
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUBLINEAR TIME QUANTUM SENSITIVITY SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a unified framework for quantum sensitivity sampling, extending the
advantages of quantum computing to a broad class of classical approximation
problems. Our unified framework provides a streamlined approach for construct-
ing coresets and offers significant runtime improvements in applications such as
clustering, regression, and low-rank approximation. Our contributions include:

• k-median and k-means clustering: For n points in d-dimensional Eu-
clidean space, we give an algorithm that constructs an ϵ-coreset in time
Õ(n0.5dk2.5 poly(ϵ−1)) for k-median and k-means clustering. Our approach
achieves a better dependence on d and constructs smaller coresets that only
consist of points in the dataset, compared to recent results of [Xue, Chen, Li
and Jiang, ICML’23].

• ℓp regression: For ℓp regression problems, we construct an ϵ-coreset of size
Õp(d

max{1,p/2}ϵ−2) in time Õp(n
0.5dmax{0.5,p/4}+1(ϵ−3+d0.5)), improving

upon the prior best quantum sampling approach of [Apers and Gribling,
QIP’24] for all p ∈ (0, 2)∪ (2, 22], including the widely studied least absolute
deviation regression (ℓ1 regression).

• Low-rank approximation with Frobenius norm error: We introduce the
first quantum sublinear-time algorithm for low-rank approximation that does
not rely on data-dependent parameters, and runs in Õ(nd0.5k0.5ϵ−1) time.
Additionally, we present quantum sublinear algorithms for kernel low-rank
approximation and tensor low-rank approximation, broadening the range of
achievable sublinear time algorithms in randomized numerical linear algebra.

1 INTRODUCTION

Given a set of points A = {a1, . . . , an} ⊂ Rd, a universe X , and a cost function cost : Rd ×X →
R≥0, we study the problem of constructing a coreset of A: a weighted subset B of points along with
a nonnegative weight vector w ∈ R|B|

≥0 such that∑
b∈B

wb · cost(b, x) = (1± ϵ) · cost(A, x)

for all x ∈ X , where cost(A, x) =
∑n

i=1 cost(ai, x). A coreset is particularly useful because it
enables applying any existing approximation (or exact) algorithm on the smaller summary, yielding a
good approximation to the original problem. Applications of coresets span clustering (Chen, 2009;
Langberg & Schulman, 2010; Feldman & Langberg, 2011; Varadarajan & Xiao, 2012; Braverman
et al., 2022; Huang & Vishnoi, 2020; Braverman et al., 2021; Cohen-Addad et al., 2021; 2022b;a;
Huang et al., 2024), graph sparsification (Benczúr & Karger, 1996; Spielman & Teng, 2004; Spielman
& Srivastava, 2011; Batson et al., 2012), hypergraph sparsification (Bansal et al., 2019; Kapralov et al.,
2022; Jambulapati et al., 2023b; Lee, 2023), ℓp regression (Drineas et al., 2006; Clarkson, 2005; Das-
gupta et al., 2009; Cohen & Peng, 2015; Woodruff & Yasuda, 2023), submodular optimization (Rafiey
& Yoshida, 2022; Jambulapati et al., 2023a), generalized linear models (Mai et al., 2021; Munteanu
et al., 2022; Musco et al., 2022; Jambulapati et al., 2024), and subspace approximation (Cohen et al.,
2015a; 2017; Woodruff & Yasuda, 2025).

Coresets can be constructed via sensitivity sampling: the sensitivity of the i-th point is defined as

si = max
x∈X

cost(ai, x)

cost(A, x)
.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Sensitivity sampling draws point i with probability proportional to si, assigning it weight 1/si to
ensure the estimator is unbiased. The seminal work of Langberg & Schulman (2010) shows that this
yields a coreset with a simple and elegant proof: sampling proportional to sensitivity ensures low
variance, and Bernstein’s inequality implies that O(ϵ−2S) samples suffice to approximate the cost
for any fixed x ∈ X , where S =

∑n
i=1 si is the total sensitivity. A union bound over a discretization

of X of size exp(dim(X)), where dim(X) is a notion akin to VC dimension (Feldman & Langberg,
2011), yields a bound for all x ∈ X . Thus, a total of O(ϵ−2 · dim(X) · S log(1/δ)) samples suffices.

Algorithmically, a challenge arises: it is necessary to either compute or efficiently approximate si
or an upper bound on it. Most of the work in sensitivity sampling focuses on this task, and for
many problems it can be achieved in nearly-linear time in nd (Huang & Vishnoi, 2020; Spielman
& Srivastava, 2011; Cohen & Peng, 2015; Cohen et al., 2017; Woodruff & Yasuda, 2025). Since
scanning the entire dataset already takes Ω(nd) time, achieving nearly-linear time is close to optimal.

Typically, coresets are constructed for downstream optimization problems. For instance, coresets for ℓp
regression help solve the original regression problem (Jambulapati et al., 2022; Adil et al., 2024), and
coresets for subspace approximation yield column subset selection for low-rank approximation (Cohen
et al., 2017). In certain structured settings, some of these optimization problems admit sublinear time
algorithms. For example, if the input matrix A is positive semidefinite (PSD) (Musco & Woodruff,
2017; Bakshi et al., 2020) or Toeplitz (Musco & Sheth, 2024), one can obtain a rank-k approximation
in n · poly(k/ϵ) time, despite A having size n× n.

Can sensitivity sampling—and subsequently solving downstream optimization problems—be accom-
plished in sublinear time, even without structural assumptions? In this work, we explore this question
through the lens of quantum computing, analyzing the time complexity of sensitivity sampling under
quantum algorithms. Notably, tasks like linear regression, low-rank approximation, and clustering
have quantum algorithms running in o(nd) time (Kerenidis & Prakash, 2017; Kerenidis et al., 2019;
Gilyén et al., 2022; Shah & Jaiswal, 2025), though these often rely on special input representations
that support efficient weighted sampling. Moreover, their runtimes often depend on data-specific
parameters such as ∥A∥F , condition number κ(A) = σmax(A)/σmin(A), or dataset radius. In
contrast, we seek quantum algorithms that (1) operate in sublinear time, (2) are independent of input
representation, and (3) have runtime independent of data-specific parameters.

In this work, we provide a generic quantum algorithm applicable to sensitivity sampling in general.
Let s denote the final sample size for sensitivity sampling, and let Tsensitivity(s,X) represent the
time to approximate one sensitivity over a set of s points and universe X . Our algorithm runs in time

Õ(
√
ns) · Tsensitivity(s,X),

which implies that as long as s0.5 · Tsensitivity(s,X) = o(n0.5d), we achieve sublinear runtime.
Moreover, our algorithm avoids dependence on data-specific parameters: the sample size and
sensitivity approximation time depend only on n, d, 1/ϵ, 1/δ, and other problem-related parameters
(e.g., k in clustering and low-rank approximation, or p in ℓp regression). We summarize the main
result in the following theorem.
Theorem 1.1 (Informal version of Theorem B.3). Let A ∈ Rn×d and X be a universe, there
exists a randomized, quantum algorithm that constructs an ϵ-coreset C of expected size s :=
O(ϵ−2 · dim(X) · S log(1/δ)) with probability at least 1− δ, where dim(X) is the VC dimension
of X , S is the total sensitivity and ϵ, δ ∈ (0, 1). Moreover, if there exists a classical oracle that
can output a constant factor two-sided approximation to one sensitivity over a set of s points and
universe X in Tsensitivity(s,X) time, then the quantum algorithm can be implemented in time
Õ(
√
ns · Tsensitivity(s,X)).

Our approach is simple and general: it constructs the sample by uniformly subsampling half of the
points, recursively computing approximate sensitivities on this subset, and then resampling based on
these estimates. This scheme was first used for leverage score sampling (Cohen et al., 2015b) and in
recent quantum linear programming algorithms (Apers & Gribling, 2024). We extend this strategy to
sensitivity sampling.

As a key application, we adapt our framework to solve the low-rank approximation problem. Given a
matrix A ∈ Rn×d, the goal is to find matrices U, V of rank k such that

∥A− UV ⊤∥2F ≤ (1 + ϵ) · ∥A−Ak∥2F ,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where Ak is the best rank-k approximation to A. We provide a quantum algorithm that constructs a col-
umn coreset of A, resulting in a low-rank approximation algorithm that runs in time Õ(nd0.5k0.5ϵ−1).
We note a recent result by Chen et al. (2025), which provides a quantum algorithm for approximat-
ing the top-k eigenvectors of a Hermitian matrix. Their method computes an orthonormal basis
W ∈ Rd×k such that ∥WW⊤ −

∑k
i=1 viv

⊤
i ∥ ≤ ϵ, where vi is the i-th eigenvector of A, in time

Õ(kd1.5/(ϵγ)), where γ is the spectral gap between λk and λk−1. While powerful, their method
targets spectral norm error and depends on γ−1. In contrast, our algorithm selects and reweights
subsets of rows and columns and approximates the Frobenius-norm optimal rank-k solution, with no
dependence on γ. This makes our method suitable for downstream applications for small γ.

Our algorithm for (k, p)-clustering has further implications for the data selection pipeline used in
training foundation models. As discussed in Axiotis et al. (2024), if the loss function ℓ and all k-center
solutions satisfy the (p,Λ)-well-behaved property, then a subset of s = O(ϵ−2) points suffices for
training or fine-tuning. The pipeline proceeds as follows: (1) compute k centers x = (x1, . . . , xk)
using a clustering algorithm, and (2) sample s points using the loss values ℓ(xi) to obtain a coreset.

Using our quantum algorithm for (k, p)-clustering, we first construct a coreset of size poly(k/ϵ) in
time Õ(n0.5d · poly(k/ϵ)), then solve for the centers x1, . . . , xk using only the coreset. The second
round of sampling requires at most k queries to the loss function and can also be implemented in
Õ(n0.5d · poly(k/ϵ)) time. Classical algorithms for this pipeline would require Ω(n) time. Hence,
our method is the first sublinear-time quantum algorithm for data selection pipelines.

We summarize our results in the following tables. Table 1 compares our coreset construction runtimes
with prior work, and Table 2 compares runtimes for solving the corresponding optimization problems.

Reference Previous Ours
k-Median Clustering Xue et al. (2023) n0.5d1.5k0.5 n0.5dk2.5

k-Means Clustering Xue et al. (2023) n0.5d1.5k0.5 n0.5dk2.5

(k, p)-Clustering Xue et al. (2023) n0.5d1.5k0.5 n0.5dk2.5

ℓp ̸=2 Regression † Apers & Gribling (2024) n0.5d7 n0.5d(0.5∨p/4)+1.5

(k, p < 2)-Subspace Approx. Woodruff & Yasuda (2025) nd n1−p/4dkp/4

(k, p ≥ 2)-Subspace Approx. Woodruff & Yasuda (2025) nd n1−1/pdk0.5

Table 1: Comparison of running times for constructing an ϵ-coreset for the respective problems.
We set ϵ = O(1) and ignore all dependencies on functions that only depend on p for simplicity of
presentation. For clustering and ℓp regression, we compare against prior fastest quantum algorithms,
while for subspace approximation, we compare against prior fastest classical algorithms as we are
unaware of quantum algorithms for these problems. †: We use a ∨ b to denote max{a, b}.

Reference Previous Ours
Low-Rank Cohen et al. (2017) nd nd0.5k0.5

PSD Low-Rank Bakshi et al. (2020) nkω−1 n0.75k2.25

Kernel Low-Rank Bakshi et al. (2020) nk TK n0.75k1.25TK
Tensor Low-Rank: Rank-k Song et al. (2019) n3 + 2k

2

n2k0.5 + 2k
2

Tensor Low-Rank: Bicriteria Song et al. (2019) n3 n2k0.5

Table 2: Comparison of running times for a variety of low-rank approximation problems. For all
of these problems, we only compare with the prior best classical algorithms, as they are either not
studied in the context of quantum algorithms, or the respective quantum algorithms require that the
input is given in the form of a data structure, or have data-dependent parameters in the running time.
We assume all matrices/tensors are dense. We ignore lower order terms for ease of comparison. For
kernel low-rank approximation, we use TK to denote the time of evaluating kernel function on any
two data points.

Our contributions. We summarize our main contributions below:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• We introduce a general quantum weighted sampling framework. Given weights satisfying mild
conditions and access to a classical oracle that approximates the weight of a point over a small
set, the framework constructs a coreset using Õ(

√
ns) oracle queries, where s is an upper bound

on the total weight. We show that sensitivity, leverage scores, and Lewis weights all meet these
conditions, implying that coreset construction with these weights can be accelerated within our
framework.

• We design the first sublinear time quantum algorithms for several fundamental low-rank approxi-
mation tasks: Frobenius-norm approximation, PSD and kernel low-rank approximation, and tensor
low-rank approximation. Our algorithms are purely sampling-based, and avoid dependence on
data-dependent parameters.

• We develop improved quantum algorithms for (k, p)-clustering in the high-dimensional regime
d ≫ k, and further demonstrate how our framework can accelerate data selection pipelines for
training foundation models.

Roadmap. In Section 2, we provide a technical overview of the main results, including our generic
algorithm for constructing coresets and specific applications to low-rank approximation. In Section 3,
we summarize our results and discuss open problems. Section A presents preliminary definitions and
notation. In Section B, we describe a generic weighted sampling algorithm for coreset construction
and discuss its adaptations to regression and subspace approximation. Section C demonstrates how to
use weighted sampling to generate a column subset of a matrix and apply it to low-rank approximation.
Section D shows how Grover search can be used to accelerate Nyström approximation of kernel
matrices, improving upon the runtime of Bakshi et al. (2020). In Section E, we extend our approach
to (k, p)-subspace approximation. Section F provides algorithms for low-rank approximation of
third-order tensors in the Frobenius norm. Section G presents an improved quantum algorithm for
constructing coresets for (k, p)-clustering and applies it to data selection. Finally, in Section H, we
establish a quantum query lower bound for additive-multiplicative spectral approximation, a key
subroutine for computing low-rank approximations.

Quantum computation model. We adopt the standard quantum computation model used in,
e.g., Apers & De Wolf (2022); Apers & Gribling (2024). This model supports quantum subroutines
operating on O(log n) qubits, allows quantum queries to the input, and grants access to a quantum-
read/classical-write RAM (QRAM) of size poly(n) bits. Each quantum read or classical write to
QRAM incurs unit cost. We measure time complexity by the number of QRAM operations, and query
complexity by the number of input queries made by the algorithm.

2 TECHNICAL OVERVIEW

We give an overview of our techniques in this section. In Section 2.1, we introduce our recursive
sampling framework for sensitivity sampling, based on Grover search. In Section 2.2, we generalize
the quantum sensitivity sampling framework via approximators. In Section 2.3, we design quantum,
sublinear time algorithms for low-rank approximation that are based purely on sampling rows
and columns. In Section 2.4, further extend the sampling-based low-rank approximation to the
tensor setting. Finally in Section 2.5, we discuss our coreset algorithm for (k, p)-clustering and its
advantages over prior constructions.

2.1 SENSITIVITY SAMPLING VIA GROVER SEARCH

One of the primary advantages of quantum algorithms over their classical counterparts is their ability
to search and sample more efficiently. The search procedure developed by Grover (Grover, 1996)
addresses the database search problem: given a function f : [n] → {0, 1}, we aim to list up to m
indices for which f(i) = 1. Assuming access to an oracle that, given an index i, outputs the value
f(i), Grover’s seminal work shows that, instead of requiring n queries to the oracle, the problem
can be solved using only O(

√
mn) oracle calls with quantum computation. This provides a notable

advantage as long as m < n, which is often the case in applications. Grover search has since been
utilized to achieve speedups in problems such as edit distance (Boroujeni et al., 2021; Gibney et al.,
2024), solving graph Laplacian systems (Apers & De Wolf, 2022), and solving linear programs (Apers
& Gribling, 2024). In particular, Apers & Gribling (2024) develops a method to sample from the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

leverage score distribution of an n× d matrix A, in time O(n0.5d1.5). For tall, skinny matrices, this
approach leads to a runtime that is sublinear in the input size of A. Subsequently, the authors construct
spectral approximations of A to speed up various essential procedures within a linear program solver.

The key procedure they utilize is a quantum sampling algorithm based on Grover search: suppose we
need to sample from a list of n numbers with probabilities1 p1, . . . , pn, and the goal is to output a list
of indices such that index i is returned with probability pi independently. This list of samples can be
computed in Õ(

√
n
∑n

i=1 pi) time. This implies that if we are sampling from a distribution over n
items and the sum of all pi is significantly smaller than n, we can avoid computing all n values of pi.
However, this sampling procedure requires an oracle that returns the value of pi upon query, akin to
the oracle for f(i) in Grover search.

Since the i-th leverage score of A is defined as a⊤i (A
⊤A)†ai, where M† is the pseudoinverse

of matrix M , implementing the oracle by computing the Gram matrix A⊤A and its pseudoin-
verse is prohibitively slow. To address this issue, Apers & Gribling (2024) observes that the
algorithm due to Cohen et al. (2015b) can implement such an oracle efficiently: this algorithm
proceeds by recursively halving rows — it first uniformly samples half of the rows of A, denoted
by A′, then recursively computes the leverage score matrix of A′. For an n × d matrix A, it
suffices to sample O(d log dϵ−2) rows according to leverage scores; hence the sampled matrix
SA′ ∈ Rd log d×d is small. In fact, SA′ serves as a sketch for the leverage score of matrix A with
a⊤i (A

′⊤S⊤SA′)†ai = (1±ϵ) ·a⊤i (A⊤A)†ai for all i. Thus, an oracle can be efficiently implemented
by computing (A′⊤S⊤SA′)† in Õ(dω) time, and by leveraging a trick from Spielman & Srivas-
tava (2011), the quantity a⊤i (A

′⊤S⊤SA′)†ai =
∥∥(A′⊤S⊤SA′)†/2ai

∥∥2
2

can be accelerated using a
Johnson-Lindenstrauss transform (Johnson & Lindenstrauss, 1984). Consequently, this approach
results in an algorithm that constructs a leverage score sampler for A in time Õ(n0.5d1.5ϵ−1 + dω),
with the sum of probabilities being O(s).

Can we extend the leverage score sampling algorithm of Apers & Gribling (2024) to generic sensitivity
sampling? The first hope is that, instead of sampling directly according to sensitivities, it might
be sufficient to sample based on an overestimate of sensitivities. Consider the following simplified
algorithm: uniformly sample half of the points to form A′, and define the generalized sensitivity as
si(A,A

′) = maxx∈X, cost(A′,x)̸=0
cost(ai,x)
cost(A′,x) , i.e., we change the denominator to cost(A′, x). Note

that this is not necessarily an overestimate of si. To see this, let x∗ be the point that realizes the
sensitivity for si. If cost(A′, x∗) = 0, then si(A,A′) will not be realized by x∗, and it is possible
that si > si(A,A′). On the other hand, we can see that si(A,A′ ∪ {ai}) serves as an overestimate.
To understand this, consider the case where si(A,A′) does not hold: if cost(A′, x∗) = 0, then either
cost(ai, x

∗) = 0 and si = si(A,A′ ∪ {ai}) = 0, or cost(ai, x∗) ̸= 0 and si(A,A′ ∪ {ai}) =
cost(ai,x

∗)
cost(ai,x∗) = 1, an upper bound on any si. If cost(A′, x∗) ̸= 0, then cost(ai,x

∗)
cost(A′,x∗) ≥

cost(ai,x
∗)

cost(A,x∗) , as
the denominator for A′ is smaller. We note that si(A,A′ ∪ {ai}) is in fact the overestimate used
by Cohen et al. (2015b) to obtain their initial uniform sampling bound.

The recursive framework follows directly: uniformly sample half of the points A′, then compute
a coreset of A′, called C. To compute the overestimates of si, we use si(A,C ∪ {ai}), which is
efficient since C is a small-size coreset. Note that si(A,C ∪ {ai}) is a valid approximation of
si(A,A

′ ∪ {ai})—as C is a coreset of A′, it approximates the cost of A′ with respect to all x ∈ X ,
and they have the same kernel.2 Moreover, it is not hard to see that C ∪ {ai} is also a coreset of
A′ ∪ {ai}, and thus the sensitivity is preserved. To summarize, in each round of recursion, we are
given a size-s coreset, and assuming we can approximate each si(A,C ∪ {ai}) in Tsensitivity(s, d)
time, then the overall runtime is Õ(

√
ns) · Tsensitivity(s, d), with recursion depth at most log n as we

halve the points at each step, giving the desired runtime for sensitivity sampling.

1Note that these probabilities not necessarily form a distribution, i.e., we only have pi ∈ [0, 1] for all i ∈ [n],
but not

∑n
i=1 pi = 1.

2Given a set of points A and a cost function, we define the kernel of A as ker(A) = {x ∈ X : cost(A, x) =
0}.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.2 GENERIC WEIGHTED SAMPLING VIA APPROXIMATOR

While the preceding algorithm handles all sensitivity sampling, in many applications, the exact
sensitivities can be difficult to compute, and thus proxies are often sought as efficient alternatives.
Take the ℓp regression problem as an example, where the sensitivity is si = maxx∈Rd,Ax̸=0

|a⊤
i x|p

∥Ax∥p
p

.
For p = 2, this corresponds to the leverage score, which can be quickly approximated. However,
for general p, this is more complex, and algorithms for ℓp sensitivities tend to be less efficient than
those for leverage scores (Padmanabhan et al., 2023). Instead, constructing a coreset for ℓp regression
is typically done not via sensitivity sampling, but through Lewis weights sampling (Bourgain et al.,
1989; Ledoux & Talagrand, 1991; Talagrand, 1995; Schechtman & Zvavitch, 2001; Cohen & Peng,
2015; Woodruff & Yasuda, 2023). These weights are defined as the fixed-point solution for the
following equation: w2/p

i = a⊤i (A
⊤W 1−2/pA)−1ai, where wi represents the i-th leverage score of

the matrix W 1/2−1/pA. Lewis weights have several desirable properties, such as
∑n

i=1 wi = d, and
they serve as proper upper bounds for ℓp sensitivities for all p ∈ (0,∞). Moreover, Lewis weights
can be approximated in nearly-linear time (Cohen & Peng, 2015; Lee, 2016; Jambulapati et al., 2022;
Fazel et al., 2022; Apers et al., 2024).

To adapt our sensitivity sampling framework to work with Lewis weights sampling, we encounter
a notable challenge: given a coreset B of A, it is guaranteed that any vector in the subspace of A
has its ℓp norm preserved by B, but the Lewis weights are not defined purely in terms of the ℓp
norm of vectors in the subspace. Instead, they measure the ℓ2 norm of the subspace after a density
transformation induced by W 1/2−1/p. Consequently, it might well be the case that B is a coreset
of A, and the Lewis weights of A are not preserved by B. On the other hand, we can instead define
a notion of an ϵ-approximator of A: we say B is an ϵ-approximator of A for ℓp regression if B is
a coreset and (1 − ϵ)A⊤W

1−2/p
A A ⪯ B⊤W

1−2/p
B B ⪯ (1 + ϵ)A⊤W

1−2/p
A A, where WA,WB are

the diagonal Lewis weights matrices for A and B. Note that this is a different approximation notion
than that of a coreset, as the cost becomes global rather than local: for generic sensitivity-based
arguments, one relies on the fact that adding a single point to the set will not affect the weights of
other points, and hence if B is a coreset of A, then B ∪ {p} is also a coreset of A ∪ {p}, but this is
not true for an approximator of A, as adding a single row to both A and B would potentially affect
the weights to all existing rows. In Cohen & Peng (2015), they provide a classical recursive sampling
algorithm by noting that, if we sample according to the generalized Lewis weights with respect to an
approximator, then the resulting weighted sample is also an approximator. We further abstract their
construction, and provide the most general framework for quantum sublinear weighted sampling: let
w(A,B) ∈ R|A|

≥0 be the generalized weights of A with respect to B, we say B is an ϵ-approximator of
A if for any C and any i ∈ [n], we have wi(C,B) = (1± ϵ)wi(C,A). We then need three sufficient
conditions:

• Consistent total weights: For any subset S ⊆ [n],
∑

i∈S wi(A,A) ≤ sum(w), where sum(w) is a
finite upper bound on the sum of weights. When the weight is sensitivity, sum(w) is simply the
total sensitivity;

• Uniform sampling bound: Take any uniform subset A′ ⊆ A, define the new weights w′
i(A,A′) as

wi(A,A′) if ai ∈ A′ and wi(A,A′ ∪{ai}) otherwise. Then w′
i(A,A′) ≥ wi(A,A) for all i ∈ [n];

• Importance sampling bound: Suppose we sample according to qi = min{1, α · wi(A,A)} for
some α ≥ 1, and reweight the sample by 1/qi, then with probability at least 1− δ, the weighted
sample is an ϵ-approximator of A of size at most α · sum(w) log(1/δ).

