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ABSTRACT

We present a unified framework for quantum sensitivity sampling, extending the
advantages of quantum computing to a broad class of classical approximation
problems. Our unified framework provides a streamlined approach for construct-
ing coresets and offers significant runtime improvements in applications such as
clustering, regression, and low-rank approximation. Our contributions include:

* k-median and k-means clustering: For n points in d-dimensional Eu-
clidean space, we give an algorithm that constructs an e-coreset in time

O(n%>dk*® poly(e~1)) for k-median and k-means clustering. Our approach
achieves a better dependence on d and constructs smaller coresets that only
consist of points in the dataset, compared to recent results of [Xue, Chen, Li
and Jiang, ICML’23].

* /, regression: For ¢, regression problems min, g« ||Az — b||, where A €
R"*? and b € R™, we construct an e-coreset of size O, (d™**{1:7/2}¢=2) in
time O, (n%>dma{0-5:p/4}+1(¢=3 1 40-5)) "improving upon the prior best
quantum sampling approach of [Apers and Gribling, QIP’24] for all p €
(0,2)U(2, 22], including the widely studied least absolute deviation regression
(¢1 regression).

¢ Low-rank approximation with Frobenius norm error: We introduce the
first quantum sublinear-time algorithm for low-rank approximation that ap-
proximates the best rank-k solution to a matrix A € R%*" and does not rely on
data-dependent parameters, and runs in O(n%-3dk%®¢~1) time. Additionally,
we present quantum sublinear algorithms for kernel low-rank approxima-
tion and tensor low-rank approximation, broadening the range of achievable
sublinear time algorithms in randomized numerical linear algebra.

1 INTRODUCTION

Given a set of points A = {ay,...,a,} C R<, a universe X, and a cost function cost : R? x X —
R> ¢, we study the problem of constructing a coreset of A: a weighted subset B of points along with
B

a nonnegative weight vector w € R|>o such that

Z wp - cost(b,x) = (1 £ €) - cost(A, x)
beB

for all z € X, where cost(A4,z) = Y1, cost(a;, z). A coreset is particularly useful because it
enables applying any existing approximation (or exact) algorithm on the smaller summary, yielding a
good approximation to the original problem. Applications of coresets span clustering (Chen, |[2009;
Langberg & Schulman, [2010; [Feldman & Langberg], [2011; | Varadarajan & Xiao, [2012} Braverman
et al., 2022} |Huang & Vishnoil [2020; Braverman et al., [2021} |(Cohen-Addad et al., 2021} [2022bja};
Huang et al.} 2024)), graph sparsification (Benczur & Karger, 1996} Spielman & Teng| 2004; [Spielman
& Srivastava, 2011; Batson et al.||2012])), hypergraph sparsification (Bansal et al.| 2019} [Kapralov et al.}
2022; \Jambulapati et al., [2023by; [Lee, 2023)), £, regression (Drineas et al., {2006} (Clarkson, 2005} |Das-
gupta et al., 2009; Cohen & Pengl 2015; Woodruff & Yasudal[2023), submodular optimization (Rafiey:
& Yoshida, [2022; Jambulapati et al.||2023a)), generalized linear models (Mai et al.| 2021} Munteanu
et al.}2022; Musco et al.,|2022; Jambulapati et al., 2024), and subspace approximation (Cohen et al.,
2015a;2017; Woodruff & Yasuda, [2025)).
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Coresets can be constructed via sensitivity sampling: the sensitivity of the i-th point is defined as

cost(a;, x)
$; = max —————.
z€X cost(A, x)

Sensitivity sampling draws point ¢ with probability proportional to s;, assigning it weight 1/s; to
ensure the estimator is unbiased. The seminal work of [Langberg & Schulman| (2010) shows that
this yields a coreset with a simple and elegant proof: for any fixed © € X, sampling proportional to
sensitivity ensures low variance, and Bernstein’s inequality implies that O(e~2S) samples suffice,
where S = 27:1 s; 1s the total sensitivity. Recall our goal is to approximate the cost for all x € X,
to do so, we union bound over a discretization of X with size exp(dim(X)), where dim(X) is a
notion akin to VC dimension (Feldman & Langberg} [2011). Thus, a coreset can be constructed with
O(e? - dim(X) - Slog(1/d)) samples, where ¢ is the failure probability of the algorithm.

Algorithmically, a challenge arises: it is necessary to either compute or efficiently approximate s;
or an upper bound on it. Most of the work in sensitivity sampling focuses on this task, and for
many problems it can be achieved in nearly-linear time in nd (Huang & Vishnot, 2020; |Spielman
& Srivastava, [2011]; (Cohen & Peng| [2015} |Cohen et al.| [2017; [Woodruff & Yasudal [2025)). Since
scanning the entire dataset already takes €2(nd) time, achieving nearly-linear time is close to optimal.

Typically, coresets are constructed for downstream optimization problems. For instance, coresets for £,
regression help solve the original regression problem (Jambulapati et al., 2022; |Adil et al., [2024)), and
coresets for subspace approximation yield column subset selection for low-rank approximation (Cohen
et al.,|2017). In certain structured settings, some of these optimization problems admit sublinear time
algorithms. For example, if the input matrix A is positive semidefinite (PSD) (Musco & Woodruff,
2017} Bakshi et al., 2020) or Toeplitz (Musco & Sheth), 2024)), one can obtain a rank-k approximation
inn - poly(k/e) time, despite A having size n X n.

Can sensitivity sampling—and subsequently solving downstream optimization problems—be accom-
plished in sublinear time, even without structural assumptions? In this work, we explore this question
through the lens of quantum computing, analyzing the time complexity of sensitivity sampling under
quantum algorithms. Notably, tasks like linear regression, low-rank approximation, and clustering
have quantum algorithms running in o(nd) time (Kerenidis & Prakash, 2017; |[Kerenidis et al., 2019;
Gilyén et al.|[2022; |Shah & Jaiswal, 2025)), though these often rely on special input representations
that support efficient weighted sampling. Moreover, their runtimes often depend on data-specific
parameters such as ||A||, condition number k(A) = omax(A)/omin(A4), or dataset radius. In
contrast, we seek quantum algorithms that (1) operate in sublinear time, (2) are independent of input
representation, and (3) have runtime independent of data-specific parameters.

In this work, we provide a generic quantum algorithm applicable to sensitivity sampling in general.
Throughout the paper, we use s to denote the size of the coreset and let ﬁensitivity(s, X) represent
the time to approximate one sensitivity over a set of s points and universe X . Our algorithm runs in
time O(y/1ns) - Tsensitivity (S, X ) and O(y/ns) queries to the points in A, which implies that as long
as $%% - Toensitivity (8, X) = 0(n®-3d), we achieve sublinear runtime. Moreover, our algorithm avoids
dependence on data-specific parameters: the sample size and sensitivity approximation time depend
only on n, d, 1/¢, 1/0, and other problem-related parameters (e.g., k in clustering and low-rank
approximation, or p in ¢, regression). We summarize the main result in the following theorem.

Theorem 1.1 (Informal version of Theorem . Let A € R4 gnd X be a universe, there exists a
quantum algorithm that constructs an e-coreset C of expected size s := O(e =2 -dim(X) - Slog(1/4))
with probability at least 1 — 0, where dim(X) is the VC dimension of X, S is the total sensitivity and
€,0 € (0,1). Moreover, if there exists a classical oracle that can output a constant factor two-sided
approximation to one sensitivity over a set of s points and universe X in Tsensitivity (S, X ) time, then

the quantum algorithm can be implemented in time 5(\/ns - Tsensitivity (8, X)) and 6(\/ ns) queries
to the points in A.

Our approach is simple and general: it constructs the sample by uniformly subsampling half of the
points, recursively computing approximate sensitivities on this subset, and then resampling based on
these estimates. This scheme was first used for leverage score sampling (Cohen et al., 2015b) and in
recent quantum linear programming algorithms (Apers & Gribling, [2024). We extend this strategy to
sensitivity sampling.
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As a key application, we adapt our framework to solve the low-rank approximation problem. Given a
matrix A € R*", the goal is to find matrices U, V of rank k such that

IA=UVTE < (1+€)- A - A%,
where Ay, is the best rank-k approximation to A. We provide a quantum algorithm that constructs a col-

umn coreset of A, resulting in a low-rank approximation algorithm that runs in time O(n?->dk%5¢1).
We note a recent result by |Chen et al.| (2025)), which provides a quantum algorithm for approximat-
ing the top-k eigenvectors of a Hermitian matrix. Their method computes an orthonormal basis

W € R™*¥ such that |[WW T — Zle v;iv] || < €, where v; is the i-th eigenvector of A, in time
O(n*k/(ev)), where 7 is the spectral gap between \; and \,_1. While powerful, their method
targets spectral norm error and depends on «~!. In contrast, our algorithm selects and reweights
subsets of rows and columns and approximates the Frobenius-norm optimal rank-% solution, with no

dependence on . This makes our method suitable for downstream applications for small .

Our algorithm for (k, p)-clustering has further implications for the data selection pipeline used in
training foundation models. As discussed in/Axiotis et al. (2024), if the loss function ¢ and all k-center
solutions satisfy the (p, A)-well-behaved property, then a subset of s = O(e~2) points suffices for
training or fine-tuning. The pipeline proceeds as follows: (1) compute k centers x = (1, ..., Tk)
using a clustering algorithm, and (2) sample s points using the loss values £(z;) to obtain a coreset.

Using our quantum algorithm for (k, p)-clustering, we first construct a coreset of size poly(k/¢) in

time O(n®3d - poly(k/c)), then solve for the centers z1, .. ., , using only the coreset. The second
round of sampling requires at most k& queries to the loss function and can also be implemented in

O(n%3d - poly(k/e¢)) time. Classical algorithms for this pipeline would require (n) time. Hence,
our method is the first sublinear-time quantum algorithm for data selection pipelines.

We summarize our results in the following tables. Table[I]compares our coreset construction runtimes
with prior work, and Table [2] compares runtimes for solving the corresponding optimization problems.

Reference Previous Ours
k-Median Clustering Xue et al.| (2023) nOPILoE05 | n05qk25
k-Means Clustering Xue et al|(2023) n05qIoE05 | p0-54E25
(k, p)-Clustering Xue et al.[(2023) n0Pdto k0S5 [ n05qE2s
0,25 Regression t Apers & Gribling (2024) n9od" n0-54(0-5vp/H+1.5
(k,p < 2)-Subspace Approx. | \Woodruff & Yasudal(2025) | nd nl=P/Aqpp/4
(k,p > 2)-Subspace Approx. | Woodruff & Yasuda (2025) | nd nt=1/Pdgo->

Table 1: Comparison of running times for constructing an e-coreset for the respective problems. We
set e = O(1), assume n >> d, k and ignore all dependencies on functions that only depend on p for
simplicity of presentation. For clustering and ¢,, regression, we compare against prior fastest quantum
algorithms, while for subspace approximation, we compare against prior fastest classical algorithms
as we are unaware of quantum algorithms for these problems. {: We use a V b to denote max{a, b}.

Our contributions. We summarize our main contributions below:

« We introduce a general quantum weighted sampling framework. Given weights w € RZ ) satisfying
mild conditions and access to a classical oracle that approximates the weight of a point over a
small set, the framework constructs a coreset using O (/7 - sum(w)) queries to the input, where
sum(w) > -1 | w; is an upper bound on the total weight. We show that sensitivity, leverage
scores, and Lewis weights all meet these conditions, implying that coreset construction with these
weights can be accelerated within our framework.

« We design the first sublinear time quantum algorithms for several fundamental low-rank approxi-
mation tasks: Frobenius-norm approximation, PSD and kernel low-rank approximation, and tensor
low-rank approximation. Our algorithms are purely sampling-based, and avoid dependence on
data-dependent parameters.

« We develop improved quantum algorithms for (k, p)-clustering in the high-dimensional regime
d > k, and further demonstrate how our framework can accelerate data selection pipelines for
training foundation models.
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Reference Previous | Ours
Low-Rank Cohen et al[(2017) | nd n0-5dko-P
PSD Low-Rank Bakshi et al.|(2020) | nk“ T n0- 7225
Kernel Low-Rank Bakshi et al.| (2020) | nk Tx nO L2
Tensor Low-Rank: Rank-k Song et al.|(2019) n3 4 28 | p2k05 1 ok’
Tensor Low-Rank: Bicriteria | |[Song et al.[(2019) n3 n2k0->

Table 2: Comparison of running times for a variety of low-rank approximation problems. For all
of these problems, we only compare with the prior best classical algorithms, as they are either not
studied in the context of quantum algorithms, or the respective quantum algorithms require that the
input is given in the form of a data structure, or have data-dependent parameters in the running time.
We assume all matrices/tensors are dense. We ignore lower order terms for ease of comparison. For
kernel low-rank approximation, we use 7k to denote the time of evaluating kernel function on any
two data points.

Roadmap. In Section |2} we provide a technical overview of the main results, including our generic
algorithm for constructing coresets and specific applications to low-rank approximation. In Section 3]
we summarize our results and discuss open problems. Section [A]presents preliminary definitions and
notation. In Section [B] we describe a generic weighted sampling algorithm for coreset construction
and discuss its adaptations to regression and subspace approximation. Section [C]demonstrates how to
use weighted sampling to generate a column subset of a matrix and apply it to low-rank approximation.
Section [D] shows how Grover search can be used to accelerate Nystrom approximation of kernel
matrices, improving upon the runtime of Bakshi et al| (2020). In Section[E] we extend our approach
to (k, p)-subspace approximation. Section [F provides algorithms for low-rank approximation of
third-order tensors in the Frobenius norm. Section [G]presents an improved quantum algorithm for
constructing coresets for (k, p)-clustering and applies it to data selection. In Section we establish
a quantum query lower bound for additive-multiplicative spectral approximation, a key subroutine for
computing low-rank approximations. In Section|[[] we provide a detailed discussion on simulating
query access to a random string with QRAM. In Section [J] we give the query complexity of our
algorithms which is independent of QRAM and the type of queries to the input.

Quantum computation model. We adopt the standard quantum computation model used in,
e.g.,|Apers & De Wolf] (2022)); /Apers & Gribling|(2024). This model supports quantum subroutines
operating on O(logn) qubits, allows quantum queries to the input, and grants access to a quantum-
read/classical-write RAM (QRAM) of size poly(n) bits. Each quantum read or classical write to
QRAM incurs unit cost. We measure time complexity by the number of QRAM operations, and
query complexity by the number of input queries made by the algorithm. QRAM is a common model
studied in quantum algorithms, however it is known that practically realizing the QRAM architecture
is challenging.

2 TECHNICAL OVERVIEW

We give an overview of our techniques in this section. In Section we introduce our recursive
sampling framework for sensitivity sampling, based on Grover search. In Section[2.2] we generalize
the quantum sensitivity sampling framework via approximators. In Section[2.3] we design quantum,
sublinear time algorithms for low-rank approximation that are based purely on sampling rows and
columns. In Section [2.4] we further extend the sampling-based low-rank approximation to the
tensor setting. Finally in Section we discuss our coreset algorithm for (k, p)-clustering and its
advantages over prior constructions.

2.1 SENSITIVITY SAMPLING VIA GROVER SEARCH

One of the primary advantages of quantum algorithms over their classical counterparts is their ability
to search and sample more efficiently. The search procedure developed by Grover (Grover, [1996))
addresses the database search problem: given a function f : [n] — {0, 1}, we aim to list up to m
indices for which f(i) = 1. Assuming access to an oracle that, given an index ¢, outputs the value
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f (@), Grover’s seminal work shows that, instead of requiring n queries to the oracle, the problem
can be solved using only O(y/mn) oracle calls with quantum computation. This provides a notable
advantage as long as m < n, which is often the case in applications. Grover search has since been
utilized to achieve speedups in problems such as edit distance (Boroujeni et al.,|2021}; |Gibney et al.|
2024)), solving graph Laplacian systems (Apers & De Wolf} 2022, and solving linear programs (Apers
& Gribling| 2024). In particular, |Apers & Gribling| (2024) develops a method to sample from the
leverage score distribution of an n x d matrix A, in time O(n°->d*-?). For tall, skinny matrices, this
approach leads to a runtime that is sublinear in the input size of A. Subsequently, the authors construct
spectral approximations of A to speed up various essential procedures within a linear program solver.

