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ABSTRACT

Advancements in foundation models (FMs) have led to a paradigm shift in machine
learning. The rich, expressive feature representations from these pre-trained, large-
scale FMs are leveraged for multiple downstream tasks, usually via lightweight
fine-tuning of a shallow fully-connected network following the representation.
However, the non-interpretable, black-box nature of this prediction pipeline can be
a challenge, especially in critical domains, such as healthcare, finance, and security.
In this paper, we explore the potential of Concept Bottleneck Models (CBMs)
for transforming complex, non-interpretable foundation models into interpretable
decision-making pipelines using high-level concept vectors. Specifically, we focus
on the test-time deployment of such an interpretable CBM pipeline “in the wild”,
where the distribution of inputs often shifts from the original training distribution.
We first identify the potential failure modes of such pipelines under different types
of distribution shifts. Then we propose an adaptive concept bottleneck framework
to address these failure modes, that dynamically adapts the concept-vector bank
and the prediction layer based solely on unlabeled data from the target domain,
without access to the source dataset. Empirical evaluations with various real-world
distribution shifts show our framework produces concept-based interpretations
better aligned with the test data and boosts post-deployment accuracy by up to
28%, aligning CBM performance with that of non-interpretable classification.

1 INTRODUCTION

Foundation Models (FMs), trained on vast data, are powerful feature extractors applicable across
diverse distributions and downstream tasks (Bommasani et al., [2021; Rombach et al.,[2022). They
can be applied to classification tasks off-the-shelf via zero-shot prediction, or via linear probing
using task-specific fine-tuning data (Kumar et al., [ 2022; Radford et al.l 2021). Despite these strong
advantages, foundation model-based systems often operate as inscrutable black-boxes, presenting a
barrier to user trust and wider deployment in safety-critical settings. Another challenge faced in the
standard deployment of FM-based deep classifiers is their vulnerability to distribution shifts at test
time caused e.g., due to environmental changes, which can cause a drop in performance (Bommasani
et al.l 2021)). This is particularly challenging in high-stakes domains such as healthcare (AlBadawy
et al.,2018; [Eslami et al.;[2023), autonomous driving (Yu et al.,[2020)), and finance (Wu et al., |2023a)).

In this work, we address these challenges by developing an interpretable classification framework
that enjoys the rich, expressive feature representations of FMs, while also having enhanced robustness
towards distribution shifts at test time. To tackle interpretability, we utilize Concept Bottleneck Models
(CBMs) (Koh et al., [2020), transforming FM-based classifiers into interpretable, concept-based
prediction pipelines. With the rapid advancements in FMs, there is strong opportunity to utilize them
as powerful backbones, providing robust feature representations from which high-quality concepts
can be extracted. Unlike early CBM approaches that required expensive concept annotations, recent
advances show potential for constructing concept bottlenecks without any annotations by leveraging
vision-language models (Oikarinen et al., [2023]; [Wu et al.,|2023b), and achieving performance on par
with non-interpretable models. Concept-based predictions provide not only interpretability, but are
also beneficial for robustness; a central premise of CBMs is that as complex feature embeddings go
through the concept bottleneck, the resulting predictions should, in theory, become more invariant to
inconsequential input changes (Kim et al., |2018}; |Adebayo et al.,|2020).
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Figure 1: Concept-based predictions are not inherently more robust to distribution shifts than feature-
based predictions, necessitating dynamic adaptation after deployment. We observe significant drops in the
averaged group accuracy (AVG) and worst-group accuracy (WG) from the source to the target (test) domain under
two types of distribution shifts: (1) low-level shift (left), where inputs are perturbed without modifying class-level
semantics (e.g., Gaussian noise); and (2) concept-level shift (right), where some high-level semantics change.
On the left, predictions made through high-level concepts (e.g., by PCBM (Yuksekgonul et al.}[2023)) here) are
not necessarily more robust to low-level input perturbations. On the right, the performance of concept-based
predictions suffers an even more drastic drop, failing to leverage the expressiveness of the foundation model’s
high-level features, and falling behind direct feature-based predictions (here zero-shot and linear-probing).
However, with CONDA (ours), we can boost the performance of the deployed concept-based predictor to be on
par with, or even better than, its non-interpretable counterparts.

However, we observe that CBMs directly deployed under distribution shifts often do not produce more
robust predictions compared to FM-based classifiers (either in zero-shot or fine-tuned configurations).
For instance, as illustrated in Figure [I] even when a concept-based prediction pipeline matches
or outperforms a feature-based prediction pipeline in the training (source) domain, its test-time
(deployment) performance can drop as severely, or even more, under distribution shifts. This
highlights that a naive adoption of CBMs is insufficient for fully leveraging the robustness and
expressiveness of FM features under test-time shifts, necessitating a dynamic approach for adapting
concept-based predictions in real-world deployments.

The problem of test-time (or source-free domain) adaptation (TTA) has recently been explored
extensively (Wang et all 2021}, Jung et al] 2023} [Liang et all, [2023)). The goal is to adapt a deep
classifier, trained on a source domain, to a test-time deployment setting where there could be
distribution shifts (e.g., corruptions, environment changes), and given access to only unlabeled test
data and the source domain classifier. While the main focus of TTA methods has been on non-
interpretable, deep classifier networks, to our knowledge we present the first approach for TTA of
concept bottlenecks with a foundation model backbone. Our contributions are as follows: given
unlabeled test data, a frozen FM, and a pre-constructed concept bottleneck, we

1. formally categorize the types of distribution shifts expected post-deployment, identifying
possible failure modes of the concept bottleneck pipeline under these shifts (Section [2);

2. propose a novel framework, CONDA (CONCcept-based Dynamic Adaptation), where each
component of the framework is adapted based on the identified failure modes, without
requiring access to the source dataset or labels for the test dataset (Section 3));

3. empirically demonstrate the robustness and interpretability of CONDA across various FM
backbones (e.g., CLIP:ViT-L/14) and concept bottleneck construction methods (e.g., post-
hoc CBM), showing that CONDA improves the test-time accuracy by up to 28%, and
provides concept-based interpretations better tailored towards test inputs (Section ).

