more intricate
Linux kernel codebase than general software systems.

Uniqueness and Union. Fig. E presents the overlapped/unique bugs that are correctly
localized at top-1 by studied agents. We could observe complementary strengths of the
different approaches, as each agent can uniquely resolve 12 - 20 bugs. Nevertheless, even
when combining the correctly-localized bugs of all agents, only 146 bugs out of 250 total bugs
can be successfully localized (i.e., 58.4% top-1 recall). It further highlights the considerable
challenges that agents still face in performing FL within the complex Linux kernel.

4.3 (QUALITATIVE ANALYSIS

To further understand why agents perform poorly in Linux kernel, we manually examine
bad cases where all studied agents fail to correctly localize the buggy files. Overall, we find
two main reasons for the limited effectiveness as follows.

Confusion Among Related Files. As a large-scale software system, bugs in Linux ker-
nel often propagate along a long chain, where many related files are associated with each
other via function calls or data dependencies. While agents might be capable of coarse-
grained FL (e.g., correctly identifying the buggy directories or high-level modules), they
struggle to further precisely pinpoint the exact faulty file/method among all the related
files. This challenge is indirectly evidenced by the fact that each Linux directory in LIN-
UXFLBENCH contains, on average, approximately twice as many files (16 vs. 8) as those in
SWE-benc aking fine-grained localization within directories more difficult. For example,
Appendix Hshows a bad case where all agents wrongly localize the files that are in the
same directory as the buggy file.
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Figure 2: Performance of LLM agents on Figure 3: Venn Diagram for Correctly Lo-
SWE-bench and LINUXFLBENCH. calized Bugs by LLM agents.

Limited Exploration of Potential Causes. Given the complexity of the Linux kernel, a
bug can arise from diverse and non-obvious root causes. Current agents narrowly focus on
a small set of highly probable causes, failing to explore a broader range of potential causes.
Consequently, this limited exploration leads to missed opportunities for correctly identifying
the buggy file. Appendix @)shows a bad case that all agents miss the real cause.

5 LINUXFLT: AN ENHANCING FRAMEWORK

To address the limitations of existing agent-based methods, we propose a novel enhancing
framework LINUXFL™T, which improves the FL effectiveness of agents in the Linux kernel.

5.1 APPROACH

As discussed in Section @, given the huge space of Linux kernel, existing agents fail to cap-
ture the relationship between files or to cover a complete pool of potential causes. Therefore,
the main insight of LINUXFL™ is to ezpand the prediction results of existing agents with
both the repository structure and the root causes.

Fig. H shows the overall workflow of LINUXFL™T. Given the buggy files predicted by any agent
(e.g., AutoCodeRover), LINUXFL™ refines the prediction via the following three phases. (1)
Directory-Aware Expansion: LINUXFL™T expands the search scope within directories of the
initial predictions generated by LLM agents. LINUXFL™T then re-selects bug-related files
within these directories, enabling a more thorough exploration of related files; (2) Potential
Cause Ezpansion: LINUXFL™ explores as many potential causes as possible to scale the
related files. LINUXFLT includes two hypothesizing strategies to expand the potential
causes for the given bug report, leveraging both the original capabilities of LLMs (i.e.,
direct hypothesis) and the additional knowledge from Linux kernel mailing list (i.e., mail-
augmented hypothesis); (3) Candidate Integration: all relevant files are merged as candidates,
followed by a re-ranking process to further refine the results.

5.1.1 DIRECTORY-AWARE EXPANSION

While existing agents can generally identify the correct modules related to a bug, they
often struggle to distinguish relevant files within those modules. To address this limitation,
LINUXFL™ first expands the search scope to include all files in the directories of the initially
predicted files. Using this expanded candidate set, the LLM re-selects files likely related
to the bug. We retain the top-k (k=10) most relevant files as the expanded results. This
approach provides the LLM with an additional opportunity to identify buggy files, enabling
a more comprehensive exploration of related files. Detailed prompts are in Appendixﬁ

5.1.2 POTENTIAL CAUSE EXPANSION

Current agents tend to focus narrowly on few highly probable causes within limited steps,
However, diagnosing complex bugs often requires an iterative “guess-and-check” process (Al
aboudi & LaToza, 2023; Layman et al), 2013; Liu et al|, 2025), where developers form
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Figure 4: Overview of LINUXFL™.

experience-based hypotheses and progressively refine their understanding to isolate the root
cause. Inspired by this, we expand bug-related files by exploring a broader range of poten-
tial causes. Specifically, we design two types of hypothesizing strategies to expand probable
causes: Direct Hypothesis, leveraging models’ inherent knowledge on Linux kernel, and Mail-
Augmented Hypothesis, integrating historical bug knowledge from mailing list discussions.

Direct Hypothesis. As LLMs already possess a foundational understanding of the Linux
kernel from extensive pre-training, a straightforward expansion approach is to fully leverage
the intrinsic knowledge of models. To this end, we design prompts that instruct the model to
generate plausible potential causes, and rank these causes based on their estimated likelihood
of being responsible for the bug. To ensure the practicality of each hypothesized cause, the
LLM is also required to propose a corresponding fix and identify the specific files that would
need modification. We then extract the predicted target files, preserving their original
ranking from the associated causes. Detailed prompts are in Appendix ﬁ

Mail-Augmented Hypothesis. Relying solely on the intrinsic capabilities of LLMs is
insufficient, as general-purpose models still lack in-depth and domain-specific knowledge
of Linux kernel. To address this limitation, we incorporate historical bug knowledge from
the Linux kernel mailing list (LKML) (Kernel.org, 2025b). The LKML is the communi-
cation channel among Linux kernel developers, including massive emails discussing bugs,
patches, and diverse topics on maintaining Linux kernel. Specifically, we adopt a Retrieval-
Augmented Generation (RAG) approach, using mailing list data as an external knowledge
base to provide more comprehensive and diverse bug causes in Linux kernel.

