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Abstract
User personas play a crucial role in shaping shopping behavior,
making persona identification an essential task for e-commerce
platforms to personalize user experiences. However, this problem
remains highly challenging due to several key factors: (1) users often
exhibit multiple personas simultaneously (e.g., a fashion enthusiast
who is also a sports lover), (2) labeled data is scarce, as annotation
requires extensive human supervision, (3) real-world user-product
interaction data is inherently noisy, as accounts may be shared
among multiple individuals, complicating persona assessment, and
(4) user-product interactions form a dynamic, heterogeneous bipar-
tite graph where product features are diverse, and personas evolve
due to shifts in interests, seasons, and external events.

In this work, we study the problem of persona identification on
an extensive real-world user-product interaction dataset spanning
six months (August 2023 to January 2024), capturing user behavior
influenced by real-world factors such as seasonal changes, festi-
vals (e.g., Christmas, New Year), and major sales events. To model
persona identification in this evolving interaction graph, we refor-
mulate the multi-label node classification task as a link prediction
problem, enabling a structured decoupling of user and persona rep-
resentations. To this end, we propose TriPer, a novel TRIpartite
graph neural network specifically designed to enhance multi-label
PERsona classification along with in-context inference capabilities.
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Extensive evaluations on our real-world dataset demonstrate that
TriPer achieves high predictive accuracy in user persona identifica-
tion, exhibits strong generalization over time, and effectively learns
from limited labeled data, outperforming state-of-the-art baselines.

CCS Concepts
•Applied computing→Online shopping; •Computingmethod-
ologies→ Lifelong machine learning.

Keywords
E-commerce, Personalization, Heterogeneous Graphs, User Persona,
Scarce Labels, Generalization, Graph Neural Networks

ACM Reference Format:
Anjali Gupta, Prashant Kumar, Aniket Mishra, Abhishek Singh, Surender
Kumar, Muthusamy Chelliah, Abhijnan Chakraborty, and Sayan Ranu. 2025.
Persona Identification in E-Commerce with Scarce Labels and In-Context
Graph Learning . In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3711896.3737080

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15543277.

1 Introduction
In the fast-evolving e-commerce landscape, businesses strive to
understand customer preferences for tailored personalized experi-
ences, leveraging customer data to decode behaviors and anticipate
expectations [3, 4, 8, 11, 12, 33, 42]. In addition to personality, de-
mographic factors like age, gender, and purchasing power also
influence customer decisions [24]. For instance, younger shoppers
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may prioritize the latest trends, while older buyers value quality and
materials. Education, occupation, and income may further shape
purchasing behaviors. Given the strong link between personality,
demographics, and user interests, integrating these aspects into
user embedding models can more accurately capture preferences
and enhance personalization. User personas – fictional represen-
tations of customer segments based on demographics, behaviors,
motivations, and data – are conceptualized to capture this phenom-
enon. In simpler terms, a persona refers to a label that encapsulates
a distinct customer type with a focus on specific product categories
or shopping behaviors. These personas help e-commerce businesses
segment their customer base and create personalized marketing
strategies, product offerings, and user experiences to cater to each
group’s unique needs and preferences.

1.1 Challenges
Technically, given a user-product interaction graph, the problem
of persona identification maps to a multi-class node classification
problem, where each user is assigned one class (persona) from
a predefined set of personas. However, several problem-specific
challenges arise which the generic multi-class node classification
does not address:
• Multiple personas per user: User preferences in e-commerce
are often complex and dynamic, so a single user might not fit
neatly into one persona. For example, a user may purchase high-
end fashion items (Luxury Shopper) but may also frequently look
for eco-friendly brands (Sustainable Shopper). Thus, we must
identify multiple personas for each user, reflecting different facets
of their shopping behavior, making the problem a multi-label
classification problem.

• Label scarcity: Labeling users based on their extensive purchase
behavior into persona classes is labor, cost, and time intensive.
It additionally requires expert domain knowledge of a persona
and the wide range of products that represent it. Hence, the
algorithm must be designed to learn from low-volume labeled
data and demonstrate strong generalizability. Furthermore, due to
the dynamic nature of personas, even existing labeled users may
require re-labeling at periodic intervals to reassess and adjust a
model to the time-varying nature of personas.

• In-context generalization to unseen personas: Given the
volume and dynamic nature of user preferences, e-commerce
businesses must continuously adapt to seasonal trends, emerging
product categories, and major global events. For instance, during
a global sports event like the Olympics, a retailer might observe
a surge in demand for sports merchandise and introduce a new
“Olympic Enthusiast” persona to better capture the preferences of
users engaging with related products. However, traditional node
classification models, which rely on a softmax layer over prede-
fined class labels, are inherently constrained by their dependency
on a fixed set of persona definitions. Introducing new labels in
such models would require retraining from scratch, making them
ill-suited for rapidly evolving personalization needs.

To overcome this limitation, we leverage in-context examples—small
sets of users explicitly labeled with new personas—allowing the
model to infer these novel personas for a broader user base without

retraining. In the Olympics example, providing in-context exam-
ples could involve annotating a small subset of users who have
recently purchased sports jerseys, fitness accessories, or event tick-
ets with the “Olympic Enthusiast” persona. By integrating these
labeled users into the inference graph, our approach propagates per-
sona information based on shared behavioral patterns, enabling the
model to generalize effectively. This in-context learning capability
ensures that businesses can dynamically refine their personaliza-
tion strategies and respond swiftly to changing market conditions
and customer behaviors.

1.2 Contributions
In this paper, we introduce TriPer which is built on the following
core innovations to address the aforementioned challenges:
• Novel problem formulation: We formulate the problem of per-
sona identification from user-product interaction graphs with
two key requirements embedded in the formulation: (1) the model
must predict both the number and types of personas associated
with each user based on their purchase data, reflecting that indi-
vidual users may exhibit multiple distinct personas, and (2) the
model must inductively generalize to unseen personas without
requiring retraining from scratch.