Related Work. Distribution shifts occur when the data distribution during deployment differs from
that during training, leading to degraded model performance (Quifionero-Candela et al.}[2022)). To
address this issue, TTA methods adapt model parameters using unlabeled test data to enhance the
robustness under such shifts. Representative methods include entropy minimization (Wang et al |

[2021; [Zhang et al.| [2022), self-supervised learning at test time 2020), class-aware feature
alignment (Jung et al.,{2023), and updating batch normalization statistics based on test data (Nado
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et al.,[2020). These methods enable models to adapt on-the-fly without requiring access to the training
data. In the era of foundation models, recent efforts have been made to enhance their zero-shot
inference robustness under distribution shifts without modifying their internal parameters (Chuang
et al.| [2023; |Adila et al.| 2023). However, improving the robustness of the foundation model itself is
not the focus of our work. Instead, given any foundation model, regardless of its inherent robustness,
we aim to construct an interpretable framework without sacrificing the utility, striving for performance
that matches or exceeds that of the foundation model’s feature-based predictions.

2 CONCEPT BOTTLECK MODEL UNDER DISTRIBUTION SHIFTS

2.1 BACKGROUND: FOUNDATION MODELS WITH A CONCEPT BOTTLENECK

Consider a foundation model ¢ : X +— R?, which is any pre-trained backbone model or feature
extractor (Eslami et al.l 2023} [Jia et al.l 2021} |Girdhar et al., [2023) that maps the input x to an
intermediate feature embedding ¢(x) € R%. ¢(x) is pre-trained on a large-scale, broad mixture
of data for general purposes, i.e., not restricted to a specific domain. For a specific downstream
classification task, the general practice is to either apply zero-shot prediction on ¢(x), or to train
a shallow label predictor g, : R? ~— R%, that maps ¢(x) to the un-normalized class predictions
gs(¢(x)), using a supervised loss (e.g., cross-entropy).

A CBM (Koh et al., [2020) first projects the high-dimensional feature embedding to a lower m-
dimensional (m < d) concept-score space (acting like a bottleneck), and follows it with a label
predictor, which is a simple affine or fully-connected layer that maps the concept scores into class
predictions. The concept bottleneck is represented by a matrix of m unit-norm concept vectors
C, = [cs1/lcsillz -+ €om/ llcsmll2] T € R™*4, where each c,; € R? represents a high-level

concept (e.g., “stripes”, “fin”, “dots’’). The m concept scores are obtained via a linear projection
ve, (x) = C; ¢(x), which is followed by a fully-connected layer to obtain the CBM model as

£ (x) 1= W, v, (%) + by = W,C, p(x) + by = g4(¢(x)) )

The label predictor g,(z) is defined by the parameters W, € RLX™ b, € RE, and C,. A key
advantage of the CBM is that its predictions are an affine combination of the high-level concept
scores, which allows for better interpretability of the model. Since the label predictor of a CBM is
chosen to be simple, its performance is strongly dependent on the construction of the concept bank.

2.2 DISTRIBUTION SHIFTS IN THE WILD

Let 7 = {to,t1,...,ts} be a finite set of measurable input transformations, where each t; : X — X
is a measurable function. We also define a transformed input space encompassing all possible
transformed inputs: X7 = U?:o {t;(x) | x € X}. Without loss of generality, we set to to be the
identity function to(x) = x, Vx € X. Let us and p; be probability measures on 7 representing the
distributions over input transformations in the source and target domains, respectively. We define
the source domain Dy, equipped with ps such that us({to}) = 1, us({t;}) =0 Vi # 0. Its joint
distribution is denoted by P, over X7 x Y such that Ps(x,y) = P(x,y) Vx,y, where P is the
underlying distribution over inputs and labels. Similarly, we define the target domain D, with a
probability measure u; such that p:({t;}) > 0 for some i € [k]. Its joint distribution is denoted
by P; over X7 x ) such that P;(x,y) = Zf:o pe({t: 1) P(t; *(x),y) , assuming that the t; are
invertible or appropriately measurable for their pre-images.

Let H be a concept hypothesis class, defined as the space of measurable concept mappings h :
R? — R™ from the feature representation ¢(x) to concept scores. We also define the concept set
C:={ci,co, -+ ,Cm}, where each ¢; : R? — R represents a high-level concept mapping (e.g., stripe
pattern, grass, beach, etc.). For a domain D;, j € {s,t}, we define the concept score distribution
as Peon(D;, ¢, h) = (ho ¢).P;, where (h o ¢).P; is the push-forward measure of P; under h o ¢.
Note that h is determined by C such that h(¢(x)) = [c1(P(x)), - , cm(p(x))]T

'A common approach is to define c;(¢(x)) as the inner product of a (unit-normalized) concept vector with
the feature representation ¢(x), which results in a score for concept i.
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Let G be a classification hypothesis class, defined as a set of measurable classifiers g : R™ — RE
mapping the concept scores to prediction logits. Finally, we define the distribution of predictions as
the push-forward measure of Peon(D;, ¢, h) under g: Pprea(Dj, ¢, h, g) = g.Peon(Dj, ¢, h).

Given h € H and g € G, we categorize the distribution shifts in the target domain, {z:(t;) > 0] t; €
T}, into one of the following broad categories:

1. Low-level shift: This type of transformation does not change the concept score distribution across
the domains. Examples include additive Gaussian noise, blurring, and pixelization, which employ
low-level changes to the input (e.g., CIFAR10-C (Hendrycks & Dietterich, 2019)):

IEI)con(l)tv ¢)7 h) = ]P)COH(DSa ¢)7 h) (2)

Naturally, the resulting distribution of predictions based on the concept scores also remains the
same across the domains, i.e., Pprea(Ds, ¢, h, 8) = Pprea(Ds, ¢, h, g).

2. Concept-level shift: This type of transformation alters the concept score distribution, but not the

prediction distribution across the domains. Examples include replacing water background with a
land background in images (e.g., Waterbirds, Metashift (Sagawa et al.,|2019} [Liang & Zoul [2021)):

IPJcon (Dta ¢7 h) 7& ]P)COH(DSv ¢7 h)
IEDpred(l)ta ¢7 h7 g) = ]P)pred(st ¢7 h7 g) 3

Definition 1 The concept set C = {c1,¢a,...,cm} is complete if there exists a classifier g € G
such that, for both low-level and concept-level shifts, the prediction distributions conditioned on the

concepts are identical:
]P)pred(Ds;(b;h;g) = pred(Dt7¢7hag>' (4)

This implies that there exists a mapping from concept scores to labels encompassing both the source
and target domains.

2.3 FAILURE MODES OF CONCEPT BOTTLENECK FOR FOUNDATION MODELS

Based on the definitions above, we categorize the possible failure modes of the decision-making
pipeline of a foundation model equipped with a CBM, defined by a given Dy, Dy, ¢p, ho ¢p =
[c1 06, - ,cm o @], and g as follows.

