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ABSTRACT

Algorithms that balance the stability-plasticity trade-off are well-studied in the
continual learning literature. However, only a few of them focus on obtaining
models for specified trade-off preferences. When solving the problem of continual
learning under specific trade-offs (CLuST), state-of-the-art techniques leverage
rehearsal-based learning, which requires retraining when a model corresponding
to a new trade-off preference is requested. This is inefficient since there exist in-
finitely many different trade-offs, and a large number of models may be requested.
As a response, we propose Imprecise Bayesian Continual Learning (IBCL), an
algorithm that tackles CLuST efficiently. IBCL replaces retraining with constant-
time convex combination. Given a new task, IBCL (1) updates the knowledge
base in the form of a convex hull of model parameter distributions and (2) gener-
ates one Pareto-optimal model per given trade-off via convex combination with-
out any additional training. That is, obtaining models corresponding to specified
trade-offs via IBCL is zero-shot. Experiments whose baselines are current CLuST
algorithms show that IBCL improves by at most 45% on average per task accuracy
and by 43% on peak per task accuracy, while maintaining a near-zero to positive
backward transfer. Moreover, its training overhead, measured by number of batch
updates, remains constant at every task, regardless of the number of preferences
requested. Details at: https://github.com/ibcl-anon/ibcl.

1 INTRODUCTION

Continual learning (CL), also known as lifelong machine learning, is a special case of multi-task
learning, where tasks arrive in temporal sequence one-by-one (Chen and Liu, 2016; Parisi et al.,
2019; Ruvolo and Eaton, 2013b; Thrun, 1998). Two key properties matter for CL algorithms: stabil-
ity and plasticity (De Lange et al., 2021). Here, stability means the ability to maintain performance
on previous tasks, not forgetting what the model has learned, and plasticity means the ability to
adapt to a new task. Unfortunately, these two properties are conflicting due to the multi-objective
optimization nature of CL (Kendall et al., 2018; Sener and Koltun, 2018). For years, researchers
have been balancing the stability-plasticity trade-off. However, few have discussed the problem of
learning models for specifically given trade-off points. In this paper, we focus on such a problem,
which we denote as CL under specific trade-offs (CLuST).

Why is CLuST important? First, in certain scenarios, it is important to explicitly specify how much
stability and plasticity are needed, in order to obtain one customized model per trade-off preference.
Second, when there exist a large number of preferences, the efficiency of training every customized
model matters. Otherwise, the training cost accumulates over all preferences and becomes pro-
hibitive. Therefore, we not only seek a solution for CLuST, but also an efficient one.

Let us consider an example of a movie recommendation system. The model is first trained to rate
movies in the sci-fi genre. Then, a new genre, e.g., documentaries, is added by the movie company.
The model needs to learn how to rate documentaries while not forgetting how to rate sci-fis. Train-
ing this model boils down to a CL problem. The company now wants to build a recommendation
system that adapts to users’ tastes in movies. For example, Alice has equal preferences over sci-fis
and documentaries. Bob, however, wants to watch only documentaries and has no interest in sci-fis
at all. Consequently, the company aims to train two customized models for Alice and Bob, respec-
tively, to predict how likely a sci-fi or a documentary is to be recommended. Based on individual
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Figure 1: A Bayesian view of a Pareto-optimal distribution q′ and a non-Pareto-optimal distribution q′′.

preferences, Alice’s personal model should balance between the accuracy in rating sci-fis and rating
documentaries, while Bob’s model allows to compromise the accuracy in rating sci-fis to achieve
a high accuracy in rating documentaries. As new genres are added, users should be able to input
their preferences over all available genres to obtain customized models. Since there could be a large
number of different users, and each user’s taste in movie genres would vary over time, the movie
company should implement models that adapt to a potentially infinite number of preferences. The
cost would be prohibitive if the company had to train one model per distinct preference.

To formalize the CLuST problem, we take a Bayesian perspective, where learnable model param-
eters are viewed as random variables (Farquhar and Gal, 2019; Kessler et al., 2023; Nguyen et al.,
2018). As illustrated in Figure 1, we consider all parameter distributions living in a metric space.
This metric can be any valid metric for distributions, such as the 2-Wasserstein distance (Deza and
Deza, 2013). The figure shows an example of two tasks, with their ground-truth distributions be-
ing q1 and q2, respectively. From this setup, a distribution emphasizing stability (at task 2) is a
distribution closer to q1 than q2, and one prioritizing plasticity is closer to q2 than q1. Notice that ir-
respective of the desired stability-plasticity trade-off, we want the distribution to be Pareto-optimal,
which loosely means that there is no way to improve such a distribution by making it closer to both
q1 and q2. We can see that Pareto-optimality is equivalent to being inside the convex set enclosed
by q1 and q2. For example, q′ in the figure is a Pareto-optimal distribution, while q′′ is not. With
this setting, we can specify a trade-off point using a preference vector (Mahapatra and Rajan, 2020;
2021) w̄ = (w1, w2), where w1, w2 ≥ 0 and w1+w2 = 1. The preferred Pareto-optimal distribution
is therefore a convex combination w1q1 + w2q2.

So far, researchers have already proposed the use of preference vectors to specify trade-off points
in multi-task and continual learning (Gupta et al., 2021; Lin et al., 2019; 2020; Ma et al., 2020).
However, instead of using them as coefficients for convex combinations, state-of-the-art techniques
use them as regularizers in rehearsal-based methods. That is, existing algorithms that aim to
solve CLuST memorize some data di for each task i (for “rehearsal”), and let the loss at task i
be li =

∑i
j=1 wj l(dj), with l being a generic loss function like cross-entropy. There are at least two

drawbacks to this approach. First, rehearsals have to retrain the entire model whenever we have a
new trade-off preference. In plain words, these methods have a training overhead proportional
to the number of preferences at each task. As there exist infinitely many possible preferences,
this boils down to an efficiency issue when there is a large number of preferences, such as a large
number of users in the movie recommendation example. It would be desirable if, instead of retrain-
ing, we could obtain the preferred models by constant-time, training-free operations. Moreover,
rehearsals have to cache data, and stable performance on previous tasks depends on which data can
be memorized.

To overcome these shortcomings faced by CLuST algorithms, we propose Imprecise Bayesian Con-
tinual Learning (IBCL), whose workflow is illustrated in Figure 2. At step 1, upon the arrival of
a new task’s training data, IBCL update its knowledge base (that is, all information shared across
tasks) in the form of a convex set of distributions with finitely many extreme elements (the elements
that cannot be written as convex combinations of one another), called finitely generated credal set
(FGCS) (Caprio et al., 2024). This is done by variational inference from the previous task’s learned
distribution, and the learned distributions serve as extreme elements of the FGCS. Each point in the
FGCS corresponds to one Pareto-optimal distribution on the trade-off polytope of all tasks so far.
Then, at step 2, given any preference vector w̄, IBCL selects the preferred distribution by convex
combination. A parameter region is obtained as a highest density region (HDR) of the distribu-
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Figure 2: The workflow of Imprecise Bayesian Continual Learning (IBCL). Here, we start from 1 prior, but in
practice there may be more than 1 to reduce epistemic uncertainty.

tion selected, which is the smallest parameter set that contains the ground-truth model with high
probability.

IBCL tackles the identified shortcomings as follows. First, IBCL replaces retraining in state-of-
the-art with constant-time, zero-shot convex combination to generate models. It has constant
training overhead per task (to update the FGCS), independent of the number of preferences.
In addition, no cache of data is required, and therefore the stability of our model does not depend
on the data memorized. Experiments on image classification and NLP benchmarks support the
effectiveness of IBCL. We find that IBCL improves on baselines by at most 45% in average per task
accuracy and by 43% in peak per task accuracy, while maintaining a near-zero to positive backward
transfer, with a constant training overhead regardless of number of preferences. We also show that
IBCL has a sublinear memory growth along the number of tasks.