Mail Collection. To construct the kernel knowledge base, we first collect emails from the
LKML. We retain only emails that include patches, as these are more likely to involve
discussions of bug fixes or feature implementations, providing useful context for FL. To
ensure quality, we discard non-atomic patches modifying over 10 files, as these typically
represent merged changes. Additionally, to avoid potential data leakage, we exclude any
emails containing external URLs or the keyword “bugzilla”.

Mail Retrieval. We adopt a hierarchical retrieval strategy: (1) restrict the search space
to only emails linked to code files predicted by agents, and (2) reformulate noisy bug re-
ports(e.g., hexadecimal logs) into four key dimensions—bug behayvigr, potential causes, ex-
pected behavior, and possible solutions. We then apply BM25 (L1, 2024) to retrieve the
top-10 relevant emails restricted to those sent before the bug report for temporal consistency.

Mail-augmented hypothesis. Using retrieved mails, we prompt LLMs to generate more di-
verse and informed causes for the bug, which in turn guide the identification of related
buggy files. This step is similar to_Direct Hypothesis but augmented with mail knowledge.
Detailed prompts are in Appendix @

5.1.3 CANDIDATE INTEGRATION

In this final phase, we consolidate the files predicted by previous two expansion strategies
and rank the aggregated candidate files to produce the final FL results.
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We adopt a simple yet effective merging strategy. Specifically, for each candidate file f, we
collect its ranks from the three sources: Rg;-(f) (Directory-Aware Expansion), Rgirect(f)
(Direct Hypothesis), and R4 (f) (Mail-Augmented Hypothesis). If a file does not appear
in the results of a particular method, its rank is set to co. We then compute an aggregated
score for f as follows: score(f) = Rdii(f) + Rdirﬁlct(f) + Rmalu(f)' Files that achieve better
ranks in any individual method receive higher scores, while those consistently ranked highly
across methods are further prioritized. All candidate files are sorted by their aggregated
scores to produce the initial merged ranking. To further refine this list, the LLM is prompted
to re-rank the files based on the semantic correspondence between their path and bug report.

5.2 EXPERIMENTAL SETUP

Baselines. To evaluate the effectiveness of LINUXFL™T in improving existing agents, we
apply LINUXFL™T to refine the prediction outputs of recent agents (i.e., SWE-Agent, Au-
toCodeRover, and Agentless) on LINUXFLBENCH.

Implementation Details. We leverage GPT-40 (OpenAl, 2024) (gpt-40-2024-08-06) and
the open-source Qwen3-32B (Yang et all, 2025a) as the backbone models for implementing
LINUXFLT. We configure the model temperature as 0 to ensure relatively deterministic
outputs with other parameters as default settings.

5.3 RESULTS AND ANALYSIS

5.3.1 OVERALL PERFORMANCE

Table 4: Evaluation results of LINUXFL™. Table 5: Cost of LINUXFL™.

Methods Recall@1 Recall@5 Recall@10 MRR Methods # Tokens $ Cost
SWE-Agent 0,416 0.552 0.584 0.476

- w/ LINUXFL* (GPT-fo) 0524 (+0.108) 0720 (+0.168) 0768 (+0.184) 0610 (+0.134) S VWE-Agent 724 K 0.194

- w/ LINUXFL* (Quwen3-32B) 0.476 (+0.060) 0.664 (+0.112) 0.704 (+0.120) 0.558 (+0.082) - w/ LINUXFL* 14.0 K 0.041
AutoCodeRover 0.388 0.496 0.496 0.435 AutoCodeRover 206.6 K 0.560

- w/ LINUXFL* (GPT-{o) 0500 (+0.112)  0.712 (+0.216)  0.744 (+0.248)  0.589 (+0.154) ;

Ty LINUSFL® (Quens42B) 0440 (10.052) 0.661 (-0.168) 0.720 (-0.220) 0,339 (-0.105) - w/ LINUXFL* 11.8 K 0.035
Agentless 0.368 0.492 0.504 0.419 Agentless 150.2 K 0.396

~w/ LINUXFL* (GPT-fo) 0440 (+0.072) 0.684 (+0.192) 0.724 (+0.220) 0.549 (+0.130) T+

- w/ LINUXFL* (Quen3-32B) 0.432 (+0.064) 0.652 (+0.160) 0.688 (+0.184) 0525 (+0.106) - w/ LINUXFL 153 K 0.044

Table @ presents the improvements of LINUXFL™ on all studied agents.

Effectiveness. LINUXFL™ exhibits strong performance in enhancing the FL capabilities of
agents, as evidenced by substantial improvement across all evaluation metrics. For example,
when applied to SWE-Agent with GPT-40, Recall@10 increases from 0.584 to 0.768, an
absolute gain of 18.4 percentage points. Moreover, Recall@1 improves by 10.8 percentage
points (from 0.416 to 0.524). The improvement indicates the effectiveness of the expansion
strategies of LINUXFL™T, which successfully recover the buggy files missed by existing agents.