Let s = O(α · sum(w) log(1/δ)). We obtain an algorithm that computes an ϵ-coreset in the desired
Õ(
√
ns) · Tsensitivity(s, d) time. Thus, by using weighted sampling with Lewis weights, we achieve

a runtime of Õp(n
0.5d(0.5∨p/4)+1(ϵ−3 + d0.5)) for generating a coreset for ℓp regression. This

improves upon the prior quantum algorithm for Lewis weights sampling that is based on iterating
leverage scores (Apers et al., 2024), with a runtime of Õp(n

0.5d7ϵ−3). Our algorithm provides a
speedup for any p ∈ (0, 2) ∪ (2, 22] (which includes the popular ℓ1 regression), but it is worth noting
that the main purpose of the work of Apers & Gribling (2024) is to estimate Lewis weights up to
p = O(log n) as they use it as a subroutine for solving linear programs, so their algorithm has no p
dependence on d. Nevertheless, we provide a completely different sampling algorithm to construct
an ℓp regression coreset that is particularly suitable for small p.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2.3 PURE-SAMPLING FRAMEWORK FOR LOW-RANK APPROXIMATION

Given A ∈ Rn×d, the rank-k low-rank approximation problem seeks to find a pair of matrices
U ∈ Rn×k, V ∈ Rd×k such that ∥A− UV ⊤∥2F ≤ (1 + ϵ)∥A−Ak∥2F , where Ak is the best rank-k
approximation of A. Low-rank approximation is closely related to the (k, 2)-subspace approximation
coreset: let Fk ⊂ Rn be the set of all k-dimensional subspaces in Rn, and define cost(ai, x) =
∥(I − Px)ai∥22 where Px is the orthogonal projection onto x ∈ Fk. If we obtain a coreset C for A,
then we have for any k-dimensional orthogonal projection Px, ∥(I−Px)C∥2F = (1±ϵ)∥(I−Px)A∥2F ,
which is sufficient to show that choosing Px as the projection onto Ck will give the desired low-rank
approximation (Cohen et al., 2017). Moreover, instead of (k, 2)-subspace sensitivities, one could
sample according to the ridge leverage scores, which can be computed quickly. To adapt our weighted
sampling framework, we need to identify the ϵ-approximator for ridge leverage score, which is a
coreset of A and

(1− ϵ)AA⊤ − ϵλAk
I ⪯ CC⊤ ⪯ (1 + ϵ)AA⊤ + ϵλAk

I,

where λAk
= ∥A − Ak∥2F /k. Thus, our framework gives an algorithm that runs in time

Õ(nd0.5k0.5ϵ−1).

While one might be satisfied with the ridge leverage score solution to low-rank approximation, more
complexity arises if we aim to recover the solution through the subsampled columns. In particular,
if we let C ∈ Rn×s denote the weighted subset of columns of A sampled by ridge leverage scores
for s = O(k log kϵ−2), it is guaranteed that minX:rank(X)≤k ∥CX − A∥2F ≤ (1 + ϵ)∥Ak − A∥2F .
Constructing an optimal X would require computing Pk(C

†A) where Pk is the projection onto
the top-k principal components. Directly computing C†A is of course too expensive, and standard
approaches mostly involve using an oblivious subspace embedding (OSE) matrix, a random matrix
that approximates the cost of all regression problems. Matrices such as CountSketch (Charikar et al.,
2002; Clarkson & Woodruff, 2013) could be applied in time nnz(A), but this is already too slow
for our purpose. We address this with a pure-sampling framework for low-rank approximation: we
demonstrate that it is possible to recover (or approximate) the solution X via leverage score sampling.

In particular, for the regression problem minX:rank(X)≤k ∥CX − A∥2F , one could sample ac-
cording to the leverage score distribution of C and solve the subsampled regression problem
minX:rank(X)≤k ∥SCX−SA∥2F . Standard leverage score guarantees ensure that the optimal solution
to the subsampled regression closely approximates the original problem (Lemma A.13). Because of
this fact, we can show that there exists a good solution X̂ in the row span of matrix SA; hence it is
enough to solve the regression problem minY :rank(Y )≤k ∥A−CY SA∥2F , and we further speed up the
algorithm by employing two leverage score sampling matrices T1 and T2 on the left and right accord-
ingly. Consider the new subsampled regression problem: minY :rank(Y )≤k ∥T1AT2−T1CY SAT2∥2F ,
and observe that we can compute the subsampled A in sublinear in n, d time, because T1AT2 and
SAT2 all amount to selecting a poly(k/ϵ) subset of entries of A, which, assuming random access to
the entries of A, can be done in the same order of time. This pure-sampling approach contrasts with
OSE-based methods, which generally require reading all entries of A.

2.4 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

For matrix low-rank approximation and its variants, ridge leverage score sampling is the crucial tool
to compute a good approximate solution. Can we extend the framework to solve tensor low-rank
approximation? Unfortunately, even for a 3rd order tensor A ∈ Rn×n×n, it is not always the case that
it admits a low-rank approximation, due to the so-called border rank issue (De Silva & Lim, 2008).
Even when the low-rank approximation exists, variants of Strong Exponential Time Hypothesis
(SETH) rule out polynomial time algorithms to approximate the tensor rank of A (Song et al., 2019).
If one relaxes the problem by allowing the output to be a higher-rank solution (bicriteria solution)
or a running time that depends exponentially on k and 1/ϵ (fixed-parameter tractable, i.e., FPT),
then Song et al. (2019) provides algorithms with leading running time term being nnz(A). Their core
algorithm is as follows: for tensor A ∈ Rn×n×n, let A1, A2, A3 ∈ Rn×n2

be matrices such that the
1st, 2nd, and 3rd dimensions of the array are preserved, while the other 2 dimensions are collapsed
and flattened into a dimension of size n2. They then apply OSEs S1, S2, S3 with only poly(k/ϵ)
columns to form A1S1, A2S2 and A3S3.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Although one might attempt to replace the OSEs S1, S2, and S3 with leverage score matrices for
A1, A2, and A3, this approach, unfortunately, does not work. The argument of Song et al. (2019) is
as follows: suppose the optimal rank-k approximation Ak exists, then Ak =

∑k
i=1 U

∗
i ⊗ V ∗

i ⊗W ∗
i .

To reduce the problem dimension, the goal is to demonstrate that a good approximate solution exists
in the column span of A1S1 and A2S2. In particular, suppose we have access to V ∗ and W ∗, set
Z1 ∈ Rk×n2

where each row i is V ∗
i ⊗W ∗

i , then it is not hard to see that the optimal U∗ could be
recovered by solving minU∈Rn×k ∥UZ1−A1∥2F , as ∥UZ1−A1∥2F = ∥

∑k
i=1 Ui⊗V ∗

i ⊗W ∗
i −A∥2F .

The multiple response regression problem above can then be accelerated by applying an OSE on the
right and instead solving minU ∥UZ1S1 −A1S1∥2F , where the optimal solution has the closed form
Û = A1S1(Z1S1)

†. This establishes that Û is in the column span of A1S1.

For sampling, this setup is more challenging. If we were to replace S1 with the leverage score
sampling matrix, we would require the leverage score matrix of Z1 in order to preserve the cost
of the optimal solution. Thus, we could only argue for the correctness of this approach if S1 is
chosen according to the leverage score of an unknown matrix Z1, which is unclear how to achieve.
On the contrary, we do have access to the response matrix A1, and one might wonder if sampling
directly from A1 is sufficient. However, a simple counterexample demonstrates that this approach
fails: suppose A1 is a single column equal to en, and the design matrix Z1 is ei + en for i randomly
chosen from 1 to n − 1. Any sampling scheme based on A1 will likely sample the n-th entry but
miss the i-th entry with high probability. This would lead to a solution on the original problem that
has twice the optimal cost.

Surprisingly, we show that this 2-approximation is almost as bad as one can get: if one instead
samples from the ridge leverage score distribution of A1, then there exists a solution Û in the column
span of A1S1 (S1 is the ridge leverage score sampling matrix of A1) such that ∥ÛZ1 − A1∥2F ≤
(2+ ϵ) ·minU ∥UZ1−A1∥2F . This result is particularly surprising as one might expect an adversarial
choice of A1 that would disrupt ridge leverage score sampling. However, ridge leverage scores
provide the so-called projection-cost preserving guarantee: for any rank-k projection P , we have
that (1− ϵ)∥(I − P )A1∥2F ≤ ∥(I − P )A1S1∥2F ≤ (1 + ϵ)∥(I − P )A1∥2F , where setting Pk as the
projection onto the top-k principal components of A1S1 minimizes ∥(I − Pk)A1S1∥2F . Additionally,
the optimal cost of the regression can be bounded by ∥[A1]k −A1∥2F , the best rank-k approximation
to A1. Setting Û = PkA1Z

†
1 , we get

∥ÛZ1 −A1∥2F =∥PkA1Z
†
1Z1 −A1∥2F

=∥(PkA1 −A1)(Z
†
1Z1) +A1(I − Z†

1Z1)∥2F
=∥(PkA1 −A1)(Z

†
1Z1)∥2F + ∥A1(I − Z†

1Z1)∥2F
≤∥(I − Pk)A1∥2F + ∥A1(I − Z†

1Z1)∥2F
≤(1 + ϵ)OPT+OPT

=(2 + ϵ)OPT,

where OPT := minU ∥UZ1 −A1∥2F , and we use the Pythagorean theorem in the proof, along with
the fact that ∥A1 −A1Z

†
1Z1∥2F is the optimal solution. To see Û is in the column span of A1S1, it is

enough to observe that Pk is the projection onto the top-k principal components of A1S1, and hence
Û is in the column span of Pk, a subset of the column span of A1S1. This shows that as long as we
sample according to the ridge leverage score distribution, we can still obtain a (2 + ϵ)-approximate
solution. Moreover, for 3rd order tensor low-rank approximation, we would only invoke ridge
leverage score sampling on A1 and A2, as the components of the design matrix reside within the
column span of both A1S1 and A2S2, making the problem tractable. We can, in turn, employ fast
(classical) tensor leverage score sampling algorithms to achieve an overall approximation ratio of
(4 + ϵ) with a significantly improved running time of Õ(n2k0.5/ϵ+ npoly(k/ϵ)) for dense tensors.

2.5 IMPROVED CORESET FOR CLUSTERING WITH APPLICATIONS

We also design an improved quantum algorithm for constructing an ϵ-coreset of (k, p)-clustering.
In contrast to the recursive sampling framework we developed in the preceding discussions, our
algorithm could be viewed as a quantum implementation of Huang & Vishnoi (2020), where the idea

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

is to first compute a set of approximate k-centers, then perform sensitivity samplings on top of it.
Why could our recursive sampling framework not be applied here? This is because the sensitivities
of (k, p)-clustering can only be overestimated, and these overestimates in general do not satisfy
the uniform sampling bound. In fact, a closer examination of our analysis shows that during the
intermediate stages in the recursive sampling, we would need the sensitivities to be approximated in a
two-sided fashion, i.e., let si be the exact sensitivities. We require the approximate sensitivities s̃i to
satisfy (1−ϵ)si ≤ s̃i ≤ (1+ϵ)si. Nevertheless, we design a sensitivity sampling algorithm for (k, p)-
clustering that is based on Huang & Vishnoi (2020), that computes a coreset of size Õp(k

5ϵ−5p−15)

in time Õp(n
0.5dk2.5ϵ−2.5p−7.5). Compared to the previous work of Xue et al. (2023) where they

obtain a coreset in Õp(n
0.5d1.5k0.5ϵ−(p/2∨1)) time,

• Our algorithm outputs a weighted subset of points B ⊆ A, as our coreset. In contrast, Xue et al.
(2023) adapts an algorithm of Cohen-Addad et al. (2021), in which the coreset consists of weighted
points from A and all bicriteria approximate centers. Thus, composing the coreset from Xue et al.
(2023) with any optimal-sized coreset algorithm (Huang et al., 2024) will also include points not
in A;

• Our algorithm outputs a coreset of size Õp(k
5ϵ−5p−15), while Xue et al. (2023) outputs a coreset

of size Õp(dkϵ
−(2∨p)). This means to obtain an optimal-sized coreset of size Õp(k

2p+2
p+2 ϵ−2) by

running the algorithm of Huang et al. (2024) on top of our coreset, we can achieve the result with
an additional Õp(dpoly(k, ϵ

−p)) time, while Xue et al. (2023) would need Õp(d
2 poly(k, ϵ−p))

time.

As an application, we demonstrate that (k, p)-clustering can be used to bootstrap the construction
of the data selection pipeline (Axiotis et al., 2024), as it enables the computation of approximate
k-centers in sublinear time. Furthermore, we show that the quantum techniques developed for (k, p)-
clustering can also be leveraged to obtain a sublinear-time quantum algorithm for data selection. We
defer a more detailed discussion to Section G.

3 CONCLUSION

We present a quantum, sublinear-time algorithm for weighted sampling that yields a broad range
of results in coreset construction. These include (k, p)-clustering, ℓp regression, (k, p)-subspace
approximation, and low-rank approximation. For the low-rank approximation problem, we design
specialized algorithms for multiple settings, including Frobenius norm error minimization, PSD low-
rank approximation, kernel-based low-rank approximation, and tensor low-rank approximation. For
(k, p)-clustering, we develop an improved quantum coreset construction that offers better dependence
on the data dimension d, and we generalize this framework to address the data selection problem for
foundation models. We highlight three major open problems arising from our work:

• Two-sided approximation for clustering sensitivities. Unlike regression and low-rank approxi-
mation, where coresets can be constructed efficiently via leverage scores or Lewis weights, the
approximate sensitivities used in clustering are only known to be upper bounds. This asymmetry
significantly limits the applicability of the recursive sampling framework to clustering. It remains
an open question whether one can design algorithms that compute two-sided approximations to
clustering sensitivities, thereby unifying clustering within our weighted sampling framework.

• Quantum algorithms for Frobenius norm tensor low-rank approximation. While we achieve
a (1 + ϵ)-approximation for matrix low-rank approximation in sublinear time, the scenario is
more complex for tensors. As discussed in Section 2.4, for 3rd-order tensors, we obtain only
a (4 + ϵ)-approximation, and for general q-th order tensors, a (2q−1 + ϵ)-approximation. A
compelling open question is whether one can design a sublinear-time quantum algorithm—with
potentially worse running time—that achieves a (1 + ϵ)-multiplicative approximation for tensor
low-rank approximation.

• Query lower bounds for coreset construction. In Section H, we establish a quantum query
lower bound for computing additive-multiplicative spectral approximations, which are sufficient
for low-rank approximation. An intriguing direction for future research is to generalize this lower
bound to broader classes of coreset constructions.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper studies novel quantum algorithm for sensitivity sampling which could lead to improvement
to various machine learning problems. We don’t believe there are significant ethnics concerns need to
be addressed.

REPRODUCIBILITY STATEMENT

As this paper is theoretical in nature, we include complete proofs in the Appendix. In particular,
we prove the generic sensitivity sampling result in Section B, low-rank approximation in Section C,
kernel low-rank approximation in Section D, subspace approximation in Section E, tensor low-rank
approximation in Section F, clustering and data selection pipeline in Section G and lower bound in
Section H.

REFERENCES

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for ℓp-regression.
J. ACM, October 2024.

Simon Apers and Ronald De Wolf. Quantum speedup for graph sparsification, cut approximation,
and laplacian solving. SIAM Journal on Computing, 51(6):1703–1742, 2022.

Simon Apers and Sander Gribling. Quantum speedups for linear programming via interior point
methods. In QIP, 2024.

Simon Apers, Sander Gribling, and Aaron Sidford. On computing approximate lewis weights. arXiv
preprint arXiv:2404.02881, 2024.

Kyriakos Axiotis, Vincent Cohen-Addad, Monika Henzinger, Sammy Jerome, Vahab Mirrokni, David
Saulpic, David P. Woodruff, and Michael Wunder. Data-efficient learning via clustering-based
sensitivity sampling: Foundation models and beyond. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
2086–2107. PMLR, 2024.

Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Robust and sample optimal algorithms for
psd low rank approximation. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), 2020.

Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification
for graphs and hypergraphs. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 910–928. IEEE, 2019.

Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
Journal on Computing, 41(6):1704–1721, 2012.

András A Benczúr and David R Karger. Approximating st minimum cuts in õ (n 2) time. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 47–55,
1996.

Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammadtaghi Hajiaghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce. J.
ACM, 68, 2021.

Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. Approximation of zonoids by zonotopes.
Acta Mathematica, 1989.

Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering
in excluded-minor graphs and beyond. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2679–2696. SIAM, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. New frameworks
for offline and streaming coreset constructions, 2022. URL https://arxiv.org/abs/
1612.00889.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
Automata, Languages and Programming, 2002.

Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications. SIAM Journal on Computing, 39(3):923–947, 2009.

Yanlin Chen, András Gilyén, and Ronald de Wolf. A Quantum Speed-Up for Approximating the Top
Eigenvectors of a Matrix. In Proceedings of the 36th annual ACM-SIAM symposium on Discrete
algorithm (SODA), 2025.

Kenneth L Clarkson. Subgradient and sampling algorithms for l 1 regression. In Symposium on
Discrete Algorithms: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 257–266, 2005.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity
time. In STOC, 2013.

Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, 2015.

Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pp. 163–172, New
York, NY, USA, 2015a. Association for Computing Machinery.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, pp. 181–190, 2015b.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
tion via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1758–1777. SIAM, 2017.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, pp. 169–182, New York, NY, USA, 2021. Association for Computing Machinery.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and Omar Ali
Sheikh-Omar. Improved coresets for euclidean k-means. Advances in Neural Information Process-
ing Systems, 35:2679–2694, 2022a.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards
optimal lower bounds for k-median and k-means coresets. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1038–1051, 2022b.

Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney. Sampling
algorithms and coresets for \ell p regression. SIAM Journal on Computing, 38(5):2060–2078,
2009.

Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approximation
problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084–1127, 2008.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for l 2
regression and applications. In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pp. 1127–1136, 2006.

Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing lewis weights to
high precision. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2022.

11

https://arxiv.org/abs/1612.00889
https://arxiv.org/abs/1612.00889


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, New
York, NY, USA, 2011. Association for Computing Machinery.

Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix approximations. SIAM
Journal on Matrix Analysis and Applications, 29(2):656–659, 2007.

Daniel Gibney, Ce Jin, Tomasz Kociumaka, and Sharma V. Thankachan. Near-optimal quantum
algorithms for bounded edit distance and lempel-ziv factorization. In Proceedings of the 2024
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 3302–3332. Society for Industrial
and Applied Mathematics, 2024.

András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear
regression. Quantum, 6:754, June 2022. ISSN 2521-327X. doi: 10.22331/q-2022-06-30-754.
URL https://doi.org/10.22331/q-2022-06-30-754.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219,
New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917855. doi:
10.1145/237814.237866. URL https://doi.org/10.1145/237814.237866.

Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance
sampling is nearly optimal. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450369794.

Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean (k,z)-clustering.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, New
York, NY, USA, 2024. Association for Computing Machinery.

Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Improved iteration complexities for overcon-
strained p-norm regression. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, 2022.

Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying sums of norms. In
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1953–1962.
IEEE, 2023a.

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Chaining, group leverage score overestimates,
and fast spectral hypergraph sparsification. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pp. 196–206, 2023b.

Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying generalized linear
models. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pp.
1665–1675, 2024.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hypergraph
sparsifiers of nearly linear size. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 1159–1170. IEEE, 2022.

Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In Proceedings of the
8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of LIPIcs,
pp. 49:1–49:21. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means: a quantum
algorithm for unsupervised machine learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

Michael Langberg and Leonard J. Schulman. Universal ϵ-approximators for integrals. In Proceedings
of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.

12

https://doi.org/10.22331/q-2022-06-30-754
https://doi.org/10.1145/237814.237866


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and Processes,
volume 23. Springer Science & Business Media, 1991.

James R Lee. Spectral hypergraph sparsification via chaining. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, pp. 207–218, 2023.

Yin Tat Lee. Faster algorithms for convex and combinatorial optimization. PhD thesis, Massachusetts
Institute of Technology, 2016.

Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu. Sublinear quantum algorithms for training
linear and kernel-based classifiers. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3815–3824. PMLR, June 2019.

Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification–simplified and strengthened.
Advances in Neural Information Processing Systems, 34:11643–11654, 2021.

Ramgopal Mettu and Greg Plaxton. Optimal time bounds for approximate clustering. Mach. Learn.,
56(1–3), June 2004.

Alexander Munteanu, Simon Omlor, and Christian Peters. p-generalized probit regression and
scalable maximum likelihood estimation via sketching and coresets. In International Conference
on Artificial Intelligence and Statistics, pp. 2073–2100. PMLR, 2022.

Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Cameron Musco and Kshiteej Sheth. Sublinear time low-rank approximation of toeplitz matrices.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
5084–5117, 2024.

Cameron Musco and David P Woodruff. Sublinear time low-rank approximation of positive semidefi-
nite matrices. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 672–683. IEEE, 2017.

Cameron Musco, Christopher Musco, David P Woodruff, and Taisuke Yasuda. Active linear regression
for l p norms and beyond. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 744–753. IEEE, 2022.

Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection sampling. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pp. 290–308, New
York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311151.

Swati Padmanabhan, David P. Woodruff, and Qiuyi (Richard) Zhang. Computing approximate
ℓp sensitivities. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10336–10344, 2022.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp. 143–152.
IEEE, 2006.

Gideon Schechtman and Artem Zvavitch. Embedding subspaces of lp into lnp, 0 < p < 1.
Mathematische Nachrichten, 227(1):133–142, 2001.

Poojan Chetan Shah and Ragesh Jaiswal. Quantum (inspired) $dˆ2$-sampling with applications. In
The Thirteenth International Conference on Learning Representations, 2025.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926, 2011.

Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pp. 81–90, 2004.

Michel Talagrand. Embedding subspaces of lp in lpn. In Geometric Aspects of Functional Analysis:
Israel Seminar (GAFA) 1992–94, pp. 311–326. Springer, 1995.

Kasturi Varadarajan and Xin Xiao. On the Sensitivity of Shape Fitting Problems. In Deepak D’Souza,
Jaikumar Radhakrishnan, and Kavitha Telikepalli (eds.), IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2012), volume 18 of Leibniz
International Proceedings in Informatics (LIPIcs), pp. 486–497, Dagstuhl, Germany, 2012. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-939897-47-7.

David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023.

David P. Woodruff and Taisuke Yasuda. Root ridge leverage score sampling for ℓp subspace approx-
imation. In Proceedings of the 67th Annual Symposium on Foundations of Computer Science
(FOCS), 2025. arXiv:2407.03262v3.

Yecheng Xue, Xiaoyu Chen, Tongyang Li, and Shaofeng H.-C. Jiang. Near-optimal quantum coreset
construction algorithms for clustering. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PRELIMINARIES

A.1 NOTATION

For any n ∈ N, let [n] denote the set {1, 2, . . . , n}. We use Õ(·) to hide polylogarithmic factors in n,
d, 1/ϵ, 1/δ, and other problem-related parameters, such as k and p. For two numbers a and b, we use
a ∨ b as a shorthand for max{a, b}. We use a = (1± ϵ)b to denote a ∈ [(1− ϵ)b, (1 + ϵ)b].

For a matrix A, we use ∥A∥2 or simply ∥A∥ to denote the spectral norm of A. For a tensor A, let
∥A∥ and ∥A∥2 (used interchangeably) denote the spectral norm of tensor A,

∥A∥ = sup
x,y,z ̸=0

|A(x, y, z)|
∥x∥ · ∥y∥ · ∥z∥

.

Let A ∈ Rn×d and k ≤ min{n, d}. We will use Ak or [A]k to denote its best rank-k approximation.
Let ∥A∥F denote the Frobenius norm of a matrix/tensor A, i.e., ∥A∥F is the square root of the sum
of squares of all entries of A. For 1 ≤ p < 2, we use ∥A∥p to denote the entry-wise ℓp-norm of a
matrix/tensor A, i.e., ∥A∥p is the p-th root of the sum of p-th powers of the absolute values of the
entries of A. ∥A∥1 will be an important special case of ∥A∥p, representing the sum of the absolute
values of all entries.

Let nnz(A) denote the number of nonzero entries of A. Let det(A) denote the determinant of a
square matrix A. Let A⊤ denote the transpose of A. Let A† denote the Moore-Penrose pseudoinverse
of A. Let A−1 denote the inverse of a full-rank square matrix.

For a 3rd order tensor A ∈ Rn×n×n, we use Ai,j,l to denote its (i, j, l)-th element, Ai,∗,l to denote
its i-th row, and Ai,j,∗ to denote its j-th column.

A tensor A is symmetric if and only if for any i, j, k, Ai,j,k = Ai,k,j = Aj,i,k = Aj,k,i = Ak,i,j .

For a tensor A ∈ Rn1×n2×n3 , we use ⊤ to denote rotation (3-dimensional transpose) so that
A⊤ ∈ Rn3×n1×n2 . For a tensor A ∈ Rn1×n2×n3 and matrix B ∈ Rn3×k, we define the tensor-
matrix dot product to be A ·B ∈ Rn1×n2×k.

A.2 SENSITIVITY AND CORESET

Throughout this paper, we will extensively work with sensitivity and coreset. Let X be some universe
of elements. Our main focus is the cost function: cost : Rd ×X → R≥0, which measures the cost of
an element x ∈ X with respect to the first argument. We then define the notion of strong and weak
coresets.

Definition A.1 ((Strong) Coreset). Let B ⊆ A and ϵ ∈ (0, 1). We say that B is an ϵ-strong coreset
or ϵ-coreset of A if there exists a nonnegative weight vector w ∈ R|B|

≥0 such that for all x ∈ X ,∑
b∈B

wb · cost(b, x) = (1± ϵ) · cost(A, x).