Overall, we have the following contributions: (1) We are the first to rigorously formulate the CLuST
problem, which asks for efficiency upon a large number of preferences (Section 3). (2) We propose
IBCL, a Bayesian CL algorithm to solve the CLuST problem (Section 4). (3) We experiment on
standard image classification and NLP benchmarks to support our claims (Section 5).

2 BACKGROUND

Our algorithm hinges upon the concepts of finitely generated credal set (FGCS) from Imprecise
Probability (IP) theory (Augustin et al., 2014; Caprio et al., 2024; Walley, 1991).
Definition 1 (Finitely Generated Credal Set). Given a finite set of probability distributions {qj}mj=1,
a finitely generated credal set (FGCS) is the convex set

Q =

q : q =

m∑
j=1

βjqj ,∀j βj ≥ 0,

m∑
j=1

βj = 1

 . (1)

In other words, FGCS Q is the convex hull CH({qj}mj=1) of finitely many distributions {qj}mj=1.
That is, given a finite collection of distributions {qj}mj=1 (that we call the extreme elements of the
credal sets, and denote by ex[Q]), Q is the collection of all probability distributions q that can be
written as a convex combination of the qj’s. If the state space is finite, then the qj’s can be seen as
probability vectors, whose entries represent the probability mass assigned by distribution qj to the
elements of the state space.

Next, we borrow the idea of highest density region (HDR) (Coolen, 1992).
Definition 2 (Highest Density Region). Let θ ∈ Θ be a continuous random variable following
a probability density function (pdf) q, with Θ being a set of interest. Given a significance level
α ∈ [0, 1], the (1− α)-HDR is a subset Θα

q ⊂ Θ, such that∫
Θα

q

q(θ)dθ ≥ 1− α, and
∫
Θα

q

dθ is minimal. (2)
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In equation 2, requiring that
∫
Θα

q
dθ is minimal corresponds to requiring that Θα

q has the smallest
possible cardinality (i.e. the least possible number of elements). Indeed, if Θ is finite, it can be
replaced by “|Θα

q | is minimal”. Since we consider the most general case (in which set Θ may be
uncountable), we must use the integral notion in place of cardinality, as pointed out, e.g., in Coolen
(1992). In turn, equation 2 tells us that Θα

q is the set having the smallest number of elements that also
satisfies Prθ∼q[θ ∈ Θα

q ] ≥ 1 − α, provided that θ ∼ q. A detailed explanation with an illustrated
example of Definition 2 is in Appendix B.

We are also interested in Bayesian Continual learning (BCL) (Nguyen et al., 2018), as follows.

Definition 3 (Bayesian Continual Learning). BCL is a class of CL procedures, which starts with a
prior distribution q0. At a task i ∈ {1, 2, ...}, we are given i.i.d. training data {(xs, ys)}ni

s=1 ⊂ X×Y
of inputs and outputs (the x’s and y’s, respectively). The Bayesian model is updated from prior
distribution qi−1 to posterior qi using the labeled data. Then, qi used as a prior in task i+ 1.

Other related works, including multi-task and continual learning, are reviewed in Appendix C.

3 FORMULATING THE CLUST PROBLEM

In this section we formalize the CLuST problem. We consider domain-incremental learning (Van de
Ven and Tolias, 2019) for classification models, with an unbounded number of stability-plasticity
trade-off preferences at each task. The goal is to construct a learning algorithm with training over-
head independent of the number of preferences, and that enjoys performance guarantees.

3.1 ASSUMPTIONS

Let X be the space of inputs, and Y be the space of labels. In a typical classification problem, X
will be a subset of a Euclidean space, and Y a finite set. In a typical regression problem, Y will
too be a subset of a Euclidean space. In general, we do not limit ourselves to either scenario. As
a consequence, we let the input and the output spaces be generic sets. Call ∆XY the space of all
possible distributions on X × Y . A task i is associated with a distribution pi ∈ ∆XY , from which
labeled data can be i.i.d. drawn. We assume that all tasks are similar to each other.

Assumption 1 (Task Similarity). For all task i, pi ∈ F , where F is a convex subset of ∆XY . Also,
we assume that the diameter of F is some r > 0, that is, supp,q∈F ∥p − q∥W2 ≤ r, where ∥ · ∥W2

denotes the 2-Wasserstein distance.

The reason for choosing the 2-Wasserstein metric is that it enables easy computation of convex
combination of distributions. Under this metric, the weighted sum of distributions can be derived
from a weighted sum of means and standard deviations. Details are in Appendix D.

Notice that Assumption 1 does not tell us that all tasks have the same distribution, but merely that
the true data generating processes pertaining to different tasks are not too distant from one another.
In addition, such a notion of “being not too distant” is entirely in the hands of the user, via the choice
of radius r and of the metric to endow ∆XY . This is rather natural: for the time being, we do not
expect e.g. a robot to be able to fold our clothes (task 1), and then deliver a payload in a combat
zone (task 2). Assumption 1 is needed to mitigate the possible model misspecification, which in turn
could lead to catastrophic forgetting even when Bayesian inference is carried out exactly ((Kessler
et al., 2023) and Appendix E).

More formally, under Assumption 1, for any two tasks i and j, their underlying distributions pi and
pj are “close enough”, i.e. ∥pi− pj∥W2

≤ r. Moreover, since F is convex, any convex combination
of task distributions belongs to F . Next, we assume the parameterization of class F .

Assumption 2 (Parameterization of Task Distributions). Every distribution F inF is parameterized
by θ, a parameter belonging to a parameter space Θ.

An example of a parameterized family that satisfies Assumption 1 is given in Appendix F. Notice
that all tasks share the same input space X and label space Y , and we do not have task ids as an
additional input, so the learning is domain-incremental (Van de Ven and Tolias, 2019). We then
formalize stability-plasticity trade-off preferences over tasks.
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Definition 4 (Stability-plasticity Trade-off Preferences over Tasks). Consider k tasks with under-
lying distributions p1, p2, . . . , pk. We express a stability-plasticity trade-off preference (or simply,
a preference) over them via a probability vector w̄ = (w1, w2, . . . , wk)

⊤, that is, wi ≥ 0 for all
i ∈ {1, . . . , k}, and

∑k
i=1 wi = 1.

Based on this definition, given a preference w̄ over all k tasks encountered, the personalized model
for the user aims to learn the distribution pw̄ :=

∑k
i=1 wipi. It is the distribution associated with

tasks 1, . . . , k that also takes into account a preference over them. Since pw̄ is the convex combi-
nation of p1, . . . , pk, thanks to Assumptions 1 and 2, we have that pw̄ ∈ F , and therefore it is also
parameterized by some θ ∈ Θ.

The learning procedure is Bayesian domain-incremental learning. That is, the learning follows BCL
as in Definition 3, and all data and label distributions are similar, as per Assumption 1, without any
knowledge of task id’s. Then, at any task k, we are given at least one user preference w̄ over the
k tasks so far. The data drawn for task k + 1 will not be available until we have finished learning
models for all preferences at task k.

3.2 MAIN PROBLEM

We aim to design a domain-incremental learning algorithm that generates one model per preference
over tasks , with unbounded number of preferences and tasks. Given a significance level α ∈ [0, 1],
at any task k, the algorithm should satisfy:

1. Zero-shot preferred model generation. Let w̄ be a preference over the k tasks. When there are
more than one preference w̄s, s ∈ {1, 2, . . .}, no training is needed for generating models, for all
s > 1. That is, the model generation for new preferences is zero-shot.