Generalizability. LINUXFL™ consistently enhances performance across all state-of-the-art
agents and remains effective with different LLMs. Notably, agents with relatively weaker
baselines, such as AutoCodeRover and Agentless, achieve performance comparable to SWE-
Agent once integrated with LINUXFLT. Furthermore, LINUXFL™T yields consistent gains
even when applied to smaller open-source models such as Qwen3-32B. These results highlight
the strong generalizability of LINUXFL™ and its effectiveness across agent-based approaches
with diverse baseline strengths and LLM capacities.

Ablation study. We perform an ablation study to investigate the contribution of each com-
ponent in LINUXFL™. In particular, we find all the expansion strategies, i.e., directory-aware
expansion and potential causes expansion (with either direct or mail-augmented hypothesis)
can improve the FL effectiveness of agents. Detailed results can be found in AppendixE

Cost-efficiency. Table g presents the cost of applying LINUXFL™T on LINUXFLBENCH with
GPT-4o. As shown, while LINUXFL™ achieves strong performance, it incurs only a modest
additional cost. On average, the total number of tokens used per task by LINUXFL™ ranges
from 11.8k to 15.3k, resulting in an estimated cost of approximately $0.04. This is roughly
one-tenth of the cost incurred by agent-based baselines. The primary cost of LINUXFL™T
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stems from its use of email content. These results suggest that LINUXFL™ can substantially
enhance FL for the large-scale system Linux kernel at a affordable cost.

In summary, by enhancing the capabilities of existing agents, LINUXFL™T facilitates more
accurate FL with minimal costs. Our findings underscore the potential of LINUXFL™ to
significantly support software maintenance tasks in Linux kernel.

5.3.2 METHOD-LEVEL FL

To further evaluate LINUXFL™ at a finer granularity, we extend our evaluation to method-
level FL. Specifically, given the buggy files predicted by LINUXFL™, we proceed to identify
buggy methods by prompting LLMs with a skeleton representation of each file, following
prior work (Xia et all, 2024). This skeleton format preserves only function signatures and
comments, which reduces input length while retaining essential context. The LLM is then
prompted to identify the top-k (k=10) most relevant functions. Given the characteristics
of the C language, we define method-level elements as functions, structures, and other code
blocks. We consider the methods that are modified in the developer-committed patches as
the ground truth for buggy methods.

Table B presents the method-level FL Table 6: Method-level FL results.
results of existing agents and those

enhanced with LINUXFL™T based on Methods Recall@l Recall@5 Recall@l0 MRR
GPT-lo. Overall, LINOXFL ean con- \oAget 000 03l o
sistently improve agents in method- ~AutoCodeRover  0.042 0.088 0.094 0.077
level FL for Linux kernel. All three A-;% fINUXFU 8‘(1)3’; 8%23 8?‘;3 8‘?23
agent baselines exhibit low Recall@1 g,ew/eislNUXpL+ 0111 0.229 0.269 0217

(below 0.1), while LINUXFL* consis-
tently improves this metric beyond 0.1. The improvements are more pronounced in other
metrics, e.g., for Recall@10, LINUXFL™ enhances all baselines by more than 0.09. While
localizing finer-grained elements is inherently much more challenging specifically for large
scale systems like Linux kernel, the overall accuracy at method level remains relatively lower
than at the file level, highlighting the need for further research in this direction.

6 LIMITATIONS

Limited Evaluation on Different LLMs. To ensure consistency with prior work ([Yang
et al, 2024; Zhang et al|, 2024; Xia et al|, 2024) and facilitate fair comparison of agent perfor-
mance across SWE-bench and LINUXFLBENCH, most experiments in this study employed
GPT-40 as the backbone LLM. To address this limitation, we also validated the effectiveness
of LINUXFL™ with open-source Qwen-32B. While LINUXFL™T consistently yields significant
improvements, its performance with other LLMs was only briefly explored.

Rough Usage of Mail Data. LINUXFL™T leverages external knowledge from Linux kernel
mailing list to enhance FL. Given the richness of email content, this resource may also
contain irrelevant or outdated discussions, though it is valuable. To mitigate this, we employ
various filtering and querying strategies, such as query reformulation and heuristic filtering,
to improve the quality of retrieved emails. Despite these efforts, there is still room for further
enhancement. Future work could explore more sophisticated approaches to effectively utilize
mailing list knowledge for improved software maintenance tasks on the Linux kernel.

7 CONCLUSION

In this work, we introduce LINUXFLBENCH, a new and challenging software engineering
benchmark designed for fault localization in the Linux kernel. To assess the effectiveness of
existing LLM agents in complex software systems, we conduct an empirical study using LIN-
UXFLBENCH. Initial results reveal that these agents struggle to accurately identify buggy
files. To address this challenge, we propose LINUXFL™, a fault localization enhancement
framework that leverages diverse expansion strategies to enrich candidate selection. Our
approach demonstrates substantial improvements in localization performance.
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A  APPENDIX

B  AbpDITIONAL DETAILS OF LINUXFLBENCH

B.1 CONSTRUCTION PIPELINE OF LINUXFLBENCH

/ Step 1 \ / Step2 \ Step3
Bug Report Collection Buggy Location Identification Manual Inspection

-

* Kernel.org Bugzilla ¢ Patch-modified as buggy * Actual bugs only
* CLOSED & CODE_FIX status ¢ .cand .hfiles only « Sufficient information
« Kernel codebase available - « Exactly one buggy file ‘ * No fix solution stated

* Patch available

K 2,138 bugs / K 635 bugs j 250 bugs

Figure 5: Construction pipeline of LINUXFLBENCH.