Strong coreset preserves the cost over all possible x ∈ X , but sometimes we only need the optimal
cost preserved. We also introduce the notion of weak coreset.

Definition A.2 (Weak Coreset). Let B ⊆ A and ϵ ∈ (0, 1). We say that B is an ϵ-weak coreset if
there exists a nonnegative weight vector w ∈ R|B|

≥0 such that

min
x∈X

∑
b∈B

wb · cost(b, x) = (1± ϵ) ·OPT,

where OPT = minx∈X cost(A, x).

Remark A.3. Oftentimes, given a weighted subset (B,w), we will use cost(B, x) as an abbreviation
for
∑

b∈B wb · cost(b, x), as our analysis and algorithms on the subset of points work in both
unweighted and weighted settings. Hence, when the weight is clear from context, we will abuse
notation and use cost(b, x) to denote wb · cost(b, x).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Definition A.4 (Sensitivity and Generalized Sensitivity). Let A = {a1, . . . , an} ⊂ Rd. We define the
sensitivity of ai as

si(A,A) = max
x∈X

cost(ai, x)

cost(A, x)
.

Let B ⊂ Rd. We define the sensitivity of ai with respect to B as

si(A,B) = max
x∈X,cost(B,x)̸=0

cost(ai, x)

cost(B, x)
.

A.3 LEVERAGE SCORE, RIDGE LEVERAGE SCORE, AND LEWIS WEIGHTS

Definition A.5 (Statistical Dimension). For real value λ ≥ 0 and a rank-d matrix A ∈ Rn×d with
singular values σi(A), the quantity sλd(A) :=

∑d
i=1

1√
1+λ/σ2

i (A)
is the statistical dimension of the

ridge regression problem with regularizing weight λ.
Definition A.6 (Leverage Score). Given matrix A ∈ Rn×d, leverage score can be defined as follows:

τi(A) := a⊤i (A
⊤A)†ai,

where a⊤i is the i-th row of A for all i ∈ [n].

Definition A.7 (Ridge Leverage Score). Given matrix A ∈ Rn×d, we denote the i-th ridge leverage
score, for i ∈ [n], as follows:

τi(A, λAk
) := a⊤i (A

⊤A+ λAk
I)−1ai,

where λAk
= ∥A − Ak∥2F /k and I ∈ Rd×d is the identity matrix. When the rank k is clear from

context, we may abbreviate τ i(A) as τ i(A, λAk
).

Definition A.8 (Generalized Ridge Leverage Score). Let A ∈ Rn×d, C ∈ Rn×d′
, and i ∈ [d]. We

define the i-th generalized ridge leverage score of A ∈ Rn×d with respect to C ∈ Rn×d′
as follows:

τ i(A,C, λCk
) =

{
a⊤i (CC⊤ + λCk

In)
†ai, if ai ∈ span(CC⊤ + λIn);

∞, otherwise.

When the rank k is clear from context, we may use τ i(A,C) as shorthand for τ i(A,C, λCk
).

Definition A.9 (Lewis Weights). Let p ∈ (0,∞) and A ∈ Rn×d. We define the ℓp Lewis weights of
A, denoted by wA, as

wA,i = τi(W
1/2−1/p
A A),

or equivalently,

w
2/p
A,i = a⊤i (A

⊤W
1−2/p
A A)−1ai.

A.4 MATRIX APPROXIMATIONS

Definition A.10 (Subspace Embedding in Sarlos (2006)). Let ϵ, δ ∈ (0, 1) and n > d. Given a
matrix U ∈ Rn×d which is orthonormal (i.e., U⊤U = Id), we say S ∈ Rm×n is an SE(ϵ, δ, n, d)
subspace embedding for fixed U if

(1− ϵ)∥Ux∥22 ≤ ∥SUx∥22 ≤ (1 + ϵ)∥Ux∥22
holds with probability 1− δ. This is equivalent to

∥U⊤S⊤SU − U⊤U∥ ≤ ϵ.

Definition A.11 (Weak ϵ-Affine Embedding, Theorem 39 in Clarkson & Woodruff (2013)). Let
matrices A ∈ Rn×r and B ∈ Rn×d. Given matrix S ∈ Rt×n, we say S is weak ϵ-affine embedding
if the following conditions hold: let X̂ = argminX ∥AX −B∥2F and B̂ = AX̂ −B and then

∥S(AX −B)∥2F − ∥SB̂∥2F = (1± ϵ)∥AX −B∥2F − ∥B̂∥2F

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 PROPERTIES OF LEVERAGE SCORE

Sampling according to leverage score distribution yields a weak affine embedding property; addition-
ally, solving the subsampled problem results in an optimal solution whose cost is close to the original
optimal cost.

Lemma A.12 (Theorem 42 in Clarkson & Woodruff (2013)). Let matrix A ∈ Rn×r with rank at
most k, and let B ∈ Rn×d. If S ∈ Rn×n is a sampling and rescaling diagonal matrix according
to the leverage scores of A, let m = O(ϵ−2k log k) denote the number of nonzero entries on the
diagonal of S. Then for all X ∈ Rr×d, we have:

• S is a weak ϵ-affine embedding (see Definition A.11);

• equivalently, if X̂ = argminX ∥AX − B∥2F , B̂ = AX̂ − B, and C := ∥SB̂∥2F − ∥B̂∥2F ,
then

(1− ϵ) · ∥AX −B∥2F + C ≤ ∥S(AX −B)∥2F ≤ (1 + ϵ) · ∥AX −B∥2F + C.

Lemma A.13 (Leverage Score Preserves Optimal Cost, Lemma C.31 of Song et al. (2019)). Let
A ∈ Rn×r be a matrix with rank at most k, and let B ∈ Rn×d. If we sample O(k log k + k/ϵ)
rows of A and B proportional to the leverage scores of A to obtain a sampling matrix S, then with
probability at least 1− δ,

∥AY∗ −B∥2F ≤ (1 + ϵ) ·min
Y
∥AY −B∥2F ,

where Y∗ = argminY ∥SAY − SB∥2F .

A.6 QUANTUM PRIMITIVES

Our core quantum primitive is a sampling algorithm based on Grover search.

Lemma A.14 (Claim 3 in Apers & De Wolf (2022)). Let n be a positive integer and let pi for all
i ∈ [n] with pi ∈ [0, 1]. There is a quantum algorithm that generates a list of indices with i sampled
with probability pi independently, in time Õ(

√
n
∑n

i=1 pi) · T , where T is the time to compute pi.

We note that this runtime bound could also be achieved via quantum rejection sampling (Ozols
et al., 2012). Let P =

∑n
i=1 pi, then pi/P for all i ∈ [n] induces a probability distribution, which

we denote by σ. Recall that the rejection sampling aims to generate one sample from the target
distribution σ (where σi = pi/P ) using a uniform proposal distribution π (where πi = 1/n), the
query complexity is Õ(maxi∈[n]

√
σi/πi) · T , as each pi ≤ 1, the ratio can be upper bounded by

maxi(pi/P )/(1/n) ≤ n/P , thus, the complexity to generate one sample is Õ(
√

n/P ) · T . As∑n
i=1 pi = P , if we choose each index i with probability pi independently, then the expected size is

P , hence the total expected complexity is Õ(P
√
n/P ) · T = Õ(

√
nP ) · T , as desired.

Throughout the paper, we will use the notation QLS(A, s, δ) to denote the procedure of sampling s
rows or columns from A according to the leverage score distribution of A, with probability at least
1− δ that these leverage scores are constant factor approximations to the exact leverage scores. The
time for this procedure is

√
ns · T , where T is the time to compute a single score. Similarly, we

use QGRLS(A,C, ϵ, δ, λ) to denote the procedure of sampling according to the generalized ridge
leverage score distribution τ i(A,C, λ).

B A QUANTUM RECURSIVE SAMPLING FRAMEWORK FOR CORESET

Throughout this section, let us consider A = {a1, . . . , an} ⊂ Rd to be a set of n points in Rd, and
X to be a set. Let cost : Rd × X → R≥0 be a cost function, and for x ∈ X , let cost(A, x) =∑n

i=1 cost(ai, x). The main objective of this section is to develop a framework for sampling a
weighted subset of A that approximates the cost of A. To do so, we prove that if the weights
satisfying certain assumptions, then a generic recursive sampling framework could construct a coreset
from these weights. The assumptions are listed in the following.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Assumption B.1. Given two finite subsets A,B ⊆ Rd, let w(A,B) ∈ R|A| be a nonnegative weight
vector where wi(A,B) is the weight of ai with respect to B. We assume w satisfies the following
conditions:

• Consistent total weights: for any subset S ⊆ [n],
∑

i∈S wi(AS , AS) ≤ sum(w) where
sum(w) is a finite upper bound on the total weights;

• Uniform sampling bound: let A′ be a uniform subset of A with size m and let w′(A,A′) ∈

Rn be defined as w′
i(A,A′) :=

{
wi(A,A′), if ai ∈ A′,
wi(A,A′ ∪ {ai}), otherwise;

, then w′
i(A,A′) ≥

wi(A,A) for all i ∈ [n];

• Importance sampling bound: let ui be an overestimate of wi(A,A) and suppose we sample
according to qi = min{1, g(ϵ, n, d) · ui}, yielding a weighted subset B ⊆ A of size
g(ϵ, n, d) · ∥u∥1, then with high probability, B is an ϵ-coreset of A with size g(ϵ, n, d) · ∥u∥1;

• Coreset preserves weights: let B be an ϵ-coreset of A, then wi(C,B) = (1± ϵ) · wi(C,A)
for any fixed C and for all i ∈ [n].

Algorithm 1 Quantum recursive sampling for coreset.

1: procedure QRECURSESAMPLE(A ∈ Rn×d, ϵ)
2: if n ≤ g(ϵ, n, d) · sum(w) then
3: return (A, In)
4: end if
5: c← 1000
6: A′ ⊂1/2 A
7: s← g(ϵ, n, d) · sum(w)
8: (C ′, D′)← QRECURSESAMPLE(A′, ϵ)
9: Implement a classical oracle for w′

i(A,C ′)
10: ▷ pi = min{1, c · g(ϵ, n, d) · w′

i(A,C ′)}
11: D ← QSAMPLE(p)
12: C ← D⊤A
13: return (C,D)
14: end procedure

Before presenting our most general result, we first show that if B is a coreset of A, then B ∪ {p} is
also a coreset of A ∪ {p} for any p ̸∈ A.
Lemma B.2. Let B be an ϵ-coreset of A and let p ̸∈ A, then B ∪ {p} is an ϵ-coreset of A ∪ {p}.

Proof. Since B is an ϵ-coreset of A, we know that for any x ∈ X , cost(B, x) = (1± ϵ) · cost(A, x)
with high probability. Conditioning on this event, we note that

cost(B ∪ {p}, x) = cost(B, x) + cost({p}, x)
≤ (1 + ϵ) · cost(A, x) + cost({p}, x)
≤ (1 + ϵ) · cost(A ∪ {p}, x),

the lower bound can be established similarly.

Theorem B.3. Let A ∈ Rn×d. Then, there exists a randomized, quantum algorithm that constructs
an ϵ-coreset C of expected size s := O(g(ϵ, n, d) · sum(w)) Moreover, if a classical oracle for
wi(X,Y ) can be implemented with

• Preprocessing in time Tprep(|Y |, d);

• Query time Tquery(|Y |, d) for computing wi(X,Y ) for any i ∈ X ,

the algorithm runs in time

Tprep(s′, d) + Õ(
√
ns · Tquery(s′, d)),

where s′ = O(g(0.01, n, d) · sum(w)).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 Quantum iterative sampling for coreset.

1: procedure QITERATESAMPLE(A ∈ Rn×d, ϵ)
2: c← 1000
3: s← 4c · g(ϵ, n, d) · sum(w)
4: T ← log(n/s)
5: ϵ0 ← 0.01
6: s′ ← 4c · g(ϵ′, n, d) · sum(w)
7: A0 ⊂1/2 A1 ⊂1/2 . . . ⊂1/2 AT−1 ⊂1/2 AT = A
8: C0 ← A0

9: for t = 1→ T − 1 do
10: Implement a classical oracle for w′

i(At, Ct−1) for all ai ∈ At

11: ▷ pi = min{1, c · g(ϵ′, n, d) · w′
i(At, Ct−1)}

12: Dt ← QSAMPLE(p) ▷ ∥Dt∥0 = s′

13: Ct ← D⊤
t At ▷ Ct ∈ Rs′×d

14: end for
15: Implement a classical oracle for w′

i(AT , CT−1) for all ai ∈ AT

16: ▷ pi = min{1, c · g(ϵ, n, d) · w′
i(AT , CT−1 ∪ {ai})}

17: DT ← QSAMPLE(p) ▷ ∥DT ∥0 = s
18: CT ← D⊤

T AT ▷ CT ∈ Rs×d

19: return (CT , DT )
20: end procedure

Proof. As the algorithm is recursive, we will prove by induction on n. For the base case, we have
n ≤ g(ϵ, n, d) · sum(w); in this case, we could simply take the coreset as A, as it satisfies the size
guarantee with exact approximation.

For the inductive step, we assume it holds for n/2 as our algorithm uniformly samples half of
the points. This means that C ′ is an ϵ-coreset for A′ and by the importance sampling bound of
Assumption B.1, we have wi(A,C ′) = (1±ϵ)·wi(A,A′) with high probability. Now, we consider two
cases: if ai ∈ A′, then w′

i(A,A′) = wi(A,A′) and w′
i(A,C ′) = wi(A,C ′) = (1± ϵ)wi(A,A′) =

(1 ± ϵ)w′
i(A,A′). If ai ̸∈ A′, then w′

i(A,A′) = w′
i(A,A′ ∪ {ai}) = (1 ± ϵ)wi(A,C ′ ∪ {ai}) =

(1± ϵ)w′
i(A,C ′) by Lemma B.2.

Next, we prove that for any uniform subset S ⊆ [n] with |S| = m, we have

E[∥w′(A,SA)∥1] ≤
n

m
· ∥w(A,A)∥1.

Let us denote S(i) as the diagonal indicator matrix for S ∪ {i}. Then, note
n∑

i=1

w′
i(A,SA) =

∑
i∈S

wi(A,SA) +
∑
i ̸∈S

wi(A,S(i)A)

= ∥w(SA, SA)∥1 +
∑
i ̸∈S

wi(A,S(i)A)

≤ ∥w(A,A)∥1 +
∑
i ̸∈S

wi(A,S(i)A),

to bound the second term, note that it is generated via the following random process: first selecting S,
then selecting a random i ̸∈ S and returning wi(A,S(i)A). Since there are n−m points not in SA,
the expected value of this process is 1

n−m E[
∑

i ̸∈S wi(A,S(i)A)]. The key observation is that this
process is equivalent to another process: pick a random subset S′ ⊂ [n] of size m+1, then randomly
pick a point ai ∈ S′A and return wi(A,S

′A). In expectation, this is equal to the average weight over
S′A. Since S′A contains m+ 1 points and by the consistent total weights assumption, the average
weight is at most ∥w(A,A)∥1

m+1 . Therefore,

E[
∑
i ̸∈S

wi(A,S
(i)A)] ≤ (n−m) · ∥w(A,A)∥1

m+ 1
,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

combining these results, we obtain the following expectation bound:

E[
n∑

i=1

w′
i(A,SA)] ≤ ∥w(A,A)∥1 + (n−m) · ∥w(A,A)∥1

m+ 1

≤ n+ 1

m+ 1
· ∥w(A,A)∥1

≤ n

m
· ∥w(A,A)∥1.

Hence, since A′ is a uniform subset of A with size n/2, we know that E[∥w′(A,A′)∥1] ≤
2∥w(A,A)∥1 and w′

i(A,A′) ≥ wi(A,A) by the uniform sampling bound. Therefore, if we simply
scale w′

i(A,C ′) by a factor of 1
1−ϵ , then we have

w′
i(A,C ′) ≥ w′

i(A,A′) ≥ wi(A,A)

and moreover

E[∥w′(A,C ′)∥1] ≤ (1 + 3ϵ)E[∥w′(A,A′)∥1]
≤ 4∥w(A,A)∥1
≤ 4 · sum(w)

consequently, if we sample according to c · g(ϵ, n, d) · w′
i(A,C ′), then the expected size of C is

at most c′ · g(ϵ, n, d) · sum(w) for c′ = 4c, and the coreset guarantee follows naturally from the
importance sampling bound of Assumption B.1.

Regarding the running time, we analyze an iterative version of the algorithm that achieves the same
effect, illustrated in Algorithm 2. One key difference is that for the intermediate steps, we use a
constant approximation to improve the runtime. We divide the proof into steps.

• To uniformly subsample half of the points, we follow the approach of Apers & Gribling
(2024), which takes Õ(log(n/s)) time;

• For each iteration, we first prepare a classical oracle for w′
i(At, Ct−1) in Tprep(s′, d) time;

• Next, we need to sample according to pi = min{1, g(ϵ′, n, d) · w′
i(At, Ct−1)} with

E[
∑
i∈At

pi] ≤ c · g(ϵ′, n, d) · E[
∑
i∈At

w′
i(At, Ct−1)]

≤ 2c · g(ϵ′, n, d) · E[
∑
i∈At

w′
i(At, At−1)]

≤ 4c · g(ϵ′, n, d) ·
∑
i∈At

wi(At, At)

≤ 4c · g(ϵ′, n, d) · sum(w)

= s′,

using Lemma A.14, this step can be implemented in time

Õ(
√
ns′) · Tquery(s′, d);

• Forming Ct requires selecting and weighting s′ points, which can be done in O(s′) time;

• Finally, we do a resampling with ϵ to form the final coreset, which takes

Tprep(s, d) + Õ(
√
ns · Tquery(s, d))

time, as desired.

While Theorem B.3 provides both approximation guarantees in terms of coreset and runtime, in
applications it is more convenient to craft an algorithm that takes the size of the coreset as a parameter.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 Quantum iterative sampling for coreset: fixed size.

1: procedure QITERATEFIXEDSIZE(A ∈ Rn×d, s, s′)
2: c← 1000 · s/∥w(A,A)∥1
3: c′ ← 1000 · s′/∥w(A,A)∥1
4: T ← log(n/s)
5: A0 ⊂1/2 A1 ⊂1/2 . . . ⊂1/2 AT−1 ⊂1/2 AT = A
6: C0 ← A0

7: for t = 1→ T − 1 do
8: Implement a classical oracle for w′

i(At, Ct−1) for all ai ∈ At

9: ▷ pi = min{1, c′ · w′
i(At, Ct−1)}

10: Dt ← QSAMPLE(p) ▷ ∥Dt∥0 = s′

11: Ct ← D⊤
t At ▷ Ct ∈ Rs′×d

12: end for
13: Implement a classical oracle for w′

i(AT , CT−1) for all ai ∈ AT

14: ▷ pi = min{1, c · w′
i(AT , CT−1)}

15: DT ← QSAMPLE(p) ▷ ∥DT ∥0 = s
16: CT ← D⊤

T AT ▷ CT ∈ Rs×d

17: return (CT , DT )
18: end procedure

Corollary B.4. Let A ∈ Rn×d and s, s′ ∈ [n]. Then, there exists a quantum, randomized algorithm
that constructs a coreset C of A with expected size s. Assuming access to a classical oracle for
wi(X,Y ) with:

• Preprocessing time Tprep(|Y |, d);

• Query time Tquery(|Y |, d) for computing wi(X,Y ) for any i ∈ X ,

the algorithm runs in time

Tprep(s′, d) + Õ(
√
ns · Tquery(s′, d)).

Our main contribution is to prove that sensitivity sampling satisfies Assumption B.1.
Definition B.5. Let A = {a1, . . . , an} ⊂ Rd and let cost : Rd ×X → R≥0 be a cost function. We
define the sensitivity of ai with respect to B, denoted by si(A,B), as

si(A,B) = max
x∈X,cost(B,x)̸=0

cost(ai, x)

cost(B, x)

We also need to define the dimension of a system (A,w,X, cost):

Definition B.6. Given a point set A = {a1, . . . , an} ⊂ Rd, nonnegative weights w ∈ R|A|
≥0 , a space

X and a cost function cost : Rd×X → R≥0, let r ∈ [0,∞) and let X(AS) be a function that inputs
a subset of points from A and outputs a set of x ∈ X associated with AS . We define

range(x, r) = {ai ∈ A : wi · cost(ai, x) ≤ r}.
The dimension of (A,w,X, cost) is the smallest integer dim such that for any subset S ⊆ [n] we
have

|{range(x, r) : x ∈ X(AS), r ∈ [0,∞)]}| ≤ |S|dim.
Lemma B.7 (Theorem 2.7 of Braverman et al. (2022)). Let dim be the dimension of (A,w,X, cost)
(Def. B.6), let qi := min{1, wi · si(A,A)} and t ≥

∑n
i=1 qi, let ϵ, δ ∈ (0, 1). Let c ≥ 1 be a

sufficiently large constant, and let S be a sample generated by sampling according to qi. Then, with
probability at least 1− δ, we can generate a subset S ⊆ [n] such that for all x ∈ X(S),

|cost(A, x)−
∑
i∈S

wi

|S| · qi
cost(ai, x)| ≤ ϵ · cost(A, x),

moreover, the size of S is
ct

ϵ2
· (dim · log t+ log(1/δ)).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Theorem B.8. Let A = {a1, . . . , an} ⊂ Rd and let cost : Rd ×X → R≥0. Moreover, suppose the
total sensitivity has a finite upper bound, i.e., there exists some sum(s) <∞ such that for any finite
subset C ⊂ Rd,

∑
i∈C si(C,C) ≤ sum(s). Then, the sensitivity of A with respect to B, s(A,B)

(Def. B.5) satisfies Assumption B.1.

Proof. We need to prove s(A,B) satisfies the four items in Assumption B.1.

• Consistent total weights: by assumption, we have that for any S ⊆ [n],
∑

i∈S si(AS , AS) ≤
sum(s) with sum(s) being finite.

• Uniform sampling bound: we analyze by cases. For the first case, where ai ∈ A′, we have
w′

i(A,A′) = si(A,A′). Let x1, x2 be the two points that realize si(A,A′) and si(A,A),
respectively. Suppose cost(A′, x2) ̸= 0, then

cost(ai, x1)

cost(A′, x1)
≥ cost(ai, x2)

cost(A′, x2)

≥ cost(ai, x2)

cost(A′, x2) + cost(A \A′, x2)

=
cost(ai, x2)

cost(A, x2)

where we use the fact that cost is nonnegative, therefore increasing the denominator will
only decrease the fraction. On the other hand, if cost(A′, x2) = 0, then it must be that
cost(ai, x2) = 0 due to the nonnegativity of cost. Hence, si(A,A) = 0, and consequently
si(A,A′) = 0 as otherwise we could pick x1 for si(A,A).

For the next case, where ai ̸∈ A′, we have w′
i(A,A′) = si(A,A′ ∪ {ai}). Again, let

x1, x2 be the two points that realize si(A,A′ ∪{ai}) and si(A,A). The argument is similar:
suppose cost(A′, x2) ̸= 0, then

cost(ai, x1)

cost(A′, x1) + cost(ai, x1)
≥ cost(ai, x2)

cost(A′, x2) + cost(ai, x2)

≥ cost(ai, x2)

cost(A′, x2) + cost(ai, x2) + cost(A \ (A′ ∪ {ai}), x2)

=
cost(ai, x2)

cost(A, x2)
.

If cost(A′, x2) = 0, then we claim that in fact, x1 = x2. This follows because

cost(ai, x2)

cost(A′, x2) + cost(ai, x2)
=

cost(ai, x2)

cost(ai, x2)

= 1,

by the definition of sensitivity, the max sensitivity is 1, therefore in this case it must be
x1 = x2 and si(A,A) ≤ 1 = si(A,A′ ∪ {ai}).

• Importance sampling bound: this can be achieved via Lemma B.7, by taking m =
O(ϵ−2∥u∥1 · (dim · log(∥u∥1) + log(1/δ))) samples.

• Coreset preserves weights: let B be an ϵ-coreset of A. Then, we know that for any x ∈ X ,
cost(B, x) = (1 ± ϵ) · cost(A, x). Now, let C ⊂ Rd be any fixed set of points, and let
x1, x2 ∈ X be the points that achieve si(C,A) and si(C,B). We have:

wi(C,B) = si(C,B)

=
cost(ci, x2)

cost(B, x2)

≤ (1 + ϵ) · cost(ci, x2)

cost(A, x2)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

≤ (1 + ϵ) · cost(ci, x1)

cost(A, x1)

= (1 + ϵ) · si(C,A),
we could similarly establish that si(C,B) ≥ (1−ϵ)·si(C,A). This proves the assertion.

In what follows, we demonstrate how to concretely implement sensitivity sampling for various cost
functions, such as ℓp sensitivity and k-subspace sensitivity.

B.1 ℓ2 SENSITIVITY AND LEVERAGE SCORE

Let X = Rd and cost(ai, x) = (a⊤i x)
2. In this case, the ℓ2 sensitivity defined as

si(A,B) = max
x∈Rd,Bx̸=0

(a⊤i x)
2

∥Bx∥22
is, in fact, the leverage score τi(A). The leverage score has many favorable structures: for example,
to obtain an ϵ-coreset, it is sufficient to sample O(ϵ−2d log d) points, and one could sample with
wi(A,A′) instead of w′

i(A,A′).