2. Probabilistic Pareto-optimality. Let q̂w̄ denote the convex combination of the estimated pa-
rameter distributions for tasks 1, . . . , k using preference weights w̄. We want to identify the
subset of model parameters having the least amount of members, Θα

q̂w̄
⊂ Θ (written as Θα

w̄ for
notational convenience from now on), that the Pareto-optimal parameter θ⋆w̄ (i.e. the ground-truth
parameter of pw̄) belongs to with high probability, i.e., Prθ⋆

w̄∼q̂w̄ [θ
⋆
w̄ ∈ Θα

w̄] ≥ 1− α.
3. Sublinear buffer growth. The memory overhead for the entire procedure should be growing

sublinearly in the number of tasks.

4 IMPRECISE BAYESIAN CONTINUAL LEARNING

As shown in Figure 2, IBCL performs two steps at each task. First, it updates a knowledge base in
form of an FGCS (Section 4.1). Second, it uses a convex combination of the extreme elements of
the FGCS, instead of retraining, to zero-shot generate models under given preferences (Section 4.2).

4.1 FGCS KNOWLEDGE BASE UPDATE

As discussed in the Introduction, we take a Bayesian Continual Learning (BCL) approach, that is,
the parameter θ of distribution pk pertaining to task k is viewed as a random variable distributed
according to some distribution q.

At the beginning of the analysis, we specify m many such distributions, ex[Q0] = {q10 , . . . , qm0 }.
They are the ones that the designer deems plausible – a priori – for parameter θ of task 1. Upon
observing data pertaining to task 1, we learn a set Qtmp

1 of posterior parameter distributions and
buffer them as extreme elements ex[Q1] of the FGCS Q1 corresponding to task 1. We proceed
similarly for the successive tasks i ≥ 2.

In Algorithm 1, at task i, we approximate m posteriors q1i , . . . q
m
i via variational inference from

buffered priors q1i−1, . . . q
m
i−1 one-by-one (line 3). Variational inference is a standard Bayesian learn-

ing procedure that minimizes the evidence lower bound (ELBO) loss to infer a posterior distribution
from a prior and observed data (Nguyen et al., 2018). However, we do not want to buffer all learned
posteriors, so we use a distance threshold d to exclude the posteriors that are similar to the distri-
butions that are already buffered (lines 4 - 10). When distributions similar to qji (within threshold

5
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Algorithm 1 FGCS Knowledge Base Update
Input: Current knowledge base in the form of FGCS extreme elements ex[Qi−1] =

{q1i−1, . . . , q
m
i−1}, observed labeled data (x̄i, ȳi) = {(x1i , y1i), . . . , (xni , yni)} at task i, and dis-

tribution distance threshold d ≥ 0
Output: Updated extreme elements ex[Qi]

1: Qtmp
i ← ∅

2: for j ∈ {1, . . . ,m} do
3: qji ← variational inference(qji−1, x̄i, ȳi)

4: dji ← minq∈ex[Qi−1] ∥q
j
i − q∥W2

5: if dji ≥ d then
6: Qtmp

i ← Qtmp
i ∪ {qji } ▷ Store distribution qji

7: else
8: qji ← argminq∈ex[Qi−1] ∥q

j
i − q∥W2 ▷ Fetch the stored distribution with minimal

distance to qji , and overwrite qji with a pointer to that distribution
9: Qtmp

i ← Qtmp
i ∪ {qji } ▷ Only a pointer is stored

10: end if
11: end for
12: ex[Qi]← ex[Qi−1] ∪Qtmp

i

d) are found in the knowledge base, we store a pointer to the distribution with minimal distance in
place of qji , and do not memorize qji (lines 8-9). The posteriors that are sufficiently different from
the already buffered distributions are then appended to the knowledge base (line 12).

Notice that the memory overhead of Algorithm 1 is remembering at most m distributions intoQtmp
i

at line 6. In practice, m is a small constant (we choose m = 3 in experiments). Therefore, the
memory complexity is O(1). Moreover, some newly memorized distributions may be discarded
and replaced by a previous distribution in cache at line 8. With larger threshold d at line 5, more
distributions are discarded at lines 8-9. The amortized memory complexity analysis under different
threshold d’s is discussed in our ablation studies, see Section 5.2.

The time complexity of Algorithm 1 is dominated by variational inference at line 3. Every variational
inference costs a non-negligible training time, which we denote as O(v). There are a total of m
variational inferences computed at each task. Since m is a constant, the overall time complexity is
still O(v).

4.2 ZERO-SHOT GENERATION OF USER PREFERRED MODELS

Next, after having updated the FGCS extreme elements for task i, we are given a set of user prefer-
ences. For each preference w̄, we need to identify the Pareto-optimal parameter θ⋆w̄ for the preferred
data distribution pw̄. This procedure can be divided into two steps as follows.

First, we find the parameter distribution q̂w̄ via a convex combination of the extreme elements in the
knowledge base, whose weights correspond to the entries of preference vector w̄. That is,

q̂w̄ =

i∑
k=1

mk∑
j=1

βj
kq

j
k where

mk∑
j=1

βj
k = wk, and βj

k ≥ 0, for all j and all k. (3)

Here, qjk is a buffered extreme point of FGCS Qk, i.e. the j-th parameter posterior of task k. The
weight βj

k of this extreme point is decided by preference vector entry w̄j . In implementation, if
we have mk extreme elements stored for task k, we can choose equal weights β1

k = · · · = βm
k =

wk/mk. For example, if we have preference w̄ = (0.8, 0.2)⊤ on two tasks so far, and we have two
extreme elements per task stored in the knowledge base, we can use β1

1 = β2
1 = 0.8/2 = 0.4 and

β1
2 = β2

2 = 0.2/2 = 0.1.

As we can see from the following theorem, distribution q̂w̄ is a parameter posterior corresponding
to a preference elicitation via preference vector w̄ over the tasks encountered so far.

6
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Theorem 1 (Selection Equivalence). Selecting a precise distribution q̂w̄ from Qi is equivalent to
specifying a preference weight vector w̄ on p1, . . . , pi.

Please refer to Appendix G for the proof. Theorem 1 entails that the selection of q̂w̄ in Algorithm 2
is related to the correct parameterization of pw̄ ∈ ∆XY .

Second, we compute the HDR Θα
w̄ ⊂ Θ from q̂w̄. This is implemented via a standard procedure that

locates the smallest region in the parameter space whose enclosed probability mass is (at least) 1−α,
according to q̂w̄. This procedure can be routinely implemented, e.g., in R, using package HDInterval
(Juat et al., 2022). As a result, we locate the smallest set of parameters Θα

w̄ ⊂ Θ associated with
the preference w̄. This subroutine is formalized in Algorithm 2. Notice that this computation is
simply a convex combination, i.e., a weighted sum of all distributions in ex[Qi]. In practice, the
summation is defined under 2-Wasserstein metric, which takes constant time to compute as detailed
in Appendix D. Therefore, the time complexity is O(1). Also, this algorithm does not produce any
memory overhead.

Algorithm 2 Preference HDR Computation
Input: Knowledge base ex[Qi] with mk extreme elements saved for task k ∈ {1, . . . , i},
preference w̄ on the i tasks, significance level α ∈ [0, 1]
Output: HDR Θα

w̄ ⊂ Θ

1: for k = 1, . . . , i do
2: β1

k = · · · = βm
k ← wk/mk

3: end for
4: q̂w̄ =

∑i
k=1

∑mk

j=1 β
j
kq

j
k

5: Θα
w̄ ← hdr(q̂w̄, α)

4.3 OVERALL IBCL ALGORITHM AND ANALYSIS

From the two subroutines in Sections 4.1 and 4.2, we construct the overall IBCL algorithm as in
Algorithm 3.