Fig. E illustrates the pipeline for constructing LINUXFLBENCH, which consists of three
main phases: Bug Report Collection, Buggy Location Identification, and Manual Inspection.
Through this process, we curate a total of 250 high-quality fault localization tasks.

B.2 A SaMPLE KERNEL BuG FROM LINUXFLBENCH

We collect Linux kernel bugs (as shown in Fig. E) from the reported and fixed bugs on
Kernel.org Bugzilla. For each bug, the key information includes:
1. Title: The summary title of the bug report.

2. Description: A human-written description of the bug, which may include various
types of information such as observed buggy behavior, reproduction steps in natural
language, system logs, or call traces.

Product: The product category to which the bug is assigned.
Component: The specific component within the product affected by the bug.

Hardware: The hardware configuration on which the bug was observed.

A

Kernel Version: The version of the Linux kernel in which the bug occurred (e.g.,
5.6.7).

7. Paths: The paths of the buggy files, extracted from the golden patch that fixes the
bug.

8. Modified Functions: The method-level code elements modified by the patch.

B.3 COMPARISON WITH SWE-BENCH LITE

To investigate the complexity and challenge of our benchmark, we conducted a series of
quantitative analyses in comparison with SWE-bench Lite. The results are presented in
Table [ and summarized as follows.

File length. We compared the sizes of buggy files and patches (measured in lines of code).
As shown in the table, LINUXFLBENCH contains substantially larger buggy files and patches,
indicating higher complexity and greater difficulty for fault localization.
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Bug 207835 - ACPI video backlight Paul Menzel 2020-05-21 21:01:40 UTC Description

brightness control does not work on  0n the Intel GM45/GMA 4500MHD laptop with Debian Sid/unstable and Linux 5.6.7 and GNOME Shell
3.36.2, trying to change the brightness of the internal display using the function keys, GNOME shows

Acel' TraVeIMate 57352 by defau“ the 0SD, which seems to have five levels (from acer_wmi?), but the actual brightness does *not#

change. There is only " /sys/class/backlight/intel backlight/brightness’ though, and writing values
to it seems to work.

Status: CLOSED CODE_FIX

Alias: None Booting the system with "acpi_backlight=vendor’, exposes "/sys/devices/platform/acer-
Product: ACPI wmi/backlight/acer-wmi/brightness”, but the behavior is the same.
Component: Other (show other bugs) Booting the system with “acpi_backlight=native  or "acpi_backlight=native’, changing the brightness
Hardware: All Linux with the function keys works, and there now seem to be 15 (or 16) levels.
Importance: P1 normal
Assignee: acpi_other $ grep '.* /sys/class/dmi/id/* * 2> /dev/null
. » . /sys/class/dmi/id/bios_date:07/26/2011
Repo.rfed. 2020-05-21 21:01 UTC by. Paul Menzel 00 10 0 i /id/bios vendor:Acer
Modified: 2020-06-30 06:49 UTC (History) /sys/class/dmi/id/bios_version:Vl. 14
Fr /sys/class/dmi/id/board_asset_tag:Base Board Asset Tag
CCList: 3 users (show) /sys/class/dmi/id/board_name:BA51_MV
Kernel Version: 5.6.7 /sys/class/dmi/id/board_vendor:Acer
Regression: No /sys/class/dni/id/board_version:V1. 14

/sys/class/dmi/id/chassis_asset_tag:

/sys/class/dmi/id/chassis_type:10
Paths: drivers/acpi/video_detect.c /sys/class/dmi/id/chassis_vendor:Acer

e - .l . /sys/class/dmi/id/chassis_version:V1. 14

Modified Functions: video_detect_dmi_table /sys/class/dmi/id/product_family:Intel Mobile
/sys/class/dmi/id/product_name:TravelMate 5735Z
/sys/class/dmi/id/product_sku:Montevina_Fab
/sys/class/dmi/id/product_version:V1. 14
/sys/class/dmi/id/sys_vendor:Acer

Figure 6: A sample kernel bug from LINUXFLBENCH.

Table 7: Comparison between LINUXFLBENCH and SWE-bench Lite

Dataset File Statistics (Lines) Location Information Type Stack Trace Directory
Mean Buggy Mean Patch Max Buggy Max Patch No Keywords Exact Mention Avg. Length Avg. Size

LinuxFLBench 2050.08 22.32 20142 572 0.568 0.008 14.33 16 files

SWE-bench Lite 1211.13 10.13 8237 76 0.487 0.160 5.73 8 files

Directory size. To indirectly capture the scope of potentially relevant files, we analyze the
average number of files per directory. LINUXFLBENCH has an average of 16 files per direc-
tory, while SWE-bench Lite has only 8, suggesting that fault localization in our benchmark
requires reasoning over larger and more interconnected contexts.