1. Non-robust concept bottleneck under low-level shift: the concept mapping h is not robust to
low-level shifts, causing discrepancies in the concept-level predictions:

IEDcon(l)ta ¢a h) 7é ]Pcon(DSa ¢a h),

violating the requirement for a low-level shift in Eqn. Such discrepancies in the concept
predictions can lead to degraded performance in D,, resulting from mismatched prediction
distributions, i.e., Pyea(Ds, @, h, g) # Pprea(Ds, ¢, h, g).

2. Non-robust classifier under concept-level shift: Given that the concept score distributions differ
due to a concept-level shift as in Eqn. [3] the given classifier g fails to produce consistent prediction
distributions across the domains, violating Eqn 3}

]P)pred(Dta ¢7 h7 g) 7é Ppred(DS7 ¢7 h7 g)

3. Incomplete concept set: The concept set {c1, ca,. .., ¢} is not complete, and there does not
exist any g € G such that Ppreq(Ds, ¢, h, g8) = Pprea(Dy, ¢, h, g). Intuitively, it fails to capture
all the necessary information for consistent predictions across domains, and Definition I]is not
achievable in the first place.

3 CONDA: CONCEPT-BASED DYNAMIC ADAPTATION

In this section, we propose a dynamic approach for adaptation of a CBM-based only on unlabeled
test data. We follow the setting of test-time adaptation, where the foundation model ¢(x) and CBM,
consisting of the concept bank C; and label predictor (W, by), trained on the source domain are
given (see Eqn , but the source (training) dataset is not available. Let D, = {xm}ﬁil be the
unlabeled test set from the target distribution. To address the potential failure modes in a CBM
pipeline identified in Section [2.3] we propose the following three-step adaptation:
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Figure 2: Overview of CONDA, our proposed adaptation framework. The foundation model and CBM
pipeline trained on the source domain is shown at the top, while the adapted CBM, consisting of a main branch
and residual branch, is shown at the bottom. The components of CBM that are adapted during each stage of the
proposed method (i.e., CSA, LPA, and RCB) are shown in different colors.

1. Concept-Score Alignment (CSA): The goal of this step is to perform a feature alignment of the
concept scores of test inputs v (x;) € R™ such that their class-conditional distributions are close
to that of the concept scores in the source datasetEl By adapting the concept vectors C, this will
ensure that the label predictor continues to “see” very similar class-conditional input distributions
at test time, thereby maintaining accurate predictions.

2. Linear Probing Adaptation (LPA): To further address any discrepancy or mismatch in the feature
alignment CSA step (e.g., due to distribution assumptions), here we adapt the label predictor
(W, b) of the CBM, with the concept vectors fixed at their updated values from the CSA step.

3. Residual Concept Bottleneck (RCB): As discussed in Section @ the concept bank from the
source domain could be incomplete and new concepts may be required to bridge the distribution
gap between the domains. In this step, we introduce a residual CBM with additional concept
vectors and a linear predictor, which are jointly optimized (with the parameters of the main CBM
fixed) to improve the test accuracy.

Target Domain CBM. Figure [2] shows the overall architecture of CONDA. The residual con-
cept bottleneck is shown as a separate branch, where we introduce r additional concept vectors

C =[ci/|€illz -+ € /e ]l2]T € R™ 4. The concept scores are obtained by projecting the
feature representation ¢>(x) on these residual concept vectors, and the scores are passed to another

linear predictor (W, b) to obtain the un-normalized class predictions (logits) of the residual CBM:

WC ¢(x) + b. The un-normalized predictions of the target domain CBM are obtained by adding
that of the main and the residual branch CBMs, giving

£ (x) = WCh(x) + b+ WCoh(x) + b
= (WC+WC)¢(x) + b+b = WenCoon ¢(X) + beon, (5)

where W € RL*" and b € RL. For comparison with the source domain CBM (Eqn. , we have
defined the combined parameters from the main and residual branch CBMs as W,, = [W W] S
RLX(m+7) C o = [C; C] € RO and byyy = b+b € RE. That is, adding the residual CBM
is equivalent to introducing r additional rows (columns) in the concept (weight) matrix. For adaptation,
the parameters of the main CBM {C, W, b} are initialized to their corresponding values from the

source domain, while the parameters of the residual CBM {(~3, W, lN)} are initialized randomly.

Pseudo-labeling. Since the test samples are unlabeled, it becomes challenging to design adaptation
objectives that can minimize a smooth proxy of the classification error rate on the target distribution.

2We drop the subscript ‘s’ to denote that they are adaptation parameters, not specific to the source domain.
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We utilize the idea of pseudo-labeling to address this, as commonly done in the TTA and semi-
supervised learning literature (Chen et al.| 2022} [Lee et al., 2013} |[Sohn et al., 2020). A simple
approach for pseudo-labeling the test set is to use the class predictions of the (un-adapted) source-
domain CBM, referred to as “self-labeling”. However, since this CBM is often not robust to
distribution shifts in the first place, this can produce poor-quality pseudo-labels for adaptation. We
leverage the fact that the feature extraction backbone ¢(x) is a foundation model that is pre-trained
on diverse data distributions, and as a result is likely to be relatively robust to distribution shifts. We
take an ensemble of the commonly used zero-shot predictor (as done e.g., in|Radford et al.[(2021)))
and a linear probing predictor (trained on the source dataset on top of the foundation model) to
get the pseudo-labels for test samples. We combine the two by taking the class predicted with
higher confidence across both predictors. We note that more sophisticated pseudo-labeling methods
e.g., involving weak- and strong-augmentations, and soft nearest-neighbor voting (Chen et al., 2022)
can be used to potentially improve our method.

Following the convention in the TTA literature (Wang et al.,|2021};|Chen et al., 2022), we randomly
split the test data into fixed-size batches D, = UbB:1 D?, and perform adaptation sequentially on
each batch b, obtaining the adapted model’s predictions on the same batch, before moving to the
next one. Also, the parameters of the CBM (main and residual) are adapted in an online fashion
(not episodically) (Wang et al., |2021)), i.e., the adapted parameters learned from a batch are used to
initialize the next batch and so on For convenience, we define the test dataset with paired pseudo-

labels as Dy = {(x¢n, in)} Nt |, and a corresponding pseudo-labeled test batch as Db, b e [B]. We
next expand on each stage of the CBM adaptation outlined earlier, and provide a complete algorithm

for the same in Algorithm[I]in the Appendix.