Algorithm 3 Imprecise Bayesian Continual Learning
Input: Prior distributions ex[Q0] = {q10 , . . . , qm0 }, hyperparameters α and d
Output: HDR Θα

w̄ for each given preference w̄ at each task i

1: for task i = 1, 2, ... do
2: x̄i, ȳi ← sample ni labeled data points i.i.d. from pi
3: ex[Qi]← fgcs update(ex[Qi−1], x̄i, ȳi, d) ▷ % Algorithm 1 %
4: while user has a new preference do
5: w̄ ← user input
6: Θα

w̄ ← preference hdr comput(ex[Qi], w̄, α) ▷ % Algorithm 2 %
7: end while
8: end for

For each task, in line 3, we use Algorithm 1 to update the knowledge base by learning m posteriors
from the current priors. In lines 5-7, according to a user-given preference over all tasks so far, we
obtain the HDR of the model associated with preference w̄ in zero-shot via Algorithm 2. Notice that
this HDR computation does not require the initial priors ex[Q0], so we can discard them once the
posteriors Q1 are learned in the first task.

The overall time complexity is dominated by the O(v) variational inference in Algorithm 1, used as
a subroutine in line 3. Compared to the variational inference, the O(1) preferred model generation
via convex combination in Algorithm 2 in line 7 is negligible. Therefore, the overall time com-
plexity for n tasks is O(nv), regardless of preferred model generation. Moreover, as the memory
complexity at each task is contributed by O(1) memorization of posteriors by Algorithm 1, the total
memory complexity is O(n). Some of these posteriors will be discarded, as discussed in Section
4.1. Therefore, in the amortized case, Algorithm 3 ensures sublinear buffer growth.
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The following theorem ensures that IBCL locates the user-preferred Pareto-optimal model with high
probability.
Theorem 2 (Probabilistic Pareto-optimality). Pick any α ∈ [0, 1]. The Pareto-optimal parameter
θ⋆w̄, i.e., the ground-truth parameter for pw̄, belongs to Θα

w̄ with probability at least 1 − α under
distribution q̂w̄. In formulas, Prθ⋆

w̄∼q̂w̄ [θ⋆w̄ ∈ Θα
w̄] ≥ 1− α.

Theorem 2 gives us a (1 − α)-guarantee in obtaining Pareto-optimal models for given task trade-
off preferences. In other words, the Pareto-optimal parameter θ⋆w̄ is guaranteed to belong to the
Highest Density Region Θα

w̄ that we build, with high probability. Our algorithm does not find the
parameter θ⋆w̄ itself, but instead the narrowest region Θα

w̄ that contains it with high probability. In
spirit, this result is very similar to what conformal prediction does (for predicted outputs, rather than
parameters of interest) (Angelopoulos and Bates, 2022). Consequently, the IBCL algorithm enjoys
the probabilistic Pareto-optimality targeted by our main problem. Please refer to Appendix G for
the proof.

5 EXPERIMENTS

5.1 SETUP

Due to page limit, detailed setup can be found in Appendix H.

Baselines. Although there exist many baseline methods for CL, only a few baselines for CLuST exist.
The following CLuST baselines are selected for comparison.

1. Rehearsal-based. This is the state-of-the-art technique for CLuST (Lin et al., 2019). These
methods memorize a subset of training data of every task encountered so far. Task preferences
are then given as weights to regularize the loss on each task’s memorized data. We choose GEM
(Lopez-Paz and Ranzato, 2017) and A-GEM (Chaudhry et al., 2018) as two typical rehearsal-
based methods.

2. Rehearsal-based, Bayesian. Since IBCL is a Bayesian method, we also compare it to a
Bayesian technique, VCL (Nguyen et al., 2018). We equip VCL with episodic memory to make
it rehearsal-based, and so to be able to specify a preference. This approach has been used in
(Servia-Rodriguez et al., 2021).

3. Prompt-based. Prompt-based CL has never been used for CLuST and therefore not a state-
of-the-art. Still, they are considered efficient modern CL techniques. Therefore, we made an
attempt to specify preferences on L2P (Wang et al., 2022), a prompt-based method, by train-
ing one learnable prompt prefix per task, and use a preference-weighted sum of the prompts at
inference time.

Benchmarks. We experiment on four standard continual learning benchmarks, including three im-
age classification and one NLP: (i) 15 tasks in CelebA (Liu et al., 2015) (with vs. without attributes),
(ii) 10 tasks in Split CIFAR-100 (Zenke et al., 2017) (animals vs. non-animals), (iii) 10 tasks in
TinyImageNet (Le and Yang, 2015) (animals vs. non-animals) and (iv) 5 tasks in 20NewsGroup
(Lang, 1995) (news related to computers vs. not related to computers). For the first three image
benchmarks, features are first extracted by ResNet-18 (He et al., 2016). For 20NewsGroup, features
are extracted by TF-IDF (Aizawa, 2003). For each benchmark, all tasks share the same input and
label space. There is no task id at training nor inference time, so the algorithm does not know from
which task each data point comes from. Therefore, all experiments are set up as domain-incremental
according to Van de Ven and Tolias (2019).

Metrics. As in standard continual learning evaluation, after training on task i, we evaluate the
accuracy on all testing data of previous tasks j ∈ {1, . . . , i}. To evaluate how well does a model
address preferences, we randomly generate nprefs = 10 preferences per task, except for task 1, whose
preference is always given by scalar 1. Therefore, for each method, we obtain 10 models at each
task, and we evaluate a preference-weighted sum of their accuracies on previous tasks. Finally,
these preference-weighted accuracies are used to compute standard continual learning metrics. The
learning performance is measured by average per task accuracy and peak per task accuracy, and
forgetting is measured by backward transfer (Dı́az-Rodrı́guez et al., 2018).

System. Experiments are run on Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz.
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5.2 RESULTS

Figure 3: Results of 20NewsGroup. Since VCL and IBCL produce probabilistic models, we sample 10 de-
terministic models for each. The solid blue curve illustrates the top performance of deterministic models by
IBCL, and the dashed blue curve is the mean performance. The shaded blue region is the performance range
by IBCL. The same illustration method is used for VCL in green color.

Figure 4: Results of TinyImageNet. The illustration method is the same as in Figure 3.

Figure 5: Results of Split CIFAR-100. The illustration method is the same as in Figure 3.

Figure 6: Results of CelebA. The illustration method is the same as in Figure 3.

Main Results. Our results support the claim that IBCL not only achieves high performance by
probabilistic Pareto-optimality, but is also efficient with zero-shot generation of models.

Since VCL and IBCL output probabilistic models (BNNs and HDRs), we sample 10 deterministic
models from each and compute the range of their performance metrics, illustrated as shaded areas in
Figures 3, 4, 5, 6. They represent performances on the 20NewsGroup, TinyImageNet, Split CIFAR-
100, and CelebA, respectively. In these figures, we draw the curves of top performance and mean
performance of the sampled deterministic models by VCL and IBCL as solid and dashed lines,
respectively.
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Table 1: Training overhead comparison, measured as # of batch updates required at a task. Here, ni: # of
training data points at task i, nprefs: # of preferences per task, nmem: # of data points memorized per task in
rehearsal, npriors: # of priors in IBCL, e: # of epochs and b: batch size. Notice that the overhead of rehearsal
based methods are proportional to nprefs.

# batch updates at task i
# batch updates at last task

CelebA CIFAR100 TImgNet 20News

Rehearsal
GEM nprefs

×(ni + (i− 1)× nmem)
×e/b

99747 19532 13594 35313A-GEM
VCL

Prompt L2P ni × e/b 9538 1250 938 2907
IBCL (ours) npriors × ni × e/b 28614 3750 2814 8721

From Figures 3, 4, 5 and 6, we can see that IBCL overall generates the model with top performance
(high accuracy) in all cases, while maintaining little catastrophic forgetting (near-zero to positive
backward transfer). This is due to the probabilistic Pareto-optimality guarantee. Statistically, IBCL
improves on the baselines by at most 45% on average per task accuracy and by 43% on peak per
task accuracy (compared to L2P in 20News). So far, to our knowledge, there is no discussion on
how to specify a task trade-off preference in prompt-based continual learning, and we only make an
attempt for L2P, which generally works poorly.