The key procedure they utilize is a quantum sampling algorithm based on Grover search: associate
each item with a value p; € [0, 1], and the goal is sample a subset with the probability of i-th item
being p;. Given p;’s, we can sample the subset in O(y/n )y, p;) time and if Y p; < o(n), then
we can achieve this goal in sublinear in n time. However, this sampling procedure requires an oracle
that returns the value of p; upon query, akin to the oracle for f(i) in Grover search. We refer to
Lemma[AT4] for a formal statement.

Since the i-th leverage score of A is defined as a, (AT A)Ta;, where MT is the pseudoinverse
of matrix M, implementing the oracle by computing the Gram matrix AT A and its pseudoin-
verse is prohibitively slow. To address this issue, |Apers & Gribling| (2024) observes that the
algorithm due to [Cohen et al.| (2015b) can implement such an oracle efficiently: this algorithm
proceeds by recursively halving rows — it first uniformly samples half of the rows of A, denoted
by A’, then recursively computes the leverage score matrix of A’. For an n x d matrix A, it
suffices to sample O(dlogde=?) rows according to leverage scores; hence the sampled matrix
SA’ € Rilogdxd js small where S € R41°8 9x(7/2) s the sampling matrix that selects the sampled
rows and scales them properly. In fact, SA’ serves as a sketch for the leverage score of matrix A with
a] (A'TSTSA N a; = (1+€)-a] (AT A)ta; for all 4. Thus, an oracle can be efficiently implemented
by computing (A’TSTSA") in O(d*) time, and by leveraging a trick from |Spielman & Srivas-
tava (2011), the quantity a; (AT STSA ) a; = ||(A'TSTSA") /2, Hz can be accelerated using a
Johnson-Lindenstrauss transform (Johnson & Lindenstrauss|, |1984). Consequently, this approach
results in an algorithm that constructs a leverage score sampler for A in time O(n%®d*-%e=1 + dv),
with the sum of probabilities being O(s).

Can we extend the leverage score sampling algorithm of |Apers & Gribling| (2024])) to generic sen-
sitivity sampling? The first hope is that, instead of sampling directly according to sensitivities, it
might be sufficient to sample based on an overestimate of sensitivities. Consider the following
simplified algorithm: form A’ by sampling each point of A with probability 1/2 uniformly, and
define the generalized sensitivity as s;(A, A") = maxye x, cost(A’,2)£0 %, i.e., we change the
denominator to cost(A’, ). Note that this is not necessarily an overestimate of s;. To see this, let *
be the point that realizes the sensitivity for s;. If cost(A’, *) = 0, then s; (A, A’) will not be realized
by x*, and it is possible that s; > s;(A, A’). On the other hand, we can see that s;(A, A’ U {a;})
serves as an overestimate. To understand this, consider the case where s;(A, A’) does not hold: if
cost(A’, x*) = 0, then either cost(a;, 2*) = 0 and s; = s;(A4, A’ U {a;}) = 0, or cost(a;, z*) # 0
and s;(A, A’ U {a;}) = <=2 — 1 an upper bound on any s;. If cost(A’,z*) # 0, then

cost(ai,z*)
Eg:tt((fliz*)) > ‘;Z?t((i{f*) , as the denominator for A’ is smaller. We note that s;(A, A’ U {a;}) is in

fact the overestimate used by |Cohen et al.|(2015b) to obtain their initial uniform sampling bound.

The recursive framework follows directly: uniformly sample half of the points A’, then compute
a coreset of A’, called C. To compute the overestimates of s;, we use s;(A, C U {a;}), which is
efficient since C' is a small-size coreset. Note that s;(A,C U {a;}) is a valid approximation of
si(A, A" U{a;})—as C is a coreset of A’, it approximates the cost of A’ with respect to all z € X,
and they have the same kernelﬂ Moreover, it is not hard to see that C' U {a;} is also a coreset of
A’ U {a;}, and thus the sensitivity is preserved. To summarize, in each round of recursion, we are
given a size-s coreset, and assuming we can approximate each s;(A, C' U {a;}) in Tsensitivity (8, d)

time, then the overall runtime is 6(« ns) - Tsensitivity (8, d), with recursion depth at most log n as we
halve the points at each step, giving the desired runtime for sensitivity sampling.

'Given a set of points A and a cost function, the kernel of A is ker(A) = {z € X : cost(A4,z) = 0}.
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2.2  GENERIC WEIGHTED SAMPLING VIA APPROXIMATOR

While the preceding algorithm handles all sensitivity sampling, in many applications, the exact
sensitivities can be difficult to compute, and thus proxies are often sought as efficient alternatives.
T
Take the £, regression problem as an example, where the sensitivity is s; = max,cra 4240 %
’ p
For p = 2, this corresponds to the leverage score, which can be quickly approximated. However,
for general p, this is more complex, and algorithms for £, sensitivities tend to be less efficient than
those for leverage scores (Padmanabhan et al.,[2023). Instead, constructing a coreset for £,, regression
is typically done not via sensitivity sampling, but through Lewis weights sampling (Bourgain et al.,
1989; ILedoux & Talagrand, |1991} [Talagrand, |1995} |Schechtman & Zvavitch, 2001; Cohen & Peng]
2015; Woodruff & Yasuda, 2023). These weights are defined as the fixed-point solution for the
following equation: w?/ P = a] (ATW'=2/P A)~1a;, where w; represents the i-th leverage score of
the matrix W'/2=1/P A, Lewis weights have several desirable properties, such as S w; =d, and
they serve as proper upper bounds for ¢,, sensitivities for all p € (0, c0). Moreover, Lewis weights

can be approximated in nearly-linear time (Cohen & Peng| [2015; [Leel 2016; |Jambulapati et al.| [2022;
Fazel et al.| 20225 |Apers et al.,[2024).

To adapt our sensitivity sampling framework to work with Lewis weights sampling, we encounter
a notable challenge: given a coreset B of A, it is guaranteed that any vector in the subspace of A
has its £, norm preserved by B, but the Lewis weights are not defined purely in terms of the ¢,
norm of vectors in the subspace. Instead, they measure the {5 norm of the subspace after a density
transformation induced by W'/2-1/7_ Consequently, it might well be the case that B is a coreset
of A, and the Lewis weights of A are not preserved by B. On the other hand, we can instead define
a notion of an e-approximator of A: we say B is an e-approximator of A for ¢, regression if B is
a coreset and (1 — e)ATWi_Q/pA =< BTW;;_Q/’)B < (1+ e)ATW}l_Q/pA, where W4, Wg are
the diagonal Lewis weights matrices for A and B. Note that this is a different approximation notion
than that of a coreset, as the cost becomes global rather than local: for generic sensitivity-based
arguments, one relies on the fact that adding a single point to the set will not affect the weights of
other points, and hence if B is a coreset of A, then B U {p} is also a coreset of A U {p}, but this is
not true for an approximator of A, as adding a single row to both A and B would potentially affect
the weights to all existing rows. In|Cohen & Peng| (2015), they provide a classical recursive sampling
algorithm by noting that, if we sample according to the generalized Lewis weights with respect to an
approximator, then the resulting weighted sample is also an approximator. We further abstract their
construction, and provide the most general framework for quantum sublinear weighted sampling: let

w(A, B) € R|>AOI be the generalized weights of A with respect to B, we say B is an e-approximator of

A'if for any C and any i € [n], we have w;(C, B) = (1 + €)w;(C, A). We then need three sufficient
conditions:

« Consistent total weights: For any subset S C [n], >, g w;(A, A) < sum(w), where sum(w) is a
finite upper bound on the sum of weights. When the weight is sensitivity, sum(w) is simply the
total sensitivity;

« Uniform sampling bound: Take any uniform subset A’ C A, define the new weights w}(A, A") as
w;(A, A')ifa; € A" and w; (A, A’ U{a;}) otherwise. Then w;(A, A") > w;(A, A) forall i € [n];

« Importance sampling bound: Suppose we sample according to ¢; = min{1, a - w;(4, A)} for
some « > 1, and reweight the sample by 1/g;, then with probability at least 1 — §, the weighted
sample is an e-approximator of A of size at most « - sum(w) log(1/4).

Let s = O(a - sum(w) log(1/6)). We obtain an algorithm that computes an e-coreset in the desired
O(\/n5) - Tsensitivity (8, d) time. Thus, by using weighted sampling with Lewis weights, we achieve
a runtime of O, (n%°d(0-5VP/9+1 (=3 4 d0-%)) for generating a coreset for ¢, regression. This
improves upon the prior quantum algorithm for Lewis weights sampling that is based on iterating
leverage scores (Apers et al., 2024), with a runtime of O, (n%5d"¢~3). Our algorithm provides a
speedup for any p € (0, 2) U (2, 22] (which includes the popular ¢; regression), but it is worth noting
that the main purpose of the work of |Apers & Gribling (2024) is to estimate Lewis weights up to
p = O(logn) as they use it as a subroutine for solving linear programs, so their algorithm has no p
dependence on d. Nevertheless, we provide a completely different sampling algorithm to construct
an ¢, regression coreset that is particularly suitable for small p.
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2.3 PURE-SAMPLING FRAMEWORK FOR LOW-RANK APPROXIMATION

Given A € R?*™, the rank-k low-rank approximation problem seeks to find a pair of matrices
U e Rk Ve R™F suchthat |[A — UV |2 < (14 €)||A — Ag||%, where Ay is the best rank-k
approximation of A. Low-rank approximation is closely related to the (k, 2)-subspace approximation
coreset: let Fj, C R? be the set of all k-dimensional subspaces in R?, and define cost(a;, z) =
||(I — P,)a;||3 where P, is the orthogonal projection onto z € Fj. If we obtain a coreset C' for A,
then we have for any k-dimensional orthogonal projection Py, ||(I—P,)C||% = (14¢)||(I - P.) A%,
which is sufficient to show that choosing P, as the projection onto C, will give the desired low-rank
approximation (Cohen et al2017). Moreover, instead of (k, 2)-subspace sensitivities, one could
sample according to the ridge leverage scores, which can be computed quickly. To adapt our weighted
sampling framework, we need to identify the e-approximator for ridge leverage score, which is a
coreset of A and

(1—€AAT —eXg, I < CCT < (1+€)AAT +eXy, 1,

where A4, = ||A — Ag||%/k. Thus, our framework gives an algorithm that runs in time

O(n0'5dk0'56_1).

While one might be satisfied with the ridge leverage score solution to low-rank approximation, more
complexity arises if we aim to recover the solution through the subsampled columns. In particular,
if we let C' € R?¥* denote the weighted subset of columns of A sampled by ridge leverage scores
for s = O(klog ke™?), it is guaranteed that min . ank(x)<k [[CX — A[|F < (14 €)[| A — Al|7.
Constructing an optimal X would require computing P, (CtA) where P;, is the projection onto
the top-k principal components. Directly computing C't A is of course too expensive, and standard
approaches mostly involve using an oblivious subspace embedding (OSE) matrix, a random matrix
that approximates the cost of all regression problems. Matrices such as CountSketch (Charikar et al.,
2002; (Clarkson & Woodruff, 2013) could be applied in time nnz(A), but this is already too slow
for our purpose. We address this with a pure-sampling framework for low-rank approximation: we
demonstrate that it is possible to recover (or approximate) the solution X via leverage score sampling.

In particular, for the regression problem min x . ank(x)<k [|[CX — Al|%, one could sample ac-
cording to the leverage score distribution of C' and solve the subsampled regression problem
minx . ank(x)<k [SCX =8 A||%.. Standard leverage score guarantees ensure that the optimal solution
to the subsampled regression closely approximates the original problem (Lemma[A.T3). Because of

this fact, we can show that there exists a good solution X in the row span of matrix S A; hence it is
enough to solve the regression problem miny-;ank(yvy<r |4 —CY'S Al|%., and we further speed up the
algorithm by employing two leverage score sampling matrices 7 and 75 on the left and right accord-
ingly. Consider the new subsampled regression problem: miny . ani(v)< |71 AT = T1CY SAT, %,
and observe that we can compute the subsampled A in sublinear in n, d time, because 71 AT» and
S ATy all amount to selecting a poly (k/e€) subset of entries of A, which, assuming random access to
the entries of A, can be done in the same order of time. This pure-sampling approach contrasts with
OSE-based methods, which generally require reading all entries of A.

2.4 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

For matrix low-rank approximation and its variants, ridge leverage score sampling is the crucial tool
to compute a good approximate solution. Can we extend the framework to solve tensor low-rank
approximation? Unfortunately, even for a 3rd order tensor A € R™*"*™ it is not always the case that
it admits a low-rank approximation, due to the so-called border rank issue (De Silva & Lim) [2008]).
Even when the low-rank approximation exists, variants of Strong Exponential Time Hypothesis
(SETH) rule out polynomial time algorithms to approximate the tensor rank of A (Song et al.,[2019).
If one relaxes the problem by allowing the output to be a higher-rank solution (bicriteria solution)
or a running time that depends exponentially on k and 1/e (fixed-parameter tractable, i.e., FPT),
then Song et al.| (2019) provides algorithms with leading running time term being nnz(A). Their core
algorithm is as follows: for tensor A € R™*"*" et Ay, Ay, As € R™*"” be matrices such that the
Ist, 2nd, and 3rd dimensions of the array are preserved, while the other 2 dimensions are collapsed
and flattened into a dimension of size n%. They then apply OSEs S, S, S3 with only poly(k/e)
columns to form 4157, A2S5 and A3Ss.
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Although one might attempt to replace the OSEs S, S5, and S5 with leverage score matrices for
Ay, As, and As, this approach, unfortunately, does not work. The argument of |Song et al.|(2019) is
as follows: suppose the optimal rank-% approximation Ay, exists, then Ay = Zle U@V @ Wi
To reduce the problem dimension, the goal is to demonstrate that a good approximate solution exists
in the column span of A;.5; and A2S>. In particular, suppose we have access to V* and W*, set

7y € RF*"* where each row i is V* ® W, then it is not hard to see that the optimal U* could be
recovered by solving ming cgnxx ||UZ1 — A1]|%, as |[UZ; — A1 ||% = || Zle UiV oW —Al3.
The multiple response regression problem above can then be accelerated by applying an OSE on the
right and instead solving ming |[UZ1S; — A1 S1||%, where the optimal solution has the closed form

U= A1S1(Z,S1)T. This establishes that U is in the column span of A157.

For sampling, this setup is more challenging. If we were to replace S; with the leverage score
sampling matrix, we would require the leverage score matrix of Z; in order to preserve the cost
of the optimal solution. Thus, we could only argue for the correctness of this approach if Sy is
chosen according to the leverage score of an unknown matrix Z;, which is unclear how to achieve.
On the contrary, we do have access to the response matrix A, and one might wonder if sampling
directly from A; is sufficient. However, a simple counterexample demonstrates that this approach
fails: suppose A; is a single column equal to e,,, and the design matrix Z; is e; + e, for ¢ randomly
chosen from 1 to n» — 1. Any sampling scheme based on A; will likely sample the n-th entry but
miss the i-th entry with high probability. This would lead to a solution on the original problem that
has twice the optimal cost.