3.1 CONCEPT SCORE ALIGNMENT

From Figure|2| (top half) and Eqn. the concept scores v, (x) € R™ are input to the linear label
predictor Wyv + b,. Let {P(ve,(xs) |ys = y), y € Y} be the class-conditional distributions
of these concept scores on the source domain. At test time, if the distribution of the input changes
such that x; ~ p(x), then there is a corresponding change in the class-conditional distributions of
concept scores {P(vc, (x¢) | y: = y) = P(Csd(x:) |yt = y), y € V}. The goal of concept-score
alignment (CSA) is to adapt the source domain concept bank C to a target domain-specific one C,
such that the class-conditional distributions after adaptation are close to that of the source domain
under some distributional distance (e.g., Kullback-Leibler or Total-variation). Informally, we wish to
find an adapted concept bank C;, starting from Cj, such that

P(Cip(xt) |ye =y) =~ P(Csp(xs) |ys =), Yy €.
If the class priors {P(y; = y), Yy} do not change significantly, this can ensure that the label predictor
of the main CBM continues to receive concept scores from a similar distribution as the source domain.

We model the class-conditional distributions of the concept scores in the source domain as multivariate
Gaussians: P(ve, (%) |ys = y) = N(ve, (Xs); 1y, Xy), Yy € Y. Given a labeled source-
domain dataset, it is straight-forward to estimate p,, and X, using the sample mean and sample
covariance of v, (Xs) on the data subset from class y (max-likelihood estimate). Although we
cannot access the source domain dataset during adaptation, we assume to have access to these
distribution statistics {(ty, ) }ycy. At test time, changes to the distribution of the concept scores
can be captured by a concept matrix C (to be adapted). For a test input x;, the distance of its
concept scores v (x;) from the Gaussian distribution of class y is given by the Mahalanobis metric

Dinan (Xt 3 oy, ) = (Ve (%) — py) "2 (Ve (%e)) — py).

Intra-class and Inter-class Distances. Taking the pseudo-label 7j; as a proxy for the true label of x,
the intra-class (or within-class) distance measures the closeness of x; to samples from its own class,
while the inter-class (or between-class) distance measures the separation of x; to samples from the
other classes. They are defined as follows:

Dintra(Xh /y\t) = Dmah (Xt Ny T 2@1) and (6)
1 L
Dinter(xt7 Z/J\f) = T _ 1 Z Dmah(xt s e, ZE) (7)
(=1:4#7,

3In the episodic approach, parameters would be reset to their source domain values to initialize each batch.
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Motivated by class-aware feature alignment CAFA (Jung et al.| [2023)), we explore an adaptation loss
444 that is specifically designed to achieve concept-score alignment on a per-class level. This loss is
based on the idea that for discriminative feature alignment, the intra-class distances should be small
and the inter-class distances should be large on the test samples (Ye et al.,[2021; Ming et al., [2023).

Dintra (Xt ) i/\t)

Loda(Ve(Xt), @\ = IOg =" (®)
( ( t> t) Dinter(xt; yt)
With this setup, we propose the adaptation objective for CSA to minimize on a test batch:
1 ~
Lesa(C) = —= > Lada(ve(x:),5t) + Auob |[C — CslF- ©)

b
| t ‘ (x¢,7:)€DY

The second term is a regularization on how much the concept vectors can deviate from their source
domain values in terms of the Frobenius norm.

3.2 LINEAR PROBING ADAPTATION

In this step, we focus on improving the test accuracy of the label predictor of the main CBM branch
(W, b), with the concept vectors C fixed at their updated values from the CSA step (the residual
CBM parameters are also frozen). For this, we use the cross-entropy loss between the predictions of
the target domain CBM (Eqn. [5) and the pseudo-labels of a test batch D?. In order to enhance the
interpretability of the label predictor, we impose sparsity and grouping effect in its weights via an
Elastic-net penalty term (Zou & Hastie, [2005; [Yuksekgonul et al., [2023) given by
1 &

Lyane(W) = —— > (ar[welly + (1= a)[[wil3), (10)

(=1

where w, € R is the ¢-th row of W, and « = 0.99. The adaptation objective for LPA is given by

1 cbm
LLPA(W7 b) = T = Z IOg o'gt (ft( > )(Xt)) + )\sparse Lsparse(w)7 (11)

b
|Dt| (x¢,7:)€DY
where o, (r) is the Softmax probability for class & given the logits r, and Agparse > 0 is a sparsity

regularization hyper-parameter. Using this objective, the label predictor is adapted such that the
CBM’s predictions on a test batch are consistent with their pseudo-labels.

3.3 RESIDUAL CONCEPT BOTTLENECK

We next discuss adaptation of the residual branch of the CBM whose parameters are {C, W, b}.
The r additional concept vectors in C are expected to capture new concepts in the target data and
compensate for the potentially incomplete coverage of the main CBM (see Section[2.3)). By increasing
the expressiveness of the concept subspace, we expect to improve the accuracy on the target dataset
beyond the CSA and LPA steps. Therefore, we first have a cross-entropy loss term in this adaptation
objective (as in Eqn. [IT). We also introduce a cosine similarity based regularization in the objective
to ensure that the new concept vectors in C are minimally redundant with each other, while also
having minimal overlap with the existing concept vectors C (obtained from the CSA step).

~ 1 ~ 2 -
Lin(C) = — Z Z cos(c;, ;) + NES) > cos(E;,¢). (12)
€[m] j€[r] (6,5)€lr]?:

7>t
Finally, we include a coherency regularization term in the objective (modified from Yeh et al.| (2020))
to improve the interpretability of the learned residual concepts, given by

Lean(C) = %Z >,  #ln)) (13)

" ie[r] x¢€Tg, ||C7,H2

where 7%, is the subset of the current target batch D? that has the k-largest concept scores for residual
concept vector ¢; (i.e., the top-k nearest neighbors of ¢; among the feature representations from D?).
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The objective to be minimized for adapting the residual concept bottleneck (with the parameters of
the main CBM branch frozen) is given by:

~ o~ ~ 1 cbm ~ ~
Lrcs(C,W,b) = ——— > logay, (™ (x1)) + Asim Lsim(C) — Acoh Lean(C).  (14)

Db _
Dt (x¢,5:) €D

The constants gy, > 0 and A.on > 0 are hyper-parameters that control the strength of the regular-

ization terms. Note that for the residual CBM, we jointly adapt C and W, b, because we have a
common objective of increasing the test accuracy, whereas for the main CBM, the adaptation is done
in two stages (CSA and LPA), with CSA focusing on distribution alignment of the concept scores
based on the intra-class and inter-class distances.