• Algorithm design: We map persona identification to a link pre-
diction problem on a tripartite graph connecting users, products,
and personas. To enable accurate link prediction on this graph,
we introduce TriPer, a TRIpartite Gnn designed specifically
for multi-label PERsona identification on heterogeneous graphs.
This novel approach of modeling the data as a tripartite graph
and framing the problem as link prediction between user and
persona nodes offers two key advantages: (1) it enables persona
identification without forcing personas to compete with each
other, which would occur in traditional node classification with a
softmax layer, and (2) by modeling personas as nodes rather than
labels, the model’s parameter size remains independent of the
number of personas, allowing in-context generalization to new
personas introduced over time.

• Extensive evaluation on real-world dataset: In this work,
we utilize a comprehensive six-month dataset of user-product
purchase information, enhanced with expert-annotated persona
labels. We evaluate TriPer’s performance against established
techniques for node classification on heterogeneous graphs. Our
experiments demonstrate TriPer’s superior performance in per-
sona identification tasks and generalization robustness across six
consecutive months without retraining. To our knowledge, this
represents the first study of persona identification conducted on
a real-world dataset of this scale.

2 Problem Formulation and Preliminaries
In this section, we present the key concepts underlying our work,
formally define the problem of in-context persona identification,
and introduce the large-scale dataset that serves as the foundation
for our empirical evaluation and insights.

2.1 E-commerce Graph
We define the e-commerce graph over user-product interactions as a
heterogeneous bipartite graph 𝐺 = (U,P,E,X), where U = {𝑢𝑖}𝑚𝑖=1
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represents user nodes and P = {𝑝𝑗}𝑛𝑗=1 are product nodes. The edge
set E ⊆ U × P denotes interactions between users and products,
such as purchases, ratings, or clicks. Each user node 𝑢𝑖 is associated
with a feature vector x𝑢𝑖 ∈ ℝ𝑑𝑢 , where 𝑑𝑢 is the dimensionality of the
user attributes (e.g., age, gender, residence, marital status, parental
status). Similarly, each product node 𝑝𝑗 is associated with a feature
vector x𝑝𝑗 ∈ ℝ𝑑𝑝 , where 𝑑𝑝 is the dimensionality of the product
attributes (e.g., price, category, brand, weight, color), along with tex-
tual description, which we embed into a dense vector 𝑠𝑝𝑗 using any
off-the-shelf text embedding encoder. (See Figure 8 in the Appendix
as an example). Let XU = {[x𝑢𝑖]}

𝑚
𝑖=1 represent the combined fea-

ture attributes of all users in U, and XP = {[x𝑝𝑗 , s𝑝𝑗]}
𝑛
𝑗=1 represent

the combined feature attributes of all products in P. The complete
feature attributes of the graph are denoted as X = XU ∪ XP.

2.2 Problem Formulation
Our problem has two primary objectives. First, we aim to develop a
persona-identification model trained on a persona-annotated user-
product interaction graph. Second, as outlined in § 1, themodelmust
exhibit in-context generalization to unseen personas. Specifically,
when provided with in-context examples of users labeled with new
personas, the model should be capable of annotating unseen users
within a joint persona space that includes both previously seen
personas and newly introduced ones with requiring to retrain the
model. We formally define these objectives as follows.

Problem 1 (Persona Identification). We use the notation
Y ∈ {0, 1}𝑚×𝑘 to denote the persona labels for each user, where 𝑘 is the
total number of predefined personas at the time of training. Each user
𝑢 ∈ U is associated with a subset of these personas, which we denote
as Y[𝑖] ⊆ {𝑐1, … , 𝑐𝑘}.

Given a training set 𝐺 = (U,P,E,X) and corresponding ground-
truth persona labels Y, our objective is to learn a model M, param-
eterized by Θ, that can predict the multi-label set of personas for
any unseen user node 𝑢𝑖. Formally, we aim to minimize a suitable
multi-label classification loss function J such that:

min
Θ

J (M(𝐺, 𝑢; Θ),Y[𝑖]) (1)

s.t. Ŷ[𝑖] ≈ Y[𝑖] where, M(𝐺, 𝑢𝑖; Θ) = Ŷ[𝑖]. (2)

Here, Ŷ[𝑖] represents the predicted set of persona labels for user 𝑢𝑖,
and J denotes the loss function, which we will formally define later.

The problem of in-context learning is formally stated as follows:

Problem 2 (In-context generalization to unseen per-
sonas). Let 𝐺𝑇 = (U𝑇,P𝑇,E𝑇,X𝑇) be the training graph, where
Y𝑇 ∈ {0, 1}|U𝑇|×𝑘 represents the ground-truth persona labels used
to train the model M. For in-context learning, we are given:
• An inference graph 𝐺𝐼 = (U𝐼,P𝐼,E𝐼,X𝐼), where the goal is to infer
persona labels for users in U𝐼.

• An in-context example graph 𝐺𝐶 = (U𝐶,P𝐶,E𝐶,X𝐶), where
users are annotated with new persona labels Y𝐶 ∈ {0, 1}|U𝐶|×𝑘′ ,
Y𝐶 ∖ Y𝑇 ≠ ∅.

The objective is to infer persona labels for each user in U𝐼 within the
joint persona space of Y𝑇 ∪ Y𝐶, without requiring retraining of M.

To illustrate the application of our proposed approach, consider
an e-commerce platform that has curated a training graph𝐺𝑇, where

users are categorized into personas such as Luxury Shopper, Tech
Enthusiast, and Sustainable Consumer. A modelM is trained on this
graph to infer the personas of unannotated users. Now, suppose
the platform wants to introduce a new persona category, Gaming
Enthusiast, to better capture users who frequently purchase gam-
ing consoles, high-performance PCs, and accessories. Traditionally,
updating the model would require retraining M from scratch, in-
corporating new data, and adjusting learned representations—a
computationally expensive process.

Instead, we adopt an in-context learning approach: rather than
retraining, we provide an in-context example graph 𝐺𝐶, which con-
tains a small set of users explicitly labeled as Gaming Enthusiasts.
These users serve as reference points for the model to recognize
behavioral patterns associated with the new persona. The objective
is for M to generalize from these examples and accurately infer
personas for unseen users in the inference graph 𝐺𝐼, expanding its
predictions to the joint persona space—including both previously
known personas and the newly introduced Gaming Enthusiast cate-
gory. For instance, if a new user in 𝐺𝐼 frequently purchases gaming
accessories alongside high-end smartphones, the model should in-
fer that they likely belong to both the Gaming Enthusiast and Tech
Enthusiast personas, even though the Gaming Enthusiast persona
was not part of the original training set. This approach allows the
platform to dynamically adapt to evolving user behaviors with-
out costly retraining, ensuring that persona classification remains
flexible and responsive to emerging trends.