Algorithm 4 Classical oracle for leverage score.

1: data structure LEVERAGESCORE
2: members
3: A ∈ Rn×d

4: C ∈ Rs×d

5: M ∈ RO(logn)×d

6: end members
7:
8: procedure PREPROCESS(A ∈ Rn×d, C ∈ Rs×d)
9: c← 1000

10: Compute the thin SVD of C: C = UΣV ⊤ ▷ V ∈ Rd×s

11: Let G ∈ Rc logn×s be a random Gaussian matrix
12: M ← (GV )(Σ†V ⊤) ▷ M ∈ Rc logn×d

13: end procedure
14:
15: procedure QUERY(i ∈ [n])
16: return ∥Mai∥22
17: end procedure
18: end data structure

Lemma B.9. Let A = {a1, . . . , an} ⊂ Rd and define cost : Rd × Rd → R≥0 by cost(ai, x) =
(a⊤i x)

2, and let w(A,B) be defined as

wi(A,B) =

{
a⊤i (B

⊤B)†ai, if ai ∈ span(B⊤B);

∞, otherwise.

Then, the weights w satisfy Assumption B.1. Moreover, there exists a randomized algorithm (Algo-
rithm 4) that implements PREPROCESS and QUERY procedures, with

• Tprep(s, d) = Õ(sdω−1);

• Tquery(s, d) = Õ(d).

Proof. While leverage score is ℓ2 sensitivity and we could directly use Theorem B.8, we include a
proof that utilizes the structure of leverage score for completeness.

• Consistent total weights: first note that
n∑

i=1

wi(A,A) =

n∑
i=1

a⊤i (A
⊤A)†ai

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

= tr[(A⊤A)†A⊤A]

= rank(A)

≤ d

hence we have sum(w) = d. Let S ⊂ [n] with |S| ≥ d, then∑
i∈S

wi(AS , AS) =
∑
i∈S

a⊤i (A
⊤
SAS)

†ai

= tr[(A⊤
SAS)

†(A⊤
SAS)]

= rank(AS)

≤ d.

• Uniform sampling bound: the proof closely follows that of (Cohen et al., 2015b, Theorem 1),
and we analyze by cases. Let S be an indicator matrix with A′ = SA and let S(i)A be the
indicator matrix for S∪{i}. We will show that w′

i(A,A′) = wi(A,S(i)A) via case analysis.
If ai ∈ A′, then w′

i(A,A′) = wi(A,A′) and S = S(i), consequently wi(A,SA) =
wi(A,S(i)A). If ai ̸∈ A′, then w′

i(A,A′) = wi(A,A′ ∪ {i}) = wi(A,S(i)A). This
completes the proof. To show the overestimate, observe that S(i) is an indicator matrix for
the sample and thus S(i) ⪯ In, we can then conclude

A⊤(S(i))2A ⪯ A⊤A

and

w′
i(A,A′) = a⊤i (A

⊤(S(i))2A)†ai

≥ a⊤i (A
⊤A)†ai

= wi(A,A).

• Importance sampling bound: this is standard as wi(A,A) is the leverage score of matrix
A. The proof follows from a standard matrix Chernoff bound (by sampling O(ϵ−2d log d)
points) and we refer readers to (Cohen et al., 2015b, Lemma 4).

• Coreset preserves weights: because B is an ϵ-coreset of A, we know that for any x ∈ Rd,
∥Bx∥22 = (1± ϵ) · ∥Ax∥22. Expanding yields

(1− ϵ) · x⊤A⊤Ax ⪯ x⊤B⊤Bx ⪯ (1 + ϵ) · x⊤A⊤Ax,

this implies that B⊤B is a spectral approximation to A⊤A and ker(A) = ker(B), and the
same holds for (B⊤B)† with respect to (A⊤A)†. Let C ⊂ Rd be any fixed subset of Rd.
We conclude the proof by spectral approximation:

(1− ϵ) · c⊤i (A⊤A)†ci ⪯ c⊤i (B
⊤B)†ci ⪯ (1 + ϵ) · c⊤i (A⊤A)†ci.

Now, we turn to the runtime analysis of Algorithm 4. Let C = UΣV ⊤. Then we have (C⊤C)† =
(V Σ2V ⊤)† = V (Σ†)2V ⊤. By definition,

wi(A,C) = a⊤i (C
⊤C)†ai

= a⊤i V (Σ†)2V ⊤ai

= ∥Σ†V ⊤ai∥22,
using a standard Johnson-Lindenstrauss trick (Spielman & Srivastava, 2011), it is sufficient to apply
a JL matrix G and prepare the matrix GΣ†V ⊤. Then, with high probability, all wi(A,C) can be
approximated within a factor of 1± ϵ. By a simple scaling argument, this gives an overestimate. Thus,
Algorithm 4 gives the correct overestimates of leverage scores. It remains to analyze the runtime.

• Computing the thin SVD of C takes O(sdω−1) time;

• Computing GV takes Õ(sd) time and then we multiply GV with Σ†V ⊤ which takes Õ(sd)
time as well;

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• For query, note that M ∈ Rlogn×d, and thus computing ∥Mai∥22 takes Õ(d) time.

This completes the proof of the assertion.

Remark B.10. If we faithfully execute the framework of Theorem B.8, then we would need to compute
the wi(A,C ∪ {ai}) instead of wi(A,C). Instead, we only need to sample with wi(A,C). This is a
key feature for leverage score and related notions, which we summarize below.

Lemma B.11 (Theorem 4 of Cohen et al. (2015b)). Let A = {a1, . . . , an} ⊂ Rd. Suppose we sample
points uniformly and independently with probability m

n to obtain SA. Let qi = min{1, wi(A,SA)}
and sample points of A according to q and reweight them accordingly to obtain a weighted subset B.
Then, with high probability, B is an ϵ-coreset of A with size O(nd log d

ϵ2m ).

Setting m = n/2, Lemma B.11 itself is sufficient to prove Theorem B.3, without resorting to use
wi(A,C ∪ {ai}). Our following theorem recovers the main result of Apers & Gribling (2024).

Theorem B.12. Let A = {a1, . . . , an} ⊂ Rd and ϵ, δ ∈ (0, 1). Then, there exists a randomized quan-
tum algorithm that with probability 1− δ, constructs an ϵ-coreset B of A of size O(ϵ−2d log(d/δ)),
in time Õ(ϵ−1n0.5d1.5 + dω).

Furthermore, if we wish to construct a fixed-size sample of size s, we use QLS(A, s, δ) to denote this
algorithm. This variant succeeds with probability at least 1− δ to sample s weighted points, in time
Õ(n0.5s0.5d+ sdω−1).

Proof. The proof follows by observing that we could replace condition 2 and 3 of Assumption B.1
by Lemma B.11, and then we could integrate Lemma B.9 into Theorem B.3. To achieve the desired
ϵ-coreset guarantee, we choose

• s = O(ϵ−2d log(d/δ));

• s′ = O(d log(d/δ)).

Plugging in the choices of s, s′ into Lemma B.9 and Theorem B.3 yields an overall runtime of

Õ(ϵ−1n0.5d1.5 + dω).

B.2 ℓp SENSITIVITY AND LEWIS WEIGHTS

To preserve ℓp subspace, one could sample according to ℓp sensitivity: let us define cost(ai, x) =
|a⊤i x|p for p ∈ (0,∞), then the ℓp sensitivity is

si(A,B) = max
x∈Rd,Bx̸=0

|a⊤i x|p

∥Bx∥pp
,

and a computationally efficient proxy for ℓp sensitivity is ℓp Lewis weights, defined as the unique
nonnegative weight vector wA ∈ Rn with

w
2/p
A,i = a⊤i (A

⊤W
1−2/p
A A)−1ai,

where WA ∈ Rn×n is the diagonal matrix of wA. Naturally, we define our weights as

wi(A,B) = (a⊤i (B
⊤W

1−2/p
B B)−1ai)

p/2.

To implement recursive sampling according to Lewis weights, we need a stronger notion of approxi-
mation for ϵ-coreset, as beyond sensitivity, the weights might not be preserved by an ϵ-coreset. We
explicitly define the notion of an ϵ-approximator, a weighted subset of points that preserves the
weights. Note that an ϵ-approximator is not necessarily an ϵ-coreset.

Definition B.13. Let A = {a1, . . . , an} ⊂ Rd. We say a weighted subset B of A is an ϵ-approximator
if for any fixed C and for any i ∈ [n],

wi(C,B) = (1± ϵ) · wi(C,A).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

For ℓp Lewis weights, it might be simpler to talk about approximating the 2/p-th power of w; in this
case, we have that B⊤W

1−2/p
B B is a 1± ϵ spectral approximation to A⊤W

1−2/p
A A. Cohen & Peng

(2015) proves an analogous result to Lemma B.11 for ℓp Lewis weights, and in turn this satisfies the
requirements of Theorem B.3.

Lemma B.14 (Lemma 6.2 of Cohen & Peng (2015)). Let A = {a1, . . . , an} ⊂ Rd. Sup-
pose we sample points uniformly and independently with probability 1

2 to obtain SA. Let
qi = min{1, wi(A,SA)} and sample points of A according to q and reweight them accordingly to
obtain a weighted subset B. Then, with high probability, B is an ϵ-approximator of A with expected
size Op(ϵ

−(2∨p)d(p/2∨1)+1 log d).

We also need the following result due to Fazel et al. (2022) that approximates ℓp Lewis weights in
nearly exact leverage score time:

Lemma B.15 (Theorem 2 of Fazel et al. (2022)). Let A = {a1, . . . , an} ⊂ Rd, p ∈ (0,∞) and
ϵ ∈ (0, 1). Then, there exists a deterministic algorithm that outputs a vector w̃A ∈ Rn such that for
any i ∈ [n], w̃A,i = (1± ϵ) · wA,i. Moreover, the runtime of this algorithm is

Op(nd
ω−1 log(np/ϵ)).

Algorithm 5 Classical oracle for Lewis weights.

1: data structure LEWISWEIGHTS
2: members
3: A ∈ Rn×d

4: C ∈ Rs×d

5: M ∈ RO(p2 logn)×d

6: end members
7:
8: procedure PREPROCESS(A ∈ Rn×d, C ∈ Rs×d)
9: c← 1000p2

10: Generate W̃C via Lemma B.15 on C ▷ W̃C ∈ Rs×s

11: Compute the thin SVD of W̃ 1/2−1/p
C C: W̃ 1/2−1/p

C C = UΣV ⊤

12: Let G ∈ Rc logn×s be a random Gaussian matrix
13: M ← (GV )(Σ−1V ⊤) ▷ M ∈ Rc logn×d

14: end procedure
15:
16: procedure QUERY(i ∈ [n])
17: return ∥Mai∥p2
18: end procedure
19: end data structure

Note the striking similarity between Algorithm 5 and Algorithm 4, as Lewis weights are leverage
scores of A after appropriate reweighting.

Lemma B.16. Let A = {a1, . . . , an} ⊂ Rd, p ∈ (0,∞), ϵ, δ ∈ (0, 1), and define w(A,B) as

wi(A,B)p/2 = a⊤i (B
⊤W

1−2/p
B B)−1ai,

Then, the weights w satisfy the requirements for Theorem B.3 for an ϵ-approximator. Moreover, there
exists a randomized algorithm (Algorithm 5) that implements PREPROCESS and QUERY procedures
with

• Tprep(s, d) = Õp(sd
ω−1);

• Tquery(s, d) = Õp(d).

Proof. The proof is similar to Theorem B.12 by observing that we can replace condition 2 and 3 of
Assumption B.1 by Lemma B.14. It remains to verify condition 1 and 4.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Consistent total weights: observe that we can alternatively define wA as wA,i =

τi(W
1/2−1/p
A A), i.e., it is the leverage score of W 1/2−1/p

A A. Since the sum of the leverage
scores is at most the rank, we have sum(w) = d.

• Coreset preserves weights: instead of a coreset, we will be generating a sequence of ϵ-
approximators, so we will instead prove that: if B is an ϵ-approximator of A, then for
any fixed C and any i ∈ [n], wi(C,B) = (1 ± ϵ) · wi(C,A). By definition, if B is an
ϵ-approximator of A, then we have the following:

c⊤i (B
⊤WBB)−1ci = (1± ϵ) · ci(A⊤WAA)−1ci,

however, this shows that wi(C,B)2/p = (1± ϵ) · wi(C,A)
2/p. By raising both sides to the

appropriate power, we see that wi(C,B) = (1± ϵ)p/2 ·wi(C,A) = (1± pϵ/2) ·wi(C,A).
What we have just shown is that an ϵ-approximator preserves weights up to a factor of
1±O(pϵ), so to achieve (1± ϵ) factor approximation for the weights, we would need an
ϵ/p-approximator.

Since in the end, we will do a final resampling using the approximated Lewis weights, we will stick
to obtaining an ϵ/p-approximator.

To analyze Algorithm 5, we first consider a variant where the Johnson-Lindenstrauss transformation is
not applied. We compute W̃C using Lemma B.15 which is a 1±ϵ spectral approximation to WC , then
we know that W̃ 1−2/p

C is a (1± ϵ)|1−2/p| spectral approximation to W
1−2/p
C , and this approximation

guarantee propagates to C⊤W̃
1−2/p
C C and (C⊤W̃

1−2/p
C C)−1. So far, we have established that for

any ai, a⊤i (C
⊤W̃

1−2/p
C C)−1ai = (1 ± ϵ)|1−2/p| · a⊤i (C⊤W

1−2/p
C C)−1ai, and our final output is

the (p/2)-th power of the quantity, hence the approximate weight is a (1± ϵ)|p/2−1| approximation
to the true weight. Hence, for p ∈ (0, 2), our output is already a 1±O(ϵ) approximation to the true
quantity, and for p ≥ 2, we are outputting a 1 ± pϵ/2 approximation. To obtain the correct 1 ± ϵ
approximation, we need to set the correct approximation factor.

When applying the Johnson-Lindenstrauss transformation, we are effectively approximating
a⊤i (C

⊤W̃
1−2/p
C C)−1ai, and by the same argument, we could use a 1 ± O(1/p) approximation

for Johnson-Lindenstrauss, resulting in a dimension of O(p2 log n). Let us analyze the runtime.

• PREPROCESS: to compute W̃C , we need to set the ϵ parameter in Lemma B.15 to O(1/p),
and it runs in time Õp(sd

ω−1). Computing the SVD takes O(sdω−1) time, and applying
the random Gaussian matrix takes Õp(sd) time.

• QUERY: note that M ∈ RÕp(1)×d, hence answering one query takes time Õp(d).

This completes the proof.

Lemma B.16 gives an approach to compute an ϵ-approximator for A, but our ultimate goal is to
compute an ϵ-coreset for A, which has a different objective. The following result states that sampling
according to the appropriate scaling of overestimates of Lewis weights indeed yields an ϵ-coreset:

Lemma B.17 (Theorem 1.3 of Woodruff & Yasuda (2023)). Let A = {a1, . . . , an} ⊂ Rd, ϵ, δ ∈
(0, 1) and p ∈ (0,∞) and let u ∈ Rn be an overestimate of wA with ∥u∥1 ≤ O(d). Consider the
sampling scheme where each point is sampled with probability qi = min{1, α · ui} where

• α = ϵ−2(log3 d+ log(1/δ)) for p ∈ (0, 1);

• α = ϵ−2 log(n/δ) for p = 1;

• α = ϵ−2(log2 d log n+ log(1/δ)) for p ∈ (1, 2);

• α = ϵ−2dp/2−1(log2 d log n+ log(1/δ)) for p ≥ 2.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Set si = q
−1/p
i . Then, with probability at least 1 − δ, SA is an ϵ-coreset of A, and the number of

samples is at most α · ∥u∥1.

We are now ready to state our main result for constructing an ϵ-coreset. Due to Lemma B.17, we only
need an overestimate for Lewis weights, so we will obtain an O(1/p)-approximator first, and then
use it to generate approximate Lewis weights.

Theorem B.18. Let A = {a1, . . . , an} ⊂ Rd, ϵ, δ ∈ (0, 1) and p ∈ (0,∞). There exists a
randomized quantum algorithm that with probability at least 1− δ, constructs an ϵ-coreset of A with
size α · d, for α given in Lemma B.17. The runtimes for generating the coreset are

• Õp(d
ω+1 + ϵ−2d3) + Õp(n

0.5d1.5(ϵ−3 + d0.5)) for p ∈ (0, 2);

• Õp(d
p/2(dω + ϵ−2d2)) + Õp(n

0.5dp/4+1(ϵ−3 + d0.5)) for p ≥ 2.

Proof. Our strategy will be to first construct an O(1/p)-approximator of A, which in turn gives an
O(1)-approximation to wA, then we will sample according to these approximations, in conjunction
with Lemma A.14.

• Stage 1: constructing an O(1/p)-approximator of A. The proof follows by combining
Lemma B.16 and Theorem B.3, with s = s′ and

s = Õp(d
(p/2∨1)+1),

and the time to generate such an O(1/p)-approximator is

Õp(d
(p/2∨1)+ω) + Õp(n

0.5d(p/2∨1)/2+1.5).

We let B̃ denote the resulting approximator. Note that the size of B̃ is Õp(d
(p/2∨1)+1).

• Stage 2: constructing an ϵ-coreset of A. Observe that B̃ gives an O(1)-approximation to
wA, as for any ai,

(a⊤i (B̃
⊤W

1−2/p

B̃
B̃)−1ai)

p/2 = O(1) · (a⊤i (A⊤W
1−2/p
A A)−1ai)

p/2

= O(1) · wA,i,

and after appropriately rescaling this yields the desired oversampling vector u. Note that

∥u∥1 =

n∑
i=1

(a⊤i (B̃
⊤W

1−2/p

B̃
B̃)−1ai)

p/2

= O(1) · (a⊤i (A⊤W
1−2/p
A A)−1ai)

p/2

= O(d),

and we could invoke Lemma B.17 to generate the desired ϵ-coreset. We could still use
Algorithm 5 as our oracle to supply the sampling probability, except we need to use
a Johnson-Lindenstrauss transformation that gives (1 ± ϵ/p)-approximation. Given B̃,
generating W̃B̃ takes Õp(d

(p/2∨1)+ω) time, and the next time-consuming operation is
applying the JL. Note that the JL has dimension Õp(ϵ

−2), hence applying the JL takes time
Õp(ϵ

−2d(p/2∨1)+2). For query, note that the dimension of M is Õp(ϵ
−2) × d, and each

query can be implemented in Õp(ϵ
−2d) time. All in all, we obtain the following (simplified)

runtime for generating the ϵ-coreset:

– For p ∈ (0, 2), it takes time Õp(d
ω+1 + ϵ−2d3 + ϵ−3n0.5d1.5);

– For p ≥ 2, it takes time Õp(d
p/2+ω + ϵ−2dp/2+2 + ϵ−3n0.5dp/4+1).

This concludes the proof.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

B.3 k-SUBSPACE SENSITIVITY AND RIDGE LEVERAGE SCORE

Let Fk be the set of all k-dimensional subspaces in Rd. We can define the cost with respect to a
subspace by identifying X = Fk and cost : Rd → Fk → R≥0 as

cost(ai, x) = ∥a⊤i (I − Px)∥22,
where Px is the orthogonal projection onto x. Then, the k-subspace sensitivity is

si(A,B) = max
x∈X

∥a⊤i (I − Px)∥22
∥B(I − Px)∥2F

.

Similar to ℓp sensitivity, k-subspace sensitivity can be overestimated by ridge leverage score, defined
as

τ i(A) = a⊤i (A
⊤A+ λAk

I)−1ai

where λAk
= ∥A−Ak∥2F /k. We then define the weights similar to leverage score:

wi(A,B) =

{
a⊤i (B

⊤B + λBk
I)†ai, if ai ∈ span(B⊤B + λBk

I),

∞, otherwise.

We will explicitly define the notion of ϵ-approximator:
Definition B.19. Let A = {a1, . . . , an} ⊂ Rd, ϵ ∈ (0, 1) and 1 ≤ k ≤ d. We say B is an
ϵ-approximator of A if

• B is an ϵ-coreset of A;

• The following additive-multiplicative spectral approximation guarantee holds:

(1− ϵ)B⊤B − ϵλAk
I ⪯ A⊤A ⪯ (1 + ϵ)B⊤B + ϵλAk

I.

The following two results due to Cohen et al. (2017) illustrate that an ϵ-approximator indeed preserves
all weights, and uniform sampling gives sufficiently good approximation.
Lemma B.20 (Lemma 12 of Cohen et al. (2017)3). Let A = {a1, . . . , an} ⊂ Rd and ϵ ∈ (0, 1). If B
is an ϵ-approximator of A, then for any fixed C and for all i ∈ [n], wi(C,B) = (1± ϵ) · wi(C,A).
Lemma B.21 (Theorem 14 of Cohen et al. (2017)). Let A = {a1, . . . , an} ⊂ Rd. Suppose we sample
points uniformly and independently with probability 1

2 to obtain SA. Let qi = min{1, wi(A,SA)}
and sample points of A according to q and reweight them accordingly to obtain a weighted subset B.
Then, with high probability, B is an ϵ-approximator of A with expected size O(ϵ−2k log k).

Lemma B.22. Let A = {a1, . . . , an} ⊂ Rd, k ≤ d, ϵ, δ ∈ (0, 1), and define w(A,B) as

wi(A,B) =

{
a⊤i (B

⊤B + λBk
I)†ai, if ai ∈ span(B⊤B + λBk

I),

∞, otherwise.

Then, the weights w satisfy the requirements for Theorem B.3 for an ϵ-approximator. Moreover, there
exists a randomized algorithm (Algorithm 6) that implements PREPROCESS and QUERY procedures
with

• Tprep(s, d) = Õ(dsω−1);

• Tquery(s, d) = Õ(d).

Proof. We only need to derive a total weights upper bound, as other conditions of Assumption B.1
are already satisfied by Lemma B.21. Let A = UΣV ⊤ be the SVD of A. Then,

n∑
i=1

wi(A,A) =

n∑
i=1

a⊤i (A
⊤A+ λAk

I)†ai

3Note that while the original Lemma in Cohen et al. (2017) states the result in terms of ridge leverage score,
their proof essentially shows that B⊤B+λBkI is a 1± ϵ spectral approximation of A⊤A+λAkI , which gives
the desired approximator guarantee.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 6 Classical oracle for ridge leverage score.

1: data structure RIDGELEVERAGESCORE
2: members
3: A ∈ Rn×d

4: C ∈ Rs×d

5: M ∈ RO(logn)×d

6: end members
7:
8: procedure PREPROCESS(A ∈ Rn×d, C ∈ Rs×d)
9: c← 1000

10: Compute the thin SVD of C: C = UΣV ⊤ ▷ V ∈ Rd×s

11: λ←
∑d

i=k+1 σi

12: Let G ∈ Rc logn×s be a random Gaussian matrix
13: M ← (GV )(Σ†V ⊤ + 1√

λ
V ⊤) ▷ M ∈ Rc logn×d

14: end procedure
15:
16: procedure QUERY(i ∈ [n])
17: return ∥Mai∥22
18: end procedure
19: end data structure

= tr[A⊤A(A⊤A+ λAk
I)†]

= tr[V Σ2V ⊤(V (Σ2)†V ⊤ +
1

λAk

V V ⊤)]

=

n∑
i=1

σ2
i

σ2
i +

∥A−Ak∥2
F

k

≤ k +

n∑
i=k+1

σ2
i

σ2
i +

∥A−Ak∥2
F

k

≤ k +

n∑
i=k+1

σ2
i

∥A−Ak∥2
F

k

= k + k · ∥A−Ak∥2F
∥A−Ak∥2F

≤ 2k

where for the fifth step, we upper bound σ2
i

σ2
i+

∥A−Ak∥2
F

k

by 1 for i ≤ k. The runtime analysis is

identical to that of Lemma B.9.

One of the key features of the ϵ-approximator for k-subspace approximation is that it is also an
ϵ-coreset.

Theorem B.23. Let A = {a1, . . . , an} ⊂ Rd, ϵ, δ ∈ (0, 1) and k ∈ [d]. There exists a randomized
quantum algorithm QRLS(A, k, ϵ, δ) that with probability at least 1− δ, constructs an ϵ-coreset of
A with size O(ϵ−2k log(k/δ)), in time Õ(ϵ−1n0.5dk0.5 + dkω−1).

Proof. The proof is almost identical to the proof of Theorem B.12, except that the sizes s and s′ are

• s = Õ(ϵ−2k);

• s′ = Õ(k).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Plugging these choices into Lemma B.22 and Theorem B.3 gives a runtime of

Õ(ϵ−1n0.5dk0.5 + dkω−1).

C QUANTUM COLUMN SUBSET SELECTION AND LOW-RANK
APPROXIMATION

In this section, we present the first application of the generic sampling framework developed in
Section B. In particular, when the cost is the k-subspace cost defined as cost(A, x) = ∥A(I −
Px)∥2F where x ∈ Fk, then an ϵ-coreset of A can be used to compute a Frobenius norm low-rank
approximation. In the following, we slightly change the notation, let A ∈ Rn×d, we let the set of
points be {a1, . . . , ad} ⊂ Rn, and the goal is to compute a weighted subset of columns of A.
Lemma C.1 (Lemma 3 of Cohen et al. (2015a)). Let A = {a1, . . . , ad} ⊂ Rn, ϵ ∈ (0, 1), k ∈
[min{n, d}] and let B ⊂ A be an ϵ-coreset of A with respect to the k-subspace cost. Then, the
projection onto the top-k left singular vectors of B, denoted by PBk

, satisfies

∥A− PBk
P⊤
Bk

A∥2F = (1± ϵ)∥A−Ak∥2F .