As illustrated in the figures, IBCL has a slightly negative backward transfer in the very beginning
but then this value stays near-zero or positive. This shows that although IBCL may slightly forget
the knowledge learned from the first task at the second task, it steadily retains knowledge afterwards.
We can also see how, although VCL’s backward transfer is higher than IBCL’s in the first few tasks,
it eventually decreases and takes values that are nearly identical to, or smaller than, the IBCL ones.
For 20NewsGroup, this happens after 5 tasks, for TinyImageNet after 3 taks, for Split CIFAR-100
after 10 tasks, and for CelebA after 2 tasks.

Table 1 shows the training overhead comparison measured in number of batch updates per task. We
can see how IBCL’s overhead is independent of the number of preferences nprefs because it only
requires training for the FGCS but not for the preferred models. Consequently, our experiments
show that IBCL is able to maintain a constant training overhead per task, regardless of nprefs
while achieving high performance. Although L2P also has this constant overhead, its perfor-
mance is too poor to be acceptable.

Ablation Studies. The main experiments are conducted with hyperparameters d = 0.002, α = 0.01,
equal β’s, and prior distributions specified in Appendix H. We conduct ablation studies on d, α, β
and priors. Due to page limit, details are in Appendix I.

6 CONCLUSION

Overall, we propose a probabilistic continual learning algorithm, namely IBCL, to tackle the CLuST
problem, where an unbounded number of stability-plasticity trade-off preferences may be requested
at each task. The design of IBCL enables not only learning performance, but also efficiency when
solving the CLuST problem, as state-of-the-art methods require optimizing a loss function per pref-
erence, while IBCL only needs convex combinations. Such a benefit applies to various scales of
models. It will be an interesting future direction to find a use case on large-scale models.

Limitations of IBCL. Poorly performing models can also be sampled from IBCL’s HDRs. However,
in practice, we can fine-tune α to shrink down the HDR to avoid poorly performing ones, as shown
in the ablation studies. In addition, for a user-specified preference vector w̄, probability pw̄ is the
optimal distribution under entropy loss. One future research direction is to derive the preference
vector w̄ from some inputs. For example, we may learn this vector from an additional sequence of
prompts (Wu et al., 2024). In that case, the preference vector itself might be different according to
the design, including which loss is used.

Broader Impacts. IBCL is potentially useful in deriving user-customized models from large multi-
task models, due to its not only guaranteed, but also zero-shot, preference addressing. These include
large language models, recommendation systems and other applications.
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APPENDIX A REASON TO ADOPT A BAYESIAN CONTINUAL LEARNING
APPROACH

Let q0(θ) be our prior probability density/mass function (pdf/pmf) on parameter θ ∈ Θ at time
t = 0. At time t = 1, we collect data (x̄1, ȳ1) pertaining to task 1, we elicit likelihood pdf/pmf
ℓ1(x̄1, ȳ1 | θ), and we compute q1(θ | x̄1, ȳ1) ∝ q0(θ) × ℓ1(x̄1, ȳ1 | θ). At time t = 2, we collect
data (x̄2, ȳ2) pertaining to task 2 and we elicit likelihood pdf/pmf ℓ2(x̄2, ȳ2 | θ). Now we have two
options.

(i) Bayesian Continual Learning (BCL): we let the prior pdf/pmf at time t = 2 be the posterior
pdf/pmf at time t = 1. That is, our prior pdf/pmf is q1(θ | x̄1, ȳ1), and we compute q2(θ |
x̄1, ȳ1, x̄2, ȳ2) ∝ q1(θ | x̄1, ȳ1)× ℓ2(x̄2, ȳ2 | θ) ∝ q0(θ)× ℓ1(x̄1, ȳ1 | θ)× ℓ2(x̄2, ȳ2 | θ);1

(ii) Bayesian Isolated Learning (BIL): we let the prior pdf/pmf at time t = 2 be a generic prior
pdf/pmf q′0(θ). We compute q′2(θ | x̄2, ȳ2) ∝ q′0(θ) × ℓ2(x̄2, ȳ2 | θ). We can even re-use
the original prior, so that q′0 = q0.

1Here we tacitly assume that the likelihoods are independent.
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As we can see, in option (i) we assume that the data generating process at time t = 2 takes into
account both tasks, while in option (ii) we posit that it only takes into account task 2. Denote by
σ(X) the sigma-algebra generated by a generic random variable X . Let also Q2 be the probability
measure whose pdf/pmf is q2, and Q′

2 be the probability measure whose pdf/pmf is q′2. Then, we
have the following.

Proposition 1. Posterior probability measure Q2 can be written as a σ(X̄1, Ȳ1, X̄2, Ȳ2)-measurable
random variable taking values in [0, 1], while posterior probability measure Q′

2 can be written as a
σ(X̄2, Ȳ2)-measurable random variable taking values in [0, 1].

Proof. Pick any A ⊂ Θ. Then, Q2[A | σ(X̄1, Ȳ1, X̄2, Ȳ2)] = EQ2
[1A | σ(X̄1, Ȳ1, X̄2, Ȳ2)], a

σ(X̄1, Ȳ1, X̄2, Ȳ2)-measurable random variable taking values in [0, 1]. Notice that 1A denotes the
indicator function for set A. Similarly, Q′

2[A | σ(X̄2, Ȳ2)] = EQ′
2
[1A | σ(X̄2, Ȳ2)], a σ(X̄2, Ȳ2)-

measurable random variable taking values in [0, 1]. This is a well-known result in measure theory
(Billingsley, 1986).

Of course Proposition 1 holds for all t ≥ 2. Recall that the sigma-algebra σ(X) generated by a
generic random variable X captures the idea of information encoded in observing X . An immediate
corollary is the following.

Corollary 1. Let t ≥ 2. Then, if we opt for BIL, we lose all the information encoded in
{(X̄i, Ȳi)}t−1

i=1 .

In turn, if we opt for BIL, we obtain a posterior that is not measurable with respect to
σ({(X̄i, Ȳi)}ti=1) \ σ(X̄t, Ȳt). If the true data generating process pt is a function of the previ-
ous data generating processes pt′ , t′ ≤ t, this leaves us with a worse approximation of the “true”
posterior Qtrue ∝ Q0 × pt.

The phenomenon in Corollary 1 is commonly referred to as catastrophic forgetting. Continual learn-
ing literature is unanimous in labeling catastrophic forgetting as undesirable – see e.g. (Farquhar and
Gal, 2019; Li et al., 2020). For this reason, in this work we adopt a BCL approach. In practice, we
cannot compute the posterior pdf/pmf exactly, and we will resort to variational inference to ap-
proximate them – an approach often referred to as Variational Continual Learning (VCL) (Nguyen
et al., 2018). As we shall see in Appendix E, Assumption 1 is needed in VCL to avoid catastrophic
forgetting.

A.1 RELATIONSHIP BETWEEN IBCL AND OTHER BCL TECHNIQUES

Like (Farquhar and Gal, 2019; Li et al., 2020), the weights in our Bayesian neural networks (BNNs)
have Gaussian distribution with diagonal covariance matrix. Because IBCL is rooted in Bayesian
continual learning, we can initialize IBCL with a much smaller number of parameters to solve
a complex task as long as it can solve a set of simpler tasks. In addition, IBCL does not need to
evaluate the importance of parameters by measures such as computing the Fisher information, which
are computationally expensive and intractable in large models.