Surprisingly, we show that this 2-approximation is almost as bad as one can get: if one instead
samples from the ridge leverage score distribution of A1, then there exists a solution U in the column

span of A1.57 (57 is the ridge leverage score sampling matrix of A;) such that ||(7' Zy — A% <
(2+¢€) -mingy ||[UZ; — A1]|%. This result is particularly surprising as one might expect an adversarial
choice of A; that would disrupt ridge leverage score sampling. However, ridge leverage scores
provide the so-called projection-cost preserving guarantee: for any rank-k projection P, we have
that (1 — €)||(I — P)A1||% < |(I = P)A1S1||% < (1 4 €)||(I — P)A;||%, where setting Py, as the
projection onto the top-k principal components of A;.S; minimizes ||(I — Py)A;S1]/%. Additionally,
the optimal cost of the regression can be bounded by ||[A1]x — A1]|%, the best rank-k approximation

to A;. Setting U= PkAlZ{L, we get

1021 — Ay} =||PoA 2] 21 — A3
=|[(PrAr — A)(Z20) + A (I - Z{2,)|I%
=[(PuAL — A )(Z] 20) |3 + | A (I — Z] 20)|1%
<I(I = Po) AL} + 1AL — 2] 20) 1%
<(1+¢€) OPT+OPT
=(2+¢) OPT,

where OPT := miny [|[UZ; — A4

the fact that || A; — 4; ZI Z1||% is the optimal solution. To see U is in the column span of A1.57, itis
enough to observe that Py, is the projection onto the top-k principal components of A;.51, and hence
U is in the column span of Py, a subset of the column span of A1.S;. This shows that as long as we
sample according to the ridge leverage score distribution, we can still obtain a (2 + ¢)-approximate
solution. Moreover, for 3rd order tensor low-rank approximation, we would only invoke ridge
leverage score sampling on A; and As, as the components of the design matrix reside within the
column span of both A;5; and A»S2, making the problem tractable. We can, in turn, employ fast
(classical) tensor leverage score sampling algorithms to achieve an overall approximation ratio of

4 + €) with a significantly improved running time of O(n2k%5 /¢ + n poly(k/€)) for dense tensors.
g y imp g y

2., and we use the Pythagorean theorem in the proof, along with

2.5 IMPROVED CORESET FOR CLUSTERING WITH APPLICATIONS

We also design an improved quantum algorithm for constructing an e-coreset of (k, p)-clustering.
In contrast to the recursive sampling framework we developed in the preceding discussions, our
algorithm could be viewed as a quantum implementation of [Huang & Vishnoi| (2020), where the idea
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is to first compute a set of approximate k-centers, then perform sensitivity samplings on top of it.
Why could our recursive sampling framework not be applied here? This is because the sensitivities
of (k,p)-clustering can only be overestimated, and these overestimates in general do not satisfy
the uniform sampling bound. In fact, a closer examination of our analysis shows that during the
intermediate stages in the recursive sampling, we would need the sensitivities to be approximated in a
two-sided fashion, i.e., let s; be the exact sensitivities. We require the approximate sensitivities s; to
satisfy (1 —¢)s; <'5; < (14¢€)s;. Nevertheless, we design a sensitivity sampling algorithm for (k, p)-
clustering that is based onHuang & Vishnoi (2020), that computes a coreset of size O,,(k5e~5P~15)
in time O, (n°-5dk?-5¢=2P=7%). Compared to the previous work of Xue et al.[(2023) where they

obtain a coreset in O, (n®5d'-5k%5¢=(#/2V1)) time,

« Our algorithm outputs a weighted subset of points B C A, as our coreset. In contrast, Xue et al.
(2023)) adapts an algorithm of |Cohen-Addad et al.|(2021)), in which the coreset consists of weighted
points from A and all bicriteria approximate centers. Thus, composing the coreset from [Xue et al.
(2023)) with any optimal-sized coreset algorithm (Huang et al., [2024) will also include points not
in A;

« Our algorithm outputs a coreset of size O, (k°¢°P~1%), while Xue et al{(2023) outputs a coreset

of size (5p(dke’(2\/p)). This means to obtain an optimal-sized coreset of size 5,)(/@% €2) by
running the algvorithm of Huang et al.| (2024) on top of our coreset, we can acllieve the result with
an additional O, (d poly (k, e~?)) time, while Xue et al.{(2023) would need O,,(d? poly(k, e 7))
time.

As an application, we demonstrate that (k, p)-clustering can be used to bootstrap the construction
of the data selection pipeline (Axiotis et al.,|2024), as it enables the computation of approximate
k-centers in sublinear time. Furthermore, we show that the quantum techniques developed for (k, p)-
clustering can also be leveraged to obtain a sublinear-time quantum algorithm for data selection. We
defer a more detailed discussion to Section [G]

3 CONCLUSION

We present a quantum, sublinear-time algorithm for weighted sampling that yields a broad range
of results in coreset construction. These include (k, p)-clustering, ¢,, regression, (k, p)-subspace
approximation, and low-rank approximation. For the low-rank approximation problem, we design
specialized algorithms for multiple settings, including Frobenius norm error minimization, PSD low-
rank approximation, kernel-based low-rank approximation, and tensor low-rank approximation. For
(k, p)-clustering, we develop an improved quantum coreset construction that offers better dependence
on the data dimension d, and we generalize this framework to address the data selection problem for
foundation models. We highlight three major open problems arising from our work:

« Two-sided approximation for clustering sensitivities. Unlike regression and low-rank approxi-
mation, where coresets can be constructed efficiently via leverage scores or Lewis weights, the
approximate sensitivities used in clustering are only known to be upper bounds. This asymmetry
significantly limits the applicability of the recursive sampling framework to clustering. It remains
an open question whether one can design algorithms that compute two-sided approximations to
clustering sensitivities, thereby unifying clustering within our weighted sampling framework.

o Quantum algorithms for Frobenius norm tensor low-rank approximation. While we achieve
a (1 4 €)-approximation for matrix low-rank approximation in sublinear time, the scenario is
more complex for tensors. As discussed in Section for 3rd-order tensors, we obtain only
a (4 + €)-approximation, and for general ¢-th order tensors, a (29! + ¢)-approximation. A
compelling open question is whether one can design a sublinear-time quantum algorithm—with
potentially worse running time—that achieves a (1 + ¢)-multiplicative approximation for tensor
low-rank approximation.

o Query lower bounds for coreset construction. In Section [H} we establish a quantum query
lower bound for computing additive-multiplicative spectral approximations, which are sufficient
for low-rank approximation. An intriguing direction for future research is to generalize this lower
bound to broader classes of coreset constructions.
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This paper studies novel quantum algorithm for sensitivity sampling which could lead to improvement
to various machine learning problems. We don’t believe there are significant ethics concerns need to
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REPRODUCIBILITY STATEMENT

As this paper is theoretical in nature, we include complete proofs in the Appendix. In particular,
we prove the generic sensitivity sampling result in Section [B} low-rank approximation in Section |C}
kernel low-rank approximation in Section [D} subspace approximation in Section [E] tensor low-rank
approximation in Section[F] clustering and data selection pipeline in Section[G]and lower bound in
Section [H
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A PRELIMINARIES

A.1 NOTATION

For any n € N, let [n] denote the set {1,2,...,n}. We use O(-) to hide polylogarithmic factors in n,
d, 1/e, 1/, and other problem-related parameters, such as k and p. For two numbers a and b, we use
a Vb as a shorthand for max{a,b}. We use a = (1 + €)b to denote a € [(1 — €)b, (1 + €)b].

For a matrix A, we use || A||2 or simply ||A|| to denote the spectral norm of A. For a tensor A, let
||A|| and || Al|2 (used interchangeably) denote the spectral norm of tensor A,

Az, y, 2z
4l = sup LALBAL
oo Tl ol - 4]

Let A € R"*? and k < min{n,d}. We will use A, or [A];, to denote its best rank-k approximation.
Let || A|| 7 denote the Frobenius norm of a matrix/tensor A4, i.e., || A|| is the square root of the sum
of squares of all entries of A. For 1 < p < 2, we use ||A]|, to denote the entry-wise £,-norm of a
matrix/tensor A, i.e., || A]|,, is the p-th root of the sum of p-th powers of the absolute values of the
entries of A. || A]|; will be an important special case of || A||,, representing the sum of the absolute
values of all entries.

Let nnz(A) denote the number of nonzero entries of A. Let det(A) denote the determinant of a
square matrix A. Let AT denote the transpose of A. Let At denote the Moore-Penrose pseudoinverse
of A. Let A~! denote the inverse of a full-rank square matrix.

For a 3rd order tensor A € R"*"*" we use A, ;; to denote its (4, j, [)-th element, A, , ; to denote
its ¢-th row, and A; ; . to denote its j-th column.

A tensor A is symmetric if and only if for any ¢, j, k, A; j . = Aik; = Ajik = Aj ki = Akij-

For a tensor A € R™*™2%73we use T to denote rotation (3-dimensional transpose) so that
AT e Rsxmixn2 For g tensor A € R *X"2Xn73 gnd matrix B € R™** we define the tensor-
matrix dot product to be A - B € R *n2xk,

A.2 SENSITIVITY AND CORESET

Throughout this paper, we will extensively work with sensitivity and coreset. Let X be some universe
of elements. Our main focus is the cost function: cost : R x X — R, which measures the cost of
an element x € X with respect to the first argument. We then define the notion of strong and weak
coresets.

Definition A.1 ((Strong) Coreset). Let B C A and e € (0,1). We say that B is an e-strong coreset

or e-coreset of A if there exists a nonnegative weight vector w € RLBEJ such that forall x € X,

Z wp - cost(b,x) = (1 £ €) - cost(A, x).
beB

Strong coreset preserves the cost over all possible z € X, but sometimes we only need the optimal
cost preserved. We also introduce the notion of weak coreset.

Definition A.2 (Weak Coreset). Let B C A and ¢ € (0,1). We say that B is an e-weak coreset if

. . . B
there exists a nonnegative weight vector w € RLO‘ such that

min » wy - cost(b,z) = (1+e¢€)- OPT,
TN eB

where OPT = ming¢ x cost(A4, x).

Remark A.3. Oftentimes, given a weighted subset (B, w), we will use cost(B, x) as an abbreviation
for >y cpwy - cost(b, x), as our analysis and algorithms on the subset of points work in both
unweighted and weighted settings. Hence, when the weight is clear from context, we will abuse
notation and use cost(b, x) to denote wy, - cost(b, x).
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Definition A.4 (Sensitivity and Generalized Sensitivity). Let A = {ay, ..., a,} C R%. We define the
sensitivity of a; as

cost(a;, x)
si(A, A) = max ————=.
i(4,4) zeX cost(A,x)
Let B C R%. We define the sensitivity of a; with respect to B as
cost(a;, x)

(A, B) = L
5 ( ) acEX,cos?E)é,x);éO COSt(B,;E)

A.3 LEVERAGE SCORE, RIDGE LEVERAGE SCORE, AND LEWIS WEIGHTS

Definition A.5 (Statistical Dimension). For real value \ > 0 and a rank-d matrix A € R™*% with

singular values o;(A), the quantity s}(A) = Z?Zl \/ﬁ is the statistical dimension of the
93

ridge regression problem with regularizing weight \.

Definition A.6 (Leverage Score). Given matrix A € R"*%, leverage score can be defined as follows:
7i(A) == a (AT A)ta;,
where a] is the i-th row of A for all i € [n).

Definition A.7 (Ridge Leverage Score). Given matrix A € R"*%, we denote the i-th ridge leverage
score, fori € [n], as follows:

(A Aa) i=a; (ATA+24,1) ay,

where M, = ||A — Ag||%/k and I € R is the identity matrix. When the rank k is clear from
context, we may abbreviate T;(A) as T;(A, Aa, ).

Definition A.8 (Generalized Ridge Leverage Score). Let A € R"*¢, C ¢ R"*4 andi € [d]. We
define the i-th generalized ridge leverage score of A € R™*% with respect to C € R*d" gs follows:

al (COT + Mg In)tai, if a; € span(CCT + \1L,);
00, otherwise.

?i(A7 C7 Ack) = {

When the rank k is clear from context, we may use 7;(A, C) as shorthand for 7;(A, C, \c,).

Definition A.9 (Lewis Weights). Letp € (0,00) and A € R"*%. We define the ,, Lewis weights of
A, denoted by w 4, as

2—
WA =Ti(Wj‘/ 1/p )s
or equivalently,

wi/f = aiT(ATWi_Q/pA)flai.

A.4 MATRIX APPROXIMATIONS

Definition A.10 (Subspace Embedding in [Sarlos| (2006)). Let €, 6 € (0,1) and n > d. Given a
matrix U € R"? which is orthonormal (i.e., U'U = I;), we say S € R™*" is an SE(e, 6,1, d)
subspace embedding for fixed U if

1= )llUz|3 < [SUz|3 < (1 + ¢)||[Uz]]3
holds with probability 1 — . This is equivalent to
|[UTSTSU ~UTU| <e.

Definition A.11 (Weak e-Affine Embedding, Theorem 39 in (Clarkson & Woodruff] (2013))). Let
matrices A € R™*" and B € R"*%. Given matrix S € R**™, we say S is weak e-affine embedding

if the following conditions hold: let X = arg minx |AX — B||% and B = AX — B and then
IS(AX = B)|[% — ISBl% = (1 £ o)[|AX — B||% — ||B]l%
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A.5 PROPERTIES OF LEVERAGE SCORE

Sampling according to leverage score distribution yields a weak affine embedding property; addition-
ally, solving the subsampled problem results in an optimal solution whose cost is close to the original
optimal cost.

Lemma A.12 (Theorem 42 in|Clarkson & Woodruff| (2013)). Let matrix A € R™"*" with rank at
most k, and let B € R™*?. If S € R"*" is a sampling and rescaling diagonal matrix according
to the leverage scores of A, let m = O(e~2klog k) denote the number of nonzero entries on the
diagonal of S. Then for all X € R"*%, we have:

* S is a weak e-affine embedding (see Definition[A.T1);

e equivalently, if X = argminy ||AX — B||%, B=AX - B, and C := HSEH% - HEH%,
then

(1—¢) |AX —B||2+C < ||S(AX —B)||2 < (1+¢)-||AX — B||% +C.

Lemma A.13 (Leverage Score Preserves Optimal Cost, Lemma C.31 of [Song et al.| (2019)). Let
A € R™ " be a matrix with rank at most k, and let B € R™"*4. If we sample O(klogk + k/e)
rows of A and B proportional to the leverage scores of A to obtain a sampling matrix S, then with
probability at least 1 — 9,

AY. ~ B3 < (1+ ) -min [ AY — BJ},
where Y, = arg miny ||SAY — SB||%.

A.6 QUANTUM PRIMITIVES

Our core quantum primitive is a sampling algorithm based on Grover search.

Lemma A.14 (Claim 3 in /Apers & De Wolf|(2022)). Let n be a positive integer and let p; for all
1 € [n] with p; € [0, 1]. There is a quantum algorithm that generates a list of indices with i sampled

with probability p; independently, in time 6(\ /n i pi)- T, where T is the time to compute p;.

We note that this runtime bound could also be achieved via quantum rejection sampling (Ozols
etal.l2012). Let P = >, p;, then p;/P for all i € [n] induces a probability distribution, which
we denote by o. Recall that the rejection sampling aims to generate one sample from the target
distribution o (where o; = p;/P) using a uniform proposal distribution 7 (where m; = 1/n), the

query complexity is 6(maxie[n] \/oi/m;) - T, as each p; < 1, the ratio can be upper bounded by

max;(p;/P)/(1/n) < n/P, thus, the complexity to generate one sample is 5(\/n/7P) -T. As
> i, pi = P, if we choose each index ¢ with probability p; independently, then the expected size is
P, hence the total expected complexity is O(P+/n/P) - T = O(vnP) - T, as desired.

Throughout the paper, we will use the notation QLS (A, s, d) to denote the procedure of sampling s
rows or columns from A according to the leverage score distribution of A, with probability at least
1 — 9 that these leverage scores are constant factor approximations to the exact leverage scores. The
time for this procedure is \/ns - T, where T is the time to compute a single score. Similarly, we
use QGRLS(A4, C,¢,d, A) to denote the procedure of sampling according to the generalized ridge
leverage score distribution 7; (A4, C, A).

B A QUANTUM RECURSIVE SAMPLING FRAMEWORK FOR CORESET

Throughout this section, let us consider A = {a1,...,a,} C R? to be a set of points in R4, and
X to be a set. Let cost : RY x X — R be a cost function, and for x € X, let cost(4,z) =
> cost(a;, ). The main objective of this section is to develop a framework for sampling a
weighted subset of A that approximates the cost of A. To do so, we prove that if the weights
satisfying certain assumptions, then a generic recursive sampling framework could construct a coreset
from these weights. The assumptions are listed in the following.
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Assumption B.1. Given two finite subsets A, B C R?, let w(A, B) € R4l be a nonnegative weight
vector where w; (A, B) is the weight of a; with respect to B. We assume w satisfies the following
conditions:

* Consistent total weights: for any subset S C [n], >, qwi(As, As) < sum(w) where
sum(w) is a finite upper bound on the total weights;

* Uniform sampling bound: let A’ be a uniform subset of A with size m and let w' (A, A’) €

(A, A" ifa; € A
R" (A4 = A, P= (A, A) >
be defined as wi(A, A") {wi(A,A’U{ai}), otherwise:’ then wj(A,A") >
w;(A, A) forall i € [n];

* Importance sampling bound: let u; be an overestimate of w;(A, A) and suppose we sample
according to q; = min{l,g(e,n,d) - u;}, yielding a weighted subset B C A of size
g(e,n,d) - ||ul|1, then with high probability, B is an e-coreset of A with size g(e,n,d) - ||ul|1;

o Coreset preserves weights: let B be an e-coreset of A, then w;(C, B) = (1 £ ¢€) - w;(C, A)
Sor any fixed C and for all i € [n).