Cohen et al. (2017) is the first to observe that ridge leverage score is in fact an overestimate of
k-subspace sensitivity, and sampling according to ridge leverage score gives in fact a stronger
ϵ-approximator (see Section B.3), which is an ϵ-coreset. We hence summarize the result below.
Corollary C.2. Let A ∈ Rn×d, ϵ ∈ (0, 1), k ≤ min{n, d} be a positive integer. There exists
a quantum randomized algorithm QLOWRANKCMM(A, k, ϵ, δ) that constructs an ϵ-coreset C
of A for the k-subspace cost with probability at least 1 − δ. The size of the coreset is at most
O(k log(k/δ)/ϵ2) and the runtime is Õ(nd0.5k0.5ϵ−1 + nkω−1).

We note that in addition, C is a column subset selection of A:
Definition C.3 (Rank-k Column Subset Selection). For d′ < d, a subset of A’s columns C ∈ Rn×d′

is a (1 + ϵ) factor column subset selection if there exists a rank-k matrix X ∈ Rd′×d with

∥A− CX∥2F ≤ (1 + ϵ)∥A−Ak∥2F .

We utilize this fact to further derive an algorithm for outputting a low-rank approximation of A,
which could subsequently be generalized to tensor. We state a tool for solving a bilinear multiple
response regression.
Lemma C.4 (Generalized Low-Rank Approximation (Friedland & Torokhti, 2007)). Let A ∈ Rn×d,
B ∈ Rn×k′

and C ∈ Rk′×n, let k ≤ min{n, d} be a positive integer. The following bilinear
regression problem

min
X:rank(X)≤k

∥A−BXC∥2F

is minimized by X∗ = B†[PBAPC ]kC
† where PB , PC are the projection matrices onto B,C

respectively.

Theorem C.5. Let A ∈ Rn×d and ϵ ∈ (0, 0.1), and let k ≤ min{d, n} be a positive integer.
Then, there exists a randomized algorithm (Algorithm 7) that outputs a pair of rank-k matrices
M ∈ Rn×k, N ∈ Rd×k such that

∥A−MN⊤∥2F ≤ (1 + ϵ) · ∥A−Ak∥2F
holds with probability at least 0.99. Moreover, Algorithm 7 runs in time

Õ(ϵ−1nd0.5k0.5 + nkω−1 + ϵ−1.5n0.5k1.5 + ϵ−2d0.5k1.5 + ϵ−3kd).

Proof. We start by proving the correctness of Algorithm 7. First note that C is a column subset
selection (Definition C.3), meaning that there exists a rank-k matrix X with

∥A− CX∥2F ≤ (1 + ϵ)∥A−Ak∥2F ,

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 7 Quantum low-rank approximation.

1: procedure QLOWRANK(A ∈ Rn×d, k, ϵ)
2: k1 ← O(ϵ−2k log k)
3: k2 ← O(k1 log k1 + ϵ−1k1)
4: k3 ← O(k2 log k2 + ϵ−1k2)
5: C ← QLOWRANKCMM(A, k, ϵ, 0.001) ▷ C ∈ Rn×k1 , Corollary C.2.
6: S ← QLS(C, k2, 0.001) ▷ S ∈ Rk2×n, Theorem B.12.
7: T1 ← QLS(C, k2, 0.001) ▷ T1 ∈ Rk2×n, Theorem B.12.
8: T2 ← QLS(SA, k3, 0.001) ▷ T2 ∈ Rd×k3 , Theorem B.12.
9: X,Y ← minX∈Rk1×k,Y ∈Rk×k2 ∥T1CXY SAT2 − T1AT2∥2F

10: M̂ ← (T1C)†[PT1CT1AT2PSAT2
]k(SAT2)

† ▷ M̂ ∈ Rk1×k2 and rank(M̂) = k.
11: Write M̂ into factored form M̂ = X̂Ŷ ▷ X̂ ∈ Rk1×k, Ŷ ∈ Rk×k2 .
12: return CX̂ , Ŷ SA in factored form
13: end procedure

solving the above regression exactly is costly, so we employ a leverage score sampling matrix S of
matrix C, and consider the sketched regression

min
X:rank(X)≤k

∥SCX − SA∥2F ,

letting X̂ denote the optimal solution to the above regression, then by Lemma A.13, we know that

∥A− CX̂∥2F ≤ (1 + ϵ) min
X:rank(X)≤k

∥A− CX∥2F

≤ (1 + ϵ)2∥A−Ak∥2F ,

for simplicity, we scale ϵ so that the last inequality holds with multiplicative factor 1 + ϵ. To find X̂ ,
we note that X̂ = (SC)†SA, which means that the optimal solution lives in the row span of matrix
SA. Writing X̂ = Ŷ SA, we see that

min
Y :rank(Y )≤k

∥A− CY SA∥2F ≤ (1 + ϵ)∥A−Ak∥2F .

To further speed up, we employ two leverage score samplings to reduce dimensions. Let T1 be
the leverage score sampling matrix of C, then by Lemma A.13, we could solve the regression
minZ:rank(Z)≤k ∥T1A − T1CZ∥2F and recover Y through minY ∥Z − Y SA∥2F (where the latter
could be solved exactly), let Y1 denote the optimal solution to the Y recovered through this procedure
and Z1 be the optimal solution to the first regression, then Y1 = Z1(SA)

†. Z1 has the guarantee that

∥CZ1 −A∥2F ≤ (1 + ϵ) min
Z:rank(Z)≤k

∥CZ −A∥2F

≤ (1 + ϵ)2∥A−Ak∥2F
and subsequently

∥CY1SA−A∥2F ≤ (1 + ϵ)2∥A−Ak∥2F ,

follow the same argument, we could also sample according to the leverage score of SA and sketch on
the right. By properly scaling ϵ, we could then conclude that the optimal cost of

min
Z:rank(Z)≤k

∥T1CZSAT2 − T1AT2∥2F

is at most 1 + ϵ factor of ∥A−Ak∥2F , as desired.

For the running time, by Corollary C.2, generating C takes Õ(ϵ−1nd0.5k0.5 + nkω−1) time, gener-
ating the matrix S with a total row count of k2 takes Õ(

√
nk2k1 + kω1 ) = Õ(ϵ−1.5n0.5k1.5) time.

Computing SA is simply selecting and rescaling k2 rows from A, which takes O(k2d) = Õ(ϵ−3kd)

time. Generating T2 takes Õ(
√
dk3k2 + kω2 ) = Õ(ϵ−2d0.5k1.5) time. Finally, computing T1C,

SAT2, their pseudoinverses and projection takes poly(k/ϵ) time, since forming these matrices is

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

simply selecting and rescaling entries, and the resulting matrices are of size poly(k/ϵ). Computing
T1AT2 takes poly(k/ϵ) by selecting and rescaling such number of entries from A, hence M̂ can be
computed in poly(k/ϵ) time.

In summary, Algorithm 7 takes time

Õ(ϵ−1nd0.5k0.5 + nkω−1 + ϵ−1.5n0.5k1.5 + ϵ−2d0.5k1.5 + ϵ−3kd).

D QUANTUM KERNEL LOW-RANK APPROXIMATION

Given a set of points {x1, . . . , xn} ⊂ Rd and a positive definite kernel function K : Rd×Rd → R, the
kernel low-rank approximation problem asks to find a pair M,N ∈ Rn×k such that ∥K−MN⊤∥2F ≤
(1+ϵ)·∥K−Kk∥2F , where K ∈ Rn×n is the kernel matrix induced by K, with Ki,j = K(xi, xj). Note
that explicitly forming the matrix K takes Ω(n2) evaluations of K(·, ·), which is usually too expensive
to be afforded. Since K is positive definite, there exists feature mapping ϕ : Rd → Rm such that
K = ΦΦ⊤ where Φ ∈ Rn×m with the i-th row being ϕ(xi). Musco & Musco (2017) gives a low-rank
approximation for Φ using Õ(ϵ−2nk) evaluations of K(·, ·) and an additional Õ(ϵ−2(ω−1)nkω−1)
time. Musco & Woodruff (2017); Bakshi et al. (2020) show that the low-rank approximation guarantee
can be achieved, albeit with Õ(ϵ−1nk) kernel evaluations and an additional Õ(ϵ−(ω−1)nkω−1) time4.
In this section, we will present a quantum algorithm based on the techniques developed in Section B
and C, that computes a low-rank approximation for the kernel matrix using sublinear number of
kernel evaluations and additional operations.

Before diving into our main result, we introduce some notations. We will extensively use KD1 or
D⊤

2 KD1 to denote a weighted sampling of K, in particular,

• If D ∈ Rn×t, we use D⊤Ki ∈ Rt to denote the vector v with vj := D(j) ·K(xi, xj), where
j ∈ D is the j-th sample of D, and D(j) is the corresponding weight;

• If D ∈ Rn×t, we use “KD in factored form” to denote a data structure that when i-th row
is queried, compute v ∈ Rt where vj := D(j) · K(xi, xj) for j ∈ D.

• If D1 ∈ Rn×t1 and D2 ∈ Rn×t2 , we use “D⊤
2 KD1 in factored form” to denote a data

structure that supports queries to either row or column, where for i-th row, it computes a
vector vrow ∈ Rt1 where vrowj := D1(j)D2(i) ·K(xi, xj) for j ∈ D1 and i ∈ D2. Similarly
the operation applies to the column.

• Sometimes given KD ∈ Rn×t1 in factored form, we will compose it with another matrix
M ∈ Rt1×t2 , we use “KDM in factored form” to denote a data structure that supports row
queries, such that when the i-th row is queried, it returns Mv where vj := D(j) · K(xi, xj)
for j ∈ D.

Theorem D.1. There exists a randomized algorithm (Algorithm 8) that given any set of points
{x1, . . . , xn} ⊂ Rd and a positive definite kernel function K : Rd×Rd → R and any positive integer
k ≤ n, ϵ ∈ (0, 1), runs in

Õ(n0.75k1.25ϵ−1.25(TK + kϵ−1) + n0.5k1.5ϵ−2.5(TK + ϵ−0.5) + n0.5kω−0.5ϵ0.5−ω).

time, where TK is the time to evaluate K on any pair of points xi, xj , and returns a pair of rank-k
matrices M,N ∈ Rn×k (given implicitly in factor form) such that

∥K −MN⊤∥2F ≤ (1 + ϵ)∥K −Kk∥2F
holds with probability at least 0.99.

Proof. Our algorithm could be interpreted a quantum implemented of a generalization of Bakshi
et al. (2020), where they only tackle the case where K(xi, xj) = x⊤

i xj , and we are given directly the
kernel matrix K. We also note several differences between ours and Bakshi et al. (2020):

4Note that Musco & Woodruff (2017); Bakshi et al. (2020) phrase their algorithm as a low-rank approximation
for PSD matrix A, and their runtime is stated in terms of reads to A. Observe that a read to an entry of A could
be translated to one kernel evaluation.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 8 Quantum kernel low-rank approximation.

1: procedure QLOWRANKKERNEL({x1, . . . , xn} ∈ (Rd)n,K : Rd × Rd → R, k, ϵ, δ)
2: c← 1000

3: t← c
√

nk
ϵ log(n/δ)

4: k′ ← Õ(k/ϵ)
5: D1 ← QNYSTRÖMKERNEL({x1, . . . , xn},K, k′, δ/6) with each GRLS scaled by

√
n
ϵk ▷

Algorithm 9, D1 ∈ Rn×t, oversample columns.
6: D2 ← QNYSTRÖMKERNEL(x1, . . . , xn},K, k′, δ/6) with each GRLS scaled by

√
n
ϵk ▷

Algorithm 9, D2 ∈ Rn×t, oversample rows.
7: C ← KD1 in factored form ▷ C ∈ Rn×t.
8: R← D⊤

2 KD1 in factored form ▷ R ∈ Rt×t.
9: ϵ0 ← 0.01

10: R̃← QLOWRANKCMM(R, k/ϵ, ϵ0, δ/6) ▷ Corollary C.2, R̃ ∈ Rt×ϵ−1k log(k/δ).
11: Z ← top-k/ϵ singular vectors of R̃ ▷ Z ∈ Rt×k/ϵ

12: ▷ Solve the regression minW∈Rn×k/ϵ ∥C −WZ⊤∥.
13: Implement oracle for pi = min{1,

√
n
ϵk · ∥zi∥

2
2} where zi is the i-th row of Z

14: D3 ← QSAMPLE(p) ▷ D3 ∈ Rt×k′
.

15: ▷ Solve the surrogate regression minW ∥CD3 −WZ⊤D3∥.
16: W ← CD3(Z

⊤D3)
† in factored form ▷ W = K(D1D3(Z

⊤D3)
†) ∈ Rn×k/ϵ.

17: ▷ Solve the regression minY :rank(Y )≤k ∥K −WYW⊤∥2F .
18: D4 ← QLS(W,k′/ϵ2, δ/6) ▷ D4 ∈ Rn×k′/ϵ2 , sample rows.
19: D5 ← QLS(W,k′/ϵ2, δ/6) ▷ D5 ∈ Rn×k′/ϵ2 , sample columns.
20: Compute D⊤

4 W and W⊤D5 ▷ D⊤
4 W ∈ Rk′/ϵ2×k/ϵ, W⊤D5 ∈ Rk/ϵ×k′/ϵ2 .

21: PD⊤
4 W ← D⊤

4 W (W⊤D4D
⊤
4 W )†W⊤D4, PW⊤D5

←W⊤D5(D
⊤
5 WW⊤D5)

†D⊤
5 W

22: Compute D⊤
4 KD5 ▷ D⊤

4 KD5 ∈ Rk′/ϵ2×k′/ϵ2 .
23: Compute [PD⊤

4 W (D⊤
4 KD5)PW⊤D5

]k ▷ [PD⊤
4 W (D⊤

4 AD5)PW⊤D5
]k ∈ Rk′/ϵ2×k′/ϵ2 of

rank-k.
24: Y∗ ← (D⊤

4 W )†[PD⊤
4 W (D⊤

4 KD5)PW⊤D5
]k(W

⊤D5)
† ▷ Y∗ ∈ Rk/ϵ×k/ϵ of rank-k.

25: U∗ ← top-k singular vectors of Y∗ ▷ U∗ ∈ Rk/ϵ×k.
26: D6 ← QLS(WU∗, k/ϵ, δ/6) ▷ D6 ∈ Rn×k/ϵ.
27: ▷ Solve the regression minN∈Rk×n ∥D⊤

6 K −D⊤
6 WU∗N∥2F .

28: N ← (D⊤
6 WU∗)

†(D⊤
6 K)

29: return WU∗, N in factored form
30: end procedure

• To compute the initial t× t matrix, we use quantum Nyström method to sample from the
generalized ridge leverage score of K1/2, then rescale;

• To compute the low-rank approximation of the t × t matrix, we use quantum low-rank
approximation algorithm developed in preceding section;

• To solve the spectral regression minW∈Rn×k/ϵ ∥C −WZ⊤∥, we use quantum sampling
algorithm to sample from (rescaled) row norms of Z;

• The rank-constrained regression in Bakshi et al. (2020) is by first computing an orthonormal
basis of W , denoted by Q, then solve the regression minX:rank(X)≤k ∥K −QXQ⊤∥2F . To
solve this regression, Bakshi et al. (2020) samples rows and columns of K according to
column norms of Q, then solve the sketched regression after subsampling via these two
matrices. Given the optimal solution X∗, Bakshi et al. (2020) finds an orthonormal basis
of X∗ as U∗, set M as QU∗ and then sample rows of K according to row norms of M . In
our case, we can’t afford to form Q (because W ∈ Rn×k/ϵ), but we could instead solve the
regression minY :rank(Y )≤k ∥K −WYW⊤∥2F , then X could be recovered via Y 7→ TY T⊤

where T is the change-of-basis matrix. We then solve all subsequent regression using Y
instead of X .

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithm 9 Quantum generalized ridge leverage score sampling via recursive Nyström method.

1: procedure QNYSTRÖMKERNEL({x1, . . . , xn} ∈ (Rd)n,K : Rd × Rd → Rm, s, δ)
2: c← 100
3: T ← O(log(n/s))
4: Let S0 ⊂1/2 S1 ⊂1/2 . . . ⊂1/2 ST = [n] ▷ Starting from [n], uniformly sampling half of the

indices.
5: Set k to be the largest integer with ck log(2k/δ) ≤ s
6: M0 ← {K(xi, xj)}(i,j)∈S0×S0

▷ |S0| = s.
7: Let D0 ∈ Rn×|S0| be the sampling matrix of S0

8: for t = 1→ T do
9: λ← 1

k

∑s
i=k+1 σi(Mt−1)

10: M̂ ← (Mt−1 + λIs)
−1

11: ▷ Let D⊤
t−1Ki := {Dt−1(j) · K(xi, xj)}j∈Dt−1 ∈ Rs for i ∈ St where Dt−1(j) is the

weight corresponding to xj specified by Dt−1.
12: Implement oracle for qi ← 5

λ · (K(xi, xi)− (D⊤
t−1Ki)

⊤M̂D⊤
t−1Ki) for i ∈ St

13: ▷ pi = min{1, 16qi log(2k/δ)}.
14: D̃t ← QSAMPLE(p) ▷ D̃t ∈ R|St|×s.
15: Dt ← DSt · D̃t ▷ Dt ∈ Rn×s.
16: Mt ← {Dt(i)Dt(j) · K(xi, xj)}(i,j)∈Dt×Dt

▷ Mt ∈ Rs×s.
17: end for
18: return DT

19: end procedure

To prove the correctness of the algorithm, we note that except for the above steps, all other steps are
identical to the algorithm of Bakshi et al. (2020), so we just need to show our quantum implementation
preserves key properties of Bakshi et al. (2020). For computing the sampling matrices D1 and D2, the
only difference is when computing the generalized ridge leverage scores of K1/2, Bakshi et al. (2020)
uses fast matrix multiplication to compute all scores while we use quantum sampling algorithm to
do so, so the guarantees of the sampling probabilities remain unchanged. The next major difference
is we use quantum low-rank approximation of Corollary C.2, that provides precisely the desired
ϵ-coreset (and subsequently low-rank approximation). Forming the matrix D3 is almost identical to
that of Bakshi et al. (2020) except we use quantum sampling procedure to generate it.

We will focus on solving the rank-constrained regression minY :rank(Y )≤k ∥K −WYW⊤∥2F , which
is the major divergence of our approach and that of Bakshi et al. (2020). In Bakshi et al. (2020),
since they could afford linear in n time, they compute an orthonormal basis for W denoted by Q,
and instead solving the regression minX:rank(X)≤k ∥K − QXQ⊤∥2F . Let T ∈ Rk/ϵ×k/ϵ be the
change-of-basis matrix such that QT = W , then we observe that X could be recovered via the
following procedures:

• Solve

min
Y :rank(Y )≤k

∥K −WYW⊤∥2F (1)

, let Y∗ denote the optimal solution of the above regression;

• Set X∗ := RY∗R
⊤.

To see X∗ is the optimal to the rank-constrained regression against Q, note

QX∗Q
⊤ = QRY∗R

⊤Q⊤

=WY∗W
⊤,

and if there exists a solution X ′ with lower cost, then

∥K −WR⊤X ′RW⊤∥2F = ∥K −QX ′Q⊤∥2F
< ∥K −QX∗Q

⊤∥2F

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

= ∥K −WY∗W
⊤∥2F ,

contradicting the definition of Y∗. Both Bakshi et al. (2020) and Algorithm 8 construct leverage score
sampling matrices according to the leverage scores of W (in the context of Bakshi et al. (2020), they
sample according to the row norms of Q, which are the leverage scores of W ), then we solve the
surrogate regression

min
Y :rank(Y)≤k

∥D⊤
4 KD5 −D⊤

4 WYW⊤D5∥2F , (2)

it suffices to show that the optimal solution of Eq. (2) is a good approximation to the optimal solution
of Eq. (1). To prove this, note that both D4 and D5 sample k′/ϵ2 rows and columns together
with the fact W ∈ Rn×k′

implies that they are weak affine embeddings (Lemma A.12). However,
K −WYW⊤ is not an affine subspace, so we could instead consider the matrix H ∈ Rk′×n and
let H∗ := argminH∈Rk′×n ∥A−WH∥2F and K∗ = K −WH∗. With probability at least 1− δ, we
have

∥D⊤
4 K −D⊤

4 WH∥2F − ∥D⊤
4 K∗∥2F = (1± ϵ) · ∥K −WH∥2F − ∥K∗∥2F ,

for all H ∈ Rk′×n. Since it holds for all H , it in particular holds for all H = YW⊤, hence, with
probability at least 1− δ,

∥D⊤
4 K −D⊤

4 WYW⊤∥2F − ∥D⊤
4 K∗∥2F = (1± ϵ) · ∥K −WYW⊤∥2F − ∥K∗∥2F .

We could then run a symmetric argument on D5: consider the regression minZ∈∈Rk′/ϵ2×k′ ∥D⊤
4 K −

ZW⊤∥2F . Let Z ′ := argminZ ∥D⊤
4 K−ZW⊤∥2F and (D⊤

4 K)′ := D⊤
4 K−Z ′W⊤. With probability

at least 1− δ and due to Lemma A.12,

∥D⊤
4 KD5 − ZW⊤D5∥2F − ∥(D⊤

4 K)′D5∥2F = (1± ϵ) · ∥D⊤
4 K − ZW⊤∥2F − ∥(D⊤

4 K)′∥2F ,

this holds for all Z ∈ Rk′/ϵ2×k′
in particular Z = D⊤

4 WY . Plug in such Z yields

∥D⊤
4 KD5 −D⊤

4 WYW⊤D5∥2F − ∥(D⊤
4 K)′D5∥

= (1± ϵ)2 · (∥K −WYW⊤∥2F + ∥D⊤
4 K∗∥2F − ∥K∗∥2F )− ∥(D⊤

4 K)′∥2F ,
holds with probability at least 1 − 2δ. Observe that the additive error is at most ∆ := (1 +
ϵ)2(∥D⊤

4 K∗∥2F −∥K∗∥2F + ∥(D⊤
4 K)′D5∥2F −∥(D⊤

4 K)′∥2F ), it is fixed and independence of Y . We
will further show that the magnitude of ∆ is small, let OPT := minY :rank(Y )≤k ∥K −WYW⊤∥2F ,
then ∆ = O(OPT). To see this, we first observe that

∥K∗∥2F = ∥K −WH∗∥2F
≤ OPT,

this is because H∗ is the optimal solution to a regression problem with larger solution space. Next, we
will show ∥D⊤

4 K∗∥2F is a constant approximation to ∥K∗∥2F with constant probability, via Markov’s
inequality:

E[∥D⊤
4 K∗∥2F ] = E[tr[K⊤

∗ D4D
⊤
4 K∗]]

= tr[K⊤
∗ E[D4D

⊤
4 ]K∗]

= tr[K⊤
∗ InK∗]

= ∥K∗∥2F ,
since D4 is a leverage score sampling matrix. Hence, by Markov’s inequality, with probability at least
1− 1/300, ∥D⊤

4 K∗∥2F ≤ 300∥K∗∥2F . Hence, ∥D⊤
4 K∗∥2F − ∥K∗∥2F = O(OPT). Next, note that

∥(D⊤K)′∥2F = ∥D⊤
4 K − Z ′W⊤∥2F

≤ min
Y :rank(Y )≤k

∥D⊤
4 K −D⊤

4 WYW⊤∥2F

= O(OPT),

where the second step is again, by Z ′ is a solution to an optimization problem with larger solution
space, and the last step is again, by Markov’s inequality. By similar argument, we could conclude
that ∥(D⊤

4 K)′D5∥2F = O(OPT). Hence, we have shown that ∆ = O(OPT).

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Let Y∗ := argminY :rank(Y )≤k ∥D⊤
4 KD5 − D⊤

4 WYW⊤D5∥2F , and set g(X) = ∥D⊤
4 KD5 −

D⊤
4 WXW⊤D5∥2F to be the cost of approximate regression, and f(X) = ∥K −WXW⊤∥2F to be

the cost of the exact regression respectively, then we could conclude with the preceding argument that

g(Y∗) ≥ (1− ϵ)f(Y∗) + ∆, (3)

on the other hand, if we let Y ′ be the solution to f , i.e., f(Y ′) = OPT, then it must be the case that
g(Y∗) ≤ g(Y ′) and similarly

g(Y ′) ≤ (1 + ϵ)f(Y ′) + ∆

= (1 + ϵ) ·OPT+∆ (4)

combining Eq. (3), (4) and the fact that g(Y∗) ≤ g(Y ′), we obtain

(1− ϵ)f(Y∗) + ∆ ≤ (1 + ϵ) ·OPT+∆,

f(Y∗) ≤
1 + ϵ

1− ϵ
·OPT+

ϵ

1− ϵ
·∆

≤ (1 + ϵ)2 ·OPT+O(ϵ) ·∆
= (1 + ϵ)2 ·OPT+O(ϵ) ·OPT

= (1 +O(ϵ)) ·OPT,

as desired. This establishes that the optimal solution to Eq. (2) is a good approximation to Eq. (1),
and the optimal solution of Eq. (2) admits a closed-form (see Theorem 4.15 of Bakshi et al. (2020)),
which is precisely what has been computed on line 29 of Algorithm 8.