A.1.1 RELATIONSHIP BETWEEN IBCL AND MAML

In this section, we discuss the relationship between IBCL and the Model-Agnostic Meta-Learning
(MAML) and Bayesian MAML (BMAML) procedures introduced in (Finn et al., 2017; Yoon et al.,
2018), respectively. These are inherently different than IBCL, since the latter is a continual learning
procedure, while MAML and BMAML are meta-learning algorithms. Nevertheless, given the popu-
larity of these procedures, we feel that relating IBCL to them would be useful to draw some insights
on IBCL itself.

In MAML and BMAML, a task i is specified by a ni-shot dataset Di that consists of a small number
of training examples, e.g. observations (x1i , y1i), . . . , (xni , yni). Tasks are sampled from a task
distribution T such that the sampled tasks share the statistical regularity of the task distribution. In
IBCL, Assumption 1 guarantees that the tasks pi share the statistical regularity of class F . MAML
and BMAML leverage this regularity to improve the learning efficiency of subsequent tasks.

At each meta-iteration i,
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1. Task-Sampling: For both MAML and BMAML, a mini-batch Ti of tasks is sampled from the
task distribution T. Each task τi ∈ Ti provides task-train and task-validation data, Dtrn

τi and Dval
τi ,

respectively.
2. Inner-Update: For MAML, the parameter of each task τi ∈ Ti is updated starting from the

current generic initial parameter θ0, and then performing ni gradient descent steps on the task-
train loss. For BMAML, the posterior q(θτi | Dtrn

τi , θ0) is computed, for all τi ∈ Ti.
3. Outer-Update: For MAML, the generic initial parameter θ0 is updated by gradient descent. For

BMAML, it is updated using the Chaser loss (Yoon et al., 2018, Equation (7)).

Notice how in our work w̄ is a probability vector. This implies that if we fix a number of task k and
we let w̄ be equal to (w1, . . . , wk)

⊤, then w̄ · p̄ can be seen as a sample from T such that T(pi) = wi,
for all i ∈ {1, . . . , k}.
Here lies the main difference between IBCL and BMAML. In the latter the information provided
by the tasks is used to obtain a refinement of the (parameter of the) distribution T on the tasks
themselves. In IBCL, instead, we are interested in the optimal parameterization of the posterior
distribution associated with w̄ · p̄. Notice also that at time k + 1, in IBCL the support of T changes:
it is {p1, . . . , pk+1}, while for MAML and BMAML it stays the same.

Also, MAML and BMAML can be seen as ensemble methods, since they use different values
(MAML) or different distributions (BMAML) to perform the Outer-Update and come up with a
single value (MAML) or a single distributions (BMAML). Instead, IBCL keeps distributions sepa-
rate via FGCS, thus capturing the ambiguity faced by the designer during the analysis.

Furthermore, we want to point out how while for BMAML the tasks τi are all “candidates” for the
true data generating process (dgp) pi, in IBCL we approximate the pdf/pmf of pi with the product∏i

h=1 ℓh of the likelihoods up to task i. The idea of different candidates for the true dgp is beneficial
for IBCL as well: in the future, we plan to let go of Assumption 1 and let each pi belong to a credal
set Pi. This would capture the epistemic uncertainty faced by the agent on the true dgp.

To summarize, IBCL is a continual learning technique whose aim is to find the correct parameteriza-
tion of the posterior associated with w̄ ·p̄. Here, w̄ expresses the developer’s preferences on the tasks.
MAML and BMAML, instead, are meta-learning algorithms whose main concern is to refine the dis-
tribution T from which the tasks are sampled. While IBCL is able to capture the preferences of, and
the ambiguity faced by, the designer, MAML and BMAML are unable to do so. On the contrary,
these latter seem better suited to solve meta-learning problems. An interesting future research direc-
tion is to come up with imprecise BMAML, or IBMAML, where a credal set Conv({T1, . . . ,Tk})
is used to capture the ambiguity faced by the developer in specifying the correct distribution on the
possible tasks. The process of selecting one element from such credal set may lead to computational
gains.

APPENDIX B HIGHEST DENSITY REGION

Equivalently to Definition 2, an HDR is defined as follows (Hyndman, 1996).

Definition 5. Let Θ be a set of interest, and consider a significance level α ∈ [0, 1]. Suppose that a
(continuous) random variable θ ∈ Θ has probability density function (pdf) q.2 The α-level Highest
Density Region (HDR) Θα

q is the subset of Θ such that

Θα
q = {θ ∈ Θ : q(θ) ≥ qα}, (4)

where qα is a constant value. In particular, qα is the largest constant such that Prθ∼q[θ ∈ Θα
q ] ≥

1− α.

Some scholars indicate HDRs as the Bayesian counterpart to the frequentist concept of confidence
intervals. In dimension 1, Θα

q can be interpreted as the narrowest interval – or union of intervals
– in which the value of the (true) parameter falls with probability of at least 1 − α according to
distribution q. We give a simple visual example in Figure 7.

2Here too, for ease of notation, we do not distinguish between a random variable and its realization.
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̂p0.25

y

̂p(y)q(θ)
θ

q0.25

Figure 7: The 0.25-HDR for a Normal Mixture density. This picture is a replica of Figure 1 in (Hyndman,
1996). The geometric representation of “75% probability according to q” is the area between the pdf curve
q(θ) and the horizontal bar corresponding to q0.25. A higher probability coverage (according to q) would
correspond to a lower constant, so qα < q0.25, for all α < 0.25. In the limit, we recover 100% coverage at
q0 = 0.

APPENDIX C ADDITIONAL RELATED WORK

Multi-task Learning under Preferences. Learning for Pareto-optimal models under task perfor-
mance trade-offs has been studied by researchers in multi-task learning (Caruana, 1997; Sener and
Koltun, 2018). Various techniques have been applied to obtain models that address particular trade-
off points (Lin et al., 2019; 2020; Ma et al., 2020; Gupta et al., 2021). The idea of preferences on
the trade-off points is introduced in multi-objective optimization (Lin et al., 2020; Sener and Koltun,
2018), and a preference can guide learning algorithms to search for a particular model. We borrow
the formalization of preferences from (Mahapatra and Rajan, 2020), where a preference is given
by a vector of non-negative real weights w̄, with each entry wi corresponding to task i. That is,
wi ≥ wj ⇐⇒ i ⪰ j. This means that if wi ≥ wj , then task i is preferred to task j. However,
state-of-the-art algorithms require training one model per preference, imposing large overhead when
there is a large number of preferences.

Continual Learning. Continual learning, also known as lifelong learning, is a special case of
multi-task learning, where tasks arrive sequentially instead of simultaneously (Thrun, 1998; Ruvolo
and Eaton, 2013a). In this paper, we leverage Bayesian inference in the knowledge base update
(Ebrahimi et al., 2019). Like generic multi-task learning, continual learning also faces the stability-
plasticity trade-off (De Lange et al., 2021), which balances between performance on new tasks and
resistance to catastrophic forgetting (Kirkpatrick et al., 2017). Current methods identify models
to address trade-off preferences by techniques such as loss regularization (Servia-Rodriguez et al.,
2021), meaning at least one model needs to be trained per preference.

Researchers in CL have proposed various approaches to retain knowledge while updating a model
on new tasks. These include modified loss landscapes for optimization (Farajtabar et al., 2020),
preservation of critical pathways via attention (Abati et al., 2020), memory-based methods (Lopez-
Paz and Ranzato, 2017), shared representations (Lee et al., 2019), and dynamic representations
(Bulat et al., 2020). Bayesian, or probabilistic methods such as variational inference are also adopted
(Ebrahimi et al., 2019; Nguyen et al., 2018).

In BCL (Nguyen et al., 2018), each task is associated with a data generating process (likelihood,
elicited according to the data at hand), parameterized by θ. The latter is postulated to be a random
quantity, which at the beginning of the analysis has a prior distribution, θ ∼ q0. After training on
the available data, the prior distribution is turned into posterior, θ ∼ q1 via Bayes’ theorem. The
posterior q1 is the revised parameter distribution after having learned from the data pertaining to the
first task to complete. It is then used as a prior for the next task.