4 EXPERIMENTS

In this section, we conduct experiments to answer the three following research questions:

RQ1: How effective is CONDA in improving the test-time performance of deployed classification
pipelines that use foundation models with concept bottlenecks?

RQ2: How does each component of CONDA specifically address and remedy the failures caused
by different types of distribution shifts?

RQ3: How do the concept-based explanations change before and after test-time adaptation?

4.1 SETUP

A detailed description of the experimental setup is available in Appendix [B.1} Anonymized repository
for our implementation is athttps://anonymous.4open.science/r/CONDA-D7AE/.

Datasets. We evaluate the performance of concept bottlenecks for FMs and the proposed adaptation
on five real-world datasets with distribution shifts, following the setup in |Lee et al.| (2023): (1)
CIFAR10 to CIFAR10-C and CIFAR100 to CIFAR100-C for low-level shift, (2) Waterbirds and
Metashift for concept-level shift, and (3) Camelyon17 for natural shift.

Models. For CIFAR datasets, we use the CLIP:ViT-L/14 (FARE?) (Schlarmann et al., 2024) as a
backbone, which is adversarially fine-tuned to be more robust to (adversarial) low-level perturbations
than standard CLIP variants. We employ CLIP:ViT-L/14 (Radford et al.,[2021)) for Waterbirds and
Metashift. For Camelyon17, we utilize MedCLIP (Wang et al.,|2022)), which is trained to understand
medical images and text jointly, making it suitable for zero-shot tasks in the medical domain.

Preparing the Concept Bottleneck. We evaluate CONDA using three popular approaches for
constructing the concept bottleneck: (1) using a general-purpose concept bank where natural lan-
guage concept descriptions and modern vision-language models (e.g., Stable Diffusion (Rombach
et al., |2022)) are being leveraged to automatically generate concept examples for finding concept
vectors (Yuksekgonul et al.,[2023;Wu et al.l |2023b); (2) unsupervised learned concepts where concept
vectors are learned via optimization to maximize the concept-based prediction accuracy (Yeh et al.}
2020); and (3) employing GPT-3 with appropriate filtering to discover a tailored set of concepts for
the bottleneck (Oikarinen et al., [2023)).

Metrics. We report the performance in terms of two metrics: averaged group accuracy (AVG) and
worst-group accuracy (WG). AVG is the average (per-class) accuracy across the classes, and WG is
the minimum (per-class) accuracy across the classes.

4.2 RQ1: EFFECTIVENESS OF CONDA UNDER REAL-WORLD DISTRIBUTION SHIFTS

Table [T] presents our main results evaluating the effectiveness of CONDA on different real-world
distribution shifts, when combined with different CBM baselines. First of all, we observe that
leveraging the expressive power of the FM feature representations can enhance the performance of
CBMs. For example, using the method from |Oikarinen et al.|(2023), their reported accuracies on
CIFAR10 and CIFAR100 are 86.40% and 65.13% respectively when using the CLIP-RN50 backbone.
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Yuksekgonul et al.|(2023) Yeh et al.|(2020) Oikarinen et al.|(2023)

- ~ - | Unadapted w/CONDA | Unadapted  w/CONDA | Unadapted  w/ CONDA
Source VG 9118 9331 92.55 + 0.05 - 96.26 + 0.11 - 9524 + 0.08

CIFARIO WG 711 88.0 85.64 +0.55 - 90.89 + 0.97 - 90.11 +0.76 -
Targer AVO | 66.68 L1588 BLITL1.54 [ 8261 £165 8438152 [89.76£ 110 8514129 [ 81224277 8456L3.11
WG | 55.04£205 71.37+£3.33 | 68.62£293 72.69 4249 | 7828 £243  76.09 & 1.66 | 69.03 =247 72.88 +2.01

Source VG 62.73 66.67 65.98 £ 0.10 - 83.87 £ 0.04 - 68.36 + 0.09 -

CIEAR100 WG 5.12 428 95+ 1.14 - 51.0 £ 1.40 - 12,09 £ 123 -
Targer AVO | STO0E176 5530+ 1,63 [S153£0.13 5388+023 [ 7233:£015 70822020 [ 5216014 5479 £ 1.17
WG | 173404 2474049 | 2804071 256027 | 30.60+ 142 28444095 | 6324038 601 +0.22

Source VG 82.61 97.28 97.78 £ 0.16 - 98.80 + 0.04 - 98.80 £ 0.17 -

Waterbirds WG 6745 94.86 96.31 +0.38 - 98.21 +0.08 - 97.03 +0.26 -
Tuger AV 61.06 53.79 32034058 60.69+0.23 | 45.03£034 61.11+009 | 46.18 042 6271 +£033
WG 42.52 44.70 27.80 £ 124 43.01 +0.46 | 38.74 £ 0.68 41.86 +0.25 | 3529+ 152 44.01 + 0.60

source VG 95.72 97.18 97.94£0.10 - 97.18 £ 0.01 - 98.02 +0.10 -

Metashift WG 9344 96.0 96.94 + 030 - 96.0 + 0.01 - 97.25 +0.10 -
Tuger AV 94.65 81.03 8445+ 139 93.69+020 [ 9053+£0.09 9381+0.13 | 8372+£221 93.90 £0.13
WG 92.81 65.03 73.89 £321 92024012 | 84.84 £020 91414026 | 7541 +£1.68 91.77 £0.12

source VG 53.09 79.89 £ 0.05 | 76.92 + 0.06 - 94.58 £0.10 - 79.15 £ 0.08 -

Camelyonl7 WG 11.75 79.28 £ 0.01 | 7621 +0.16 - 92.20 + 044 - 78.01 £ 0.15 -
Tuger AV 48.87 68.37+£0.07 | 6735+£0.12 67.56+0.11 | 8872+ 0.28 86.04£0.19 | 6629+ 0.18 67.05+ 0.08
WG 14.66 68.32+0.05 | 62.15+0.19 6536014 | 8142+ 1.15 8101+ 1.65 | 59354+ 0.21 65.17+0.14

Table 1: Performance of CONDA on different distribution shifts when combined with different CBM baselines.
Zero-shot (ZS) and Linear probing (LP) are the non-interpretable FM baselines. Low-level shifts are covered by
the CIFAR datasets, concept-level shifts by Waterbirds and Metashift, and natural shifts by the Camelyon17
benchmark. CONDA significantly improves the AVG and WG accuracy on the target domain in many scenarios.