Algorithm 1 Quantum recursive sampling for coreset.

1: procedure QRECURSESAMPLE(A € R™*? ¢)
2 if n < g(e,n,d) - sum(w) then
3 return (A, I,,)

4: end if

5 c + 1000

6: A C1/2 A

7 s« g(e,n,d) - sum(w)

8: (C', D) <~ QRECURSESAMPLE(A’, €)

9: Implement a classical oracle for w}(A, C")
10: >p; = min{l,c- g(e,n,d) - wi(A,C")}
11: D + QSAMPLE(p)

122 C+DTA
13: return (C, D)
14: end procedure

Before presenting our most general result, we first show that if B is a coreset of A, then B U {p} is
also a coreset of AU {p} forany p & A.

Lemma B.2. Let B be an e-coreset of A and let p ¢ A, then B U {p} is an e-coreset of AU {p}.

Proof. Since B is an e-coreset of A, we know that for any = € X, cost(B, z) = (1 £ €) - cost(A, x)
with high probability. Conditioning on this event, we note that

cost(B U {p},x) = cost(B, x) + cost({p}, z)
< (1+4¢€)-cost(4,z)+ cost({p}, z)
< (1+4¢€)-cost(AU{p},x),
the lower bound can be established similarly. =

Theorem B.3. Let A € R"*%. Then, there exists a quantum algorithm that constructs an e-coreset
C of expected size s := O(g(e, n,d) - sum(w)) Moreover, if a classical oracle for w;(X,Y") can be
implemented with

* Preprocessing in time Torep (Y], d);
* Query time Tquery (|Y], d) for computing w;(X,Y") for any i € X,

the algorithm runs in time
Toren(s',d) + O(V15 - Toery (5', ),
where s' = 0(g(0.01,n, d) - sum(w)) and uses O(y/ns) queries to the rows or columns of A.
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Algorithm 2 Quantum iterative sampling for coreset.

1: procedure QITERATESAMPLE(A € R"*? ¢)

2: c < 1000

3: s+ 4c-g(e,n,d) - sum(w)

4: T « log(n/s)

5. e 0.01

6: s« 4c-g(€,n,d) - sum(w)

7 Ao Cijp A1 Cryg - Crjp A1 Cipp Ar = A
8

: C() — AO
9: fort=1—T—1do
10: Implement a classical oracle for w;(As, Cy—1) forall a; € A,
11: >p; = min{l,c- g(e',n,d) - wi(A, Ci—1)}
12: D, < QSAMPLE(p) > || Do = ¢
13: Ck %—l);lAt D’C% G]RS/Xd
14: end for
15: Implement a classical oracle for w; (A, Cr_1) for all a; € Ar
16: >p; = min{l,c- g(e,n,d) - wi(Ar,Cr_1 U{a;})}
17: Dy < QSAMPLE(p) > || Drllo = s
18: Cr (—D;AT >Cr ERSXd

19: return (Cr, D)
20: end procedure

Proof. As the algorithm is recursive, we will prove by induction on n. For the base case, we have
n < g(e,n,d) - sum(w); in this case, we could simply take the coreset as A, as it satisfies the size
guarantee with exact approximation.

For the inductive step, we assume it holds for n/2 as our algorithm uniformly samples half of
the points. This means that C’ is an e-coreset for A’ and by the importance sampling bound of
Assumption[B.1] we have w; (A4, C") = (14€)-w; (A, A’) with high probability. Now, we consider two
cases: if a; € A’, then wj(A, A") = w;(A, A") and wj(A,C") = w;(4,C") = 1t e)w; (A, A") =
(I tewi(AA). Ifa; ¢ A, then w}(4,A") = wi(A, A" U{a;}) = 1+ e)w;(A,C"U{a;}) =
(1 £ e)w;(A,C’) by Lemma[B.2]

Next, we prove that for any uniform subset S C [n] with |S| = m, we have
n
Eflw'(4, SA)[h] = — - w4, A

Let us denote S(*) as the diagonal indicator matrix for S U {i}. Then, note

zn: wi(A,SA) = > wi(A,SA) + > wi(A,5D4)

€S igS
¢S
< [lw(A, A + > wi(A, 5D A),
¢S

to bound the second term, note that it is generated via the following random process: first selecting S,
then selecting a random i ¢ S and returning w; (A, S() A). Since there are n — m points not in SA,
the expected value of this process is =~ E[>,, s wi(A, S () A)]. The key observation is that this
process is equivalent to another process: pick a random subset S’ C [n] of size m + 1, then randomly
pick a point a; € S’A and return w;(A, S’ A). In expectation, this is equal to the average weight over
S’ A. Since S’ A contains m + 1 points and by the consistent total weights assumption, the average

weight is at most Jw(A. Al Therefore,
m+1

(4, A

B[} wi(4,$PA) < (n—m)- "= ==

igS

)
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combining these results, we obtain the following expectation bound:

n w(A, A
BY wl(4,54) < (4, Al + (o - m) - L2
i=1
n+1
< .
< (A Al
< (4, A

Hence, since A’ is a uniform subset of A with size n/2, we know that E[|w’(A4, A)|1] <
2|lw(A, A)|jx and w(A, A") > w;(A, A) by the uniform sampling bound. Therefore, if we simply

scale w}(A, C") by a factor of 71—, then we have

wi(A,C") > wi(A, A7) > w;(4, A)

and moreover

Ef[Jw' (A, €[] < (14 3¢) E[[Jw' (A, A')||1]
<4fw(A, Ay
<4 - sum(w)

consequently, if we sample according to ¢ - g(e,n,d) - wi(A, C"), then the expected size of C'is
at most ¢’ - g(e,n,d) - sum(w) for ¢ = 4c, and the coreset guarantee follows naturally from the
importance sampling bound of Assumption|[B.1}

Regarding the running time, we analyze an iterative version of the algorithm that achieves the same
effect, illustrated in Algorithm 2] One key difference is that for the intermediate steps, we use a
constant approximation to improve the runtime. We divide the proof into steps.

* To uniformly subsample half of the points, we follow the approach of |Apers & Gribling
(2024), which takes O(log(n/s)) time;
* For each iteration, we first prepare a classical oracle for w}(A;, Ci—1) in Tprep(s’, d) time;

* Next, we need to sample according to p; = min{1, g(¢’,n, d) - w; (A, Cr—_1)} with

E[Z pil <c-g(€,n,d) E[Z wi(At, Cr—1)]

i€AL 1€A,L

<2c-g(é,n,d)-E[> wi(As, A1)
€A

<dc-g(,n,d)- Z w;(Ag, Ar)

1€A,L
<d4c-g(¢,n,d) - sum(w)
= S y

using LemmalA.14] this step can be implemented in time
O(Vns') - Touery (', d);

* Forming C requires selecting and weighting s’ points, which can be done in O(s’) time;

* Finally, we do a resampling with € to form the final coreset, which takes

Torep (s, d) + 6(\/% * Tquery (5, d))

time, as desired. O

While Theorem [B.3] provides both approximation guarantees in terms of coreset and runtime, in
applications it is more convenient to craft an algorithm that takes the size of the coreset as a parameter.
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Algorithm 3 Quantum iterative sampling for coreset: fixed size.

1: procedure QITERATEFIXEDSIZE(A € R™*? s, 5")

2 ¢ <1000 - s/||Jw(A, A)|1

3 ¢+ 1000 - s"/||w(A, A)|l1

4: T « log(n/s)

5: AO C1/2A1 Cl/g...cl/gATfl Cl/QAT:A

6: Co <+ Ay

7 fort=1—T—1do

8 Implement a classical oracle for w}(A;, C;—1) forall a; € A,

9: >p; = min{l,¢ - wi(A;, Ci—1)}
10: D, + QSAMPLE(p) > [[Dello =5
11: Cy <+ D/ A, > C; e R¥ x4
12: end for
13: Implement a classical oracle for w;(Ag, Cp_1) forall a; € Ar
14: >p; = min{l,c- wj(Ar,Cr_1)}
15:  Dp < QSAMPLE(p) > || Drllo = s
16: Cr +— D;AT >Cr € Rsx*d

17: return (Cr, Dr)
18: end procedure

Corollary B.4. Let A € R"*? and s, s' € [n]. Then, there exists a quantum algorithm that constructs
a coreset C of A with expected size s. Assuming access to a classical oracle for w;(X,Y") with:

* Preprocessing time Tpep(|Y], d);
* Query time Tquery (|Y|, d) for computing w;(X,Y") for any i € X,

the algorithm runs in time
Torep(s', d) + O(V/ns - Tauery (8, d)),
and uses (N)(\/ns) queries to the rows or columns of A.

Our main contribution is to prove that sensitivity sampling satisfies Assumption [B.1]

Definition B.5. Let A = {a1,...,a,} C R?and let cost : R x X — R>q be a cost function. We
define the sensitivity of a; with respect to B, denoted by s;(A, B), as

cost(a;, x)

(A, B) =
sil ) zeX,cgsl?()é,m)#o cost(B, x)

We also need to define the dimension of a system (A4, w, X, cost):

Definition B.6. Given a point set A = {ay,...,a,} C R% nonnegative weights w € R|>0’ a space

X and a cost function cost : RY x X — Rxq, letr € [0,00) and let X (Ag) be a function that inputs
a subset of points from A and outputs a set of x € X associated with Ag. We define

range(z,r) = {a; € A : w; - cost(a;, x) < r}.
The dimension of (A, w, X, cost) is the smallest integer dim such that for any subset S C [n] we
have
|{range(z,7) : x € X (Ag),r € [0,00)]}| < |S|4™.

Lemma B.7 (Theorem 2.7 of Braverman et al.| (2022)). Let dim be the dimension of (A, w, X, cost)
(Def. @ let ¢; == min{l,w; - s;(A,A)} and t > >_"_ q;, let €,6 € (0,1). Let c > 1 be a
sufficiently large constant, and let S be a sample generated by sampling according to q;. Then, with
probability at least 1 — 0, we can genemte a subset S C [n] such that for all x € X (S),

cost(A, x) cost (a;,z)|] <e-cost(4,x),
|5 |
€S

moreover, the size of S is

g - (dim - log ¢ + log(1/6)).
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Theorem B.8. Let A = {a1,...,a,} C R%and let cost : R? x X — Rx(. Moreover, suppose the
total sensitivity has a finite upper bound, i.e., there exists some sum(s) < oo such that for any finite
subset C C R?, Y. 5i(C,C) < sum(s). Then, the sensitivity of A with respect to B, s(A, B)
(Def. [B.3)) satisfies Assumption|[B.1]

Proof. We need to prove s(A, B) satisfies the four items in Assumption

» Consistent total weights: by assumption, we have that for any S C [n], >, ¢ si(As, Ag) <
sum(s) with sum(s) being finite.

* Uniform sampling bound: we analyze by cases. For the first case, where a; € A’, we have
wi(A, A") = s;(A, A"). Let 1, x5 be the two points that realize s;(A, A’) and s;(A4, A),
respectively. Suppose cost(A’, z5) # 0, then

cost(a;, 1) _ cost(a;, )
cost(A’,x1) — cost(A’, x2)
< cost(a;, x2)
~ cost(A’, o) + cost(A\ A, z2)
cost(a;, x2)
cost(A4, z2)

where we use the fact that cost is nonnegative, therefore increasing the denominator will
only decrease the fraction. On the other hand, if cost(A’, z5) = 0, then it must be that
cost(a;, x2) = 0 due to the nonnegativity of cost. Hence, s;(A, A) = 0, and consequently
si(A, A") = 0 as otherwise we could pick z; for s;(A4, A).

For the next case, where a; ¢ A’, we have w;(A, A") = s;(A, A" U {a;}). Again, let
x1, T2 be the two points that realize s;(A, A’ U{a;}) and s;(A, A). The argument is similar:
suppose cost(A’, x2) # 0, then

cost(a;, x1) cost(a;, x2)
cost(A’, 1) + cost(a;, x1) — cost(A’, z2) + cost(a;, z2)
S cost(a;, x2)
~ cost(A’, z2) + cost(a;, x2) + cost(A\ (A’ U{a;}), z2)
_ cost(a;, 12)
~ cost(A, zo)

If cost(A’, x5) = 0, then we claim that in fact, 1 = 5. This follows because

cost(a;, x2) _ cost(a;, T2)

cost(A’, x9) + cost(a;, m3)  cost(a;, )
= 17

by the definition of sensitivity, the max sensitivity is 1, therefore in this case it must be
T1 = xo and Sl(A, A) <1l= Si(A,A/ U {al})

* Importance sampling bound: this can be achieved via Lemma by taking m =
O(e72||ul|1 - (dim - log(||u||1) + log(1/5))) samples.

* Coreset preserves weights: let B be an e-coreset of A. Then, we know that for any x € X,
cost(B,r) = (1 +¢€) - cost(A,z). Now, let C C R be any fixed set of points, and let
x1, T2 € X be the points that achieve s;(C, A) and s;(C, B). We have:

wl(C’, B) = SZ(C, B)
_cost(cg, x2)
 cost(B, x9)
cost(c;, x2)
<(1+e) —02)
=1+ cost(A4, z2)
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cost(c;, 1)

cost(A4, 1)

(1+¢)-5(C, A),

we could similarly establish that s;(C, B) > (1—e¢)-s,(C, A). This proves the assertion. [

/—\

L+e)-

In what follows, we demonstrate how to concretely implement sensitivity sampling for various cost
functions, such as £, sensitivity and k-subspace sensitivity.

B.1 /5 SENSITIVITY AND LEVERAGE SCORE

Let X = R? and cost(a;, ) = (a; z)2. In this case, the /5 sensitivity defined as
T2

si(A, B) = ax (a; 2)°

z€RY, Bx#£0 HB(EHQ

is, in fact, the leverage score 7;(A). The leverage score has many favorable structures: for example,
to obtain an e-coreset, it is sufficient to sample O(e~2dlog d) points, and one could sample with
w; (A, A") instead of w; (A, A").

Algorithm 4 Classical oracle for leverage score.

1: data structure LEVERAGESCORE

2: members

3: A e Rnxd

4: C € Rsxd

5. M e RO(logn)Xd

6: end members

7:

8: procedure PREPROCESS(A € R"*? C ¢ R$*9)

9: c < 1000
10:  Compute the thin SVD of C: C = ULV T >V € RIxs
11: Let G € Relo8"Xs pe 3 random Gaussian matrix
12: M (GV)(Z‘TVT) > M € Relognxd
13: end procedure
14:
15: procedure QUERY(: € [n])
16:  return || Ma;|3

17: end procedure
18: end data structure

Lemma B.9. Let A = {ay,...,a,} C R? and define cost : R? x RY — Rxq by cost(a;,r) =
(a] x)?, and let w(A, B) be defined as

T(RTR\T,. L T o
(A, B) = {az (B'B)'a;, ifa; € 'bpan(B B);
o, otherwise.

Then, the weights w satisfy Assumption[B.I} Moreover, there exists a randomized algorithm (Algo-
rithm[)) that implements PREPROCESS and QUERY procedures, with

* Torep(s,d) = O(sd*~");
* Tauery (8,d) = O(d).

Proof. While leverage score is £ sensitivity and we could directly use Theorem[B.8] we include a
proof that utilizes the structure of leverage score for completeness.

 Consistent total weights: first note that
> wiA,A) =D al (ATA)la
i=1 i=1
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= tr[(ATA)TAT A]
= rank(A)
<d
hence we have sum(w) = d. Let S C [n] with |S| > d, then
> wi(As, As) =Y a (A§As)a;
i€s i€s
= tr[(A5 4s)" (45 As)]
=rank(Ag)
<d.

¢ Uniform sampling bound: the proof closely follows that of (Cohen et al.,2015bl Theorem 1),
and we analyze by cases. Let S be an indicator matrix with A’ = SA and let S() A be the
indicator matrix for S U {i}. We will show that w}(A, A’") = w;(A, S A) via case analysis.
If a; € A, then w)(A,A") = w;(A, A") and S = S, consequently w;(A,SA) =
wi(A,SDA). If a; ¢ A, then w)(A, A") = w;(A, A" U {i}) = w;(A,SDA). This
completes the proof. To show the overestimate, observe that S(*) is an indicator matrix for
the sample and thus .S (1) < I,,, we can then conclude

AT(SD)2A=<A4TA
and
wj(A, A) = a (AT(SD)24)q,
>a; (AT A)a;
=w;(A, A).
* Importance sampling bound: this is standard as w; (A, A) is the leverage score of matrix

A. The proof follows from a standard matrix Chernoff bound (by sampling O(e~2dlog d)
points) and we refer readers to (Cohen et al.,[2015b, Lemma 4).