APPENDIX D 2-WASSERSTEIN METRIC

In the main portion of the paper, we endowed ∆XY with the 2-Wasserstein metric. It is defined as

∥p− p′∥W2 ≡W2(p, p
′) :=

√
inf

γ∈Γ(p,p′)
E((x1,y1),(x2,y2))∼γ [d((x1, y1), (x2, y2))2], (5)

where

1. p, p′ ∈ ∆XY ;

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

2. Γ(p, p′) is the set of all couplings of p and p′. A coupling γ is a joint probability measure on
(X × Y)× (X × Y) whose marginals are p and p′ on the first and second factors, respectively;

3. d is the product metric endowed to X × Y (Deza and Deza, 2013, Section 4.2).3

We choose the 2-Wasserstein distance for the ease of computation. In practice, when all distributions
are modeled by Bayesian neural networks with independent Gaussian weights and biases, we have

∥q1 − q2∥2W2
= ∥µ2

q1 − µ2
q2∥

2
2 + ∥σ2

q11− σ2
q21∥

2
2, (6)

where ∥ · ∥2 denotes the Euclidean norm, 1 is a vector of all 1’s, and µq and σq are respectively the
mean and standard deviation of a multivariate normal distribution q with independent dimensions,
q = N (µq, σ

2
qI), I being the identity matrix. Therefore, computing the W2-distance between two

distributions is equivalent to computing the difference between their means and variances, which
costs O(1) in time complexity.

APPENDIX E IMPORTANCE OF ASSUMPTION 1

We need Assumption 1 in light of the results in (Kessler et al., 2023). There, the authors show that
misspecified models can forget even when Bayesian inference is carried out exactly. By requiring
that diam(F) = r, we control the amount of misspecification via r. In (Kessler et al., 2023), the
authors design a new approach – called Prototypical Bayesian Continual Learning, or ProtoCL –
that allows dropping Assumption 1 while retaining the Bayesian benefit of remembering previous
tasks. Because the main goal of this paper is to come up with a procedure that allows the designer to
express preferences over the tasks, we retain Assumption 1, and we work in the classical framework
of Bayesian Continual Learning. In the future, we plan to generalize our results by operating with
ProtoCL.4

APPENDIX F AN EXAMPLE OF A PARAMETERIZED FAMILY F

Let us give an example of a parameterized family F . Suppose that we have one-dimensional data
points and labels. At each task i, the marginal on X of pi is a NormalN (µ, 1), while the conditional
distribution of label y ∈ Y given data point x ∈ X is a categorical Cat(ϑ). Hence, the parameter
for pi is θ = (µ, ϑ), and it belongs to Θ = R × R|Y|. In this situation, an example of a family F
satisfying Assumptions 1 and 2 is the convex hull of distributions that can be decomposed as we just
described, and whose distance according to the 2-Wasserstein metric does not exceed some r > 0.

APPENDIX G PROOFS OF THE THEOREMS

Proof of Theorem 1. Without loss of generality, suppose we have encountered i = 2 tasks so far, so
the FGCS is Q2. Let ex[Q1] = {qj1}

m1
j=1 and ex[Q2] \ ex[Q1] = {qj2}

m2
j=1. Let q̂ be any element of

Q2. Then, there exists a probability vector β̄ = (β1
1 , . . . , β

m1
1 , β1

2 , . . . , β
m2
2 )⊤ such that

q̂ =

m1∑
j=1

βj
1q

j
1 +

m2∑
j=1

βj
2q

j
2 ∝ p̂1

m1∑
j=1

βj
1q

j
0 + p̂2

m2∑
j=1

βj
2q

j
0. (7)

Here, p̂i =
∏i

k=1 ℓk, and ℓk is the likelihood at task k. It estimates the pdf of the true data generating
process pi of task i. The proportional relationship in equation 7 is based on the Bayesian inference
step (line 3, approximated via variational inference) of Algorithm 1. We can then find a vector
w̄ = (w1 =

∑m1

j=1 β
j
1, w2 =

∑m2

j=1 β
j
2)

⊤ that expresses the designer’s preferences over tasks 1 and
2. As we can see, then, the act of selecting a generic distribution q̂ ∈ Q2 is equivalent to specifying
a preference vector w̄ over tasks 1 and 2. This concludes the proof.

3We denote by dX and dY the metrics endowed to X and Y , respectively.
4In (Kessler et al., 2023), the authors also show that if there is a task dataset imbalance, then the model can

forget under certain assumptions. To avoid complications, in this work we tacitly assume that task datasets are
balanced.
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Proof of Theorem 2. For maximum generality, assume Θ is uncountable. Recall from Definition 2
that α-level Highest Density Region Θα

w̄ is defined as the subset of the parameter space Θ such that∫
Θα

w̄

q̂w̄(θ)dθ ≥ 1− α and
∫
Θα

w̄

dθ is a minimum.

We need
∫
Θα

w̄
dθ to be a minimum because we want Θα

w̄ to be the smallest possible region that gives
us the desired probabilistic coverage. Equivalently, from Definition 5 we can write that Θα

w̄ = {θ ∈
Θ : q̂w̄(θ) ≥ q̂αw̄}, where q̂αw̄ is the largest constant such that Prθ∼q̂w̄ [θ ∈ Θα

w̄] ≥ 1 − α. Our result
Prθ⋆

w̄∼q̂w̄ [θ
⋆
w̄ ∈ Θα

w̄)] ≥ 1−α, then, comes from the fact that Prθ⋆
w̄∼q̂w̄ [θ

⋆
w̄ ∈ Θα

w̄)] =
∫
Θα

w̄
q̂w̄(θ)dθ,

a consequence of a well-known equality in probability theory (Billingsley, 1986).

APPENDIX H DETAILS OF EXPERIMENTS

We select 15 tasks from CelebA. All tasks are binary image classification on celebrity face images.
Each task i is to classify whether the face has an attribute such as wearing eyeglasses or having a
mustache. The first 15 attributes (out of 40) in the attribute list (Liu et al., 2015) are selected for our
tasks. The training, validation and testing sets are already split upon download, with 162,770, 19,867
and 19,962 images, respectively. All images are annotated with binary labels of the 15 attributes in
our tasks. We use the same training, validation and testing set for all tasks, with labels being the
only difference.

We select 20 classes from CIFAR100 (Krizhevsky et al., 2009) to construct 10 Split-CIFAR100 tasks
(Zenke et al., 2017). Each task is a binary image classification between an animal class (label 0) and
a non-animal class (label 1). The classes are (in order of tasks):

1. Label 0: aquarium fish, beaver, dolphin, flatfish, otter, ray, seal, shark, trout, whale.
2. Label 1: bicycle, bus, lawn mower, motorcycle, pickup truck, rocket, streetcar, tank, tractor,

train.

That is, the first task is to classify between aquarium fish images and bicycle images, and so on. We
want to show that the continual learning model incrementally gains knowledge of how to identify
animals from non-animals throughout the task sequence. For each class, CIFAR100 has 500 training
data points and 100 testing data points. We hold out 100 training data points for validation. There-
fore, at each task we have 400 × 2 = 800 training data, 100 × 2 = 200 validation data and 100 × 2
= 200 testing data.

We also select 20 classes from TinyImageNet (Le and Yang, 2015). The setup is similar to Split-
CIFAR100, with label 0 being animals and 1 being non-animals.

1. Label 0: goldfish, European fire salamander, bullfrog, tailed frog, American alligator, boa con-
strictor, goose, koala, king penguin, albatross.

2. Label 1: cliff, espresso, potpie, pizza, meatloaf, banana, orange, water tower, via duct, tractor.

The dataset already splits 500, 50 and 50 images for training, validation and testing per class. There-
fore, each task has 1000, 100 and 100 images for training, validation and testing, respectively.