In our experiments, by employing the adversarially fine-tuned CLIP-ViT-L/14, we achieve higher
accuracies of 95.24% and 68.36% respectively (source domain). This demonstrates the potential for
improved utility in concept-based interpretable pipelines as foundation models continue to get better.

However, this improved performance in the source domain often does not translate to robustness
post-deployment. Under low-level shifts, the performance of CBMs may be comparable to that of
non-interpretable counterparts (ZS and LP), but is not inherently more robust to low-level shifts. The
performance drop is particularly severe under concept-level shifts when the CBM is not adapted. But
with adaptation using CONDA, the test-time accuracy under different distribution shifts increases
significantly in most cases. The performance is on par with or even surpasses that of the non-
interpretable methods, particularly in terms of the WG accuracy.

4.3 RQ2: EFFECTIVENESS OF INDIVIDUAL COMPONENTS OF CONDA

We now analyze the individual contributions of the components in CONDA: CSA, LPA, and RCB.
Figure[3]illustrates the relative AVG and WG (%) when adapting the CBM of [Yeh et al.| (2020). Under
low-level shifts, CSA plays a crucial role in performance improvement by encouraging the high-level
concept scores to remain similar. Interestingly, using CSA alone even surpasses the performance
achieved when all components are combined. This trend is also observed with the Camelyon17
dataset, which resembles a low-level shift due to lighting differences across hospitals. On the other
hand, under concept-level shifts, LPA and RCB become the key contributors. These components
allow the model to adjust concept reliance to the target domain and address the incompleteness of the
deployed concept set, tailoring it to the target data. In this context, CSA has minimal impact, while
using only LPA leads to performance gains comparable to, or even exceeding those achieved when
all components are included.

This phenomenon aligns with the findings of |Lee et al.|(2023) that fine-tuning only a subset of layers
can be more effective than fine-tuning all layers, depending on the type of distribution shift. In our
case, the concept-based prediction pipeline can be considered a special instance of their framework
with a two-layer classifier. The concept bottleneck layer corresponds to the first layer, which is
particularly effective in addressing input-level shifts (following their definition), while the linear
probing layer corresponds to the second layer, which is more effective in handling output-level
shifts (see Section 3 of their paper). These empirical observations confirm our design motivation for
CONDA: different components play specific roles in adapting to different types of distribution shifts.
4.4 RQ3: INTERPRETABILITY OF CONDA

We investigate how the concept-based explanations change through adaptation by CONDA. In Fig-
ure 4al we present the top five most prominent concepts contributing to the predictions for each class.
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Figure 3: Effectiveness of individual components of CONDA for the CBM method of |Yuksekgonul et al.|(2023).
We report the relative AVG and WG, which is the (accuracy after adaptation) — (accuracy before adaptation).
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Figure 4: CONDA adapts the concept weights to be tailored to the target data. We visualize the linear

probing layer weights (width of each mapping) before vs after applying CONDA to|Yuksekgonul et al.|(2023)
with Watershift data. We only show the mappings with positive weights.

As expected, in the source domain, land-related concepts are most important for predicting “landbird”,
and do not positively contribute to “waterbird”, and vice versa for water-related concepts. After
adapting to the target domain, we observe adjustments in the concept-to-class mappings. Notably,
land-related concepts begin to positively contribute to the prediction of “waterbird”. This shift indi-
cates that CONDA successfully adapts the concept-based explanations to reflect the new correlations

in the target domain. Moreover, in the original concept bottleneck constructed following
(2023D)), there were no bird-related concepts that could help make robust predictions independent of
spurious background correlations. By employing RCB with five residual concepts, we identified that

three of them correspond to bird-related concepts: feathers, wings, and beakﬁ This demonstrates that

CONDA adapts in a manner aligned with human intuition, just like a human intervening in CBMs to

correct predictions. More importantly, RCB captures concepts that may have been missed during the

initial construction of the concept bottleneck, enhancing both interpretability and robustness.

5 CONCLUSIONS AND FUTURE WORK

This work made the first attempt to study the post-deployment performance of concept bottlenecks for
foundation models. We formalized potential failure modes under low-level and concept-level distribu-
tion shifts and proposed a novel test-time adaptation framework. Each component of our framework
is designed to address specific failure modes, effectively improving the test-time performance of a
deployed CBMs. Limitations and Future work are discussed in Appendix [A3]

*To interpret the residual concepts, we use automated concept annotations; see details in Appendix
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REPRODUCIBILITY STATEMENT

We fully comply with the reproducibility policy. Relevant implementation details, hyperparameters,
and experimental setups are further clarified in Appendix[B.1] Additionally, we provide a source code
in an anonymized repository athttps://anonymous.4open.science/r/CONDA-D7AE/,
which contains the code necessary to reproduce the key results presented in the paper.
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APPENDICES

A ALGORITHMIC DETAILS

A.1 TEST-TIME ADAPTATION IN CONDA

Here we describe the comprehensive algorithm of CONDA.

Algorithm 1 CONDA: CONCEPT-BASED DYNAMIC ADAPTATION

Inputs: Foundation model ¢(x). Source domain CBM: C,, W, b. Concept scores distribution
statistics: {(fty, Xy)}yey. Unlabeled test dataset D;.

1: Set constants and hyper-parameters:

# batches B, # gradient steps ngraq, # residual concepts r
Regularization constants: Afrob, Asparses Asim» Acoh

2: Initialize the main CBM branch using source domain parameters: C=C;,W=W; b=hb,.
3: Initialize the residual CBM branch parameters C W b randomly.
4: Split the test dataset randomly into B fixed-size batches {D?}2 ;.

5: forbatch b=1,2,--- , B do

6: Pseudo-labeling: Using the foundation model, take an ensemble of the zero-shot predictor
and the linear-probing predictor to obtain pseudo-labels for the test batch.

CSA Step: Adapt C with the remaining parameters fixed at their current values.

o forstep i =1,2, -, Ngraq do
9: Compute the intra-class and inter-class Mahalanobis distances for the pseudo-labeled test
batch D? (Eqns. EI and
10: Compute the CSA adaptation objective Lesa (C) (Eqns. [8]and [9).
11: Perform a gradient descent step to update C.
12:  end for

13:  LPA Step: Adapt (W, b) with the remaining parameters fixed at their current values.