» Coreset preserves weights: because B is an e-coreset of A, we know that for any = € R,
|Bz|3 = (1% ¢) - ||Az||3. Expanding yields

(1—€)-2"ATAz <2"B"Bx < (1+¢€) -2 AT Az,

this implies that B" B is a spectral approximation to A" A and ker(A) = ker(B), and the
same holds for (BT B)' with respect to (AT A)T. Let C' C R be any fixed subset of R?.
We conclude the proof by spectral approximation:

(1—e€)-¢] (ATA)Te; <¢] (BTB)les = (14¢€)-¢] (AT A)Te;.
Now, we turn to the runtime analysis of Algorithm Let C = UXV ". Then we have (CTC)f =
(VX2v T = V(327)2V T, By definition,
wi(A,C) =a; (CTC)la;
=a] V(ENVTa,
= ||ETVTai||%7

using a standard Johnson-Lindenstrauss trick (Spielman & Srivastaval 2011, it is sufficient to apply
a JL matrix G and prepare the matrix GXTV ", Then, with high probability, all w;(A, C) can be
approximated within a factor of 1 + €. By a simple scaling argument, this gives an overestimate. Thus,
Algorithm 4] gives the correct overestimates of leverage scores. It remains to analyze the runtime.

« Computing the thin SVD of C takes O(sd*~!) time;

« Computing GV takes O(sd) time and then we multiply GV with ©1V T which takes O(sd)
time as well,;
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« For query, note that M € R'°5™*4_and thus computing || Ma;]|3 takes O(d) time.

This completes the proof of the assertion. O

Remark B.10. If we faithfully execute the framework of Theorem|B.8| then we would need to compute
the w; (A, C U {a;}) instead of w;(A, C). Instead, we only need to sample with w;(A, C). This is a
key feature for leverage score and related notions, which we summarize below.

Lemma B.11 (Theorem 4 of Cohen et al.[(2015b)). Let A = {ay, ..., a,} C R% Suppose we sample
points uniformly and independently with probability ™ to obtain SA. Let q; = min{1,w;(A, SA)}
and sample points of A according to q and reweight them accordingly to obtain a weighted subset B.
Then, with high probability, B is an e-coreset of A with size O(%).

Setting m = n/2, LemmaMitself is sufficient to prove Theorem [B.3] without resorting to use
w;(A4,C U{a;}). Our following theorem recovers the main result of Apers & Gribling (2024).

Theorem B.12. Let A = {ay,...,a,} C R% and ¢,6 € (0,1). Then, there exists a quantum
algorithm that with probability 1 — 0, constructs an e-coreset B of A of size O(e~2dlog(d/¢)), in

time O(e'n%5d% + d*) and O(e~*n%5d°) queries to points in A.

Furthermore, if we wish to construct a fixed-size sample of size s, we use QLS(A, s, ) to denote this
algorithm. This variant succeeds with probability at least 1 — § to sample s weighted points, in time

O(n®3s0-5d + sd“~1) and O(n®55%5) queries to points in A.

Proof. The proof follows by observing that we could replace condition 2 and 3 of Assumption [B.T]
by Lemma[B.T1] and then we could integrate Lemma [B.9]into Theorem[B.3] To achieve the desired
e-coreset guarantee, we choose

e 5= 0(e 2dlog(d/d));
* s’ = O(dlog(d/9d)).

Plugging in the choices of s, s’ into Lemma|[B.9]and Theorem B.3]yields an overall runtime of
O(e 'n®%d"® + dv). O

B.2 ¢, SENSITIVITY AND LEWIS WEIGHTS

To preserve ¢, subspace, one could sample according to ¢, sensitivity: let us define cost(a;, ) =
la] z|P for p € (0, 00), then the ¢, sensitivity is
-
la; z|”
si(A,B) = ax
4.5 zeRd, Br0 || Bz b’

and a computationally efficient proxy for £, sensitivity is £, Lewis weights, defined as the unique
nonnegative weight vector w4 € R™ with

wi/f = aiT(ATWj\_Q/pA)*lai,
where W4 € R™*" is the diagonal matrix of w 4. Naturally, we define our weights as
wi(A, B) = (a] (BTWL >/ B)~1q,)?/2.

To implement recursive sampling according to Lewis weights, we need a stronger notion of approxi-
mation for e-coreset, as beyond sensitivity, the weights might not be preserved by an e-coreset. We
explicitly define the notion of an e-approximator, a weighted subset of points that preserves the
weights. Note that an e-approximator is not necessarily an e-coreset.

Definition B.13. Let A = {ay, ..., a,} C R We say a weighted subset B of A is an e-approximator
if for any fixed C and for any i € [n],

w;(C,B) = (1+e) w;(C,A).
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For ¢,, Lewis weights, it might be simpler to talk about approximating the 2/p-th power of w; in this

case, we have that BTW;_Q/ PBis a1 = e spectral approximation to ATWA_W P A.|Cohen & Peng
(2015) proves an analogous result to Lemma |B.11|for ¢,, Lewis weights, and in turn this satisfies the
requirements of Theorem B.3

Lemma B.14 (Lemma 6.2 of Cohen & Peng (2015)). Let A = {ay,...,a,} C R% Sup-
pose we sample points uniformly and independently with probability % to obtain SA. Let
g; = min{1, w;(A, SA)} and sample points of A according to q and reweight them accordingly to
obtain a weighted subset B. Then, with high probability, B is an e-approximator of A with expected
size O, (e~ 2VP) d(P/2V D+ g ().

We also need the following result due to Fazel et al.|(2022)) that approximates £, Lewis weights in
nearly exact leverage score time:

Lemma B.15 (Theorem 2 of |Fazel et al. (2022)). Let A = {a1,...,a,} C R% p € (0,00) and
€ € (0,1). Then, there exists a deterministic algorithm that outputs a vector w4 € R™ such that for
anyi € [n], Wa,; = (1 L ¢€) - wa ;. Moreover, the runtime of this algorithm is

O, (nd*~*log(np/e)).

Algorithm 5 Classical oracle for Lewis weights.

1: data structure LEWISWEIGHTS

2: members

3: A e Rv>d

4: C € Rsxd

5 M c RO(])2 logn)xd

6: end members

7:

8: procedure PREPROCESS(A € R™*?, C € R**%)

9: c 4+ 100023 .

10: Generate W via Lemmaon C . > We € R5*¢
11: Compute the thin SVD of Wcl/Q_l/pC’: Wé/Q_l/pC =Uxv’

12: Let G € R¢1°287%s be a random Gaussian matrix

133 M+ (GV)(Z~vT) > M € Relognxd
14: end procedure

15:

16: procedure QUERY (i € [n])

17: return || Ma; |}

18: end procedure
19: end data structure

Note the striking similarity between Algorithm [5]and Algorithm[4] as Lewis weights are leverage
scores of A after appropriate reweighting.

Lemma B.16. Let A = {a1,...,a,} CR% p € (0,00), ¢,6 € (0,1), and define w(A, B) as
wi(A, B)P? = o] (BTW5 *PB) 1a,,

Then, the weights w satisfy the requirements for Theorem[B.3|for an e-approximator. Moreover, there
exists a randomized algorithm (Algorithm[5)) that implements PREPROCESS and QUERY procedures
with

* Torep(s,d) = Op(sd*™");

* Tauery (s, d) = Op(d).

Proof. The proof is similar to Theorem by observing that we can replace condition 2 and 3 of
Assumption [B.T|by Lemma It remains to verify condition 1 and 4.
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* Consistent total weights: observe that we can alternatively define wa as wa

Ti(Wi/Q_l/pA), i.e., it is the leverage score of Wi/Q_l/pA. Since the sum of the leverage
scores is at most the rank, we have sum(w) = d.

» Coreset preserves weights: instead of a coreset, we will be generating a sequence of e-
approximators, so we will instead prove that: if B is an e-approximator of A, then for
any fixed C' and any i € [n], w;(C,B) = (1 +€) - w;(C, A). By definition, if B is an
e-approximator of A, then we have the following:

¢, (B"TWgpB) te; =1 %€ -ci(ATW4A) ey,

however, this shows that w;(C, B)?/? = (1 £ €) - w;(C, A)?/P. By raising both sides to the
appropriate power, we see that w;(C, B) = (14 €)P/? - w;(C, A) = (1 + pe/2) - w;(C, A).
What we have just shown is that an e-approximator preserves weights up to a factor of
1+ O(pe), so to achieve (1 + €) factor approximation for the weights, we would need an
€/ p-approximator.

Since in the end, we will do a final resampling using the approximated Lewis weights, we will stick
to obtaining an €/p-approximator.

To analyze Algorithm[5] we first consider a variant where the Johnson-Lindenstrauss transformation is
not applied. We compute W using Lemma which is a 1 &£ € spectral approximation to W, then
we know that Wé_w Pis a (1 % €)l1=2/P spectral approximation to Wé_w P and this approximation
guarantee propagates to C'T Wé_z/ PC and (C’TWé_2/ PC)~1. So far, we have established that for
any a;, a] (CTWEPC)1a; = (1 + €)1=2/71 . o] (CTW/*PC)~1q;, and our final output is
the (p/2)-th power of the quantity, hence the approximate weight is a (1 4 €)/?/2~ 1| approximation
to the true weight. Hence, for p € (0, 2), our output is already a 1 & O(e) approximation to the true
quantity, and for p > 2, we are outputting a 1 & pe/2 approximation. To obtain the correct 1 + ¢
approximation, we need to set the correct approximation factor.

When applying the Johnson-Lindenstrauss transformation, we are effectively approximating
a; (CTWé_z/ PC)~1a;, and by the same argument, we could use a 1 &+ O(1/p) approximation
for Johnson-Lindenstrauss, resulting in a dimension of O(p? log n). Let us analyze the runtime.

« PREPROCESS: to compute W¢:, we need to set the ¢ parameter in Lemma to O(1/p),
and it runs in time O, (sd“~!). Computing the SVD takes O(sd“~!) time, and applying
the random Gaussian matrix takes O, (sd) time.

* QUERY: note that M € Rap(l)x‘i, hence answering one query takes time 5p(d).
This completes the proof. O

Lemma gives an approach to compute an e-approximator for A, but our ultimate goal is to
compute an e-coreset for A, which has a different objective. The following result states that sampling
according to the appropriate scaling of overestimates of Lewis weights indeed yields an e-coreset:

Lemma B.17 (Theorem 1.3 of Woodruff & Yasuda (2023)). Let A = {ay,...,a,} C R% ¢,6 €
(0,1) and p € (0,00) and let u € R™ be an overestimate of w4 with ||u||y < O(d). Consider the
sampling scheme where each point is sampled with probability ¢; = min{1, « - u; } where

e a=e2(log®d +log(1/8)) forp € (0,1);
s a=¢ 2log(n/d) forp=1;
« a = e 2(log? dlogn + log(1/6)) for p € (1,2);

e a=e2dP?(log? dlogn + log(1/6)) for p > 2.
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Set s; = qgl/p. Then, with probability at least 1 — §, SA is an e-coreset of A, and the number of
samples is at most o - ||ul|1.

We are now ready to state our main result for constructing an e-coreset. Due to Lemma|B.17} we only
need an overestimate for Lewis weights, so we will obtain an O(1/p)-approximator first, and then
use it to generate approximate Lewis weights.

Theorem B.18. Let A = {ay,...,a,} CR% €,6 € (0,1) and p € (0,00). There exists a quantum
algorithm that with probability at least 1 — 0, constructs an e-coreset of A with size « - d, for « given
in Lemma[B.I7] The runtimes for generating the coreset are

. 5p(d“’+1 e 2d3) + (3p(n0'5d1'5(e’3 +dO®)) for p € (0,2);

o Op(dP/?(d* + € 2d?)) + Op(n®2dP/ 4+ (=2 + d*9)) for p > 2.
The number of queries to the points in A for generating the coresets are

. 51)(6’177/0'5(10‘5)f()rp € (0,2);

. 51)(6’171/0'5(1”/4)f()rp > 2.

Proof. Our strategy will be to first construct an O(1/p)-approximator of A, which in turn gives an
O(1)-approximation to w 4, then we will sample according to these approximations, in conjunction
with Lemma [A 14

* Stage 1: constructing an O(1/p)-approximator of A. The proof follows by combining
Lemma|B.16|and Theorem with s = s’ and

s = 0p(d®/2VHh),
and the time to generate such an O(1/p)-approximator is
5p(d(p/2vl)+w) + 6p(n0'5d(p/2\/1)/2+1'5).

We let B denote the resulting approximator. Note that the size of B is O, (d®/2V1)+1),

* Stage 2: constructing an e-coreset of A. Observe that B gives an O(1)-approximation to
w4, as for any a;,

(a] (BTW*PB) a2 = 0(1) - (a] (ATW /P 4)71ay)?/?
= O(l) . wA,i,

and after appropriately rescaling this yields the desired oversampling vector u. Note that

ST 1-2/p By —
lully = > (a] (BTWL 2P B)~ta;)n/?
i=1
=0(1) - (a] (ATW P ) a2
=0(d),
and we could invoke Lemma [B:T7|to generate the desired e-coreset. We could still use
Algorithm [3] as our oracle to supply the sampling probability, except we need to use

a Johnson-Lindenstrauss transformation that gives (1 £ ¢/p)-approximation. Given B,
generating Wé takes 5p(d(p/ 2V1)+‘*’) time, and the next time-consuming operation is
applying the JL. Note that the JL has dimension 5,,(6_2), hence applying the JL takes time
O, (e72d/2V1+2) For query, note that the dimension of M is O,(e~2) x d, and each

query can be implemented in 5p(e_2d) time. All in all, we obtain the following (simplified)
runtime for generating the e-coreset:

— Forp € (0,2), it takes time O, (d“ ! + e~ 2d3 4 ¢3p0-5415);
- For p > 2, it takes time 6,,((11’/2“J 4 €72qP/2H2 4 =305 gp/atT),

This concludes the proof. O
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B.3 k-SUBSPACE SENSITIVITY AND RIDGE LEVERAGE SCORE

Let F, be the set of all k-dimensional subspaces in RY. We can define the cost with respect to a
subspace by identifying X = F, and cost : RY — Fj, — R>q as
cost(a, ) = |la] (I = P.)]l3,
where P, is the orthogonal projection onto x. Then, the k-subspace sensitivity is
laf (1 - Py)[3
si(A, B) = max —————%.
weX ||B(I - P:)|%

Similar to £, sensitivity, k-subspace sensitivity can be overestimated by ridge leverage score, defined
as

Ti(A) =a (ATA+ s, 1) a
where A4, = ||A — Ag||%/k. We then define the weights similar to leverage score:

al (B"B+ Ag,ta;, ifa; € span(BT B+ A\, 1),
otherwise.

wi(A, B) = {

oo,

We will explicitly define the notion of e-approximator:

Definition B.19. Let A = {ay,...,a,} C R% e € (0,1)and1 < k < d. We say B is an
e-approximator of A if

e Bis an e-coreset of A;

» The following additive-multiplicative spectral approximation guarantee holds:

(1—€)B"B—exa, < ATA<(1+€)B"B+eAa,I.

The following two results due to|Cohen et al.| (2017) illustrate that an e-approximator indeed preserves
all weights, and uniform sampling gives sufficiently good approximation.

Lemma B.20 (Lemma 12 of |Cohen et al| 2017)f). Let A = {a1,...,a,} C Réand e € (0,1). If B
is an e-approximator of A, then for any fixed C and for all i € [n], w;(C, B) = (1 £ €) - w;(C, A).

Lemma B.21 (Theorem 14 of Cohen et al.|(2017)). Let A = {ay, ..., a,} C R% Suppose we sample
points uniformly and independently with probability  to obtain SA. Let ¢; = min{1,w;(A, SA)}
and sample points of A according to q and reweight them accordingly to obtain a weighted subset B.
Then, with high probability, B is an e-approximator of A with expected size O(e~2klog k).