2.3 Dataset Description
Flipkart is one of the world’s largest e-commerce companies by
sales volume. In this work, we utilize annotated data collected over
a six-month period (August 2023 to January 2024) by tracking or-
ders in the Fashion and Lifestyle category. This dataset provides a
monthly snapshot of users, products, and order information. A sum-
mary of its structure is presented in Table 2. The dataset provides
a rich and comprehensive view of user behavior in the Fashion
and Lifestyle category over a six-month period, capturing both
large-scale trends and seasonal dynamics. Spanning both summer
and winter months, it enables the analysis of seasonal effects on
shopping patterns. Notably, the dataset covers key shopping peri-
ods, including a major sale event in October and early November,
reflected in a sharp increase in sales volume. It also encompasses
the festive season, including Christmas and New Year’s eve, where
a surge in sales is observed in December, followed by a lull in Janu-
ary as shopping activity declines. These temporal variations make
the dataset particularly valuable for understanding user personas
in different contexts, revealing how shopping preferences shift in
response to seasonal, festive, and promotional influences.
Dataset Statistics: To provide a more comprehensive view of the
dataset and platform, we include additional statistics that illustrate
user and persona distributions. The dataset comprises users cate-
gorized into nine persona types, with relatively balanced represen-
tation. The most common personas are Budget Shoppers (16.61%),
Fashion Enthusiasts (16.02%), and Casual/Comfort Shoppers (16.02%),
while Luxury Shoppers (10.16%) and Adventure Shoppers (10.74%)
are the least represented. This diversity supports a wide range
of product-persona associations. In terms of user demographics,
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Persona Label Definition Characteristics

Fashion Enthusiast Represents customers who are passionate about the latest fashion trends. They
frequently explore new collections, follow fashion influencers, and prefer staying
ahead of the style curve.

High interest in designer brands, fashion blogs, and social
media trends.

Budget Shopper Represents customers who are highly price-conscious, seeking the best deals and
discounts. They are motivated by value for money and often purchase during sales
or use coupons.

Visits sales sections, uses price comparison tools and is sensi-
tive to promotions and deals.

Sport Shoppers Represents customers who are focused on sportswear, activewear, and gear for
physical activities such as fitness, yoga, running, and outdoor sports.

Interested in performance-focused clothing, accessories, and
equipment for their active lifestyles.

Luxury Shoppers Represents customers who prefer premium, high-end brands and exclusive products.
They seek superior quality and are willing to spend more on luxury items.

Focused on exclusivity, brand reputation, and the highest
quality materials.

Professional Attire
Shoppers

Represents customers who are primarily interested in clothing and accessories for
professional settings, such as office wear, formal attire, and business casual clothing.

Purchases are driven by the need for sophisticated,
professional-looking outfits for work environments.

Casual/Comfort Shop-
pers

Represents customers who prioritize comfort and practicality in their clothing
choices. They often seek casual, everyday wear that is easy to style and comfortable.

Focused on relaxed, functional clothing like loungewear, ath-
leisure, or casual weekend outfits.

Adventure Shoppers Represents customers who seek clothing and gear for outdoor adventures and
activities such as hiking, camping, and travel.

Interested in rugged, versatile apparel and equipment de-
signed for outdoor exploration.

Children Clothing
Shoppers

Represents customers who frequently purchase children’s clothing, including infant,
toddler, and school-age categories. These shoppers prioritize comfort, durability,
and style for kids.

Looks for easy-to-care, safe, and stylish options for children,
often shopping based on age or specific events like school
season or holidays.

Ethnic Wear Shoppers Represents customers who shop for ethnic attire, either for themselves or as part
of festive/wedding parties. This persona may focus on bridal dresses, bridesmaids’
dresses, ethnic suits, and other ceremonial outfits.

Focused on high-quality, ethnic wear suited for festive occa-
sions, often involving personalization and custom fittings.

Table 1: Persona Labels in E-Commerce Lifestyle Categories

1 2 3 4 5 6 7 8
No. of Personas

0
10
20
30
40
50
60

Us
er

s (
%

)

Figure 1: Distribution of personas across users in our data.

59.59% of users are male and 40.41% are female. Age distribution is
grouped into four buckets, with the majority falling into bucket 2.0
(52.65%) and 1.0 (32.79%), suggesting that the platform primarily
engages a younger to middle-aged demographic.

These statistics highlight the heterogeneity of users and personas
in the dataset, reinforcing the need for a model that can effectively
learn from diverse behavioral patterns.

Month # User # Product # User-Product # Product-Persona
Nodes Nodes Edges Edges

August 10,000 62,723 78,479 10,068
September 16,757 59,230 77,737 11,973
October 29,097 103,929 161,299 19,873

November 36,003 93,216 147,109 44,295
December 57,438 126,815 223,253 27,234
January 17,286 46,919 65,322 8,492

Table 2: Summary statistics of the collected data. Product-
persona edges are not provided to us as raw data. We create
them using labeled information (refer to § 3.1).

Persona Classes: In collaboration with in-house business experts,
the e-commerce platform has identified nine distinct personas
within the Fashion and Lifestyle category. A detailed description of
these personas is provided in Table 1. Each user in the dataset is
assigned one or more persona labels based on their shopping behav-
ior. The distribution of personas per user is illustrated in Figure 1.
Manually annotating so many users over a six-month period is an
immense challenge, yet it is essential for verifying the efficacy of
the proposed technique. Previous efforts at this scale have not been
feasible due to the substantial time and effort required to curate
such a dataset.

3 TriPer: Proposed Methodology
TriPer maps the problem of persona identification to a link predic-
tion task on a tripartite graph. As we will discuss next, the proposed
data augmentation—transforming the data representation from a
bipartite to a tripartite graph—plays a crucial role in enabling in-
context learning to infer unseen personas without retraining.