Stack trace length. Some bug reports in our benchmark include stack traces, which
reflect the propagation paths of underlying bugs. On average, LINUXFLBENCH reports
contain 14.33 functions per stack trace, compared to 5.73 in SWE-bench Lite. This suggests
that bugs in our dataset involve longer propagation chains and more complex interactions.

Location information. Following the methodology of (Xia et al|, 2024), we analyze the
overlap between issue descriptions and file location information. Specifically, we distinguish
between (i) straightforward bugs, where the full file path is explicitly mentioned in the
description, and (ii) challenging bugs, where no related keywords appear. The results show
that location information in LINUXFLBENCH is significantly sparser than in SWE-bench
Lite, further increasing the difficulty of fault localization.

C DETAILS OF BASELINES USED IN THIS PAPER

C.1 STUDIED LLM AGENTS.

This paper evaluates three SOTA LLM agents: SWE-Agent (Yang et all, 2024), Au-
toCodeRover (Zhang et al), 2024), and Agentless (Xia et al), 2024).

e SWE-Agent. SWE-Agent navigates the entire repository to identify the bug’s
location. To adapt this system to our benchmark, we modified the task description
in the system prompt, specifying the objective as identifying suspicious files, while
keeping the rest of the framework unchanged.

e AutoCodeRover. AutoCodeRover locates suspicious Python files based on the
give GitHub issues through advanced code search techniques. We extended its
functionality to support C/C-++ projects by replacing its parser with ctags, enabling
it to perform code search within Linux kernel codebases. Moreover, we also manually
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sampled and inspected the trajectories of the agent to ensure proper handling of C
language features.

o Agentless. Agentless identifies the suspicious files based on a concise representa-
tion of the repository structure. Given the vast number of files in the Linux kernel,
we partition the repository structure into manageable portions by folder and feed
them to the LLM in multiple iterations.

C.2 IR-BASED BASELINES.

To further investigate the effectiveness of agent-based methods, we also selected traditional
IR-based baselines for comparison. Specifically, we included the classic methods BuglLoca-
tor (Zhou et al), 2012) and BLUIR. (Saha et al}, 2013), along with widely nsed TR. technigues
such as BM25 (Robertson et all, 1995) and Sentence-BERT (Reimers & Gurevych|, 2019).

« BM25. BM25 is one of the most widely used IR methods, and we include it as
one of our baselines. BM25 is a bag-of-words retrieval function that ranks a set
of documents based on term frequency and inverse document frequency of each
document.

e BugLocator. BugLocator retrieves buggy files from a codebase by treating a bug
report as a query and ranking files based on similarity using a revised vector space
model (rVSM). The rVSM method prioritizes longer documents, assuming these files
are more likely to contain bugs. Additionally, BugLocator incorporates historical
bug fixes to further assess the likelihood of defects in a given file. In this work, we do
not leverage this historical bug fix feature of BugLocator due to the unavailability
of the necessary data.

« BLUIiR. BLUiIR enhances bug localization by extracting code entities, such as
classes, methods, and variable names, from source code files. It calculates the rele-
vance of these entities to both the title and description of a bug report respectively,
aiding in the identification of buggy files.

e SentenceBERT. SentenceBERT enhances the traditional BERT model by incor-
porating siamese and triplet network architectures, enabling more efficient semantic
search with reduced computational overhead. For our implementation, we utilize
the sentence-transformer model all-MiniLM-L6-v2.

D FAILURE CASES OF LLM AGENTS ON LINUXFLBENCH

The suboptimal performance of agent-based methods can be attributed to several limitations,
including confusion among related files and insufficient exploration of potential root causes.
This section presents representative failure cases to illustrate these limitations.

D.1 CoNFUSION AMONG RELATED FILES

An illustrative case is shown in Fig. H In this example, the update of the computer’s
battery and AC status involves interactions among the ACPI battery, AC adapter, and the
embedded controller (EC). The corresponding drivers for these components all reside in
the drivers/acpi directory. While different agent baselines identify the files related to the
ACPI battery and adapter, they confuse and overlook the deeper component in the bug
propagation chain—the EC driver—resulting in incorrect FL.

D.2 LIMITED EXPLORATION OF POTENTIAL CAUSES

A representative case is provided in Fig. E the bug behavior “hangs on shutdown” could
stem from various causes, since system shutdown involves a sequence of operations across
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Bug 6455 - battery and AC status
stops updating - HP Compaq

nx6125

Status: CLOSED CODE_FIX

Alias: None

Product: ACPI

Component: Power-Battery (show other bugs)
Hardware: i386 Linux

Importance: P2 normal

Assignee: Vladimir Lebedev

Reported: 2006-04-28 14:23 UTC by Jure Repinc
Modified: 2006-06-30 17:01 UTC (History)
CC List: 1 user (show)

Kernel Version: 2.6.16.11
Regression: ---

Paths: drivers/acpi/ec.c

Jure Repinc  2006-04-28 14:23:51 UTC Description

Most recent kernel where this bug did not occur: not known

Distribution: Gentoo Linux

Hardware Environment: HP Compaq nx6125 laptop with AMD Turion 64 CPU, BIOS F.OE
Software Environment: KDE 3.5.2

Problem Description:

At some point battery and AC status just stops updating. This happens when I
unplug the AC cable and when I start my laptop withiut being connected to AC
power. I think that it is more likely to happen when I do something that uses a
lot of CPU or Graphics power.