Lemma B.22. Let A = {ay,...,a,} CR% k <d, ¢,6 € (0,1), and define w(A, B) as

a] (BB + g, D)ta;, ifa; € span(BTB+ \p,I),
0, otherwise.

w; (A’ B) = {
Then, the weights w satisfy the requirements for Theorem[B.3|for an e-approximator. Moreover, there
exists a randomized algorithm (Algorithm[6)) that implements PREPROCESS and QUERY procedures
with
* Torep(s,d) = O(ds*~1);
* Tauery(s,d) = O(d).

Proof. We only need to derive a total weights upper bound, as other conditions of Assumption
are already satisfied by Lemma Let A=UXV T be the SVD of A. Then,

> wi(A,A) = a] (ATA+ sl
=1

i=1

’Note that while the original Lemma in |Cohen et al.| (2017) states the result in terms of ridge leverage score,
their proof essentially shows that BT B 4+ A B, 1 is a 1 & € spectral approximation of ATA+ A4 1, which gives
the desired approximator guarantee.
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Algorithm 6 Classical oracle for ridge leverage score.

1: data structure RIDGELEVERAGESCORE
2: members

3 A € Rnxd

4: C € Rsxd

5 M e RO(log n)xd
6: end members

7

8

: procedure PREPROCESS(A € R™*? (' € R*9)
9: c < 1000

10:  Compute the thin SVD of C: C = ULV T >V e Rdxs
1 At o

12: Let G € R°1°8"*5 be a random Gaussian matrix

13: M« (GV)(ZTVT + %VT) > M e Relognxd
14: end procedure

15:

16: procedure QUERY(: € [n])

17:  return | Ma;||3

18: end procedure
19: end data structure

= tr[ATA(AT A+ A, D)

1
= V2V T(V(EHTVT 4+ —VV T
A,
n 2

i=1

n 0_2

<k+ E _—

- 2 4 lA-Arl%
i=k+1 0; A

Sk+ Z [A—Ag[2

i=k+1 k
1A — Agll%
=k+k —
A — Al
<2k

2
where for the fifth step, we upper bound ”Afiiw by 1 for ¢ < k. The runtime analysis is
o4 — = F

i k

identical to that of Lemmal[B.0l O

One of the key features of the e-approximator for k-subspace approximation is that it is also an
e-coreset.

Theorem B.23. Let A = {ay,...,a,} CRY €6 € (0,1) and k € [d]. There exists a quantum
algorithm QRLS (A, k, €, ) that with probability at least 1 — §, constructs an e-coreset of A with

size O(e~2k1og(k/8)), in time O(e n°3dk%5 + dk“=1) and O (e n"5kO5) queries to the points
in A

Proof. The proof is almost identical to the proof of Theorem [B.12} except that the sizes s and s’ are

o s =0(c2k);
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Plugging these choices into Lemma[B.22]and Theorem [B.3| gives a runtime of
O(e 'n0Pdk"d + dk~ ). O

C QUANTUM COLUMN SUBSET SELECTION AND LOW-RANK
APPROXIMATION

In this section, we present the first apphcatlon of the generic sampling framework developed in
Sectlon [B] In particular, when the cost is the k-subspace cost defined as cost(A4,z) = [|A(I —
P,)||% where z € Fy, then an e-coreset of A can be used to compute a Frobenius norm low-rank

approximation. Let A € R%*", we let the set of points be {a1,...,a,} C RY and the goal is to
compute a weighted subset of columns of A.

Lemma C.1 (Lemma 3 of Cohen et al.[ (2015a)). Let A = {a1,...,a,} C R% € € (0,1), k €
[min{n,d}] and let B C A be an e-coreset of A with respect to the k-subspace cost. Then, the
projection onto the top-k left singular vectors of B, denoted by Pp, , satisfies

1A = Pp, Pp Al = (1% €)[|A = Ax|[3.

Cohen et al.| (2017) is the first to observe that ridge leverage score is in fact an overestimate of
k-subspace sensitivity, and sampling according to ridge leverage score gives in fact a stronger
e-approximator (see Section[B.3)), which is an e-coreset. We hence summarize the result below.

Corollary C.2. Let A € R™*" ¢ € (0,1), k < min{n, d} be a positive integer. There exists a quan-
tum algorithm QLOWRANKCMM (A, k, €, 0) that constructs an e-coreset C of A for the k-subspace
cost with probability at least 1 — §. The size of the coreset is at most O(klog(k/8)/€e?), the runtime

is O(n®5dk%%¢~1 + dk*~1), and the number of queries to the columns of A is O(e~1n°5k0-).

We note that in addition, C is a column subset selection of A:
Definition C.3 (Rank-k Column Subset Selection). For n’ < n, a subset of A’s columns C € Rdxn’
is a (1 + €) factor column subset selection if there exists a rank-k matrix X € R™ *" with

1A = CXlE < (1 + o)l A — Ax|

We utilize this fact to further derive an algorithm for outputting a low-rank approximation of A,
which could subsequently be generalized to tensor. We state a tool for solving a bilinear multiple
response regression.

Lemma C.4 (Generalized Low-Rank Approximation (Friedland & Torokhti, [2007)). Let A € R¥*",

B € R and C € R %4 Jer k < min{n,d} be a positive integer. The following bilinear
regression problem

A- BXC
xorar I%

is minimized by X, = BT[PBAPC];CC'T where Pg, Pc are the projection matrices onto B,C
respectively.

Theorem C.5. Let A € R and e € (0,0.1), and let k < mln{d n} be a positive integer.
Then, there exists a quantum algorithm (Algorithm|[7) that outputs a pair of rank-k matrices M €
Rk N € R"™* such that

IA=MNT|E < (1+6) - |A- Al
holds with probability at least 0.99. Moreover, Algorithm|[7|runs in time
5(6—1n0.5dk0.5 +dkw—1 +€—1.5d0.5k1.5 +€—2n0.5k1.5 +e_3nk),

and uses O(e~'n%2kY-5) queries to the columns and O(e~1-5d%2kY-%) to the rows of A.

Proof. We start by proving the correctness of Algorlthmm First note that C' is a column subset
selection (Definition[C.3)), meaning that there exists a rank-k matrix X with

|A = CX|E < (1+e)llA - Ak,
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Algorithm 7 Quantum low-rank approximation.

1: procedure QLOWRANK(A € R¥*" k. ¢)
2 k1 < O(e2klogk)
3 ko <—O(k‘1 logkl +e 1]{?1)
4: ks < O(k’g IOg ko +€_1k‘2)
5. C < QLOWRANKCMM(A, k,€,0.001) > C € R¥**1 Corollary|C.2
6: S <+ QLS(C, ko,0.001) > S € RF2%4 Theorem|B.12]
7 T < QLS(C, k2,0.001) > Ty € RF2%2 Theorem|B.12
8 T, +« QLS(SA,ks3,0.001) > Ty € R"**3_ Theorem|B.12
9: XY « MiNx cRkyxk Y eRFx k2 ITNCXY SAT, — TlATQHF
10: ]/W\ — (T]_C)T[PTICTlATQPSATz]k(SATQ)T > M € RF1xk2 gpd rank( ) k.
11:  Write M into factored form M = XY > X € Rhixk ¥ ¢ Rkxkz,

12: return C' X , Y S A in factored form
13: end procedure

solving the above regression exactly is costly, so we employ a leverage score sampling matrix S of
matrix C, and consider the sketched regression

min  ||SCX — SA|%,
X:rank(X)<k

letting X denote the optimal solution to the above regression, then by Lemma , we know that
A-CX 1 i A-CX|3
|| [p<G+a  mn | I
< (1+ €] A - A%,

for simplicity, we scale € so that the last inequality holds with multiplicative factor 1 + €. To find X ,
we note that X = (SC)S A, which means that the optimal solution lives in the row span of matrix
SA. Writing X = Y S A, we see that

i A-CYSA 1 A-A
Y:ragll(l(lﬂl’)< H CYs ”F ( +€)” kHF

To further speed up, we employ two leverage score samplings to reduce dimensions. Let 77 be
the leverage score sampling matrix of C, then by Lemma @ we could solve the regression
Ming.ank(z)<k |[T1A — T1CZ||7 and recover Y through miny ||Z — Y'SA||7. (where the latter
could be solved exactly), let Y7 denote the optimal solution to the Y recovered through this procedure
and Z; be the optimal solution to the first regression, then Y7 = Z; (SA)T. Z1 has the guarantee that

ICZ - A} < (146 min _CZ - Al

< (14?4 - Al
and subsequently
ICY1SA — Allf < (1+€)?[|A - AxllZ,

follow the same argument, we could also sample according to the leverage score of S A and sketch on
the right. By properly scaling €, we could then conclude that the optimal cost of

min | T1CZSAT, — T\ ATy ||%
Z:rank(Z)<k

is at most 1 + € factor of || A — Ag||%, as desired.

For the running time, by Corollary generating C' takes O (e *n%5dk%5 + dk“~1) time, gener-
ating the matrix S with a total row count of ko takes O(v/dkok1 + k¢) = O(e=12d%°k15) time.
Computing S A is simply selecting and rescaling ks rows from A, which takes O(nks) = O(e 3nk)

time. Generating T} takes O(v/nksks + k§) = O(e2n%5k%5) time. Finally, computing 7 C,
S AT, their pseudoinverses and projection takes poly(k/¢) time, since forming these matrices is
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simply selecting and rescaling entries, and the resulting matrices are of size poly(k/¢). nglputing

Ty AT, takes poly(k/¢) by selecting and rescaling such number of entries from A, hence M can be
computed in poly(k/e) time.

In summary, Algorithm|[7]takes time
5(e*1n0'5dk‘0‘5 4 dket 41505 LS | (—2) 0515 Jrefsnk)' ]

D QUANTUM KERNEL LOW-RANK APPROXIMATION

Given a set of points {1, ..., 2,} C R?and a positive definite kernel function K : R x R% — R, the
kernel low-rank approximation problem asks to find a pair M, N € R™*¥ such that || K — M N T||%, <
(14€)-|| K — Ky ||%, where K € R™ ™ is the kernel matrix induced by K, with K; ; = K(x;, z;). Note
that explicitly forming the matrix K takes ©(n?) evaluations of K(-, -), which is usually too expensive
to be afforded. Since K is positive definite, there exists feature mapping ¢ : R% — R™ such that
K = ®®" where ® € R™*™ with the i-th row being ¢(;). Musco & Musco|(2017) gives a low-rank
approximation for ® using O(e~2nk) evaluations of K(-,-) and an additional O(e~2“~Unkv—1)
time. Musco & Woodruff] (2017); |Bakshi et al.|(2020) show that the low-rank approximation guarantee
can be achieved, albeit with O(¢~'nk) kernel evaluations and an additional O(e~(“~Dnk—1) tim
In this section, we will present a quantum algorithm based on the techniques developed in Section (B
and [C| that computes a low-rank approximation for the kernel matrix using sublinear number of
kernel evaluations and additional operations.

Before diving into our main result, we introduce some notations. We will extensively use K D or
DJ K D; to denote a weighted sampling of &, in particular,

« If D € R™**, weuse DT K; € R to denote the vector v with v; := D(j)-K(x;, x;), where
j € D is the j-th sample of D, and D(3) is the corresponding weight;

o If D € R™*!, we use “K D in factored form” to denote a data structure that when 4-th row
is queried, compute v € R* where v; := D(j) - K(z;,z;) for j € D.

o If D; € R™% and Dy € R™*%2, we use “D;KDl in factored form” to denote a data
structure that supports queries to either row or column, where for i-th row, it computes a
vector 0% € Rt where v}*" := Dy (j) Do (i) - K(x;, 25) for j € Dy and i € Dy. Similarly
the operation applies to the column.

* Sometimes given KD € R™*! in factored form, we will compose it with another matrix
M € R****2 we use “K DM in factored form” to denote a data structure that supports row
queries, such that when the i-th row is queried, it returns Mv where v; := D(j) - K(z;, z;)
for j € D.

Theorem D.1. There exists a quantum algorithm (Algorithm|8) that given any set of points X =
{x1,...,2,} C R and a positive definite kernel function K : R? x R? — R and any positive integer
k<n,ec(0,1), runsin

5(n0'75k1'256_1'25(7k + ke 1) 4 nOSE1Bem25 (T 4 705) 4 05w —0-50.5—w)
time, where T is the time to evaluate K on any pair of points x;, x, and 6(6’213‘,2 +e 25001 4

e 1200051129 queries to the points in X, and returns a pair of rank-k matrices M, N € R"**
(given implicitly in factor form) such that

I = MNT% < (1+ e[l — Kx
holds with probability at least 0.99.
Proof. Our algorithm could be interpreted a quantum implemented of a generalization of |Bakshi

et al.[(2020), where they only tackle the case where K(z;, ;) = x; 2, and we are given directly the
kernel matrix K. We also note several differences between ours and |[Bakshi et al.| (2020):

3Note thatMusco & Woodruff (2017); Bakshi et al.|(2020) phrase their algorithm as a low-rank approximation
for PSD matrix A, and their runtime is stated in terms of reads to A. Observe that a read to an entry of A could
be translated to one kernel evaluation.
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Algorithm 8 Quantum kernel low-rank approximation.

1
2
3:
4
5

&

24

25:
26:
27:
28:
29:
30: end procedure

: procedure QLOWRANKKERNEL({x1,...,7,} € (R)" K:R% x RY — R, k,¢,0)
¢ < 1000
t+— c\/%log(n/é)
K O(k/e)
Dy + QNYSTROMKERNEL({x1,..., 2}, K, k', 0/6) with each GRLS scaled by /% >
Algorithm@ D; € R™¥t, oversample columns.
Dy + QNYSTROMKERNEL (1, ..., 2}, K, k', §/6) with each GRLS scaled by /% >
Algorithm@ D, € R™ !, oversample rows.
: C < K D in factored form >C € R™Xt,
R < D, KDy in factored form > R € R,
€o < 0.01
R + QLOWRANKCMM(R, k/¢, ¢y, 5/6) > Corollary[C.2] R € Rtx<™ klos(k/),
Z < top-k /e singular vectors of R > Z € Rixk/e
> Solve the regression minyy cgnxr/c ||C — WZT||.
Implement oracle for p; = min{1, /2 - ||zi||3} where z; is the i-th row of Z
D3 < QSAMPLE(p) > Dy € RE¥F
> Solve the surrogate regression minyy ||[C D3 — WZ T Ds|.
W <« CD3(Z" D3)! in factored form >W = K(D1D3(Z" D3)t) € Rxk/e,
> Solve the regression miny .;ank(yy<r [ K — WYW 2.
Dy < QLS(W,k'/e,5/6) > Dy € R™¥K/< sample rows.
Ds + QLS(W, k' /€?,5/6) > D5 € R™K'/< sample columns.
Compute D] W and W Dj > DI W € RF/€xk/e WT D, e RE/exk /e
Ppryw DI W(W T DD W)W T Dy, Pyrp, W' Ds(DIWW T Ds)t DI W
Compute D, K Dj > D/ KDs € R /€*xk /€
Compute [PDIW(DIKD5)PWTD5]1€ > [PDIW(DIAD5)PWTD5]]€ S Rk//ez k' /e of
rank-k.
Y, + (D{W)![Ppryw (DJ KDs) Py p, k(W' D)t > Y, € RF/Xk/¢ of rank-E.
U, « top-k singular vectors of Y, > U, € RF/exk,
Dg + QLS(WU,,k/e,6/6) > Dg € R<k/e,
> Solve the regression miny cgrxn [|[Dg K — D WU, N ||%.
N + (D WU, (D{ K)
return WU,, N in factored form

To compute the initial ¢ X ¢ matrix, we use quantum Nystrém method to sample from the
generalized ridge leverage score of K'/2, then rescale;

To compute the low-rank approximation of the ¢ X ¢ matrix, we use quantum low-rank
approximation algorithm developed in preceding section;

To solve the spectral regression minyy cgaxk/e |[C — WZT||, we use quantum sampling
algorithm to sample from (rescaled) row norms of Z;

The rank-constrained regression in|Bakshi et al.|(2020) is by first computing an orthonormal
basis of 1V, denoted by @, then solve the regression min x.;ank(x)<k [ X — QRXQT|%. To
solve this regression, |Bakshi et al.[|(2020) samples rows and columns of K according to
column norms of @), then solve the sketched regression after subsampling via these two
matrices. Given the optimal solution X, [Bakshi et al.|(2020) finds an orthonormal basis
of X, as U,, set M as QU, and then sample rows of K according to row norms of M. In
our case, we can’t afford to form () (because W € R7%k/ ), but we could instead solve the
regression miny .yank(y)y<k [ K — WY W T2, then X could be recovered via Y +— TYT T
where 7' is the change-of-basis matrix. We then solve all subsequent regression using Y’
instead of X.
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Algorithm 9 Quantum generalized ridge leverage score sampling via recursive Nystrom method.