3.1 Tripartite Graph Construction
We extend the persona-annotated bipartite graph into a tripartite
structure by introducing a new node type—persona nodes—corre-
sponding to each distinct persona in the labeled data Y, denoted as
C = {𝑐𝑖}𝑘𝑖=1. These persona nodes connect to both users and prod-
ucts, forming a richer representation of interactions (see Figure 2).
The edges in this tripartite graph carry the following semantics:
User-persona edges: For each persona 𝑐 ∈ C, we identify the set
of users associated with it:

U𝑐 = {𝑢 ∈ U ∣ Y[𝑢][𝑐] = 1}. (3)
An undirected edge is then added between user 𝑢 and persona 𝑐 if
𝑢 ∈ U𝑐, effectively linking users to their assigned persona labels.
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Note that the user-persona edges are not available during inference.
Hence, these edges are used as ground truth to only train our model.
Product-persona edges: A directed edge is created from a product
𝑝 ∈ P to a persona 𝑐𝑘 ∈ C if the product has been purchased at least
𝜃 times by users belonging to U𝑐, i.e.,

|{(𝑢, 𝑝) ∈ E ∣ 𝑢 ∈ U𝑐}| ≥ 𝜃. (4)
Here, 𝜃 is a hyper-parameter. This construction ensures that prod-
ucts strongly associated with a persona—based on user purchasing
behavior—are explicitly captured within the graph structure.

3.2 Persona Identification as Link Prediction
With the integration of persona nodes into our graph, we refor-
mulate the persona identification problem (see Prob. 1) as a link
prediction task, where the goal is to determine whether an edge
exists between a user 𝑢 and a persona 𝑐. Note that in our proposed
Gnn framework, user-persona edges are excluded from themessage-
passing process and are used solely as ground truth during training.
This ensures that the model learns to infer persona associations
based on user-product and product-persona relationships.

We adopt this formulation for several key reasons. Traditional
node classification methods typically rely on a softmax activation
over class affinity scores, which enforces a single-label assignment
by forcing competition among classes. While a sigmoid activation
can accommodate multi-label scenarios through independent pre-
dictions for each persona, as we will see in our empirical evaluation
(§ 4), it falls short in effectively segregating users’ diverse purchas-
ing behaviors into distinct persona types.

In contrast, our link prediction framework explicitly models the
relationship between users and personas by leveraging rich contex-
tual information from the graph. Each persona node is embedded
based on the products associated with it (through product-persona
edges), and each user is embedded according to their purchase
history. This common basis – products – anchors the embedding
of both users and personas, and link prediction is performed as a
function of the similarity between these embeddings.

Most importantly, this design enables in-context learning for
personas not seen during training. When in-context examples are
provided, new personas are embedded using the model weights already
learned, thereby ensuring generalizability to novel persona labels.
This is a significant advantage over traditional node classification
frameworks, where the model parameter size is tightly coupled with
the number of class labels. In our link prediction formulation, the
model size remains independent of the number of users, products,
or personas, as we demonstrate in the next section.

3.3 Tripartite Gnn for Link Prediction
Our goals are three-fold:
(1) User embeddings: Learn user representations z𝑢 ∈ ℝ𝑑𝑢 for

each user 𝑢 ∈ U that encapsulate their purchase behavior and
are therefore predictive of their personas.

(2) Persona embeddings: Learn embeddings z𝑐 ∈ ℝ𝑑𝑐 correspond-
ing to each personal node 𝑐 ∈ C that characterize the types of
products representative of each persona.

PersonaUsers

Products

Figure 2: Tripartite graph schema to represent user-product-
persona interactions. In this graph, only the solid edges are
used for message passing in TriPer.

(3) Persona identification as link prediction: Use the learned
node and persona embeddings to predict their association. Specif-
ically, we formulate this as a link prediction task; Iff user 𝑢 be-
longs to persona-type 𝑐, then the learned model should predict
an edge between 𝑢 and 𝑐, with high probability. Hence, we seek
to minimize the following loss function.

JΘ(𝐺,Y) = ∑
𝑢∈U

∑
𝑐∈C

𝐵𝐶𝐸 (𝜎(𝜃𝑇(z𝑢||z𝑐)),Y[𝑢][𝑐]) (5)

Here, 𝜃 ∈ ℝ𝑑𝑢+𝑑𝑐 is a learnable weight vector, 𝜎 is sigmoid activation,
|| denotes the concatenation operation, and BCE indicates binary
cross entropy loss.

To achieve our objective, we design a Tripartite Graph Neural
Network, called TriPer, that performs a 3-phased message passing
in each layer.Fig. 3 illustrates the pipeline.

• Phase 1 - User to product: During this phase, products ag-
gregate messages from their purchasers (users). The goal is to
develop product embeddings that reflect user purchasing patterns.
As a result, products bought by similar users will have compara-
ble embeddings, effectively capturing the relationships between
products based on consumer behavior.

• Phase 2 - Product to user: In this phase, each user aggregates
messages from the products they have purchased. The objective is
to create user embeddings that capture shopping preferences and
behaviors. Consequently, users who have bought similar products
will have comparable embeddings, effectively representing the
relationships between users based on their purchase history.

• Phase 3 - Product to persona: Finally, persona nodes collect
messages from the products, constructing persona embeddings
that capture the characteristic purchasing patterns of each per-
sona. This step is a fundamental component of TriPer, ensuring
that persona nodes integrate signals from all key products that
strongly represent their respective personas.

After 𝐿 layers of 3-phased message passing, the updated user and
persona node embeddings are used for link prediction, and the
gradients are backpropagated to update the model parameters Θ.
During inference, a single forward pass is performed.

It is important to note that the user-persona edges are never used
during message passing. This is a conscious choice since for unseen
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Attributes

Embedding Initialization

1-HOT 
Vector
Based

  Embedding
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Figure 3: The figure illustrates the overall pipeline of TriPer.

users, their personas are not known. Hence, we aim to infer these
edges based on user-product and product-persona edges, both of
which are available for e-commerce vendors. Next, we detail each
of the phases in further depth.