Steps to reproduce:

I can't tell you the exact steps as I didn’t figure out what causes it to stop
updating. Most of the time it stops working when I power on my laptop while
travelling by train to the work and then at some point it justs stops updating.
It also happens at one point when if keep plugginh and unplugging the laptop
from AC power. High CPU usage at that time may help in causing this bug.

Top-1 Prediction of baselines
SWE-agent: drivers/acpi/battery.c
AutoCodeRover: drivers/acpi/battery.c
Agentless: drivers/acpi/ac.c

Figure 7: An illustrative case for "Confusion Among Related Files”.

Bug 3024 - Tyan Thunder K7 hangs
on shutdown / reboot

Status: CLOSED CODE_FIX

Alias: None

Product: ACPI

Component: Power-Off (show other bugs)
Hardware: i386 Linux

Importance: P2 normal

Assignee: acpi_power-off

Reported: 2004-07-06 09:23 UTC by Marcel Weber

Modified: 2004-08-29 10:01 UTC (History)
CC List: 2 users (show)

Kernel Version: 2.6.7

Regression: ---

Paths: drivers/acpi/hardware/hwsleep.c

Marcel Weber 2004-07-06 09:23:13 UTC

Description

Distribution: Debian Sid (unstable)
Hardware Environment: Tyan Thunder K7 (s2462 with latest 2.14 Bios), Dual Athlon
MP 1200 MHz, Ati Radeon 9600, Sounblaster PCI 128 (ens1371)

1spci
0000:00:00. 0 Host bridge: Advanced Micro Devices [AMD] AMD-760 MP [IGD4-2P]

System Controller (rev 11)
0000:00:01.0 PCI bridge: Advanced Micro Devices [AMD] AMD-760 MP [IGD4-2P] AGP

Bridge

0000:00:07.0 ISA bridge: Advanced Micro Devices [AMD] AMD-766 [ViperPlus] ISA
(rev 02)

0000:00:07. 1 IDE interface: Advanced Micro Devices [AMD] AMD-766 [ViperPlus] IDE
(rev 01)

7.3 Bridge: Advanced Micro Devices [AMD] AMD-766 [ViperPlus] ACPI (rev 01)
.4 USB Controller: Advanced Micro Devices [AMD] AMD-766 [ViperPlus]
7.

0000:00:0b. 0 Multimedia audio controller: Ensoniq ES1371 [AudioPCI-97] (rev 06)
0000:00:0d. 0 SCSI storage controller: Adaptec AIC-7899P U160/m (rev 01)
0000:00:0d. 1 SCSI storage controller: Adaptec AIC-7899P U160/m (rev 01)
0000:00:0f. 0 Ethernet controller: 3Com Corporation 3¢980-TX Fast Etherlink XL
Server Adapter [Cyclone] (rev 78)

0000:00:10.0 Ethernet controller: 3Com Corporation 3¢980-TX Fast Etherlink XL
Server Adapter [Cyclone] (rev 78)

0000:01:05.0 VGA compatible controller: ATI Technologies Inc RV350 AP [Radeon 9600]
0000:01:05. 1 Display controller: ATI Technologies Inc RV350 AP [Radeon 9600]
(Secondary)

Software Environment: ?

Problem Description:

Every time I shut down the system (having ACPI enabled) it hangs. The monitor
goes to power saving mode, but the fans, etc. of the computer keep running.
Using the power / reset buttons does not help. The system remains in this state
until T pull the power plug.

Exactly the same thing happens with rebooting the system. This did not happen
with kernel 2.6.0. It seems to me somewhat ACPI related. Without any apci

Top-1 Prediction of baselines
SWE-agent: kernel/power/poweroff.c

AutoCodeRover: drivers/char/watchdog/wdt_pci.c

Agentless: drivers/acpi/power.c

modules loaded there is no problem.

Interestingly I can shut down the system from Windows 2000, but I cannot reboot
it (same symptoms).

Steps to reproduce:
Boot system with ACPI modules loaded.

shutdown ~h now
or shutdown -r now

=> System hangs.

Figure 8: An illustrative case for "Limited Exploration of Potential Causes”.

multiple components. Agents with limited exploration may employ a ”depth-first search”-
like strategy, focusing on superficially obvious reasons—such as failures in general power-off
routines—while overlooking less apparent causes rooted in hardware state handling.

E PromPT DESIGN OF LINUXFL™T

E.1 PRrRoMPT TEMPLATES IN DIRECTORY-AWARE EXPANSION

LINUXFL™T re-selects related files within the same directories as the originally predicted
files. Given the bug report(”bug information”) and the list of files(” candidate files”) in these
directories, the LLM is instructed to select the relevant files using the following prompt.
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Prompt for Directory-Aware Expansion: Please look through the following Linux
kernel bug report and candidate files, and select a list of files that one would need to edit to
fix the bug.

Here is the information about the bug:
##+# Linux kernel bug report ##H#
{bug information}

#H##

Based on the bug provided above, I will present a list of candidate files that may be relevant
to the bug.

### Candidate files ###

{candidate files}

HHA

Please select files that are most likely to need modification to fix this bug.

Your response should be in the format of a list of file paths, and should be ordered by relevance
in descending order. Please return at most 10 files.