Observe that we already have a good (partial) low-rank approximation solution, as per the proof of
Theorem 4.16 of Bakshi et al. (2020),

min
X:rank(X)≤k

∥K −QXQ⊤∥2F ≤ (1 + ϵ) · ∥K −Kk∥2F ,

and we have established that the value of Eq. (1) is the same as the LHS of the above inequality,
hence we already have a rank-k solution in factored form, which is WY ∈ Rn×k. Compute the
top-k left vectors of Y∗, denoted as U∗, and write Y∗ = U∗V∗. Plug in the decomposition into the
regression, we get

∥K −WU∗V∗W
⊤∥2F ≤ (1 + ϵ)∥K −Kk∥2F ,

by setting M := WU∗ and the right low-rank factor could be found by solving

min
N∈Rn×k

∥K −MN⊤∥2F ≤ ∥K −WU∗V∗W
⊤∥2F

≤ (1 + ϵ)∥K −Kk∥2F .

To solve the regression, we employ leverage score sampling on the rows of M , by Lemma A.13, it
suffices to sample k/ϵ rows and the solution to the sketched regression

min
N∈Rn×k

∥D⊤
6 K −D⊤

6 MN⊤∥2F ,

denoted by N∗, satisfies

∥K −MN⊤
∗ ∥2F ≤ (1 + ϵ) min

N∈Rn×k
∥K −MN∥2F

≤ (1 + ϵ)2∥K −Kk∥2F .

Finally, by properly scaling ϵ, we conclude the proof of correctness.

Next, we analyze the runtime of Algorithm 8, item by item as follows:

• Form the generalized ridge leverage score sampling matrix D1 and D2 (Algorithm 9)
involves selecting O(k′2) entries from K, which could be implemented by k′2 evaluations
to the kernel function. In the loop, we compute the SVD of an k′ × k′ matrix, takes O(k′ω)

time, and forming M̂ also takes O(k′ω) time. Next, we need to analyze the complexity of
implementing the sampling oracle, for any fixed i, we form D⊤

t−1Ki by forming a vector

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

of length k′ through k′ kernel evaluations and an extra k′2 time for the quadratic form. To
oversample t rows/columns, we could simply scale the sampling probability, this yields a
larger sum of all pi’s:

n∑
i=1

pi = Õ(
√

nk/ϵ),

thus, the overall runtime of this part is

Õ(

√
n
∑
i

pi) · (k′TK + k′2) + k′2TK + k′ω

= Õ(n0.75k1.25ϵ−1.25(TK + kϵ−1)) + k2ϵ−2(TK + kω−2ϵ2−ω).

• For matrices C and R, we do not explicit compute the data structure for them.

• Form the low-rank approximation R̃ of matrix R, we need to show that the generic quan-
tum sampling algorithm could be implemented even though the input is given in factor
form. Observe that the algorithm requires uniformly sampling columns of the input ma-
trix, which is oblivious to the input. To form the initial coreset C0, we need to query a
total of Õ(

√
nk/ϵ) × Õ(k/ϵ) entries of K, which can be done in Õ(n0.5k1.5ϵ−1.5) ker-

nel evaluations. Then we compute the SVD of this matrix, in time Õ(n0.5kω−0.5ϵ0.5−ω).
Subsequently we need to impelement the classical ridge leverage score data structure (Al-
gorithm 6), which can be done in time Õ(n0.5kω−0.5ϵ0.5−ω) and then apply the random
Gaussian matrix takes Õ(n0.5k1.5ϵ−1.5) time. To implement each query, we can form the
query vector by Õ(n0.5k0.5ϵ−0.5) kernel evaluations and an additional Õ(n0.5k0.5ϵ−0.5)
time. The total runtime is

Õ(n0.75k1.25ϵ−1.25 + n0.5k1.5ϵ−1.5) · TK.

• Form matrix Z by computing SVD of R̃, since R̃ ∈ R
√

nk/ϵ×k/ϵ, this step could be done in
time O(ϵ0.5−ωn0.5kω−0.5).

• Form the sampling matrix D3 involves sampling according to a rescaled row norm of Z,
where each oracle call could be implemented in time O(k/ϵ) time, and the sum of pi’s is∑

i

pi =

√
n

ϵk
·
∑
i

∥zi∥22

=

√
n

ϵk
· ∥Z∥2F

=

√
nk

ϵ3

because Z has orthonormal columns. Thus, the overall runtime of this step is

Õ(
√
nk/ϵ4 · k/ϵ) = Õ(n0.5k1.5ϵ−3).

• Form matrix W , we only need to explicitly compute (Z⊤D3)
†, which is a small matrix and

could be computed in time Õ(kω/ϵω). Note that again, we won’t explicit compute the data
structure for W .

• Form the leverage score sampling matrix D4 and D5 with respect to W and sample k′/ϵ2

rows/columns. The argument is similar to forming that of R̃, except we use Algorithm 4
and the size of matrix C is Õ(k/ϵ2)× k/ϵ. Since we need to oversample k′/ϵ2 = Õ(k/ϵ3)
rows and columns, we could scale the scores accordingly and make the sum of probabilities
be at most Õ(k/ϵ3). To implement the oracle call, note that we need to make Õ(k2ϵ−3)
kernel evaluations to form the initial matrix C0, and subsequent operations such as SVD

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

and applying an JL matrix takes time Õ(kωϵ−ω−1). Then the query can be implemented
by forming each row of W using kϵ−1 kernel evaluations with an additional Õ(kϵ−1) time.
Thus, the total runtime is

Õ(n0.5k1.5ϵ−2.5) · TK.

• Form matrix D⊤
4 W and W⊤D5 could be done via selecting entries, in time Õ(k2ϵ−4) · TK.

• Form the projection matrices PD⊤
4 W and PW⊤D5

takes time poly(k/ϵ).

• Form the matrix D⊤
4 KD5 is again selecting poly(k/ϵ) entries from K, in time poly(k/ϵ) ·

TK.

• Compute [PD⊤
4 W (D⊤

4 WD5)PW⊤D5
]k involves multiplying a sequence of poly(k/ϵ) size

matrices, and computing an SVD, which takes poly(k/ϵ) time.

• Form the matrix Y∗ involves computing the pseudoinverse of poly(k/ϵ) size matrices and
multiplying them together, which takes poly(k/ϵ) time. Computing the top-k singular
vectors of Y∗ also takes poly(k/ϵ) time.

• Form the sampling matrix D6 involves performing leverage score sampling according to
matrix WU∗ ∈ Rn×k with a smaller target row count k/ϵ, so the runtime is subsumed by
the time to form D4 and D5.

• Finally, forming the matrix N only requires computing (D⊤
6 WU∗)

†, which takes poly(k/ϵ)·
TK time.

Hence, the overall running time of Algorithm 8 is

Õ(n0.75k1.25ϵ−1.25(TK + kϵ−1) + n0.5k1.5ϵ−2.5(TK + ϵ−0.5) + n0.5kω−0.5ϵ0.5−ω).

E QUANTUM (k, p)-SUBSPACE APPROXIMATION

In this section, we consider a generalized version of the k-subspace cost studied in Section B.3,
for which we call the (k, p)-subspace cost (Woodruff & Yasuda, 2025): let Fk be the space of all
k-dimensional subspace, then

cost(A, x) =

(
n∑

i=1

∥a⊤i (I − Px)∥p2

)1/p

.

By defining the matrix (p, 2)-norm as

∥Y ∥p,2 =

(
n∑

i=1

∥e⊤i Y ∥
p
2

)1/p

,

then we could alternatively write the cost function as

cost(A,F ) = ∥A(I − Px)∥p,2.

The k-subspace cost function we studied in Section B.3 is just the (k, 2)-subspace cost, and Woodruff
& Yasuda (2025) has shown that, similar to the k-subspace cost, one could sample according to the
powers of the ridge leverage score. We recall their main result in the following.

Lemma E.1 (Theorem 3.9 and 3.11 of Woodruff & Yasuda (2025)). Let A ∈ Rn×d and ϵ ∈ (0, 1),
let S be the sampling matrix that samples according to the distribution {pi}ni=1 where

pi =

{
min{1, np/2−1τ i(A, λAs

)p/2/α}, if p ≥ 2,
min{1, τ i(A, λAs)

p/2/α}, if 1 ≤ p < 2.

Then, ∥SA(I − Px)∥p,2 = (1± ϵ)∥A(I − Px)∥p,2 for all x ∈ Fk. Moreover,

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

• For p ≥ 2, α = O(ϵ2)/ log3 n and s = O(k/ϵp), and S samples O(kp/2/ϵO(p2) · logO(p) n)
rows;

• For 1 ≤ p < 2, α = O(ϵ2)/ log3 n and s = O(k/ϵ2), and S samples O(k/ϵO(1) · logO(1) n)
rows.

Finally, the algorithm runs in Õ(nnz(A) + dω) time.

To speed up their algorithm, we note that the dominating runtime part is to sample from the rescaled
leverage score distribution, and we could use Theorem B.23 with an inflated sample size.

Theorem E.2. There exists a quantum algorithm that achieves the same guarantee as Lemma E.1
while runs in time Õ(n1−1/pdk0.5/ϵp/2 + dω) for p ≥ 2 and Õ(n1−p/4dkp/4/ϵ+ dω) for p ∈ [1, 2).

Proof. By Theorem 3.9 and Theorem 3.11 of Woodruff & Yasuda (2025), we know that the sum of
sampling probabilities could be upper bounded by O(sn1−2/p) for p ≥ 2 and O(sp/2n1−p/2) for
p ∈ [1, 2), meaning that for p ≥ 2, we obtain a total number of queries being Õ(k0.5n1−1/p/ϵp/2)
with per query cost d, plus the preprocessing time of dω gives the result. For p ∈ [1, 2), this bound
becomes Õ(kp/4n1−p/4/ϵ).

F QUANTUM TENSOR LOW-RANK APPROXIMATION

In this section, we provide a quantum algorithm for computing the Frobenius norm low-rank approxi-
mation of a 3rd order tensor A ∈ Rn×n×n. The goal is to find a rank-k tensor B :=

∑k
i=1 ui⊗vi⊗wi

for ui, vi, wi ∈ Rn, such that ∥A−B∥2F ≤ (1+ϵ) ·OPT where OPT := infB:rank(B)=k ∥A−B∥2F .
The first caveat is that such an optimal rank-k solution might not even exist. We provide algorithms
with 1 + ϵ relative error when optimal rank-k solution exists, and an additive error solution when it
does not (in such case, OPT = 0 so one has to allow small additive errors). We will then generalize
the result for q-th order tensor where q ≥ 3.

F.1 PRELIMINARY

Given a 3rd order tensor A ∈ Rn×n×n, we define the rank of A as the smallest integer k such that A =∑k
i=1 ui⊗vi⊗wi where ui, vi, wi ∈ Rn. We use⊗ to denote the Kronecker product of two matrices,

i.e., for A ∈ Ra×b, B ∈ Rc×d, A⊗B ∈ Rac×bd and A⊗B =

A1,1B A1,2B . . . A1,bB
...

... . . .
...

Aa,1B Aa,2B . . . Aa,bB

.

We use ⊙ to denote a product of two matrices defined as for A ∈ Ra×b, B ∈ Ra×d, A ⊙ B ∈

Ra×bd where A ⊙ B =


A1,∗ ⊗B1,∗
A2,∗ ⊗B2,∗

...
Aa,∗ ⊗Ba,∗

, i.e., the matrix formed by computing tensor product

between corresponding rows of A and B. Given a tensor A ∈ Rn1×n2×n3 and three matrices
B1 ∈ Rn1×d1 , B2 ∈ Rn2×d2 and B3 ∈ Rn3×d3 , we define the (·, ·, ·) operator as

A(B1, B2, B3)i,j,l =

n1∑
i′=1

n2∑
j′=1

n3∑
l′=1

Ai′,j′,l′(B1)i′,i(B2)j′,j(B3)l′,l,∀(i, j, l) ∈ [d1]× [d2]× [d3],

subsequently, A(B1, B2, B3) ∈ Rd1×d2×d3 . One could also set any of the Bi’s as Ini and for
example, A(B1, In2 , In3) ∈ Rd1×n2×n3 . When the dimension of the identity matrix is clear
from context, we abbreviate it as I for notational simplicity. For A ∈ Rn1×n2×n3 , we use
A1 ∈ Rn1×n2n3 , A2 ∈ Rn2×n1n3 and A3 ∈ Rn3×n1n2 to denote the three matrices such that
the [3] \ {i} dimensions are flattened.

We also state an algorithm due to Song et al. (2019) for sampling according to leverage scores of
U ⊙ V :

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Lemma F.1. Given two matrices U ∈ Rk×n1 and V ∈ Rk×n2 , there exists an algorithm

TENSORLEVERAGESCORE(U, V, n1, n2, k, ϵ, Rsample)

that takes

O((n1 + n2) · poly(log(n1n2), k, ϵ
−1) ·Rsample)

time to generate a weighted sampling matrix D ∈ Rn1n2×Rsample according to the leverage score
distribution of the columns of U ⊙ V .

To obtain our fixed-parameter tractable algorithm for rank-k tensor low-rank approximation, we
require the following result from Song et al. (2019):
Lemma F.2. Let max{ti, di} ≤ n, given a t1 × t2 × t3 tensor A and three matrices: T1 ∈
Rt1×d1 , T2 ∈ Rt2×d2 and T3 ∈ Rt3×d3 , if for any δ > 0 there exist a solution to

min
X1,X2,X3

∥
k∑

i=1

(T1X1)i ⊗ (T2X2)i ⊗ (T3X3)i −A∥2F := OPT,

and each entry of Xi could be expressed with O(nδ) bits, then there exists an algorithm that takes
nO(δ) ·2O(d1k+d2k+d3k) time and outputs three matrices X̂1, X̂2 and X̂3 such that ∥

∑k
i=1(T1X̂1)i⊗

(T2X̂2)i ⊗ (T3X̂3)i −A∥2F = OPT.

F.2 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

The key we will be utilizing is the following lemma that, to solve a regression up to (2 + ϵ) factor, it
is sufficient to sample the response matrix. As a consequence, we obtain a slew of tensor low-rank
approximation algorithms with a (4 + ϵ)-approximation ratio. This is worse than what is achieved
in Song et al. (2019), but we would like to point out this is inherent due to all prior algorithms rely on
oblivious subspace embedding. In fact, their algorithms utilize OSEs to show an existence argument:
consider any rank-k regression minX ∥XA−B∥2F where we do not have access to the design matrix
A but access to the target matrix B. One could still apply an OSE S on the right of A and solve the
sketched regression minX ∥XAS⊤ −BS⊤∥2F and argue the solution to the sketched regression is
a good approximation. However, if one is only allowed to perform sampling procedures, then it is
instructive to sample according to the structure of the unknown matrix A. In the following, we show
that it is in fact enough to sample from B, this would not lead to a 1 + ϵ approximate solution to
the original regression problem, but we still manage to prove this is a 2 + ϵ approximate solution.
This is surprising — as an adversary could set B so that the resulting sampling procedure misses all
important entries of A. Hence, we devise an approach that utilizes the low-rank approximation of the
sampled matrix B to provide a good solution to the regression.
Lemma F.3. Let A ∈ Rk×n, B ∈ Rn×d and ϵ ∈ (0, 1), consider the following rank-constrained
regression problem:

min
X:rank(X)≤k

∥XA−B∥2F , (5)

for r = k/ϵ2, let S ∈ Rr×n be the ridge leverage score sampling matrix of B, then there exists a
solution X ′ in the column span of BS⊤, such that

∥X ′A−B∥2F ≤ (2 + ϵ) min
X:rank(X)≤k

∥XA−B∥2F .

Proof. Throughout the proof, let OPT := minX:rank(X)≤k ∥XA − B∥2F . We first note that if we
sample columns of B according its ridge leverage scores with r columns, then we obtain an ϵ-coreset
of B as for all rank-k projection matrix Q,

(1− ϵ) · ∥B −QB∥2F ≤ ∥BS⊤ −QBS⊤∥2F ≤ (1 + ϵ) · ∥B −QB∥2F ,

in particular, let Q∗ be the projection onto the top-k principal components of B, then the above
suggests that

∥BS⊤ −Q∗BS⊤∥2F ≤ (1 + ϵ) · ∥B −Bk∥2F

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

≤ (1 + ϵ) ·OPT,

because Bk is the optimal rank-k solution. On the other hand, let Q′ be the projection onto the top-k
principal components of BS⊤, then

∥B −Q′B∥2F ≤
1

1− ϵ
∥BS⊤ −Q′BS⊤∥2F

≤ 1

1− ϵ
∥BS⊤ −Q∗BS⊤∥2F

≤ 1 + ϵ

1− ϵ
·OPT,

by scaling ϵ, we get the cost is at most 1 + ϵ factor of OPT. We will set X ′ := Q′BA†, we obtain

∥X ′A−B∥2F = ∥Q′BA†A−B∥2F
= ∥(Q′B −B)A†A+B(A†A− I)∥2F
= ∥Q′B −B∥2F + ∥B(I −A†A)∥2F
≤ (1 + ϵ) ·OPT+ ∥BA†A−B∥2F
≤ (1 + ϵ) ·OPT+OPT

= (2 + ϵ) ·OPT

where we use Pythagorean theorem and the fact that BA† is the optimal solution to the regression.
Write BS⊤ = UΣV ⊤, then Q′ = UkU

⊤
k , so X ′ lies in the column span of Uk which in turn, is a

subset of the column span of BS⊤.

Remark F.4. One might wonder whether the bound obtained in Lemma F.3 is loose, we provide an
instance where sampling according to B would necessarily give a 2-approximation, hence showing
the tightness of Lemma F.3. Consider both A and B are n-dimensional column vectors (hence k = 1),
where A = ei + en for i randomly chosen from [n− 1], and B = en. It is not hard to see that the
optimal solution to the regression minx∈R ∥Ax − B∥22 is given by x = 1

2 , with the cost 1
2 . On the

other hand, if we perform any variant of importance sampling on B would, with high probability, only
hits the last entry of B since all the mass is on the last entry, while missing the i-th entry for which A
is nonzero. Conditioning on this event, then the subsampled regression becomes minx∈R ∥enx−en∥22
with an optimal solution x′ = 1. Plug in x′ to the original regression would give a cost of 1, which is
only a 2-approximation to the optimal cost.

F.3 QUANTUM BICRITERIA TENSOR LOW-RANK APPROXIMATION

We design a quantum bicriteria tensor low-rank approximation algorithm that outputs a rank-k2/ϵ4
tensor that approximates rank-k low-rank approximation of A.

Algorithm 10 Quantum bicriteria rank-k2/ϵ4 tensor low-rank approximation algorithm.

1: procedure QBICRITERIATENSORLOWRANK(A ∈ Rn×n×n, k, ϵ)
2: s1, s2 ← Õ(k/ϵ2)
3: C1 ← QLOWRANKCMM(A1, k, ϵ, 0.001) ▷ C1 ∈ Rn×s1 .
4: C2 ← QLOWRANKCMM(A2, k, ϵ, 0.001) ▷ C2 ∈ Rn×s2 .
5: Form Û by repeating each column of C1 by s2 times ▷ Û ∈ Rn×s1s2 .
6: Form V̂ by repeating each column of C2 by s1 times ▷ V̂ ∈ Rn×s1s2 .
7: s3 ← O(s1s2 log(s1s2) + s1s2/ϵ)
8: ϵ0 ← 0.0001
9: D3 ← TENSORLEVERAGESCORE(Û⊤, V̂ ⊤, n, n, s1s2, ϵ0, s3) ▷ D3 ∈ Rn2×s3 .

10: B ← (Û⊤ ⊙ V̂ ⊤)D3 ▷ B ∈ Rs1s2×s3 .
11: Ŵ ← A3D3B

†

12: return Û , V̂ , Ŵ
13: end procedure

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Theorem F.5. Given a 3rd order tensor A ∈ Rn×n×n and a positive integer k ≤ n, ϵ ∈ (0, 0.1),
there exists an algorithm (Algorithm 10) which takes Õ(ϵ−1n2k0.5 + n poly(k/ϵ)) time and outputs
three matrices U, V,W ∈ Rn×r with r = Õ(k2/ϵ4) such that

∥
r∑

i=1

Ui ⊗ Vi ⊗Wi −A∥2F ≤ (4 + ϵ) · min
rank−k Ak

∥A−Ak∥2F

with probability 0.99.

Proof. The proof will be similar to that of Theorem F.9. Let U∗, V ∗,W ∗ be the optimal rank-k
factor, set Z1 ∈ Rk×n2

to be the matrix where i-th row is V ∗
i ⊗W ∗

i , then clearly

min
U∈Rn×k

∥UZ1 −A1∥2F = OPT

where OPT is the optimal cost and the cost is achieved by picking U as U∗. By Lemma F.3, there
exists a solution U = C1X1 in the column span of C1 such that

∥UZ1 −A1∥2F ≤ (2 + ϵ) ·OPT, (6)

we setup Z2 ∈ Rk×n2

where the i-th row of Z2 is U i ⊗W ∗
i , and consider the regression

min
V ∈Rn×k

∥V Z2 −A2∥2F ,

if we pick V as V ∗, then it degenerates to Eq. (6), so the optimal cost of the above regression is at
most (2 + ϵ) ·OPT. By Lemma F.3, we could find a solution V = C2X2 with

∥V Z2 −A2∥2F ≤ (2 + ϵ)2 ·OPT .

Finally, set Z3 ∈ Rk×n2

with the i-th row being U i ⊗ V i, and we know that

min
W∈Rn×k

∥WZ3 −A3∥2F ≤ (2 + ϵ)2 ·OPT,

similar to the proof of Theorem F.9, we create Z ′
3 ∈ Rs1s2×n2

such that (Z ′
3)(i,j) = (C1)i ⊗ (C2)j

hence Z ′
3 = Û⊤ ⊙ V̂ ⊤ for Û , V̂ defined in Algorithm 10. As Z3 is in the row span of Z ′

3, we could
alternatively consider

min
W∈Rn×s1s2

∥WZ ′
3 −A3∥2F

where one could solve up to 1 + ϵ approximation by using leverage score sampling of matrix
Z ′
3, and the optimal solution is indeed given by A3D3(Z

′
3D3)

†, which is precisely the matrix Ŵ
we have computed. Therefore, we end up with an approximate solution whose cost is at most
(2 + ϵ)2(1 + ϵ) · OPT = (4 + O(ϵ)) · OPT. The rank of these matrices is s1s2 = Õ(k2/ϵ4) as
advertised.

Finally, for the running time, computing C1 and C2 takes Õ(ϵ−1n2k0.5 + npoly(k/ϵ)) time, and
computing the leverage score sampling matrix D3 takes O(npoly(k/ϵ)) by Lemma F.1. Forming
the matrix B naı̈vely would take O(n2k) time, but we could compute entries of B on demand: the
sampling matrix D3 tells us which entries among the n2 need to be computed, and one only needs
to compute s3 = poly(k/ϵ) of them. Further, computing each entry takes O(1) time, so the overall
time to form B is poly(k/ϵ). Computing A3D3 could be done via selecting a total of n poly(k/ϵ)
entries, so the overall runtime is

Õ(ϵ−1n2k0.5 + n poly(k/ϵ)).

F.4 QUANTUM TENSOR LOW-RANK APPROXIMATION: FIXED-PARAMETER TRACTABLE
ALGORITHM

The main result of this subsection is the following:
Theorem F.6. Given a 3rd order tensor A ∈ Rn×n×n such that each entry could be written with
O(nδ) bits for δ > 0. Define OPT := infrank−k ∥A− Ak∥2F , for any k ≥ 1 and ϵ ∈ (0, 1), define
nδ′ = O(nδ2O(k2/ϵ)).

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

• If OPT > 0, and there exists a tensor Ak = U∗ ⊗ V ∗ ⊗W ∗ with ∥A − Ak∥2F = OPT,

and max{∥U∗∥F , ∥V ∗∥F , ∥W ∗∥F } ≤ 2O(nδ′ ), then there exists an algorithm that takes
(n2k0.5/ϵ + n poly(k/ϵ) + 2O(k2/ϵ))nδ time in the unit cost RAM model with word size
O(log n) bits and outputs n× k matrices U, V,W such that

∥U ⊗ V ⊗W∥2F ≤ (4 + ϵ)OPT (7)

with probability at least 0.99 and entries of U, V,W fit in nδ′ bits;

• If OPT > 0 and Ak does not exist, and there exists U ′, V ′,W ′ ∈ Rn×k with
max{∥U ′∥F , ∥V ′∥F , ∥W ′∥F } ≤ 2O(nδ′ ) with ∥U ′ ⊗ V ′ ⊗W ′ −A∥2F ≤ (1 + ϵ/4)OPT,
then we can find U, V,W with Eq. (7) holds;

• If OPT = 0 and Ak does not exist and there exists a solution U∗, V ∗,W ∗ with each entry
in nO(δ′) bits, then Eq. (7) holds;

• If OPT = 0 and there exists three n × k matrices U, V,W such that
max{∥U∥F , ∥V ∥F , ∥W∥F } ≤ 2O(nδ′ ) and

∥U ⊗ V ⊗W −A∥2F ≤ (4 + ϵ)OPT + 2−Ω(nδ′ ) = 2−Ω(nδ′ ),

then we can output U, V,W with the above guarantee.