1: procedure QNYSTROMKERNEL({71,...,7,} € (R)" K:R% x R? — R™ s, 6)

2: c+ 100

3: T + O(log(n/s))

4 Let So C1/2 S1 Ciy2 ... Cij2 S = [n] > Starting from [n], uniformly sampling half of the
indices.

5 Set k to be the largest integer with ck log(2k/d) < s

6 Mo {K(zi,2;)} i j)es0x 50 > |So| = s.

7 Let Dy € R™*1%l be the sampling matrix of Sy

8: fort=1—Tdo

% A 3 Yk 0i(Mi)

0 M (My_1 + M,)"!

1 >Let D) K; := {Di—1(j) - K(zi,2;)}jep, , € R® fori € S; where Dy_1(j) is the
weight corresponding to x; specified by D;_;.

12: Implement oracle for ¢; < 5 - (K(z;, z;) — (DtT_lKZv)T]\/J\DtT_lKi) fori € S;

13: > p; = min{1, 16¢; log(2k/4)}.
14: D, + QSAMPLE(p) > D, € RIStIxs,
15: Dy, + Dg, - Dy > D, € R™%5,
16: My < {D¢(i)Ds(j) - K(xi, 25) } 5,5 Dy x Dy > M, € R®*%.
17: end for

18: return Dp

19: end procedure

To prove the correctness of the algorithm, we note that except for the above steps, all other steps are
identical to the algorithm of[Bakshi et al.[(2020), so we just need to show our quantum implementation
preserves key properties of [Bakshi et al.|(2020). For computing the sampling matrices D, and D, the
only difference is when computing the generalized ridge leverage scores of K /2, |Bakshi et al.| (2020)
uses fast matrix multiplication to compute all scores while we use quantum sampling algorithm to
do so, so the guarantees of the sampling probabilities remain unchanged. The next major difference
is we use quantum low-rank approximation of Corollary [C.2] that provides precisely the desired
e-coreset (and subsequently low-rank approximation). Forming the matrix Dj is almost identical to
that of Bakshi et al.|(2020) except we use quantum sampling procedure to generate it.

We will focus on solving the rank-constrained regression miny-. ank(vy< 1K — wWYwT ||%, which
is the major divergence of our approach and that of |Bakshi et al.|(2020). In Bakshi et al.[(2020),
since they could afford linear in n time, they compute an orthonormal basis for W denoted by @,
and instead solving the regression min . ank(x)<k [/ — QXQT|%. LetT € RF/€xk/€ be the
change-of-basis matrix such that QT = W, then we observe that X could be recovered via the
following procedures:

* Solve

min ||[K -WYWT|% (1)
Y:rank(Y)<k

, let Y, denote the optimal solution of the above regression;

* Set X, := RY,R'".

To see X is the optimal to the rank-constrained regression against (), note
QX.Q" =QRY.R'Q'
=WYy,w',
and if there exists a solution X’ with lower cost, then
1K = WRTX'RWT[|} = | K - QX'QT %
<K -QX.Q"%
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= ||K - WY. W7,

contradicting the definition of Y. Both|Bakshi et al.[(2020) and Algorithm construct leverage score
sampling matrices according to the leverage scores of W (in the context of Bakshi et al.|(2020), they
sample according to the row norms of (), which are the leverage scores of W), then we solve the
surrogate regression

i D/ KDs — D]WYW T Ds|? 2
y;mﬁ%)gk” 4 4 % 2)

it suffices to show that the optimal solution of Eq. (2) is a good approximation to the optimal solution
of Eq. (I). To prove this, note that both D, and D5 sample k’/e* rows and columns together
with the fact W € R**’ implies that they are weak affine embeddings (Lemma . However,
K — WYWT is not an affine subspace, so we could instead consider the matrix H € R*' X7 and
let H, := argming cpixn |[A — WH|% and K, = K — W H,.. With probability at least 1 — &, we
have

ID{K ~ D{WH|% — | D] K.|[7 = (1 £e) - [|[K = WHI[E — || K.,

for all H € R¥ > Since it holds for all H, it in particular holds for all H = YW T, hence, with
probability at least 1 — 4,

ID{ K = DiWYW T — |DiK.||f = (L£e) - [ K = WYW T — [ K5

We could then run a symmetric argument on Ds: consider the regression min , CCRN /2 x K/ HDIK —
ZWTH%. Let Z' := argminy HDIK—ZWTH% and (D] K)' := D] K—Z'WT. With probability
at least 1 — ¢ and due to Lemma[A.T2]

IDf KDs — ZW ' Ds||% = |(D{ K)' D5l = (1 £ ¢) - |[D{ K = ZW |3 = |(D{ K)'|[%,
this holds for all Z € R¥'/<***" in particular Z = D] WY Plug in such Z yields
1D KDs — DfWYW " D53 — (D] K)'Ds
=1+ (|IK =WYWT | +[IDf K.||F = | Kull3) — (D K)' |17
holds with probability at least 1 — 25. Observe that the additive error is at most A := (1 +
€)2(|DJ K.||%2 — || K. ||+ (Df K) Ds||% — | (D{ K)'||%), it is fixed and independence of Y. We
will further show that the magnitude of A is small, let OPT := miny ;ank(y)<k [|[K — WYWT|2,
then A = O(OPT). To see this, we first observe that
[ K.|lF = 1K — WH. %
< OPT,

this is because H, is the optimal solution to a regression problem with larger solution space. Next, we
will show || D K. ||% is a constant approximation to || K,||% with constant probability, via Markov’s
inequality:

E[||D] K.||7] = E[tr[K. DyD] K.]]
= tr[K, E[D4D/]]K,]
= tr[K, I, K,]
= || Kl

since Dy is a leverage score sampling matrix. Hence, by Markov’s inequality, with probability at least
1—1/300, | D{ K.||% < 300||K.||%. Hence, || D] K.||% — || K.||% = O(OPT). Next, note that

(DK% = 1D K = ZW |

i DK —-D/wWywT|?
Y:mﬂl&)ék |1 Dy 4 %
O(OPT),

where the second step is again, by Z’ is a solution to an optimization problem with larger solution
space, and the last step is again, by Markov’s inequality. By similar argument, we could conclude
that || (D] K)'Ds||% = O(OPT). Hence, we have shown that A = O(OPT).

IA
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Let Y* = argminy:rank(y)gk HDZKD5 — DIWYWTD5‘|%, and set g(X) = ||DIKD5 —
D] W XW T Ds||% to be the cost of approximate regression, and f(X) = ||[K — WXW T||% to be
the cost of the exact regression respectively, then we could conclude with the preceding argument that
9(Ys) 2 (1 =) f(Ys) + A, ©)
on the other hand, if we let Y’ be the solution to f, i.e., f(Y’") = OPT, then it must be the case that
g9(Y:) < g(Y’) and similarly
g(¥') < 1+ f(Y) +A
=(14¢) - -OPT+A 4)
combining Eq. (3), (@) and the fact that g(Y,) < g(Y”), we obtain
1-e)fYa)+A<(1+¢) - -OPT+A,

FV) <1 opT4 A
1—e€ 1—e€
<(1+€? - OPT+O0(e) - A
= (14+¢)?-OPT +O(¢) - OPT
= (14 0O(e)) - OPT,
as desired. This establishes that the optimal solution to Eq. (2) is a good approximation to Eq. (T)),

and the optimal solution of Eq. admits a closed-form (see Theorem 4.15 of |Bakshi et al.|(2020)),
which is precisely what has been computed on line 29 of Algorithm 8]

N

Observe that we already have a good (partial) low-rank approximation solution, as per the proof of
Theorem 4.16 of Bakshi et al. (2020)),

i K-QXQ"|%2<( K — Ko |I12
X:rz&}ll(l(r)l()gkH Q Q HF—( +€) || k||F7

and we have established that the value of Eq. (I) is the same as the LHS of the above inequality,
hence we already have a rank-k solution in factored form, which is WY € Rnxk, Compute the
top-k left vectors of Y, denoted as U,, and write Y, = U,V,. Plug in the decomposition into the
regression, we get

1K = WUVW T < (1 + )|l K — Kall,
by setting M := WU, and the right low-rank factor could be found by solving

min ||[K - MN'"|% <||K - WU V.WT|%
NeRnXk

< (1+IK = Kl
To solve the regression, we employ leverage score sampling on the rows of M, by Lemma[A.T3] it
suffices to sample & /e rows and the solution to the sketched regression
in |DJK—-DJIMNT|2,
Nk | Dg 6 17

denoted by NV, satisfies

I~ MN]|% < (1+¢€) min [|K—MNI|E
NeRnxk
< (14 6)?|K — Ky |7
Finally, by properly scaling ¢, we conclude the proof of correctness.

Next, we analyze the runtime of Algorithm|8] item by item as follows:

* Form the generalized ridge leverage score sampling matrix D; and Dy (Algorithm [J)
involves selecting O(k'?) entries from K, which could be implemented by k'? evaluations
to the kernel function. In the loop, we compute the SVD of an k¥’ x k' matrix, takes O(k'*)
time, and forming M also takes O(k’*) time. Next, we need to analyze the complexity of
implementing the sampling oracle, for any fixed i, we form D,” | K; by forming a vector
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of length k' through &’ kernel evaluations and an extra k’? time for the quadratic form. To
oversample ¢ rows/columns, we could simply scale the sampling probability, this yields a
larger sum of all p;’s:

Zpl = nk/e)

thus, the overall runtime of this part is

,nzpz k_7|~(+k/2)+k/27~ +k/w

_ O(n0'75k:1'25e_1'25(77< + ke 1)) + k272 (Ti + k9 2e2).
* For matrices C' and R, we do not explicit compute the data structure for them.

* Form the low-rank approximation R of matrix R, we need to show that the generic quan-
tum sampling algorithm could be implemented even though the input is given in factor
form. Observe that the algorithm requires uniformly sampling columns of the input ma-
trix, which is oblivious to the input. To form the initial coreset Cy, we need to query a

total of O(y/nk/€) x O(k/e) entries of K, which can be done in O(n®-3k*5¢~15) ker-

nel evaluations. Then we compute the SVD of this matrix, in time 5(n0'5k“*0'560'5"").
Subsequently we need to impelement the classical ridge leverage score data structure (Al-

gorithm EI), which can be done in time O(n?-®k“~0-5¢%-5=%") and then apply the random
Gaussian matrix takes O(n°-5k*-5¢=1:5) time. To implement each query, we can form the

query vector by O(n%5k%-¢=9-5) kernel evaluations and an additional O(n®-®k0-5¢=0-5)
time. The total runtime is

6(n0.75k1.256—1.25 + n0.5k1.5€—1.5) . 77(

* Form matrix Z by computing SVD of R, since R € RV ™ /exk/e thig step could be done in
time O(e5~wn0-5kw—0-5),

» Form the sampling matrix D3 involves sampling according to a rescaled row norm of Z,
where each oracle call could be implemented in time O(k/¢€) time, and the sum of p;’s is

_ | 12
zi:pz'— &2}”%”2
n
=./— . Z|?

V- 1Z1%
_
=\ 3

because Z has orthonormal columns. Thus, the overall runtime of this step is
O(/nk/eé* - k/e) = O(n®5k5e3).

+ Form matrix W, we only need to explicitly compute (Z " D3), which is a small matrix and

could be computed in time 0 (k¥ /e“). Note that again, we won’t explicit compute the data
structure for .

* Form the leverage score sampling matrix D4 and D5 with respect to W and sample k'/¢?
rows/columns. The argument is similar to forming that of R, except we use Algorlthml

and the size of matrix C' is O(k/e2) x k/e. Since we need to oversample k' /2 = O(k/e3)
rows and columns, we could scale the scores accordingly and make the sum of probabilities

be at most O(k/€®). To implement the oracle call, note that we need to make O(k2e~3)
kernel evaluations to form the initial matrix Cy, and subsequent operations such as SVD
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and applying an JL matrix takes time 5(k‘“e_“_1). Then the query can be implemented

by forming each row of W using ke~! kernel evaluations with an additional 5(/€6_1) time.
Thus, the total runtime is

6(n0'5k1'5e_2'5) Tk

« Form matrix D} W and W D5 could be done via selecting entries, in time O(k2e~4) - Tx.

* Form the projection matrices Ppry, and Py p, takes time poly(k/e).

* Form the matrix D, K Dj is again selecting poly(k/e) entries from K, in time poly (k/e) -
Tx-

» Compute [PD4TW(D4T W Ds) Py p, |1 involves multiplying a sequence of poly(k/e) size
matrices, and computing an SVD, which takes poly(k/e) time.

* Form the matrix Y, involves computing the pseudoinverse of poly(k/¢) size matrices and
multiplying them together, which takes poly(k/e) time. Computing the top-k singular
vectors of Y, also takes poly(k/¢) time.

* Form the sampling matrix Dg involves performing leverage score sampling according to
matrix WU, € R™*** with a smaller target row count k/¢, so the runtime is subsumed by
the time to form D, and Ds.

* Finally, forming the matrix N only requires computing (Dd W U,.)', which takes poly(k/¢)-
Tk time.

Hence, the overall running time of Algorithm 8]is

6(,,710.’75]€1.25€—1.25(7—K + ]{?6_1) 4 n0'5]€1'56_2'5(7?< + 6—045) + nO.Skw—0.5€0.5—w). ]

E QUANTUM (k, p)-SUBSPACE APPROXIMATION

In this section, we consider a generalized version of the k-subspace cost studied in Section
for which we call the (k, p)-subspace cost (Woodruff & Yasuda, 2025)): let F}, be the space of all
k-dimensional subspace, then

" 1/p
cost(4,z) = (Z ||a;r(f - Pz)”g) .
i=1

By defining the matrix (p, 2)-norm as

n l/p
1Yllp2= (Z ||6¢TY||§> ;

i=1
then we could alternatively write the cost function as

cost(A, F) =||A(I — P,)

p,2:

The k-subspace cost function we studied in Sectionis just the (k, 2)-subspace cost, and Woodruff
& Yasuda| (2025)) has shown that, similar to the k-subspace cost, one could sample according to the
powers of the ridge leverage score. We recall their main result in the following.

Lemma E.1 (Theorem 3.9 and 3.11 of Woodruff & Yasudal (2025)). Let A € R"*¢ and ¢ € (0, 1),
let S be the sampling matrix that samples according to the distribution {p;}_, where

o min{1, n?/2=17,(A, \a,)?/?Ja}, ifp>2,
Pi= L min{1,7:(4, 24, P2 /a}, if1<p<2.

Then,

SA(I — Py)llp2 = (L £ 6)||A(I — Pp)l|lp,2 for all x € Fy. Moreover,
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« Forp>2 a=0(2)/log* nand s = O(k/e?), and S samples O(kP/2 /O ®") .10gO ) n)
rows;

clorl<p<2a= 0(62)/log3 nand s = O(k/€?), and S samples O(k/e© (") -logo(l) n)
rows.

Finally, the algorithm runs in O(nnz(A) + d*) time.

To speed up their algorithm, we note that the dominating runtime part is to sample from the rescaled
leverage score distribution, and we could use Theorem [B.23] with an inflated sample size.

Theorem E.2. There exists a quantum algorithm that achieves the same guarantee as Lemma
while

e Forp > 2, it runs in time O(n*~/?dk0 /eP/2 4 d*) and uses O (n'~1/Pk05 /eP/2) queries
to the points in A.

« Forp € [1,2), it runs in time O(n*~?/*dk?/* /e + d*) and uses O(n*~P/*kP/* /€) queries
to the points in A.