##F output example ##H#
['net/ipv6/proc.c’, 'net/ipv6 /netfilter /ip6_tables.c’]
H#HH

Please format your response strictly according to the format provided above without com-
mentary.

E.2 PROMPT TEMPLATES IN POTENTIAL CAUSE EXPANSION

In the phase of Potential Cause Expansion, LINUXFL™T instructs the LLM to enumerate
as many potential causes as possible using two approaches: direct hypothesis and mail-
augmented hypothesis. The prompt for Mail-Augmented Hypothesis is presented below.
Given the bug report ("bug information”) and the retrieved emails ("mail content), the
LLM is prompted to generate potential causes along with corresponding fix suggestions and
the affected code files in a specified JSON format. The prompt for Direct Hypothesis is
similar, but without including the retrieved email content.

Prompt for Mail-Augmented Hypothesis: Please review the following Linux kernel
bug report, and then deduce the possible causes of the bug and provide corresponding code
files and a potential fix. The bug is known to be related to the kernel code, and the fix should
involve modifications to kernel code files.

Here is the information about the bug:
### Linux kernel bug report ###
{bug information}

H#HH

To assist in your analysis, here are some emails retrieved using BM25 that may be relevant
to the bug. Use them to inspire and identify additional possible causes:

## 4 Mails ##7¢

{mail content}

HHH

Based on the bug provided above, please output the possible causes, relevant code files, and
solutions. Your response should follow the format below.

### Output example #H##
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[ { cause’: ’A description of the potential cause of the bug’, 'code_ file’: ’Path of the code file
that is most likely related to the bug’, fix_solution’: ’A short description of the fix solution
to apply in the code file! }, ... |

H#HHH#
Please ensure the following;:

- List as many causes as possible, ordered by relevance in descending order, with the most
likely cause first.

- For each cause, list all relevant code files and their corresponding fixes, but only provide one
code file and one fix per entry.

- The relevant code file is not necessarily the one causing the bug but should be a file where
the bug can be fixed.

- The code file should be in the format of "net/ipv6/proc.c”.

- Format your response strictly according to the format provided above without commentary.

F  ABLATION STUDY

Diregtory-Aware Direct Table 8: Evaluation results of LINUXFL™" in different steps.
Hypothesis
S Methods Recall@l Recall@5 Recall@l0 MRR
24 10 Direct LLM Hypothesis 0.316 0.421 0.424 0.362
SWE-Agent
47 - w/ Directory-Aware Expansion  0.448 0.640 0.680 0.527
22 Al - w/ Direct Hypothesis 0.440 0.672 0.684 0.537
- w/ Mail-Augmented Hypothesis 0.488 0.632 0.632 0.549
- w/ Merge all 0.516 0.712 0.772 0.601
16 AutoCodeRover
- w/ Directory-Aware Expansion  0.424 0.592 0.608 0.492
Mail-Augmented Hypothesis - w/ Direct Hypothesis 0.444 0.636 0.636 0.528
- w/ Mail-Augmented Hypothesis —0.468 0.576 0.576 0.515
Figure 9: Venn Diagram for - w/ Merge all 0.476 0.692 0.74 0.570
. Agentless
COHGCtly Localized BUgS - w/ Directory-Aware Expansion  0.404 0.584 0.632 0.484
by Agentless with Different - w/ Direct Hypothesis 0.412 0.596 0.612 0.484
Strategi - w/ Mail-Augmented Hypothesis 0.396 0.520 0.520 0.447
rategies. - w/ Merge all 0.440 0.672 0.720 0.548

Table E presents the results of integrating individual components of LINUXFL™ into the
baselines based on GPT-40, examining how each localization phase contributes to the final
performance.

Complementarity of Scaling Strategies. As shown in Table g, agent baselines aug-
mented with the three scaling strategies—Directory-Aware Expansion, Direct Hypothesis,
and Mail-Augmented Hypothesis—exhibit varying FL performance on LINUXFLBENCH.
Merging the results from these strategies leads to improved performance, suggesting their
complementary nature. To further investigate this characteristic, we present a Venn dia-
gram in Fig. [, illustrating the top-1 successfully localized bugs achieved by each strategy
beyond Agentless. Each strategy independently identifies a substantial number of bugs that
the others fail to locate. This highlights the rationale behind our merging approach. The
three strategies emphasize different aspects: directory-level structural information from the
codebase, intrinsic knowledge from the LLM, and external expertise from historical mailing
lists. Integrating these perspectives allows for more effective and robust fault localization.

Effectiveness of Direct Hypothesis. The Direct Hypothesis strategy asks LLMs to
directly infer buggy files from bug reports, independent of the outputs from agent-based
methods. The results of this standalone approach, denoted as Direct LLM Hypothesis, are
reported in the first row of Table 8. To further assess its effectiveness, we also evaluate its
combination with agent baselines. Specifically, we integrate the predicted files from Direct
Hypothesis with the original predictions of each agent, followed by a reranking step. As
the results demonstrate, this strategy consistently improves localization performance across
various agents. Although the standalone performance of Direct LLM Hypothesis is lower
than that of the original agents, it provides complementary information that enriches both

19



Under review as a conference paper at ICLR 2026

(1) the original agent predictions (as shown in Table E) and (2) other expansion strategies
(as shown in Fig. §). The primary goal of this strategy is to distill the internal knowledge
of LLMs for understanding Linux kernel bugs. By integrating Direct Hypothesis with these
agents and expansion strategies, we achieve a more robust and effective fault localization
approach.