3.4 Initialization of Node Embeddings
For user and product nodes, we initialize them with their raw at-
tributes defined in § 2.1. Specifically, h0𝑝 = x𝑝‖s𝑝 where ‖ represents
the concatenation operation. Similarly, h0𝑢 = x𝑢.We initialize per-
sona nodes using Xavier Initialization [14].

3.5 Tripartite Message Passing
• Phase 1 - User to product: Let 𝑝 and 𝑢 denote the product and the
user nodes and hℓ𝑝 and hℓ𝑢 denote their embeddings, respectively, at
layer ℓ. ∀𝑝 ∈ P, we update the product embeddings using attention-
weighted message passing as below as shown below:

Receive messages:mℓ
𝑝 (𝑢)=ReLU (Wℓ

Ph
ℓ−1
𝑝 ‖Wℓ

Ph
ℓ−1
𝑢 )

Compute attention: 𝛼𝑝𝑢=
exp (aℓP

𝑇
mℓ

𝑝 (𝑢))

∑
𝑢′∈N𝑢𝑠𝑒𝑟

𝑝

exp (aℓP
𝑇
mℓ

𝑝 (𝑢′))
,

Update: hℓ𝑝=(Wℓ
Ph

𝑙−1
𝑝 + ∑

𝑢∈N𝑢𝑠𝑒𝑟
𝑝

𝛼𝑝𝑢Wℓ
Ph

ℓ−1
𝑢 )

Here, all weights matrices and vectors of the form Wℓ
P ∈ ℝ𝑑×𝑑

and aℓP ∈ ℝ2𝑑 respectively are trainable parameters in the ℓ𝑡ℎ layer.
‖ represents the concatenation operator and N𝑢𝑠𝑒𝑟

𝑝 represents the
user neighbors of the product node 𝑝. 𝛼𝑝𝑢 refers to the attention
coefficient between the product 𝑝 and user 𝑢.
• Phase 2 - Product to user: In this phase, the updated product
embeddings pass on the message to the user nodes. The updated
product embeddings have information about all users who bought
the product after the first level of message passing. The second
phase of message passing from 𝑝 to 𝑢 ensures that all users’ em-
beddings have information of all other users who bought similar
products. This allows users buying similar sets/subsets of products

(that belong to a specific persona) to have similar embeddings. To-
wards that objective, ∀𝑢 ∈ U, we update the user node embeddings
as shown below.
Receive messages: mℓ

𝑢 (𝑝) =ReLU (Wℓ
Uhℓ−1𝑢 ‖Wℓ

Uhℓ−1𝑝 )

Attention head: 𝛼𝑢𝑝=
exp (aℓU

𝑇
mℓ

𝑢 (𝑝))

∑
𝑝′∈N𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑢

exp (aℓU
𝑇
mℓ

𝑢 (𝑝′))
,

Update: hℓ𝑢=(Wℓ
Uh𝑙−1𝑢 + ∑

𝑝∈N𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑢

𝛼𝑢𝑝Wℓ
Uhℓ−1𝑝 )

All weights matrices and vectors of the form Wℓ
U ∈ ℝ𝑑×𝑑 and

aℓU ∈ ℝ2𝑑 respectively are trainable parameters in ℓ𝑡ℎ layer.N𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑢

represents product neighbours of user node 𝑢. 𝛼𝑢𝑝 refers to the
attention coefficient between the user 𝑢 and product 𝑝.
• Phase 3 - Product to persona: This phase ensures that: (a) per-
sona node embeddings reflect the type of products it is frequently
associated with and (b) the type of users buying those products.
To capture these objectives, ∀𝑐 ∈ C, we update the persona node
embeddings as shown below.

Receive messages: mℓ
𝑐 (𝑝) =ReLU (Wℓ

Ch
ℓ−1
𝑐 ‖Wℓ

Ch
ℓ−1
𝑝 )

Attention head: 𝛼𝑐𝑝=
exp (aℓC

𝑇
mℓ

𝑐 (𝑝))

∑
𝑝′∈N𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑐

exp (aℓC
𝑇
mℓ

𝑐 (𝑝′))
,

Update: hℓ𝑐=(Wℓ
Ch

𝑙−1
𝑐 + ∑

𝑝∈N𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑐

𝛼𝑐𝑝Wℓ
Ch

ℓ−1
𝑝 )

All weights matrices and vectors of the form Wℓ
C ∈ ℝ𝑑×𝑑 and

aℓC ∈ ℝ2𝑑 respectively are trainable parameters in ℓ𝑡ℎ layer.N𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑐

represents product neighbours of persona node 𝑐. 𝛼𝑐𝑝 refers to the
attention coefficient between the persona 𝑐 and product 𝑝.
Prediction of user-persona links: Let z𝑢 = h𝐿𝑢 and z𝑐 = h𝐿𝑐 be
the embeddings of user 𝑢 and persona 𝑐 in the final Gnn layer 𝐿.
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As defined in the loss function (Eq. 5), the probability of user 𝑢
belonging to persona 𝑐 is computed as:

𝑃(⟨𝑢, 𝑐⟩) = 𝜎 (𝜃𝑇(z𝑢‖z𝑐)) (6)

where 𝜃 ∈ ℝ𝑑𝑢+𝑑𝑐 is a learnable weight vector, and 𝜎 denotes the
sigmoid activation function.

3.6 Inference and In-context Generalization
Inference: Given an inference graph 𝐺𝐼 = (U𝐼,P𝐼,E𝐼,X), we first
transform it into a tripartite graph as discussed in § 3.1. Since
persona labels are unknown, all user-persona edges are initially
absent, and our task is to predict them. To achieve this, we perform
a forward pass on the tripartite graph, applying 𝐿 layers of the
3-phase message passing mechanism to compute user and product
embeddings, leveraging the weights learned during training. Finally,
we apply Eq. 6 to obtain predictions for each user-persona pair
⟨𝑢, 𝑐⟩ ∈ U × C.
Inference with in-context examples: Given an inference graph
𝐺𝐼 = (U𝐼,P𝐼,E𝐼,X𝐼) along with in-context example graph 𝐺𝐶 =
(U𝐶,P𝐶,E𝐶,X𝐶), where users are annotated with new persona la-
bels Y𝐶 ∈ {0, 1}|U𝐶|×𝑘′ , we first construct the tripartite graph cor-
responding to 𝐺𝐼. In this graph, we augment the existing persona
nodes with the newly introduced personas from Y𝐶. Additionally,
we establish product-persona edges for these new persona nodes
by applying Eq. 4 on 𝐺𝐶. We then proceed with inference on this
enhanced graph as outlined above.