14: forstep ¢ = 1,2, -+ ,ngrq do

15: Compute the Elastic-net regularization term Lsparse(W) (Eqn. .
16: Compute the LPA adaptation objective Ly pa (W, b) (Eqn. [L1).

17: Perform a gradient descent step to update W, b.

18:  end for

19:  RCB Step: Adapt (6, \7\7, B) with the remaining parameters fixed at their current values.

20:  forstep i = 1,2, - Ngrq do

21: Compute the cosine similarity regularization term Ly (C) (Eqn. .
22: Compute the coherency regularization term Lcoh(é) (Eqn. .

23: Compute the RCB adaptation objective Lrcg(C, W, b) (Eqn. .
24: Perform a gradient descent step to update 6, W, b.

25:  end for

26:  Using the adapted parameters, obtain the target domain CBM predictions f, (Cbm)( ) for the
current batch (Eqn. [5).

27:  Initialize parameters for the next batch using the adapted parameters from the current batch.
28: end for

Outputs: Predictions of the target domain CBM on the test dataset. Final adapted parameters of the
target domain CBM: C;, W,, by, Ch Wt, bt
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A.2 AUTOMATICALLY ANNOTATING CONCEPTS

Adopt and modify CLIP-DISSECT (Oikarinen & Weng},2023) as follows.

Say S is the set of potential annotations. We use ConceptNet[Speer et al.|(2017) to obtain texts that
are relevant to the classes. ConceptNet is an open knowledge graph, where we can find concepts
that have particular relations to a query text. For instance, for a class “cat”, one can find relations
of the form “A Cat has {whiskers, four legs, sharp claws, ..}”. Similarly, we can find “parts” of a
given class (e.g., “bumper”, “roof” for “truck”), or the superclass of a given class (e.g., “animal”,
“canine” for “dog”). Following the setup in|Yuksekgonul et al.|(2023), we restrict ourselves to five
sets of relations for each class: the hasA, isA, partOf, HasProperty, MadeOf relations in ConceptNet.
We collect all concepts that have these relations with classes in each classification task to build the
concept subspace. But for Waterbirds dataset, since the classes of {“waterbird”, “landbird”} is too
specific terminologies, and we cannot find relevant nodes in ConceptNet, we instead use {“bird”,
“water”, “land”} as the query. When we have the concept annotations for the main concept bottleneck
from before-deployment (e.g., | Yuksekgonul et al.[(2023)); |Oikarinen et al.| (2023); /Wu et al.|(2023b),
we set S as the union set of those pre-defined concepts and those identified by ConceptNet.

Let D; be the entire target domain test set. Let ¢, ;» and ¢, ;p be the image encoder and text encoder
of CLIP:ViT-B/16. Recall that ¢ is the backbone foundation model used in our framework.

To determine the annotation for i-th concept ¢, € C;: our goal is to assign an appropriate t, € S as
follows,

1. Compute the normalized text embedding of concepts in S using ¢ p; let 7} be the normal-
ized text embedding of the j-th concept in S. Also, compute the image embedding of all
images in D; using gbéup; let I; be the image embedding of the i-th data in D;. Then we
take the inner product of the two; the image-text matrix P = I x T’ € RIP:/XIS| where
I € RIPtIXd and T € RISI*4 and d is the dimension of the CLIP embeddings. That is, P ;
is the inner product of the normalized embeddings of i-th target image and j-th candidate
annotation.

2. For all images in the target dataset, compute and collect their concept scores, v, =
{{¢(xi), ca) }xiep, € RIPAL.

3. The annotation for c, is determined by calculating the most similar concept in S with
respect to the its concept scores V. The similarity is defined as,

Ve, P)

sinlti, ve,i P) = [T A]

15)
which is the cosine similarity between the corresponding concept scores and the correspond-
ing column of image-text matrix, P. 4, and s im(ve,, P)R'S I, Then, the annotation for c,
becomes the concept in S with the maximum similarity; b = arg max; sim(t;, ve,; P).
Note that we only accept ¢ as the annotation of ¢, only when sim(¢;, ve,; P) > 0.8.

To annotate the concepts in our residual concept bottleneck C, we repeat the same process.

A.3 LIMITATIONS AND FUTURE WORK.

As noted in the results of Section we acknowledge that the effectiveness of our framework is
limited by the inherent robustness of the backbone foundation model, especially due to its reliance on
pseudo labels.

We note that there are instances where our adaptation does not yield improvements with the CBM
method of Yeh et al.[(2020). In cases such as the CIFAR datasets and Camelyon17, the unadapted
CBM already outperforms ZS or LP in the target domain, and adaptation using pseudo-labels based
on these methods can negatively impact its performance. This is likely because the concept learning
algorithm in|Yeh et al.| (2020)) is designed to optimize accuracy, with the concept bottleneck layer
serving as an additional layer that can be optimized alongside the subsequent LP layer. However, a
caveat of this approach is that the interpretability of the concept bottleneck is not guaranteed, whereas
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methods like | Yuksekgonul et al.|(2023)) and |Oikarinen et al.[(2023) provide clear textual annotations
for concepts, enhancing interpretability.

Future work could involve employing more sophisticated pseudo-labeling techniques or robustifying
the foundation model itself. Despite these limitations, we believe our work is an important first step
toward leveraging off-the-shelf foundation models in interpretable decision-making processes while
preserving post-deployment utility. Our framework stands to benefit further from the rapid evolution
of foundation models.

When the backbone foundation model remains robust (e.g., against low-level shifts with less severity
or concept-level shifts), concept-based predictions get more brittle than feature-based predictions.
When the backbone foundation model is not robust (e.g., against low-level shifts with severity level
5), concept-based predictions indeed remain more robust than feature-level predictions; see Table

Dataset 2z | | Yuksekgonul et al. (2023 | Yeh et al. (2020}
i ‘ w/o adaptation +CSA +LPA +CSA +LPA ‘ w/o adaptation +CSA +LPA +CSA +LPA

AVG | 0.957 | 0.972 | 0.979 +0.001 - - - 0.972 +0.001

WG | 0.934 | 0.960 | 0.969 + 0.003 - - - 0.960 £ 0.001 - - -

AVG | 0.705 | 0.835 | 0.890 +£0.006 0.620 +0.049 0.713 +£0.005 0.676 + 0.009 | 0.840 £0.009 0.834 £0.009 0.749 £0.008 0.690 £ 0.005
WG | 0460 | 0.720 | 0.850 £0.013 0.279 £0.110 0.476 £0.017 0.398 £0.018 | 0.712£0.018 0.700 £0.020 0.512+0.016 0.400 +0.010

Source

Target

Table 2: Negative results of our test-time adaptation. In the target domain, the model faces
Metashift images with random Gaussian noise|Hendrycks & Dietterich|(2019). When the performance
of zero-shot inference is poor in the target domain, the pseudo-label cannot serve as a reliable reference
for the test-time adaptation.