Utility of Mail Retrieval. As dis- Table 9: Mailing list retrieval analysis.
cussed in Section [, LKML may con-
tain irrelevant or outdated discussions. Agent Recall of Retrieved Mails None — Found Found — Lost
To evaluate our mail retrieval strategy,  SWE-Agent 0.536 0.128 0.080

. AutoCodeRover 0.488 0.136 0.056
we first measure the proportion of re-  gentless 0.460 0.132 0.116

trieved emails that contain the correct
buggy files. As shown in Table E, our

strategy significantly outperforms di-

rect BM25 retrieval (recall 0.332) on all agents, demonstrating its effectiveness. We further
examine the impact on top-10 predictions under the Mail-Augmented Hypothesis by track-
ing two types of changes: (i) None — Found, where previously missing buggy files appear,
and (ii) Found — Lost, where files drop out. The results indicate that expansion consis-
tently adds correct files (e.g., 0.136 for AutoCodeRover) while rarely displacing existing
ones, confirming that mail retrieval effectively enhances baseline

Benefit of Mail Knowledge. To investigate the benefits of incorporating knowledge from
LKML, we compare baseline methods augmented with the Mail-Augmented Hypothesis
against those only using the Direct Hypothesis. As shown in the Table §, Mail-Augmented
Hypothesis consistently outperforms Direct Hypothesis. The latter relies solely on the in-
trinsic knowledge of LLMs, without utilizing predictions from agent methods, and achieves a
recall@1 of only 0.316. In contrast, with the assistance of mail knowledge, Mail-Augmented
Hypothesis achieves a recall@1 as high as 0.488, with even more significant improvements ob-
served in recall@10. These results demonstrate that mailing list data can effectively bridge
the knowledge gap LLMs face in localizing bugs within the Linux kernel. It is worth noting
that the effectiveness of Mail-Augmented Hypothesis varies across different agent methods.
For instance, in the case of SWE-Agent, the predicted files facilitate the retrieval of more
relevant emails, which provide stronger guidance during cause exploration.

Impact of Re-Ranking. LINUXFLT performs a_re-ranking step on the candidates ob-
tained from previous phase. The results in Table § demonstrate the effectiveness of this
re-ranking process. By comparing the results after merging with the final performance of
LINUXFL™T, further improvement in localization accuracy could be observed. It may stem
from the high-quality candidate files provided by the different expansion strategies. With
these enriched candidates, even a simple re-ranking allows the model to more easily identify
the correct buggy files.

G HuMAN PARTICIPATION

In this work, human involvement is limited to the Manual Inspection step during the con-
struction of our benchmark, LINUXFLBENCH. This task was approved by the Institutional
Review Board (IRB) at our institution. All participants were compensated at a rate of $15
per hour.

During Manual Inspection, each annotator was provided with the following instruction:
“Given the title and description of the bug report, please label the report as ‘yes,” ‘no,” or
‘unsure’ for each of the following three questions: (1) Does the report describe an actual bug
(e.g., not merely submitting a patch)? (2) Does the report contain sufficient information,
such as clear natural language descriptions of the buggy behavior, reproduction steps, or
detailed system logs? (3) Does the report avoid including solutions, such as identifying the
buggy location or attaching patches? If unsure, please select the label ‘unsure.”” A report was
assigned a final label of “yes” only if all three questions received a “yes” from an annotator.
Each bug report was independently labeled by three participants. Reports that received at
least two “yes” labels across annotators were retained in the final dataset.
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H EXPERIMENT STATISTICAL SIGNIFICANCE

Table 10: Experiment Statistical Significance of LINUXFL™T

Method Enhanced (Mean + Std) Original (Mean + Std) Mean Diff t-stat p-value CI (Enhanced) CI (Original)
Agentless 0.549 & 0.431 0.419 + 0.463 0.129 6.126 0.000 [0.493, 0.600] [0.361, 0.471]
AutoCodeRover 0.589 + 0.437 0.435 + 0.469 0.154 5.825 0.000 [0.537, 0.643] [0.374, 0.493]
SWE-Agent 0.610 + 0.433 0.476 + 0.463 0.134 5.679 0.000 [0.561, 0.663] [0.416, 0.533]

To evaluate the effectiveness of the proposed LINUXFL™, we performed statistical signifi-
cance tests comparing the MRR scores of LLM agents_enhanced with LINUXFL™ to those
of their original counterparts. As presented in Table @: all enhancements introduced by
LINUXFL™T yield statistically significant improvements, with paired t-tests producing p-
values below 0.0001. estimated using 1,000 resamples. Importantly, the confidence intervals
for the enhanced models do not overlap with those of the original models, providing ad-
ditional evidence for the significance of the observed improvements. These consistent and
statistically significant gains across multiple LLM agents underscore the robustness and
effectiveness of our FL-enhancing framework.

I LLM USAGE

In preparing this work, we used LLMs as an assistive tool. Specifically, LLMs (e.g., Chat-
GPT) were employed to refine the clarity and readability of manuscript drafts through
language polishing. Importantly, all research ideas, methodology design, experimental im-
plementation, and analysis were conceived and conducted by the authors. The LLMs were
not used for generating research hypotheses, designing experiments, or interpreting results.
The authors take full responsibility for the content of this paper.
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