This augmentation enables in-context reasoning by allowing
the model to incorporate and leverage new persona information
dynamically. Since the embeddings of users and personas are de-
rived through message passing over product interactions, the newly
added persona nodes immediately integrate into the learned repre-
sentation space. The model can infer relationships between unseen
personas and users based on shared product affinities, without re-
quiring retraining. This facilitates adaptive reasoning, enabling the
system to generalize to novel persona types solely from a small set
of in-context examples.

Furthermore, as detailed in § 3.5, the number of parameters in
TriPer remains independent of the number of users, products, or
personas. Consequently, the addition of new personas does not
hinder the ability of the model to perform inference.

4 Experimental Evaluation
In this section, we benchmark TriPer and establish:
• Prediction accuracy: TriPer outperforms a suite of baselines,
including heterogeneous Gnns and LLM-powered recommenda-
tion engines in persona identification.

• In-context generalization: TriPer provides e-commerce ven-
dors unprecedented flexibility in refining persona categorization
strategies post-training through robust in-context learning.

• Robustness: TriPer demonstrates strong resilience in learning
under low-data regimes.

• Generalization over time: TriPer maintains high predictive
performance across temporal shifts, demonstrating its ability to
capture meta-level behavioral patterns that remain relevant even
as user preferences and market dynamics evolve.

Our codebase is available at https://github.com/idea-iitd/persona.git

Model F1(↑) Jaccard(↑)

MLNC 0.28±0.00 0.16±0.00
SlotGAT 0.41±0.00 0.28±0.00
SeHGNN 0.73±0.01 0.58±0.01
RpHGNN 0.44±0.01 0.34±0.01
LLM_Enhance 0.67±0.01 0.52±0.01
TAPE 0.74±0.00 0.60±0.01
EasyRec 0.48±0.00 0.32±0.00
BiPer 0.74±0.00 0.60±0.00
TriPer 0.89±0.00 0.82±0.00

Table 3: Performance of benchmarked algorithms.

4.1 Empirical Setup
We use a system running on Intel Xeon 6248 processor with 96 cores
and 1 NVIDIA A100 GPU with 40GB memory for our experiment.
For our training, we use hyperparameters mentioned in Table 4.The
details of hyper-parameters are outlined in Table 4 in the Appendix.

4.1.1 Train-validation-test splits. For a specific month, we ran-
domly select 7𝐾 users for the training set and 2𝐾 users for the
validation set, along with their associated purchase data and anno-
tated persona labels from the data provided for each month. The
remaining users are used for testing. This methodology guarantees
that the test set comprises entirely of users unseen during the train-
ing phase, allowing us to effectively assess the model’s performance
on new user profiles.

4.1.2 Metrics. We use F1-score and Jaccard similarity to quantify
accuracy.The Jaccard similarity for a user is computed bymeasuring
the overlap between the true and predicted persona sets, defined

as: 𝐽 (𝑦true, 𝑦pred) =
|𝑦true∩𝑦pred|
|𝑦true∪𝑦pred|

We report average Jaccard similarity

across all users in the test set.

4.1.3 Baselines. We consider 7 state-of-the-art baselines spaning
algorithms for multi-label node classification on heterogeneous
graphs and LLM-empowered recommendation engines. These tech-
niques includeMLNC [34], SlotGAT [43], SeHGNN [40], RpHGNN [21],
LLMs-Enhancers [5], TAPE [19] and EasyRec [31]. A detailed de-
scription of these baselines is provided in Appendix A.2.

In addition, we construct a simplified version of TriPer, called
BiPer, which is designed primarily for ablation studies (Appen-
dix A.3). Specifically, we only perform phase 1 and phase 2 of
the message passing scheme. Then, we pass the user embeddings
through an MLP followed by sigmoid activation.

4.2 PredictionQuality
First, we evaluate the performance of TriPer and the baselines
only on the month of August 2023. This presents a relatively easier
scenario since user purchase behavior is unlikely to shift signifi-
cantly in the same month and thereby maintaining good alignment
between the distribution of the train and test sets.

Table 3 presents the accuracy achieved by the various algo-
rithms. TriPer outperforms all baselines by a significant margin.
This demonstrates that the various design choices made in TriPer
—including modeling the data as a tripartite graph, implementing a
3-phased message passing scheme, and transforming themulti-label

https://github.com/idea-iitd/persona.git
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node classification problem into link prediction — are highly effective
on real-world e-commerce data.

We also note that BiPer emerges as the second-best performer,
alongside TAPE, indicating that even the 2-phased message pass-
ing approach is good enough to outperform the majority of the
baselines. However, the noticeable gap between BiPer and TriPer
reveals that the third phase of message passing from products to
personas, and the formulation of the problem as link prediction,
significantly contribute to the accuracy.

Finally, it is particularly interesting that the most comparable
baselines, TAPE and SeHGNN, despite being transformer-based
architectures, fail to surpass the performance of TriPer. This ob-
servation suggests that having the correct inductive biases in the
data representation—in the form of the tripartite graph architecture
along with its three-phased message passing—is more important
than training a more powerful neural architecture on the raw data.

We further demonstrate the performance of TriPer on another
dataset - Amazon Review Dataset [20] in Appendix A.4.

4.3 Training and Test Data Efficiency
Train data efficiency:Howmuch training data do we need to predict
accurately? Fig. 4 studies this question where we compare the
performance of training on full dataset vs. training only on 30%
of the edges chosen uniformly at random from the August month
data. While we notice a reduction in accuracy with reduction in
training data across all techniques, the reduction is substantially
lower in TriPer, indicating efficacy of the inductive biases in TriPer
enabling it learn from low volumes of data.
Test data efficiency: What is the impact of limited purchase data
on prediction accuracy? To investigate, we simulated this scenario
by retaining only 50% of the edges in the test set and evaluated pre-
diction accuracy. The results, presented in Fig. 5, show an expected
decline in accuracy. Notably, however, TriPer exhibits remarkable
robustness, with a negligible drop in accuracy, whereas other base-
line models suffer significant declines. This outcome highlights
the benefits of TriPer’s 3-phased message passing scheme and tri-
partite graph schema, which inject inductive biases that enhance
performance even with limited data.