Further, if Ak exists, we can output a number Z such that OPT ≤ Z ≤ (4 + ϵ)OPT. For all the
cases above, the algorithm runs in the same time as the first case, and succeeds with probability at
least 0.999.

The proof will be a consequence of Theorem F.7 and Lemma F.8, which we will discuss in the
following sections.

F.4.1 META ALGORITHM AND BOUNDED ENTRY ASSUMPTION

Algorithm 11 Quantum FPT rank-k low-rank approximation.

1: procedure QFPTLOWRANK(A, k, ϵ) ▷ Theorem F.7
2: s1 ← s2 ← Õ(k/ϵ2)
3: C1 ← QLOWRANKCMM(A1, k, ϵ, 0.0001) ▷ C1 ∈ Rn×s1 .
4: C2 ← QLOWRANKCMM(A2, k, ϵ, 0.0001) ▷ C2 ∈ Rn×s2 .
5: Form B1 by consecutively repeating each column of C1 by s2 times
6: Form B2 by consecutively repeating each column of C2 by s1 times
7: d3 ← O(s1s2 log(s1s2) + s1s2/ϵ)
8: D3 ← TENSORLEVERAGESCORE(B⊤

1 , B⊤
2 , n, n, s1s2, ϵ0, d3)

9: M3 ← A3D3

10: Y1, Y2, Y3, C ←QSUBLINEARREDUCTION(A,A1S1, A2S2, A3S3, n, s1, s2, d3, k, ϵ). ▷
Algorithm 12

11: Create variables for Xi ∈ Rsi×k,∀i ∈ [3]
12: Run polynomial system verifier for ∥(Y1X1)⊗ (Y2X2)⊗ (Y3X3)− C∥2F
13: return C1X1, C2X2, and M3X3

14: end procedure

Theorem F.7. Given a 3rd order tensor A ∈ Rn×n×n, for any k ≥ 1, ϵ ∈ (0, 1) and δ > 0, there is
a quantum algorithm which takes n2k0.5/ϵ+ nO(δ)2O(k2/ϵ) time where δ is defined as in Lemma F.2
and outputs three matrices U ∈ Rn×k, V ∈ Rn×k, W ∈ Rn×k such that∥∥∥∥∥

k∑
i=1

Ui ⊗ Vi ⊗Wi −A

∥∥∥∥∥
2

F

≤ (4 + ϵ) min
rank−k Ak

∥Ak −A∥2F

holds with probability 0.99.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Proof. We define OPT as

OPT = min
rank−k A′

∥A′ −A∥2F .

Suppose the optimal Ak = U∗ ⊗ V ∗ ⊗ W ∗. We fix V ∗ ∈ Rn×k and W ∗ ∈ Rn×k. We use
V ∗
1 , V

∗
2 , · · · , V ∗

k to denote the columns of V ∗ and W ∗
1 ,W

∗
2 , · · · ,W ∗

k to denote the columns of W ∗.

We consider the following optimization problem,

min
U1,··· ,Uk∈Rn

∥∥∥∥∥
k∑

i=1

Ui ⊗ V ∗
i ⊗W ∗

i −A

∥∥∥∥∥
2

F

,

which is equivalent to

min
U1,··· ,Uk∈Rn

∥∥∥∥∥∥∥[U1 U2 · · · Uk]

V
∗
1 ⊗W ∗

1
V ∗
2 ⊗W ∗

2
· · ·

V ∗
k ⊗W ∗

k

−A

∥∥∥∥∥∥∥
2

F

.

We use matrix Z1 to denote

vec(V
∗
1 ⊗W ∗

1 )
vec(V ∗

2 ⊗W ∗
2 )

· · ·
vec(V ∗

k ⊗W ∗
k )

 ∈ Rk×n2

and matrix U to denote

[U1 U2 · · · Uk]. Then we can obtain the following equivalent objective function,

min
U∈Rn×k

∥UZ1 −A1∥2F .

Notice that minU∈Rn×k ∥UZ1 −A1∥2F = OPT, since Ak = U∗Z1. By Lemma F.3, we know that if
we sample columns of A1 according to its ridge leverage score distribution with Õ(k/ϵ2) columns
and let C1 denote the resulting matrix, then there exists a solution Û = C1X1 in the column span of
C1, such that

∥ÛZ1 −A1∥2F ≤ (2 + ϵ) min
U∈Rn×k

∥UZ1 −A1∥2F

= (2 + ϵ) ·OPT,

which implies ∥∥∥∥∥
k∑

i=1

Ûi ⊗ V ∗
i ⊗W ∗

i −A

∥∥∥∥∥
2

F

≤ (2 + ϵ) ·OPT .

To write down Û1, · · · , Ûk, we use the given matrix A1, and we create s1 × k variables for matrix
X1.

As our second step, we fix Û ∈ Rn×k and W ∗ ∈ Rn×k, and we convert tensor A into matrix A2. Let

matrix Z2 denote


vec(Û1 ⊗W ∗

1 )

vec(Û2 ⊗W ∗
2 )

· · ·
vec(Ûk ⊗W ∗

k )

. We consider the following objective function,

min
V ∈Rn×k

∥V Z2 −A2∥2F ,

for which the optimal cost is at most (2 + ϵ) ·OPT.

By playing a similar argument and utilizing Lemma F.3, we could obtain matrix C2 with Õ(k/ϵ2)

rescaled columns of A2, such that there exists a solution V̂ = C2X2 with

∥V̂ Z2 −A2∥2F ≤ (2 + ϵ) min
V ∈Rn×k

∥V Z2 −A2∥2F ≤ (2 + ϵ)2 ·OPT,

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

which implies ∥∥∥∥∥
k∑

i=1

Ûi ⊗ V̂i ⊗W ∗
i −A

∥∥∥∥∥
2

F

≤ (2 + ϵ)2 ·OPT .

To write down V̂1, · · · , V̂k, we need to use the given matrix A2, and we need to create s2×k variables
for matrix X2.

As our third step, we fix the matrices Û ∈ Rn×k and V̂ ∈ Rn×k. Let matrix Z3 denote
vec(Û1 ⊗ V̂1)

vec(Û2 ⊗ V̂2)
· · ·

vec(Ûk ⊗ V̂k)

. We convert tensor A ∈ Rn×n×n into matrix A3 ∈ Rn×n2

. Since Û = C1X1

and V̂ = C2X2, define the matrix Z ′
3 ∈ Rd3×n2

where, if we use (i, j) to index rows of Z ′
3, then

(Z ′
3)(i,j) = (C1)i⊗ (C2)j , and a key observation is there exists a matrix Y ∈ Rk×d3 with Z3 = Y Z ′

3.
To form Z ′

3, we take the approach of forming B1 and B2 by repeating columns a fixed number of
times, for example, B1 is defined as

[(C1)1 (C1)1 . . . (C1)1 . . . (C1)k . . . (C1)k]

where each column is repeated for s2 times, and one could verify that Z ′
3 = B1 ⊙B2.

We consider the following objective function,

min
W∈Rn×k

∥WZ3 −A3∥2F ,

which is equivalent to

min
W∈Rn×k,Y ∈Rk×d3

∥WY Z ′
3 −A3∥2F ,

if we employ leverage score sampling on the columns of Z ′
3, then by Lemma A.13, we could find a

pair of matrices Ŵ , Ŷ with

∥Ŵ Ŷ Z ′
3 −A3∥2F ≤ (1 + ϵ) min

W∈Rn×k,Y ∈Rk×d3

∥WY Z ′
3 −A3∥2F

= (1 + ϵ) min
W∈Rn×k

∥WZ3 −A3∥2F

≤ (1 + ϵ)(2 + ϵ)2 ·OPT .

We briefly explain how to obtain the factorization of Ŵ , Ŷ , consider solving the regression

min
T∈Rn×d3

∥TZ ′
3D3 −A3D3∥2F

where D3 ∈ Rn2×d3 is the leverage score sampling matrix of Z ′
3, then T = A3D3(Z

′
3D3)

† and we
could take the top-k left singular vectors as Ŵ and the remaining part as Ŷ . All we have shown is
that Ŵ is in the column span of A3D3 with a cost at most (1 + ϵ)(2 + ϵ)2 of the optimal cost, as
Ŵ = TPk = A3D3(Z

′
3D3)

†Pk where Pk is the projection onto the top-k left singular vectors of T .

Thus, we have established that

min
X1,X2,X3

∥∥∥∥∥
k∑

i=1

(C1X1)i ⊗ (C2X2)i ⊗ (A3D3X3)i −A

∥∥∥∥∥
2

F

≤ (1 + ϵ)(2 + ϵ)2 ·OPT .

Let V1 = C1, V2 = C2, V3 = A3D3, we then apply Lemma F.8, and we obtain V̂1, V̂2, V̂3, C.
We then apply Lemma F.2. Correctness follows by rescaling ϵ by a constant factor and note that
(1 + ϵ)(2 + ϵ)2 = 4 +O(ϵ).

Running time. Regarding the running time, computing C1 and C2 takes Õ(ϵ−1n2k0.5 +

npoly(k/ϵ)) time, and computing D3 takes Õ(n poly(k/ϵ)) time. To create matrices Y1, Y2, Y3 and
C, by Lemma F.8, it takes Õ(n0.5 poly(k/ϵ)) time, and the runtime of the polynomial system verifier
is due to Lemma F.2.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Algorithm 12 Input size reduction via leverage score sampling.

1: procedure QSUBLINEARREDUCTION(A, V1, V2, V3, n, b1, b2, b3, k, ϵ) ▷ Lemma F.8
2: c1 ← c2 ← c3 ← poly(k/ϵ)
3: T1 ← QLS(V1, c1, 0.0001)
4: T2 ← QLS(V2, c2, 0.0001)
5: T3 ← QLS(V3, c3, 0.0001)

6: V̂i ← TiVi ∈ Rci×bi ,∀i ∈ [3].
7: C ← A(T1, T2, T3) ∈ Rc1×c2×c3

8: return V̂1, V̂2, V̂3 and C
9: end procedure

F.4.2 INPUT SIZE REDUCTION IN SUBLINEAR TIME

Lemma F.8. Let poly(k/ϵ) ≥ b1b2b3 ≥ k. Given a tensor A ∈ Rn×n×n and three matrices
V1 ∈ Rn×b1 , V2 ∈ Rn×b2 , and V3 ∈ Rn×b3 , there exists an algorithm that takes n0.5 · poly(k/ϵ)
time and outputs a tensor C ∈ Rc1×c2×c3 and three matrices V̂1 ∈ Rc1×b1 , V̂2 ∈ Rc2×b2 and
V̂3 ∈ Rc3×b3 with c1 = c2 = c3 = poly(k/ϵ), such that with probability at least 0.99, for all
α > 0, X1, X

′
1 ∈ Rb1×k, X2, X

′
2 ∈ Rb2×k, X3, X

′
3 ∈ Rb3×k satisfy that,∥∥∥∥∥

k∑
i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥
2

F

≤ α

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C

∥∥∥∥∥
2

F

,

then,∥∥∥∥∥
k∑

i=1

(V1X
′
1)i ⊗ (V2X

′
2)i ⊗ (V3X

′
3)i −A

∥∥∥∥∥
2

F

≤ (1 + ϵ)α

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

.

Proof. Let X1 ∈ Rb1×k, X2 ∈ Rb2×k, X3 ∈ Rb3×k. Define OPT := ∥
∑k

i=1(V1X1)i⊗ (V2X2)i⊗
(V3X3)i − A∥2F . First, we define Z1 = ((V2X2)

⊤ ⊙ (V3X3)
⊤) ∈ Rk×n2

. (Note that, for each
i ∈ [k], the i-th row of matrix Z1 is vec((V2X2)i ⊗ (V3X3)i).) Then, by flattening we have∥∥∥∥∥

k∑
i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

= ∥V1X1 · Z1 −A1∥2F .

We choose a sparse diagonal sampling matrix T1 ∈ Rc1×n with c1 = poly(k, 1/ϵ) rows. Let
Y1 := argminY ∈b1×n2 ∥V1Y − A1∥2F and A∗

1 := V1Y1 − A1. Since V1 has b1 ≤ poly(k/ϵ)

columns, according to Lemma A.12 with probability 0.999, for all X1 ∈ Rb1×k, Z ∈ Rk×n2

,

(1− ϵ)∥V1X1Z −A1∥2F − ∥A∗
1∥2F ≤ ∥T1V1X1Z − T1A1∥2F − ∥T1A

∗
1∥2F

≤ (1 + ϵ)∥V1X1Z −A1∥2F − ∥A∗
1∥2F .

Therefore, we have

∥T1V1X1 · Z1 − T1A1∥2F

= (1± ϵ)

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

+ ∥T1A
∗
1∥2F − ∥A∗

1∥2F︸ ︷︷ ︸
∆1

.

Second, we unflatten matrix T1A1 ∈ Rc1×n2

to obtain a tensor A′ ∈ Rc1×n×n. Then we flatten
A′ along the second direction to obtain A2 ∈ Rn×c1n. We define Z2 = (T1V1X1)

⊤ ⊙ (V3X3)
⊤ ∈

Rk×c1n. Then, by flattening,

∥V2X2 · Z2 −A2∥2F = ∥T1V1X1 · Z1 − T1A1∥2F

= (1± ϵ)

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

+∆1.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

We choose a diagonal sampling matrix T2 ∈ Rc2×n with c2 = poly(k, 1/ϵ) rows. Then according to
Lemma A.12 with probability 0.999, for all X2 ∈ Rb2×k, Z ∈ Rk×c1n,

(1− ϵ)∥V2X2Z −A2∥2F − ∥A∗
2∥2F ≤ ∥T2V2X2Z − T2A2∥2F − ∥T2A

∗
2∥2F

≤ (1 + ϵ)∥V2X2Z −A2∥2F − ∥A∗
2∥2F ,

for A∗
2 defined similarly as A∗

1. Define ∆2 = ∥T2A
∗
2∥2F − ∥A∗

2∥2F , we have

∥T2V2X2 · Z2 − T2A2∥2F
= (1± ϵ)∥V2X2 · Z2 −A2∥2F

= (1± ϵ)2

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

+ (1± ϵ)∆1 +∆2.

Third, we unflatten matrix T2A2 ∈ Rc2×c1n to obtain a tensor A′′(= A(T1, T2, I)) ∈ Rc1×c2×n.
Then we flatten tensor A′′ along the last direction (the third direction) to obtain matrix A3 ∈ Rn×c1c2 .
We define Z3 = (T1V1X1)

⊤ ⊙ (T2V2X2)
⊤ ∈ Rk×c1c2 . Then, by flattening, we have

∥V3X3 · Z3 −A3∥2F = ∥T2V2X2 · Z2 − T2A2∥2F

= (1± ϵ)2

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

+ (1± ϵ)∆1 +∆2.

We choose a diagonal sampling matrix T3 ∈ Rc3×n with c3 = poly(k, 1/ϵ) rows. Then according to
Lemma A.12 with probability 0.999, for all X3 ∈ Rb3×k, Z ∈ Rk×c1c2 ,

(1− ϵ)∥V3X3Z −A3∥2F +∆3 ≤ ∥T3V3X3Z − T3A3∥2F ≤ (1 + ϵ)∥V3X3Z −A3∥2F +∆3

for ∆3 := ∥A∗
3∥2F − ∥T3A

∗
3∥2F . Therefore, we have

∥T3V3X3 · Z3 − T3A3∥2F

= (1± ϵ)3

∥∥∥∥∥
k∑

i=1

(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i −A

∥∥∥∥∥
2

F

+ (1± ϵ)2∆1 + (1± ϵ)∆2 +∆3.

We will argue the additive error terms are small. Examine the term ∆1, in particular ∥A1 − V1Y1∥2F ,
it is not hard to see that ∥A1 − V1Y1∥2F ≤ OPT as one could simply realize the cost by choosing
Y1 according to V2X2 and V3X3. By Markov’s inequality and the leverage score sampling matrix
T1 is an unbiased estimator for the matrix Frobenious norm squared, we could conclude the term
∥T1A

∗
1∥2F = O(OPT) holds with constant probability. Similarly, for ∥A∗

2∥2F , we see that ∥V2Y2 −
A2∥2F ≤ OPT by choosing Y2 according to the other two factors. One could conclude analogously
that ∆2,∆3 = O(OPT). Let ∆ be the sum of all additive error terms, and we have ∆ = O(OPT).

Let V̂i denote TiVi for all i ∈ [3] and C ∈ Rc1×c2×c3 , and for α > 1, if we have∥∥∥∥∥
k∑

i=1

(V̂1X
′
1)i ⊗ (V̂2X

′
2)i ⊗ (V̂3X

′
3)i − C

∥∥∥∥∥
2

F

≤ α

∥∥∥∥∥
k∑

i=1

(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C

∥∥∥∥∥
2

F

,

and we further define f(X1, X3, X3) = ∥
∑k

i=1(V1X1)i ⊗ (V2X2)i ⊗ (V3X3)i − A∥ and
g(X1, X2, X3) = ∥

∑k
i=1(V̂1X1)i ⊗ (V̂2X2)i ⊗ (V̂3X3)i − C∥, by above derivations we could

conclude
(1− ϵ)f(X1, X2, X3) + (1− ϵ)∆ ≤ g(X1, X2, X3) ≤ (1 + ϵ)f(X1, X2, X3) + (1 + ϵ)∆

by properly scaling ϵ, then
(1− ϵ)f(X ′

1, X
′
2, X

′
3) + (1− ϵ)∆ ≤ g(X ′

1, X
′
2, X

′
3)

≤ α · g(X1, X2, X3)

≤ α · ((1 + ϵ)f(X1, X2, X3) + (1 + ϵ)∆),

thus
f(X ′

1, X
′
2, X

′
3) ≤ α · (1 + ϵ)f(X1, X2, X3) +O(ϵ) ·OPT

= α · (1 +O(ϵ)) ·OPT,

the proof is completed by recalling the definition of OPT and rescaling ϵ.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Running time. Since all V1, V2 and V3 have n rows and poly(k/ϵ) columns, computing the
quantum leverage score sampler takes time Õ(n0.5 poly(k/ϵ)). To compute the matrix C, we note
that since T1, T2 and T3 are sampling matrices, each of them has only poly(k/ϵ) entries. On the other
hand, by the definition of A(T1, T2, T3), we note an entry of A needs to be examined and computed if
and only if all corresponding entries of T1, T2 and T3 are nonzero. As these three sampling matrices
have at most poly(k/ϵ) overlaps on nonzero entries, computing A(T1, T2, T3) amounts to select a
subset of poly(k/ϵ) entries from A and rescale, hence could be done in poly(k/ϵ) time.

F.5 QUANTUM TENSOR COLUMN, ROW AND TUBE SUBSET SELECTION APPROXIMATION

In this section, we design a quantum algorithm for selecting a subset of columns, rows and tubes of a
tensor so that there exists a tensor U of rank-poly(k/ϵ), together with these subsets, gives a good
low-rank approximation to A.

Algorithm 13 Quantum tensor CRT subset selection.

1: procedure QCRTSELECTION(A ∈ Rn×n×n, k, ϵ)
2: s1, s2 ← Õ(k/ϵ2)
3: ϵ0 ← 0.001
4: C1 ← QLOWRANKCMM(A1, k, ϵ, 0.0001) ▷ C1 ∈ Rn×s1 .
5: C2 ← QLOWRANKCMM(A2, k, ϵ, 0.0001) ▷ C2 ∈ Rn×s2 .
6: Form B1 by consecutively repeating each column of C1 by s2 times ▷ B1 ∈ Rn×s1s2 .
7: Form B2 by consecutively repeating each column of C2 by s1 times ▷ B2 ∈ Rn×s1s2 .
8: d3 ← O(s1s2 log(s1s2) + s1s2/ϵ)

9: D3 ← TENSORLEVERAGESCORE(B⊤
1 , B⊤

2 , n, n, s1s2, ϵ0, d3) ▷ D3 ∈ Rn2×d3 .
10: M3 ← A3D3 ▷ M3 ∈ Rn×d3 .
11: Form B1 by consecutively repeating each column of C1 by d3 times ▷ Note B1 is formed by

repeating a different number of columns.
12: Form B3 by consecutively repeating each column of M3 by s1 times
13: d2 ← O(s1d3 log(s1d3) + s1d3/ϵ)

14: D2 ← TENSORLEVERAGESCORE(B⊤
1 , B⊤

3 , n, n, s1d3, ϵ0, d2) ▷ D2 ∈ Rn2×d2 .
15: M2 ← A2D2 ▷ M2 ∈ Rn×d2 .
16: Form B2 by consecutively repeating each column of M2 by d3 times
17: Form B3 by consecutively repeating each column of M3 by d2 times
18: d1 ← O(d2d3 log(d2d3) + d2d3/ϵ)
19: D3 ← TENSORLEVERAGESCORE(B⊤

2 , B⊤
3 , n, n, d2d3, ϵ0, d1)

20: C ← A1D1, R← A2D2, T ← A3D3

21: return C,R, T
22: end procedure

Theorem F.9. Given a 3rd order tensor A ∈ Rn×n×n and a positive integer k ≤ n, ϵ ∈ (0, 0.1),
there exists an algorithm (Algorithm 13) which takes Õ(ϵ−1n2k0.5 + n poly(k/ϵ)) time and outputs
three matrices C ∈ Rn×c, a subset of columns of A; R ∈ Rn×r, a subset of rows of A; and
T ∈ Rn×t, a subset of tubes of A where c, r, t = poly(k/ϵ), and there exists a tensor U ∈ Rc×r×t

such that

∥
c∑

i=1

r∑
j=1

t∑
l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A∥2F ≤ (4 + ϵ) · min
rank-k Ak

∥A−Ak∥2F

holds with probability 0.99.

Proof. Throughout the proof, let OPT := minrank-k Ak
∥A−Ak∥2F . Suppose the optimal low-rank

factor Ak = U∗ ⊗ V ∗ ⊗W ∗ where U∗, V ∗,W ∗ ∈ Rn×k. Define a matrix Z1 ∈ Rk×n2

, where the
i-th row of Z1 is V ∗

i ⊗W ∗
i . Note that we do not know V ∗ and W ∗, nor can we form the matrix Z1.

Consider the following regression problem:

min
U∈Rn×k

∥UZ1 −A1∥2F , (8)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

clearly, if we set U as U∗, then

U∗Z1 = [U∗
1 U∗

2 . . . U∗
k ]


vec(V ∗

1 ⊗W ∗
1 )

⊤

vec(V ∗
2 ⊗W ∗

2 )
⊤

...
vec(V ∗

k ⊗W ∗
k )

⊤


= (U∗ ⊗ V ∗ ⊗W ∗)1,

i.e., the optimal Ak flattens along the first dimension. Hence, the optimal cost of Eq. (8) would give
OPT. To solve Eq. (8), we compute a projection-cost preserving of A1 (Theorem C.2), and according
to Lemma F.3, there exists a solution Û in the column span of C1, i.e., Û = C1X1, and it has cost

∥ÛZ1 −A1∥2F ≤ (2 + ϵ) ·OPT .

We can then form Z2 ∈ Rk×n2

where the i-th row is Ûi ⊗W ∗
i , then we know that

min
V ∈Rn×k

∥V Z2 −A2∥2F (9)

is at most (2 + ϵ) · OPT as we could choose V as V ∗. We approximately solve the regression of
Eq. (9) against C2, and again by Lemma F.3, we know that there exists a solution V̂ = C2X2 such
that

∥V̂ Z2 −A2∥2F ≤ (2 + ϵ) ·OPT

≤ (2 + ϵ)2 ·OPT .

We then define Z3 ∈ Rk×n2

where the i-th row is Ûi ⊗ V̂i, note that Z3 is no longer intractable to
us, because we know Û and V̂ are in the column span of C1, C2 respectively. Define Z ′

3 ∈ Rd3×n2

such that, if we index the row of Z ′
3 as (i, j), then (Z ′

3)(i,j) is (C1)i ⊗ (C2)j . Note that Z ′
3 let us

to express the column span of C1 and C2, consequently there exists some X such that Z3 = XZ ′
3

(note that due to the property of ⊗, column span of C1 and C2 are formed by multiplying on the left
instead of on the right). Consequently, consider the following optimization problem

min
W∈Rn×k,X∈Rk×d3

∥WXZ ′
3 −A3∥2F , (10)

as one could set X so that Z3 = XZ ′
3, we have the cost of Eq. (10) is at most (2 + ϵ)2 · OPT.