B EXPERIMENTS

B.1 EXPERIMENTAL DETAILS

All the experiments are run on a server with thirty-two AMD EPYC 7313P 883 16-core processors,
528 GB of memory, and four 884 Nvidia A100 GPUs. Each GPU has 80 GB of 885 memory. For
each setup, we repeated each experiment for 10 trials (using seed 40-49) and report the mean and
standard error.

2.1 DATASETS

CIFARI10. It consists of 60k RGB images of size 32x32 (50k images for the train set, and 10k images
for the test set), equally balanced over 10 different classes (e.g., airplane, car, dog, cat, etc.). We
follow the given train/test split to report the performance in the source domain.

CIFAR100. It is similar to CIFAR10, but in a larger-scale; there are 100 classes, and each class has
500 32x32 RGB training images and 100 test images, making the classification more challenging.

CIFAR10-C and CIFAR100-C. To report the accuracies, we take the average over 15 different
types of corruptions with the severity level of two (out of the scale from one to five); Gaussian
Noise, Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow,
Frost, Fog, Brightness, Contrast, Elastic, Pixelate, JPEG Compression. Conventionally, studies in
out-of-distribution generalization literature, severity level five is used, but we observe that it severely
hurts the performance of the foundation model, making it impossible to be used as a decent oracle for
the pseudo labeling. Hence, we chose the severity level that is still causing the performance drop
due to the distribution shift, but against which, the backbone model still presents decent performance
compared to the CBMs.

Waterbirds. Waterbirds dataset is for a two-class classification task (“landbird” vs. “waterbird”).
In the source domain, landbird (waterbird) images are always associated with the land (water)
background, while in the target domain, the correlation with the background is flipped, i.e., landbird
(waterbird) images are always on the water (land) background.

Metashift. Metashift has two classes of “cat” and “dog”, and it simulates the disparate correlation to
the backgrounds in a similar way. Source cat images are always correlated with a sofa or bed in the
background, while dog images are always correlated with a bench or bike in the background. For

16



Under review as a conference paper at ICLR 2025

evaluation, we randomly split 90:10 equally across the correlation types, i.e., 10% of dog images with
sofa, 10% of dog images with bed, 10% of cat images with bench, and 10% of cat images with bike.

Camelyon17. This dataset is a collection of histopathology whole-slide images used for the detection
of metastases in lymph nodes; classifying the given slide into benign tissue vs cancerous tissue. It
includes images from five medical centers, each with different staining protocols, equipment, and
imaging settings. These differences simulate natural real-world distribution shifts. We use the train
set (hospital 1-3) for source, and the test set (hospital 5) for target.

2.2 PREPARING CONCEPT BOTTLENECK

Preparing the concept bottleneck. There are various ways of defining the concept vectors {cs; }7 ;
in the concept prediction layer v, (x) (see Appendix ?? for detailed discussion). Early works on
CBM required the training dataset to have concept annotations from domain experts in addition to the
class labels for training the concept predictor (Koh et al.,[2020). Subsequent works have also explored
learning the concept vectors in an unsupervised manner (without any concept annotations) (Yeh et al.|
2020; |Choi et al., [2023). More recently, natural language concept descriptions and modern vision-
language models (e.g., Stable Diffusion (Rombach et al.,[2022)) are being leveraged to automatically
generate concept examples (Yuksekgonul et al.l [2023; 'Wu et al.| 2023b) for finding the Concept
Activation Vectors (CAVs) (Kim et al.,2018)) (each CAV corresponds to a cg;), or to directly guide
the construction of concept bank C; (Oikarinen et al.,[2023). We highlight that in all prior works (to
our knowledge) the concept bank remains static, i.e., once the set of concept vectors is defined and
the CBM is deployed, its predictions are made based on these predefined concepts, regardless of any
distribution shift at test time.

Yuksekgonul et al.| (2023). For CIFAR10 and CIFAR100, we use the BRODEN visual concepts
datasets [Bau et al.[(2017)) to learn concept activation vectors, which are used to initialize the weights
and bias parameters of the concept bottleneck layer, as described in [Yuksekgonul et al.|(2023). For
Waterbirds and Metashift, we use the images belonging to the concept categories as follows; nature,
color, and textures for Waterbirds, and nature, color, texture, city, household, and others for Metashift.
For Camelyon17, we use color and textures categories, following the setting in|Wu et al.| (2023b).

Yeh et al.| (2020). For fair comparison, we set the number of the concepts to be the same as the size
of concept bottleneck by [Yuksekgonul et al. (2023)) except with Metashift where we use 100 concepts
instead, since with over 100 concepts, we found there are much unnecessary redundancy between
them.

Oikarinen et al. (2023). Following their instructions, we create the initial concept set using GPT-3,
followed by concept filtering. For the sparsity of the linear probing layer, we set A = 0.001 and
a=0.5.

Table 3] shows the summary of the major hyperparameters used in the experiments.

Dataset ‘ Backbone ‘ Batch Size ‘ # Epochs ‘ Ir (CSA, LPA, RCB) ‘ Adaptation steps ‘ { Aftobs Asparses Asims Acoh }
CIFAR10 CLIP:ViT-L-14 (FARE?) 128 50 Adam, 0.01 50 {0.1,1.0,0.1,2.0}
CIFAR100 | CLIP:ViT-L-14 (FARE?) 512 50 Adam, 0.01 50 {0.1,1.0,0.1,2.0}
Waterbirds CLIP:ViT-L-14 32 20 SGD, 0.1 20 {2.5,1.0,0.1,0.1}
Metashift CLIP:ViT-L-14 32 20 SGD, 0.1 50 {5.0,2.0,1.0,0.1}

Camelyonl7 MedCLIP 64 30 SGD, 0.01 20 {0.5,1.0,0.5,1.0}

Table 3: Overview of parameters used in the experiments.
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