4.4 Generalization with In-Context Learning
The annotated data contains a total of 9 personas. To analyze the in-
context learning efficacy of TriPer, we vary the number of personas
included in the training set, as shown in Fig. 6, starting from 3. All of

(a) F1 (b) Jaccard

Figure 4: Compares models trained on the full dataset versus
30% of the train edges. TriPer exhibits a smaller accuracy
drop, highlighting effective learning from reduced data.

(a) F1 (b) Jaccard

Figure 5: Presents the results of reducing test data by retain-
ing only 50% of the edges. Here, TriPer maintains a high
level of accuracy, while significant drops are observed in
baseline models.

the remaining personas are provided solely as in-context examples.
We then study how the prediction accuracy improves as these in-
context personas are progressively included in the training set.

As expected, performance improves with their inclusion; how-
ever, this improvement is less than 10% when shifting from 3 per-
sonas in the training set to all 9. This relatively small improvement
highlights that TriPer effectively generalizes to unseen personas
without requiring explicit training on them. The model’s ability to
leverage in-context examples suggests that its persona embeddings
capture transferable knowledge, allowing it to recognize and asso-
ciate new personas based on user-product interactions rather than
requiring predefined label supervision.

It is important to note that none of the baselines offer in-context
learning in their node-classification approach. In these baselines,
the neural network’s final layer (MLP) reduces user embeddings to
a 𝑘-dimensional space, where 𝑘 represents the number of personas
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(d) Jaccard in December

Figure 6: In-Context Generalization evaluated on the months
of August and December, 2023. We examine the impact of
reducing the number of personas in the training set and in-
stead providing them as in-context examples on the accuracy
of TriPer.
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in the training set. This design inherently limits their ability to
adapt to new personas.

4.5 Generalization over Time
Can TriPer generalize effectively to data collected over subsequent
months? Fig. 7 investigates this question by training TriPer on
August data and evaluating its performance on the following five
months, up to January. To isolate the model’s long-term general-
izability, we do not use any in-context examples in this analysis.
Ensuring long-term generalizability is crucial, as annotating users
with personas based on their shopping behavior and retraining the
model with new data throughout the year is costly, labor-intensive,
time-consuming, and often infeasible in real-world applications.

To assess the robustness of TriPer in generalizing over time, we
compare its generalization performance against the GOLD standard
for each subsequent month. In Fig. 7, GOLD refers to the accuracy
obtained by training TriPer on a randomly selected subset of 7k
users and their purchase behavior from the specific evaluation
month, followed by testing on the remaining data from that same
month. Ideally, perfect generalizationwould imply that the accuracy
of the model trained on August data matches the accuracy of the
model trained on data from the respective month under study.

Fig. 7 demonstrates that TriPer, despite being trained only on
August data, generalizes well over the subsequent months. This
is evident from the small gap between the generalization and the
GOLD performance across all months. Notably, even amidst major
Sale events (in October and November), seasonal shifts from sum-
mer to winter, and festive periods like Christmas, TriPer continues
to exhibit strong generalization capabilities over time. Consistent
with previous trends, the closest baselines, BiPer and SehGnn,
continue to perform noticeable worse.

4.6 Ablation Studies
We perform ablation studies to observe the effect of (a) variation
in 𝜃, a parameter introduced in Section 3.1 (b) variation in number
of GNN layers (c) Phase 3 of the message passing (d) Sensitivity
of TriPer to noise in the embeddings. We present these in Section
A.3 in the Appendix.
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Figure 7: Analyzes the generalization ability of the model
trained on August over the next five months. TriPer GOLD
refers to the performance of the model when trained on the
same month as the test set.

5 Related Works
Heterogeneous Graph Neural Network (HGNN): HGNNs have
been developed to effectively capture semantic information, driv-
ing significant progress in heterogeneous graph representation
learning [9, 18, 27, 36, 39] with applications in social network anal-
ysis [26], recommendation systems [10, 37], and knowledge graph
reasoning [2, 35]. HGNNs are typically categorized as Relation-
based and Representation-based: Relation-based HGNNs [13, 41]
aggregate node features along predefined metapaths to generate
semantic-specific embeddings, which are fused into the final node
representation; whereas, Representation-based HGNNs [28, 36, 44]
build upon the principles of traditional GNNs by aggregating mes-
sages from a node’s local neighborhood to capture both structural
and semantic information. HGNNs distinguish themselves through
the use of attention mechanisms, allowing them to effectively in-
tegrate the semantics of different node and edge types.
Persona identification in E-commerce: While there have been
a long line of research focusing on issues with online commerce [1,
6, 7, 16, 17, 22, 23, 30, 32, 38], there has only been limited attempts
on persona characterization in the e-commerce domain [8, 15, 25].
McIntosh et al. [29] utilized hard-coded rules to extract personas
based on age in order to collect the views of people from different
age groups about e-commerce applications. Whereas, our goal is to
learn the personas of users based on their product interaction.
While substantial progress has been made in Heterogeneous Graph
Neural Networks and, to some extent, for persona identification in
e-commerce, prior works addressing both of these areas together is
limited. In this paper, we address this gap.

6 Conclusion
Delivering personalized e-commerce experiences, ranging from
landing pages and product recommendations to marketing cam-
paigns and checkout processes, is critical for user retention and
revenue generation. In this work, conducted in collaboration with
one of the world’s largest e-commerce companies, we tackled the
problem of persona identification. This task poses unique chal-
lenges: users may embody multiple personas, persona definitions
can evolve over time, and models should dynamically adapt without
necessitating full retraining.