Computing the leverage score sampling of Z ′
3 using TENSORLEVERAGESCORE and by Lemma A.13,

we have that if we solve the following regression

min
Y ∈Rn×d3

∥Y Z ′
3D3 −A3D3∥2F ,

with optimal being Y ′ = A3D3(Z
′
3D3)

†, then

∥A3D3(Z
′
3D3)

†Z ′
3 −A3∥2F ≤ (1 + ϵ) · min

Y ∈Rn×z3

∥Y Z ′
3 −A3∥2F

≤ (1 + ϵ)(2 + ϵ)2 ·OPT,

this suggests we could consider the regression

min
X∈k×d3

∥A3D3XZ ′
3 −A3∥2F (11)

as X = (Z ′
3D3)

† is a good solution. Letting W ′ := A3D3 ∈ Rn×d3 , define Z ′
2 ∈ Rd2×n2

with Û
and W ′ such that (Z ′

2)(i,j) = (C1)i ⊗ (W ′)j , note that Z ′
2 contains the column span of C1 and W ′,

and although Z2 is not in the row span of Z ′
2 as in the case of Z3, the W ′ component of Z ′

2 gives
good approximation to W ∗ as we have shown above. Hence, if we consider

min
V ∈Rn×k,X∈Rk×d2

∥V XZ ′
2 −A2∥2F ,

its cost is upper bounded by Eq. (11) as we could choose V as V̂ and flatten A alongside the third
direction to recover the same regression. Employing a similar argument, if we sample according to
the leverage score Z ′

2 and consider

min
Y ∈Rn×d2

∥Y Z ′
2D2 −A2D2∥2F ,

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

the optimal solution is in the column span of A2D2 and it blows up the cost by a factor at most 1 + ϵ,
which gives us the following:

min
X∈Rk×d2

∥A2D2XZ ′
2 −A2∥2F , (12)

and the cost of Eq. (12) is at most (1+ϵ)2(2+ϵ)2 ·OPT. Set V ′ := A2D2 and repeat the construction
of Z ′

1 with V ′,W ′, then we end up with

min
X∈Rk×d1

∥A1D1XZ ′
1 −A1∥2F (13)

whose cost is at most (1 + ϵ)3(2 + ϵ)2 ·OPT = (4 +O(ϵ)) ·OPT after properly scaling ϵ. Setting
U ′ := A1D1, and unwrap Z ′

1, we see Eq. (13) in fact gives our desired result, as U ′, V ′,W ′ are
weighted subset of columns, rows and tubes of A, we could craft the desired C,R, T by removing
the weights, and completing U by solving the regression Eq. (13), incorporating the solution to the
weights. Since our statement only states the existence of such U , we do not consider the problem of
finding it.

We complete the proof by analyzing its runtime. The most time consuming step is to compute C1

and C2, since we are sampling columns as in the case of Theorem C.2, the runtime of these steps is
Õ(ϵ−1n2k0.5 + npoly(k/ϵ)), and it is not hard to see that all subsequent steps take O(npoly(k/ϵ))
time as we either perform operations that run in nearly linear time in n on matrices of size n ×
poly(k/ϵ), or we select poly(k/ϵ) columns from an n× n2 matrix.

Note that Theorem F.9 only gives a column, row and tube subset selection, but not with the weights
tensor U . To output the tensor U , we first provide quantum bicriteria tensor low-rank approximation
algorithm.

F.6 TENSOR CURT DECOMPOSITION: FIXED-PARAMETER TRACTABLE AND BICRITERIA

Algorithm 14 Converting a tensor low-rank approximation to a CURT decomposition.

1: procedure FROMLOWRANKTOCURT(A,UB , VB ,WB , n, k, ϵ) ▷ Lemma F.10
2: d1 ← d2 ← d3 ← O(k log k + k/ϵ).
3: ϵ0 ← 0.01.
4: Form B1 = V ⊤

B ⊙W⊤
B ∈ Rk×n2

5: D1 ←TENSORLEVERAGESCORE(V ⊤
B ,W⊤

B , n, n, k, ϵ0, d1)
6: Form Û = A1D1(B1D1)

† ∈ Rn×k.
7: Form B2 = Û⊤ ⊙W⊤

B ∈ Rk×n2

8: D2 ←TENSORLEVERAGESCORE(Û⊤,W⊤
B , n, n, k, ϵ0, d2).

9: Form V̂ = A2D2(B2D2)
† ∈ Rn×k

10: Form B3 = Û⊤ ⊙ V̂ ⊤ ∈ Rk×n2

11: D3 ←TENSORLEVERAGESCORE(Û⊤, V̂ ⊤, n, n, k, ϵ0, d3)
12: C ← A1D1, R← A2D2, T ← A3D3

13: U ←
∑k

i=1((B1D1)
†)i ⊗ ((B2D2)

†)i ⊗ ((B3D3)
†)i

14: return C, R, T and U
15: end procedure

Theorem F.10 (A modification of Theorem C.40 in Song et al. (2019)). Given a 3rd order tensor
A ∈ Rn×n×n, let k ≥ 1, and let UB , VB ,WB ∈ Rn×k denote a rank-k, α-approximation to A. Then
there is a classical algorithm (Algorithm 14) which takes O(n poly(k/ϵ)) time and outputs three
matrices C ∈ Rn×c with columns from A, R ∈ Rn×r with rows from A, T ∈ Rn×t with tubes from
A, and a tensor U ∈ Rc×r×t with rank(U) = k such that c = r = t = O(k log k + k/ϵ), and∥∥∥∥∥∥

c∑
i=1

r∑
j=1

t∑
l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥
2

F

≤ (1 + ϵ)α min
rank−k A′

∥A′ −A∥2F

holds with probability 9/10.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Theorem F.11 (Bicriteria Tensor CURT Decomposition). Given a 3rd order tensor A ∈ Rn×n×n

and a positive integer k ≤ n, ϵ ∈ (0, 0.1), there exists an algorithm which takes Õ(ϵ−1n2k0.5 +

npoly(k/ϵ)) time and outputs three matrices C,R, T ∈ Rn×r with r = Õ(k2/ϵ4) and U ∈ Rr×r×r

such that ∥∥∥∥∥∥
c∑

i=1

r∑
j=1

t∑
l=1

Ui,j,l · Ci ⊗Rj ⊗ Tl −A

∥∥∥∥∥∥
2

F

≤ (4 + ϵ) · min
rank−k Ak

∥A−Ak∥2F

with probability 0.99.

Proof. It directly follows from combining Theorem F.5 and Lemma F.10.

Theorem F.12 (Fixed-Parameter Tractable Tensor CURT Decomposition). Given a tensor A ∈
Rn×n×n, we could obtain a tensor CURT decomposition with the guarantee of Theorem F.6, in time
Õ(ϵ−1n2k0.5 + npoly(k/ϵ) + 2O(k2/ϵ))nδ .

G IMPROVED QUANTUM CORESET ALGORITHM FOR (k, p)-CLUSTERING AND
APPLICATION

In this section, we give an improved quantum coreset construction for (k, p)-clustering. We observe
that the coreset obtained in prior work (1) The size scales linearly with d, this causes an additional
d0.5 factor in their final runtime; (2) The coreset consists of points not from A and the weights for
these points could be negative, therefore it might pose challenges if one wants to compose it with
algorithm that induces optimal-sized coreset.

We begin by recalling the (k, p)-clustering problem in Rd: let A = {a1, . . . , an} ⊂ Rd, X = (Rd)k

and cost(ai, x) = minj∈[k] ∥ai−xj∥p2, where p ≥ 1 is the power of the distance, and xj is one of the
centers in x. When p = 1, this is the well-studied k-median problem, and when p = 2, this captures
the k-means problem. To construct a coreset, a popular approach is through sensitivity sampling.
Here, we demonstrate how to implement the sensitivity sampling framework in quantum sublinear
time.

We need the following quantum algorithm, due to Xue et al. (2023), that computes a set of (α, β)-
bicriteria approximation.

Definition G.1 (Bicriteria Approximation). Let A ⊂ Rd, assume OPT is the optimal cost of the
(k, p)-clustering problem for A, we say a set x ⊂ Rd is an (α, β)-bicriteria approximation if |x| ≤ αk
and cost(A, x) ≤ βOPT.

Lemma G.2 (Lemma 3.7 of Xue et al. (2023)). Let A ⊂ Rd, there exists a quantum algorithm
that outputs an (O(log2 n), 2O(p))-bicriteria approximation x, to the (k, p)-clustering problem for
A, with probability at least 99/100. The algorithm uses Õ(

√
nk) queries to A, Õ(

√
nkd) time and

poly(k log n) additional preprocessing time.

We also need a quantum approximate nearest neighbor oracle, which would be crucial to approxi-
mately find the center a point belongs to.

Lemma G.3 (Lemma 3.4 of Xue et al. (2023)). Let A ⊂ Rd and x ⊂ Rd wth |x| = m, given two
parameters δ > 0, cτ ∈ [2.5, 3), there exists a quantum oracle that give ai ∈ A, returns τ(ai) ∈ x,
using poly(m log(n/δ)) preprocessing time. With probability at least 1− δ, τ : A→ x is a mapping
such that

∥ai − τ(ai)∥p2 ≤ cτ · cost(ai, x).

Each query to τ takes O(dpoly log(mn/δ)) time.

Note that τ is also a partition oracle, as we could assign ai to τ(ai), which is one of the m clusters.

We need two other ingredients: one being estimate cost(A, x) =
∑n

i=1 cost(ai, x) and the other
being estimating the number of points falls in each cluster.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Lemma G.4 (Lemma 6 of Li et al. (2019)). Let C = {c1, . . . , cn} be a collection of nonnegative
numbers, let c =

∑n
i=1 ci, there exists a quantum algorithm such that given δ > 0, it outputs an

approximation c̃ where c̃ = (1±ϵ) ·c with probability at least 1−δ, using Õ(
√
n log(1/δ)/ϵ) queries

to C.

Lemma G.5 (Theorem 4.4 of Xue et al. (2023)). Let A ∈ (Rd)n, x ∈ (Rd)m and τ : A → x, let
Cj = {a ∈ A : τ(a) = xj}, let ϵ ∈ (0, 1/3), δ > 0, then there exists a quantum algorithm that with
probability at least 1 − δ, outputs a list of estimates ñj for all j ∈ [m] where ñj = (1 ± ϵ) · |Cj |,
using Õ(

√
nm/ϵ log(1/δ)) queries to τ and an additional Õ((

√
nm/ϵ+m/ϵ) log(n/δ)) time.

The algorithm we will be using is based on Huang & Vishnoi (2020), in particular, we use the first
stage of their algorithm, as it has two main advantages: (1) It computes a coreset with points only
from A; (2) The weights are relatively easy to compute. After computing the coreset, we can compose
it with the optimal-sized coreset construction algorithm to obtain the final result (Huang et al., 2024).

Algorithm 15 Quantum coreset algorithm for (k, p)-clustering: no dependence on d (Huang &
Vishnoi, 2020).

1: procedure QCLUSTER(A ∈ Rn×d, ϵ ∈ (0, 1))
2: m← O(k log2 n)
3: s← O((168p)10pϵ−5p−15k5 log k)
4: ϵ′ ← 0.01
5: Generate x′ ∈ (Rd)m via Lemma G.2
6: Generate τ on A, x′ via Lemma G.3
7: Let Cj = {a ∈ A : τ(a) = x′

j} and nj = |Cj |
8: Generate ñ1, . . . ñm via Lemma G.5 using τ with accuracy ϵ′

9: Generate c̃ost(A, x′) via Lemma G.4 with accuracy ϵ′

10: Implement an oracle for any ai ∈ A as follows
11: x∗(ai)← τ(ai)

12: s̃i ← 24p+2 · (∥ai−x∗(ai)∥p
2

c̃ost(A,x′)
+ 1

ñi(j)
) ▷ Let i(j) denote the index of x∗(ai) among x′

13: pi ← min{1, s̃i}
14: D ← QSAMPLE(p) ▷ ∥D∥0 = s
15: end procedure

Lemma G.6 (Theorem 5.2 of Huang & Vishnoi (2020)). Let A = {a1, . . . , an} ⊂ Rd, X = (Rd)k,
and define cost : Rd ×X → R≥0 as cost(ai, x) = minj∈[k] ∥ai − xj∥p2. Given ϵ, δ ∈ (0, 1), p ≥ 1,
suppose quantities in Algorithm 15 are computed exactly except for the bicriteria approximation,
then the weights in D give rise to an ϵ-coreset of size s = Õp(ϵ

−5p−15k5).

While the quantities in Algorithm 15 are computed approximately, they are all two-sided constant
factor approximation, therefore we still get desired guarantees. We present the main result in the
following.

Theorem G.7. Let A = {a1, . . . , an} ⊂ Rd, X = (Rd)k, p ≥ 1, ϵ ∈ (0, 1), define cost(ai, x) =
minj∈[k] ∥ai − xj∥p2. There exists a quantum algorithm (Algorithm 15) such that, with probability at
least 0.99, constructs an ϵ-coreset of A with size Õp(ϵ

−5p−15k5) in time

Õp(ϵ
−2.5p−7.5n0.5k2.5d).

Proof. We first prove that it indeed constructs a coreset. There are three main differences between
Algorithm 15 and stage 1 of Huang & Vishnoi (2020):

• We use bicriteria approximation while Huang & Vishnoi (2020) computes k-approximate
centers;

• We have to use approximate nearest neighbor to find the approximate center for each ai;

• We approximately compute cost(A, x′) and 1
|Ci| .

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

For the first and second item, one could easily see that Lemma 5.5 and Claim 5.6 of Huang & Vishnoi
(2020) do not require exactly k-approximate centers, as they only need to use the cost of these
approximate centers as a proxy, hence, an (α, β)-bicriteria approximation is sufficient. Moreover,
their proof relies on a simple generalized triangle inequality argument, so as long as the approximate
cluster we assign ai is a constant factor approximation to the optimal distance, we are fine. For the
third item, note that by Lemma G.4, we have c̃ost(A, x′) = (1± ϵ′) · cost(A, x′) and by Lemma G.5,
ñi(j) = (1± ϵ′) · |Ci(j)|, therefore the sampling probability s̃i is a constant factor approximation if
we set to the approximate sensitivity σ1 used in Huang & Vishnoi (2020). Thus, if we oversample
by a constant factor, we could indeed get the desired coreset property according to Lemma G.6. It
remains to analyze the runtime.

To generate x′, by Lemma G.2, it takes Õ(
√
nkd) time, and oracle τ takes poly(k) time to preprocess,

and each oracle call to τ takes Õ(d) time due to Lemma G.3. Generate the estimates ñj for all j ∈ [m]

takes Õ(
√
nmd) = Õ(

√
nkd) time, and c̃ost(A, x′) takes Õ(

√
nd) time owing to Lemma G.4.

Finally, note that each s̃i can be computed in Õ(d) time, by Lemma A.14, the sample and weights D
can be generated in Õ(

√
nsd) = Õp(ϵ

−2.5p−7.5n0.5k2.5d) time, as desired.

Remark G.8. While the coreset size of Theorem G.7 is not optimal, it produces coreset of size
Õp(ϵ

−5p−15k5). This is sufficient as we could run any refinement to obtain the optimal size, as
demonstrated by composing our coreset with the following result due to Huang et al. (2024).
Lemma G.9 (Theorem B.1 of Huang et al. (2024)). Let A = {a1, . . . , an} ⊂ Rd and X = (Rd)k,
p ≥ 1, ϵ, δ ∈ (0, 1), and define cost(ai, x) = minj∈[k] ∥ai − xj∥p2. There exists a randomized

algorithm that with probability at least 1− δ constructs an ϵ-strong coreset of size Õp(ϵ
−2k

2p+2
p+2 ), in

time Õ(ndk).
Corollary G.10. Let A = {a1, . . . , an} ⊂ Rd and X = (Rd)k, p ≥ 1, ϵ, δ ∈ (0, 1), and define
cost(ai, x) = minj∈[k] ∥ai − xj∥p2. There exists a quantum algorithm that with probability at least

0.99 constructs: an ϵ-coreset of size Õp(ϵ
−2k

2p+2
p+2 ), in time

Õp(ϵ
−2.5p−7.5n0.5k2.5d).

Proof. The proof is by composing Theorem G.7 with Lemma G.9.

G.1 QUANTUM ALGORITHM FOR DATA SELECTION

As an application, we study the data selection pipeline in machine learning, where the goal is to
select a weighted subset of data points that can be used for training or fine-tuning the model, while
preserving desirable properties. In this model, data are given as d-dimensional embeddings, and a
loss function ℓ : Rd → R≥0 is used to grade the quality of the embedding. ℓ can be expensive to
evaluate, such as a deep neural network. Axiotis et al. (2024) provides a principled way for data
selection using the coreset of (k, p)-clustering, under some mild assumptions on ℓ.
Assumption G.11. Let Λ = (Λ1, . . . ,Λk) ∈ Rk

≥0, x ∈ (Rd)k and let E ⊆ Rd be a set of embeddings,
we say the loss function is (p,Λ)-well-behaved with respect to E and x if for any xj ∈ x and let
Cj = {e ∈ E : argminxi∈x ∥xi − e∥p2 = xj}, then for any e ∈ Cj ,

|ℓ(e)− ℓ(xj)| ≤ Λj∥e− cj∥p2.

Define the weighed cost as costΛ(ai, x) = Λi(j) cost(ai, x) where we use i(j) to denote
the index of the cluster assigned to ai, and similarly costΛ(A, x) =

∑n
i=1 cost

Λ(ai, x) =∑k
i=1 Λi

∑
aj∈Ci

∥aj − xi∥p2. Axiotis et al. (2024) essentially proves that under Assumption G.11,
one could perform weighted sampling according to costΛ(ai, x). In addition, the expensive loss func-
tion only needs to be evaluated on the centers. For convenience, we state an approximate k-centers
algorithm below.
Lemma G.12 (Mettu & Plaxton (2004)). Let A = {a1, . . . , an} ⊂ Rd and X = (Rd)k, let δ ∈ (0, 1).
Then, there exists an algorithm that computes a solution x′ ∈ X such that

cost(A, x′) ≤ 2O(p) ·min
x∈X

cost(A, x),

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

holds with probability at least 1− δ. Moreover, x′ can be computed in time

O(ndk + nd log(n/δ) + k2 log2 n+ log2(1/δ) log2 n) = Õ(ndk).

We know state a quantum implementaion of the adaptive sampling due to Axiotis et al. (2024).

Algorithm 16 Quantum one-round adaptive sampling for data selection.

1: procedure QDATASELECTION(A ∈ Rn×d, x ∈ (Rd)k, ℓ : Rd → R≥0, ϵ ∈ (0, 1))
2: s← O(ϵ−2), ϵ′ ← 0.01
3: Let τ : A→ x be that τ(ai) = argminxj∈x ∥ai − xj∥p2
4: Generate c̃ost

Λ
(A, x′) via Lemma G.4 with accuracy ϵ′

5: Let Cj = {a ∈ A : τ(a) = xj} and nj = |Cj |
6: Generate ñ1, . . . , ñk via Lemma G.5 using τ with accuracy ϵ′

7: Compute ℓ(x1), . . . , ℓ(xk)

8: sum←
∑k

j=1 ñj · ℓ(xj)
9: Implement an oracle for each ai ∈ A as follows:

10: ℓ̂(ai)← ℓ(τ(ai)), v(ai)← ∥ai − τ(ai)∥p2
11: qi ← ℓ̂(ai)+v(ai)

c̃ost
Λ
(A,x)+sum

12: pi ← min{1, qi}
13: D′ ← QSAMPLE(p)
14: return D′

15: end procedure

We then prove Algorithm 16 implements the data selection procedure in sublinear time.

Theorem G.13. Let ϵ ∈ (0, 1), p ≥ 1,Λ ∈ Rk, A ∈ (Rd)n and ℓ be a loss function that is (p,Λ)-
well-behaved with respect to A and a clustering x ∈ (Rd)k. Then, there exists a quantum algorithm
(Algorithm 16) that outputs a weight vector w ∈ Rn

≥0 with ∥w∥0 = O(ϵ−2), such that

|
n∑

i=1

ℓ(ai)−
n∑

i=1

wiℓ(ai)| ≤ ϵ · (
n∑

i=1

ℓ(ai) + 2 costΛ(A, x))

holds with probability at least 0.99. Moreover, the algorithm makes at most k queries to the loss
function ℓ, and use an additional Õ(n0.5kd(ϵ−1 + k0.5)) time.

Proof. We first note that the only difference between Algorithm 16 and Theorem 2 of Axiotis et al.
(2024) is that we approximately compute the quantity c̃ost

Λ
(A, x′) and

∑n
i=1 ℓ̂(ai), by a similar

argument as Theorem G.7, these quantities are estimated within a constant factor, therefore the
sampling probability pi is at most a constant factor of the sampling probability used in Axiotis et al.
(2024), we can obtain the same guarantee via oversampling by a constant factor.

To analyze the runtime, note that the oracle τ can be queried in O(kd) time, and c̃ost
Λ
(A, x) can

be computed in Õ(
√
nkd) time by Lemma G.4. ñ1, . . . , ñk can be estimated in Õ(

√
nk1.5d) time.

Finally, each sampling probability can be computed in O(kd) time, so the time for the final sampling
is Õ(ϵ−1n0.5kd) time. Thus, the overall runtime is

Õ(n0.5kd(ϵ−1 + k0.5)).

Note that compute the weights classically would take O(ndk) time, so ours is the first to achieve this
goal in sublinear in n time. To compute a set of approximate k-centers, one could either directly
use the bicriteria approximation due to Lemma G.2 and use these centers as a proxy instead, or first
compute an ϵ-coreset using Theorem G.7 then apply Lemma G.12 to find the approximate k-centers
using the coreset.

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

H LOWER BOUND

In this section, we provide a quantum query lower bound on computing a rank-k, 1/2-additive-
multiplicative spectral approximation to a matrix A ∈ Rn×d. We show that Ω(

√
dk) queries to the

columns of A are needed.
Theorem H.1. For any positive integers n, d, and k ≤ d, there is a family of matrices A ∈ Rn×d

for which finding a constant factor additive-multiplicative spectral approximation of rank-k requires
Ω(
√
dk) column queries to A.

Proof. Without loss of generality let k divide d, let z1, . . . , zk ∈ {0, 1}d/k be a collection of bit
strings, we construct A similar to the construction of Apers & Gribling (2024) but padding extra 0’s:
we start a matrix A ∈ Rk×d, consists of k blocks of k × d/k: for the j-th block, it contains zj as its
j-th row, and zero elsewhere. We then pad n− k rows of zeros to form the n× d matrix A, one could
visualize A as follows:

A =



z⊤1 0 . . . 0
0 z⊤2 . . . 0
...

...
...

...
0 0 . . . z⊤k
0 0 . . . 0
...

...
...

...
0 0 . . . 0


where 0 is the zero vector of size d/k. Note that A is rank-k, hence Ak = A. Consequently,

AA⊤ =



∥z1∥0 0 . . . 0 . . . 0
0 ∥z2∥0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 . . . ∥zk∥0 . . . 0
0 0 . . . 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0


, i.e., its top-k diagonal entries are the number of

nonzeros in each of zi’s. Note that a rank-k additive-multiplicative spectral approximation has the
guarantee that

0.5CC⊤ − 0.5
∥A−Ak∥2F

k
In ⪯ AA⊤ ⪯ 1.5CC⊤ + 0.5

∥A−Ak∥2F
k

In

since A is rank-k, we have ∥A−Ak∥2F = 0 and therefore, the approximation C has the property that

0.5CC⊤ ⪯ AA⊤ ⪯ 1.5CC⊤,

since AA⊤ is diagonal, we must have the nonzero diagonals of CC⊤ is a 0.5-approximation to the
nonzero diagonals of AA⊤. This allows us to compute (OR(z1), . . . ,OR(zk)) where OR(x) =
x1 ∨ x2 ∨ . . . ∨ xd/k. By a similar argument as Apers & Gribling (2024), this would require
Ω(k

√
d/k) = Ω(

√
dk) quantum queries to the bit strings z1, . . . , zk. Finally, note that a column

query to A can be simulated by a query access to one of the zj’s. This completes the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

56


	Introduction
	Technical Overview
	Sensitivity Sampling via Grover Search
	Generic Weighted Sampling via Approximator
	Pure-Sampling Framework For Low-Rank Approximation
	Approximate Regression via Sampling Responses
	Improved Coreset for Clustering with Applications

	Conclusion
	Preliminaries
	Notation
	Sensitivity and Coreset
	Leverage Score, Ridge Leverage Score, and Lewis Weights
	Matrix Approximations
	Properties of Leverage Score
	Quantum Primitives

	A Quantum Recursive Sampling Framework for Coreset
	 Sensitivity and Leverage Score
	 Sensitivity and Lewis Weights
	-Subspace Sensitivity and Ridge Leverage Score

	Quantum Column Subset Selection and Low-Rank Approximation
	Quantum Kernel Low-Rank Approximation
	Quantum -Subspace Approximation
	Quantum Tensor Low-Rank Approximation
	Preliminary
	Approximate Regression via Sampling Responses
	Quantum Bicriteria Tensor Low-Rank Approximation
	Quantum Tensor Low-Rank Approximation: Fixed-Parameter Tractable Algorithm
	Meta Algorithm and Bounded Entry Assumption
	Input Size Reduction in Sublinear Time

	Quantum Tensor Column, Row and Tube Subset Selection Approximation
	Tensor CURT Decomposition: Fixed-Parameter Tractable and Bicriteria

	Improved Quantum Coreset Algorithm for -Clustering and Application
	Quantum Algorithm for Data Selection

	Lower Bound