20NewsGroups (Lang, 1995) contains news report texts on 20 topics. We select 10 topics for 5
binary text classification tasks. Each task is to distinguish whether the topic is computer-related
(label 0) or not computer-related (label 1), as follows.

1. Label 0: comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x.

2. Label 1: misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey.

Each class has different number of news reports. On average, a class has 565 reports for training and
376 for testing. We then hold out 100 reports from the 565 for validation. Therefore, each binary
classification task has 930, 200 and 752 data points for training, validation and testing, on average
respectively.
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All data points are first preprocessed by a feature extractor. For images, the feature extractor is a
pre-trained ResNet18 (He et al., 2016). We input the images into the ResNet18 model and obtain
its last hidden layer’s activations, which has a dimension of 512. For texts, the extractor is TF-IDF
(Aizawa, 2003) succeeded with PCA to reduce the dimension to 512 as well.

Each Bayesian network model is trained with evidence lower bound (ELBO) loss, with a fixed feed-
forward architecture (input=512, hidden=64, output=1). The hidden layer is ReLU-activated and the
output layer is sigmoid-activated. Therefore, our parameter space Θ is the set of all values that can
be taken by this network’s weights and biases.

The three variational inference priors, learning rate, batch size and number of epcohs are tuned on
validation sets. The tuning results are as follows. Here, “lr” stands for learning rate.

1. CelebA: priors = {N (0, 0.22I),N (0, 0.252I),N (0, 0.32I)}, lr = 1e−3, batch size = 64, epochs
= 10.

2. Split-CIFAR100: priors = {N (0, 22I), N (0, 2.52I), N (0, 32I)}, lr = 5e − 4, batch size = 32,
epochs = 50.

3. TinyImageNet: priors = {N (0, 22I), N (0, 2.52I), N (0, 32I)}, lr = 5e − 4, batch size = 32,
epochs = 30.

4. 20NewsGroup: priors = {N (0, 22I), N (0, 2.52I), N (0, 32I)}, lr = 5e − 4, batch size = 32,
epochs = 100.

For the baseline methods, we use exactly the same learning rate, batch sizes and epochs. For proba-
bilistic baseline methods (VCL), we use the prior with the median standard deviation. For example,
on CelebA tasks, VCL uses the normal prior N (0, 0.252I).

For rehearsal-based baselines, the memory size per task for CelebA is 200, and for the rest is 50.
Together with the numbers above, we can compute the numerical values in Table 1.

APPENDIX I ABLATION STUDIES

I.1 DIFFERENT d’S

Here, we evaluate the effects of choosing different thresholds d. We experiment on 20NewsGroup
and Split-CIFAR100. The variations include

1. d = 0.02, same as in the main experiments.
2. d = 0.05.
3. d = 0.08.

Figure 8: Different d’s on 20NewsGroup and Split-CIFAR100. The buffer growth curves of d = 5e − 3 and
d = 2e− 3 of 20NewsGroup are overlapping.

As d increases, we are allowing more posteriors in the knowledge base to be reused. This will
lead to memory efficiency at the cost of a performance drop. Figure 8 supports this trend. With an
appropriately selected d, we can guarantee that the model’s performance will not be overly affected,
and that we save buffer memory. For Split-CIFAR100, when d = 8e − 3, the buffer stops growing
after task 6.
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I.2 DIFFERENT α’S

Here, we evaluate the effects of choosing different significance level α. We experiment on 20News-
Group and Split-CIFAR100. The variations include

1. α = 0.01, same as the main experiments.
2. α = 0.1.
3. α = 0.25.

Figure 9: Different α’s on different preferences over the first two tasks in 20NewsGroup.

Figure 10: Different α’s on randomly generated preferences over all tasks in 20NewsGroup.

In Figure 9, we evaluate testing accuracy on three different α’s over five different preferences (from
[0.1, 0.9] to [0.9, 0.1]) on the first two tasks of 20NewsGroup. For each preference, we uniformly
sample 200 deterministic models from the HDR. We use the sampled model with the maximum L2
sum of the two accuracies to estimate the Pareto optimality under a preference. We can see that,
as α approaches 0, we tend to sample closer to the Pareto front. This is because, with a smaller α,
HDRs become wider and we have a higher probability to sample Pareto-optimal models according
to Theorem 2. For instance, when α = 0.01, we have a probability of at least 0.99 that the Pareto-
optimal solution is contained in the HDR. Figure 10 shows that the performance drops as α increases,
because we are more likely to sample poorly performing models from the HDR.

I.3 DIFFERENT PRIORS

Here, we evaluate the effects of different priors. We experiment on 20NewsGroup and Split-
CIFAR100. We first evaluate different sizes of prior standard deviations.

1. Medium prior stds = {2, 2.5, 3}, same as the main experiments.
2. Small prior stds = {0.2, 0.25, 0.3}.
3. Large prior stds = {20, 25, 30}.

Figure 11 and 12 show the effects of different prior std sizes on the learning performance, on
20NewsGroup and Split-CIFAR100, respectively. We can see that in the beginning of 20News-
Group, small prior stds lower the average and peak per task accuracy. However, this decrease in
performance is gradually reduced, and eliminated at tasks 4 and 5. This is because the posterior
distributions gradually approach to a pdf that contains the Pareto-optimal model with high probabil-
ity. The forgetting prevention of the small stds is slightly improved from the other two trials, with a
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Figure 11: Different prior std sizes on randomly generated preferences over all tasks in 20NewsGroup.

In BCL, each task is associated with a data generating process (likelihood, elicited according to the
data at hand), parameterized by θ. The latter is postulated to be a random quantity, which at the

beginning of the analysis has a prior distribution, θ ∼ q0. After training on the available data, the
prior distribution is turned into posterior, θ ∼ q1 via Bayes’ theorem. The posterior q1 is the
revised parameter distribution after having learned from the data pertaining to the first task to

complete. It is then used as a prior for the next task.

Figure 12: Different prior std sizes on randomly generated preferences over all tasks in Split-CIFAR100.

higher backward transfer initially, but also merges with the others at the end due to the same reason.
All backward transfers are near zero, meaning there is almost no forgetting. For Split-CIFAR100,
the same divergence in performance appear in the beginning 3 tasks, most obvious in average accu-
racy. Then, the same pattern follows.

We conclude that different choices of priors may lower the performance in the initial tasks, but the
performance will gradually improve and align with each other to achieve Pareto-optimality. Next,
we evaluate different numbers of priors.

1. 3 priors, stds = {2, 2.5, 3}, same as the main experiments.
2. 5 priors, stds = {1.5, 2, 2.5, 3, 3.5}.
3. 8 priors, stds = {1, 1.5, 2, 2.5, 3, 3.5, 4}.

As shown in Figure 13 and 14, different numbers of priors (3, 5 and 7) show very similar trends in
performance. We therefore conclude that a small number of 3 priors is sufficient.

I.4 DIFFERENT β’S

We also evaluate the effects of different β’s. On 20NewsGroup and Split-CIFAR100, we have

1. Equal β’s, same as the main experiments.
2. Randomized β’s.

As shown in Figure 15 and 16, equal sized β’s and randomly split sizes of β’s have almost the same
performance trends. This provides evidence for our statement in Section 4.2, that using different
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Figure 13: Different numbers of priors on randomly generated preferences over all tasks in 20NewsGroup.

Figure 14: Different numbers of priors on randomly generated preferences over all tasks in Split-CIFAR100.

Figure 15: Equal and randomized β’s on randomly generated preferences over all tasks in 20NewsGroup.

Figure 16: Equal and randomized β’s on randomly generated preferences over all tasks in Split-CIFAR100.

choices of β’s would not affect the overall performance. Therefore, using equal sized β’s would be
sufficient.
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