To address these challenges, we developed TriPer, a novel frame-
work that integrates a 3-phased message-passing scheme within a
Graph Neural Network and employs a tripartite graph schema to
effectively model user-product-persona relationships. Additionally,
TriPer leverages in-context learning to enhance adaptability with-
out retraining. We rigorously evaluated TriPer on an extensive
six-month e-commerce dataset, where each user was meticulously
annotated by human experts. Our results demonstrate that TriPer
not only significantly outperforms existing baselines but also ex-
hibits strong generalization to subsequent scarce labeled data and
maintains robustness even in low-data regimes. We hope that this
work will spawn multiple future works on in-context graph learn-
ing not only in persona identification but also in several other
application areas.
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A Appendix
A.1 Empirical Setup

Hyperparameter Value

Optimizer Adam
Weight Decay 1 × 10−5
Initial Learning Rate 1 × 10−3
Learning Rate Scheduler Cosine Annealing
No. of GNN layers 1
𝜃 2
LLM Gemini 1.0 Pro

Table 4: Hyperparameters used for training TriPer.

Structured Attribute DataUnstructured Text Information

Figure 8: The figure illustrates the product description page.

A.2 Baselines
We consider the following baselines:
• MLNC [34] is a GNN-based approach designed for multi-label
node classification. It models and propagates label dependencies
through a label influence mechanism on graphs.

• SlotGAT [43] is a heterogeneous graph neural network (HGNN)
that separately passes messages in slots, one for each node type,
to maintain the representations in their own node-type feature
spaces in order to avoid entangling the semantics in different
node types into their representation.

• SeHGNN [40] is another type of HGNN that adopts the single-
layer structure with long metapaths to extend the receptive field,
as well as a transformer-based semantic fusion module to fuse
features from different metapaths.

• RpHGNN [21] is a hybrid pre-computation-based HGNN that
uses Random Projection Squashing and a Relation-wise Neighbor
Collection with an Even-odd Propagation Scheme.

• LLMs-Enhancers [5] proposes an architecture that leverages
LLMs to enhance nodes’ text attributes with their massive knowl-
edge and then generates predictions through GNNs. We adapt

their framework for heterogeneous graphs and use HGNN instead
of GNN.

• TAPE [19] is a representation learning framework for text-attributed
graphs (TAGs) that leverage LLMs to capture textual information
as features, which can be used to boost GNN performance on
downstream tasks. We adapt their framework for heterogeneous
graphs and use HGNN ([40]) instead of GNN.

• EasyRec [31] integrates LLMs to enhance recommendation tasks
and combine collaborative language model tuning with the trans-
formative capabilities of contrastive learning.

• BiPer: This is a simplified version of TriPer, designed primarily
for ablation studies. Specifically, we only perform phase 1 and
phase 2 of the message passing scheme. Then, we pass the user
embeddings through an MLP followed by sigmoid activation.

A.3 Ablation Studies
A.3.1 Variation in Parameter 𝜃: 𝜃 is a parameter introduced in Sec-
tion 3.1. It helps in the creation of the product-persona edges. While
a higher 𝜃 increases confidence in persona-product edges, it also
sparsifies the graph. Persona classification performance initially
improves but deteriorates beyond a point (Table 5).

Threshold (𝜃) 1 2 3 4 5 6

F1 (↑) 0.78 0.89 0.85 0.80 0.76 0.76
Table 5: Effect of increasing threshold 𝜃 on F1 score.

A.3.2 Variation in number of GNN layers (𝐿): We show the effect
of increasing the number of GNN layers in TriPer in Table 6. Per-
formance improves up to 𝐿 = 3, beyond which it degrades due to
over-smoothing.

𝐿 = 1 𝐿 = 2 𝐿 = 3 𝐿 = 4

F1 (↑) 0.89 0.90 0.91 0.78
Jaccard (↑) 0.82 0.83 0.85 0.72

Table 6: Performance metrics across different values of the
number of GNN layers (𝐿).

A.3.3 Effect of Phase 3 Message Passing: To understand the effect
of the Phase 3 (product to persona) stage of message passing, we
perform an experiment where we do not include the third-phase.
We name this as BiPer. Comparison of BiPer againset TriPer is
shown in Table 3.

A.3.4 Sensitivity to noise: Section 4.3 studies the impact of in-
complete data during both training set and inference, mimicking
cold-start scenarios. We further supplement the robustness evalua-
tion of TriPer on noisy scenarios in Table 7. We add noise to user
and product features, by sampling from a unit normal distribution
within various values of standard deviation. We note some decrease
in accuracy, which is expected since the inference set, where noise
is added, goes out-of-distribution compared to train set. However,
there is no scope of noise on interactions since these correspond to
actual product purchases by users.
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Figure 9: Illustration of In-Context Learning Formulation (Section 3.6, 4.4)

Level of Noise 𝜎 = 0 𝜎 = 0.1 𝜎 = 0.25 𝜎 = 0.5

F1 0.89 0.78 0.75 0.75
Jaccard 0.82 0.68 0.66 0.64

Table 7: Sensitivity of TriPer to noise.

w/o Persona with Persona

F1 0.64 0.66
Table 8: Recommendation performance comparisonwith and
without persona information.

A.3.5 Evaluation on downstream recommendation task: We demon-
strate the impact on product recommendation (modeled as a link
prediction task on a user-product bipartite graph), where persona
of a user is known vs. when its hidden. As we observe in Table 8,
recommendation performance is better with persona information.

A.4 Evaluating TriPer on Amazon Review
Dataset

To further validate the efficacy and generalizability of TriPer, we
evaluate it on a newly curated e-commerce dataset based on Ama-
zon product reviews [20]. The annotation process resulted in a
labeled dataset comprising 1,470 users, who collectively reviewed
12,404 products, yielding 15,127 user-product edges in total.

We preprocessed the dataset to conform to our input format,
where nodes represent users and products, and edges indicate a
review interaction. Table 9 shows that TriPer attains the high-
est F1 score on the Amazon dataset, followed by SeHGNN and
BiPer, demonstrating the robustness of TriPer in capturing nu-
anced persona-based patterns.

Metric SeHGNN BiPer TriPer

F1 (↑) 0.83 0.44 0.92
Table 9: Comparison of F1 scores on the Amazon Review
Dataset.
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