Proof. By Theorem 3.9 and Theorem 3.11 of [Woodruff & Yasudal (2025), we know that the sum of
sampling probabilities could be upper bounded by O(sn'=2/?) for p > 2 and O(s?/?n'~?/2) for

p € [1,2), meaning that for p > 2, we obtain a total number of queries being O (k%-5n!~1/7 /¢r/2)
with per query cost d, plus the preprocessing time of d* gives the result. For p € [1, 2), this bound

becomes O (kP/4n—P/4 /). O

F QUANTUM TENSOR LOW-RANK APPROXIMATION

In this section, we provide a quantum algorithm for computing the Frobenius norm low-rank approxi-
mation of a 3rd order tensor A € R™*™*™_ The goal is to find a rank-k tensor B := Zf: 1 Ui ®U; Qw;
for u;, vi, w; € R™, such that |A— B||%, < (14¢)-OPT where OPT := inf g.pank(5)=k |4 — B3
The first caveat is that such an optimal rank-% solution might not even exist. We provide algorithms
with 1 4 € relative error when optimal rank-k solution exists, and an additive error solution when it
does not (in such case, OPT = 0 so one has to allow small additive errors). We will then generalize
the result for g-th order tensor where g > 3.

F.1 PRELIMINARY

Given a 3rd order tensor A € R"*"*" we define the rank of A as the smallest integer & such that A =

Zle u; ®v; @w; where u;, v;, w; € R™. We use ® to denote the Kronecker product of two matrices,

AiiB Ai2B ... AB

ie,for A e R BeR>¥4 A BeR*¥and A®Q B = : : :

Ag1B Ag2B ... AuuB

We use © to denote a product of two matrices defined as for A € R B ¢ R**4 A ® B €
A1« Q@ By«

A27* ® B2}*

R**bd where A ® B = , 1.e., the matrix formed by computing tensor product

Aa,* & Ba,*
between corresponding rows of A and B. Given a tensor A € R™*™2X"s and three matrices
By € Rm*d By ¢ R"2%92 and By € R™3*93_ we define the (-, -, -) operator as

ni n2 n3

A(B1, By, Ba)iju= Y>> Au o (Br)ini(Ba)jr i (Bs)r, V(i 4, 1) € [di] x [da] x [ds],

i'=1j'=11'=1

subsequently, A(By, By, B3) € R%U*d2xds One could also set any of the B;’s as I,,, and for
example, A(By,I,,,I,,) € R4*n2Xns When the dimension of the identity matrix is clear
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from context, we abbreviate it as I for notational simplicity. For A € R™*"2X"3 we use
Ay € Rmxmens A, ¢ R™2*™ns gpnd A3 € R™*™"2 to denote the three matrices such that
the [3] \ {¢} dimensions are flattened.

We also state an algorithm due to |Song et al.| (2019) for sampling according to leverage scores of
UoV:

Lemma F.1. Given two matrices U € RFX™ and V € R¥*"2, there exists an algorithm
TENSORLEVERAGESCORE(U, V, ny,n2, k, €, Rsample)
that takes

O((nl + TLQ) : pOIY(IOg(n1n2)7 k7 6_1) . Rsample)

time to generate a weighted sampling matrix D € R™ 72X Rsamvie gcecording to the leverage score
distribution of the columns of U ® V.

To obtain our fixed-parameter tractable algorithm for rank-k tensor low-rank approximation, we
require the following result from|Song et al.|(2019):

Lemma F.2. Let max{t;,d;} < m, given a t; X ty X t3 tensor A and three matrices: Ty €
R xdr Ty € R¥2%%2 gnd Ty € R**% if for any § > 0 there exist a solution to

k
i ) . L ANZ —
i ||;(T1X1)2®(T2X2)z®(T3X3)Z A||% := OPT,

and each entry of X; could be expressed with O(n?) bits, then there exists an algorithm that takes
nO©) .20 dktdak+dsk) time and outputs three matrices X, Xo and X such that | ¢ (T1 X1); ®
(T2 X2); ® (T3X3); — A||% = OPT.

F.2 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

The key we will be utilizing is the following lemma that, to solve a regression up to (2 + ¢) factor, it
is sufficient to sample the response matrix. As a consequence, we obtain a slew of tensor low-rank
approximation algorithms with a (4 + €)-approximation ratio. This is worse than what is achieved
in|Song et al.|(2019)), but we would like to point out this is inherent due to all prior algorithms rely on
oblivious subspace embedding. In fact, their algorithms utilize OSEs to show an existence argument:
consider any rank-k regression miny || X A — B||% where we do not have access to the design matrix
A but access to the target matrix B. One could still apply an OSE S on the right of A and solve the
sketched regression miny || X AST — BST||% and argue the solution to the sketched regression is
a good approximation. However, if one is only allowed to perform sampling procedures, then it is
instructive to sample according to the structure of the unknown matrix A. In the following, we show
that it is in fact enough to sample from B, this would not lead to a 1 + € approximate solution to
the original regression problem, but we still manage to prove this is a 2 4 € approximate solution.
This is surprising — as an adversary could set B so that the resulting sampling procedure misses all
important entries of A. Hence, we devise an approach that utilizes the low-rank approximation of the
sampled matrix B to provide a good solution to the regression.

Lemma F.3. Let A € R¥*" B € R"*? and e € (0,1), consider the following rank-constrained
regression problem:

i XA - B|? 5
X:raﬁl(l)l()gk I I ©)

forr = k/€% let S € R"™*™ be the ridge leverage score sampling matrix of B, then there exists a
solution X' in the column span of BS", such that

X'A-B|7<(2 i XA - B|3.

|| 5 <@+ mn _ |XA-BI}

Proof. Throughout the proof, let OPT := minx ank(x)<k | XA — B||%. We first note that if we
sample columns of B according its ridge leverage scores with 7 columns, then we obtain an e-coreset
of B as for all rank-k projection matrix @),

(1-e)-B-QBl% <|BST —QBST|; < (1+¢)-|B-QB|%,
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in particular, let @), be the projection onto the top-k principal components of B, then the above
suggests that

IBST = Q.BST|[7 < (1+¢)- B~ Bill%
<(1+¢)-OPT,

because By, is the optimal rank-% solution. On the other hand, let Q' be the projection onto the top-k
principal components of BS ", then

1
IB-Q'Bl% < 17||BST - Q'BST|%
— €

IA

1
:HBST ~Q.BS"|%
1+e€
1—e€
by scaling €, we get the cost is at most 1 + € factor of OPT. We will set X’ := Q' B AT, we obtain
IX'A—B|% = |Q'BATA - B|%
= (@B — B)ATA+ B(ATA - I)|[3
=Q'B - Bl + |B(I — ATA)||%
<(1+4¢€)-OPT +|BA'A - B|j%
<(14¢)-OPT + OPT
=(2+4+¢)-OPT

< - OPT,

where we use Pythagorean theorem and the fact that BAT is the optimal solution to the regression.
Write BST = UXV T, then Q' = U, U,/ , so X lies in the column span of U}, which in turn, is a
subset of the column span of BST. O

Remark F.4. One might wonder whether the bound obtained in Lemma is loose, we provide an
instance where sampling according to B would necessarily give a 2-approximation, hence showing
the tighmess of Lemmal[F.3| Consider both A and B are n-dimensional column vectors (hence k = 1),
where A = e; + e, for i randomly chosen from [n — 1), and B = e,,. It is not hard to see that the
optimal solution to the regression minger ||Az — B||3 is given by x = 3, with the cost 5. On the
other hand, if we perform any variant of importance sampling on B would, with high probability, only
hits the last entry of B since all the mass is on the last entry, while missing the i-th entry for which A
is nonzero. Conditioning on this event, then the subsampled regression becomes mingcg ||e,x — €, |3
with an optimal solution ' = 1. Plug in x' to the original regression would give a cost of 1, which is
only a 2-approximation to the optimal cost.

F.3 QUANTUM BICRITERIA TENSOR LOW-RANK APPROXIMATION

We design a quantum bicriteria tensor low-rank approximation algorithm that outputs a rank-k2 /e*
tensor that approximates rank-k low-rank approximation of A.

Theorem F.5. Given a 3rd order tensor A € R™*"™*™ and a positive integer k < n, ¢ € (0,0.1),
there exists an algorithm (Algorithm which takes O(e~'n?k%® + npoly(k/e)) time and outputs
three matrices U, V,W € R™ " with r = O(k?/e*) such that

QVioW;, — A2 <(4+€) - mi A— A2
I GevioW - A< @+o: iy, 14 A}

with probability 0.99.

Proof. The proof will be similar to that of Theorem [F.9] Let U*, V* , W* be the optimal rank-k
factor, set Z; € RF*"” {0 be the matrix where i-th row is V¥ @ W}, then clearly
min |UZ; — A;||% = OPT
UeRnXk
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Algorithm 10 Quantum bicriteria rank-%2 /e* tensor low-rank approximation algorithm.

1: procedure QBICRITERIATENSORLOWRANK(A € R™X1X7 e €)

2: 81,82(—O(k/6 )

3 Cy < QLOWRANKCMM(A44, k,€,0.001) > (1 € R"*51,
4 Cy + QLOWRANKCMM(Aq, k, €,0.001) > Cy € R"*s2,
5: Form U by repeating each column of C'; by sg times b U € Rnxs152,
6 Form V by repeating each column of Cs by s; times bV e Rnxsise,
7 s3 < O(s1521log(s152) + s1s2/€)

8 €o < 0.0001

9: D3« TENSORLEVERAGESCORE(ﬁT, VT, n,n, s182,€0,53) > Dy € RV 53,
10: B «+ (UT ® VT)D3 > B € Ro152%8s,
11: W — AngB]L

12: return U V W
13: end procedure

where OPT is the optimal cost and the cost is achieved by picking U as U*. By Lemma|F.3] there
exists a solution U = C; X in the column span of C such that

[T — Ay|l3 < (2+¢) - OPT, (©)
we setup Zs € RF*"* where the i-th row of ZyisU; ® W, and consider the regression

yin V2, — As ||,

if we pick V' as V*, then it degenerates to Eq. (6)), so the optimal cost of the above regression is at
most (2 + €) - OPT. By Lemma L we could find a solution V' = Cy X with

||VZ2—A2||F (2+€) -OPT.

Finally, set Z5 € RF*"* with the i-th row being U; ® V;, and we know that

i WZs— A 2 -OPT,
min W2~ Agl[} < (24 )
similar to the proof of Theorem we create Z € R#1%2X"° guch that (Z5)(i,5) = (C1); ® (C2);
hence Z, = UT ® VT for U,V defined in Algorithm As Z3 is in the row span of Z}, we could
alternatively consider
min WZi — As]|2
omin [ WZ5— Ay
where one could solve up to 1 + € approximation by using leverage score sampling of matnx
74, and the optimal solution is indeed given by A3 D3(Z4Ds3)t, which is precisely the matrix W
we have computed. Therefore, we end up with an approximate solution whose cost is at most
(24 €)%(1 +¢€) - OPT = (4 + O(e)) - OPT. The rank of these matrices is s152 = O(k?/e?) as
advertised.

Finally, for the running time, computing C; and Cs takes O (e~ 1n2k%-5 + npoly(k/e€)) time, and
computing the leverage score sampling matrix D3 takes O(n poly(k/¢)) by Lemma Forming
the matrix B naively would take O(n?k) time, but we could compute entries of B on demand: the
sampling matrix D5 tells us which entries among the n? need to be computed, and one only needs
to compute s3 = poly(k/e€) of them. Further, computing each entry takes O(1) time, so the overall
time to form B is poly(k/e). Computing A3 D3 could be done via selecting a total of n poly (k/¢)
entries, so the overall runtime is

O(e~ "%k + npoly(k/e)). O

F.4 QUANTUM TENSOR LOW-RANK APPROXIMATION: FIXED-PARAMETER TRACTABLE
ALGORITHM

The main result of this subsection is the following:
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Theorem F.6. Given a 3rd order tensor A € R™"*"™*™ such that each entry could be written with
O(n®) bits for 6 > 0. Define OPT := inf anx 1 || A — Ay 2, forany k > 1ande € (0,1), define
nd = O(n520(k2/6)).

« IfOPT > 0, and there exists a tensor Ay, = U* @ V* @ W* with ||A — Ai||% = OPT,

and max{||{U*||p, |[V*||r, IW*||r} < 20" then there exists an algorithm that takes

(n2k%5 /e + npoly(k/e) + 200" /))nd time in the unit cost RAM model with word size
O(log n) bits and outputs n. x k matrices U, V, W such that

UV @W|3 < (44 ¢€) OPT 7
with probability at least 0.99 and entries of U, V, W fitin n% bits;

o If OPT > 0 and Ay does not exist, and there exists U', V' W' € R™ * with
mas{ U], IV L, W[} < 2000 with U7 6 V! & W' — AJf% < (14 ¢/4) OPT,
then we can find U, V, W with Eq. (1) holds;

e If OPT = 0 and Ay, does not exist and there exists a solution U™, V* W™ with each entry
in n®@") bits, then Eq. ) holds;

o If OPT = 0 and there exists three n X k matrices U, V,W such that
max{|U||r, |V ||, |W]|r} < 200" and

’
n(i

U@V @W — A% < (4+ €)OPT + 2-2") = 9-2(n"),
then we can output U, V, W with the above guarantee.
Further, if Ay, exists, we can output a number Z such that OPT < Z < (4 4 ¢)OPT. For all the
cases above, the algorithm runs in the same time as the first case, and succeeds with probability at

least 0.999.

The proof will be a consequence of Theorem and Lemma |[E.8] which we will discuss in the
following sections.

F.4.1 META ALGORITHM AND BOUNDED ENTRY ASSUMPTION

Algorithm 11 Quantum FPT rank-k low-rank approximation.

procedure QFPTLOWRANK(A, k, €) > Theorem [F7]
: 81 ¢+ 59 < O(k/€?)

1:

2

3 Cy + QLOWRANKCMM(Ay, k, €,0.0001) > (Chp € R*xst,

4 Cy <+ QLOWRANKCMM( Ay, k, €,0.0001) > Cy € RM%%2,

5: Form B by consecutively repeating each column of C by s, times

6: Form Bj by consecutively repeating each column of Cs by s; times

7: ds < O(s182log(s152) + s152/€)

8 D3 + TENSORLEVERAGESCORE(BY , By ,n,n, 5152, €g, d3)

9: Ms3 A3D3

10: Y1,Y5,Y;, C < QSUBLINEARREDUCTION(A, A15S7, A2S2, A3S3,n, s1, 82, ds, k, €). >
Algorithm|[12]

11: Create variables for X; € R*** Vi € [3]

12:  Run polynomial system verifier for ||(Y1X1) ® (Y2 X2) ® (Y3X3) — C||%

13: return Cle, CQXQ, and M3X3

14: end procedure

Theorem E.7. Given a 3rd order tensor A € R"*™*", forany k > 1,e¢ € (0,1) and 6 > 0, there is
a quantum algorithm which takes n?k°5 /e + nO@20( /) time where & is defined as in Lemma
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O(nk"® Je) queries to the rows, columns and tubes of A, and outputs three matrices U € R™"*F,
V e Rk W € R™™F such that

k
ZUi@)Vi@Wi_A

i=1

holds with probability 0.99.

2

§(4+6) lr(nln | Ar — Al|%
F

Proof. We define OPT as
OPT = mln HA A%

rank

Suppose the optimal A, = U* ® V* @ W*. We fix V* € R™* and W* € Rk, We use
Vi, Vg, - -+, V¥ to denote the columns of V* and W, W5, --- , W[ to denote the columns of W*.

We consider the following optimization problem,

k
i=1 F
which is equivalent to
Vi@ Wi 2
min_ |ty vy o w22 _a
Uy, ,Ur€ER™
Vi ®W,C ”

vee(Vy' @ 1W7)

vec(V2 ® Wz)

We use matrix Z; to denote € RA*"* and matrix U to denote

Vec(V,C ® W)

[Ui Uy --- Uy]. Then we can obtain the following equivalent objective function,
in |UZ; — A4|3.
pin ||UZy — Al

Notice that ming cgnxx |[UZ1 — A1]|% = OPT, since Ay, = U*Z;. By Lemma@ we know that if
we sample columns of A; according to its ridge leverage score distribution with O(k/€?) columns

and let C denote the resulting matrix, then there exists a solution U= C1X; in the column span of
(1, such that

1UZy — Ai|)} < (2+€)Umm UZy — A1l
=(2+¢) - OPT,

which implies

U@ Vi oWs—A|l <(2+4¢) - OPT.

s.
i Ma-
I

F

To write down 171, cee ﬁk, we use the given matrix Aj, and we create s; x k variables for matrix

X;.

As our second step, we fix U € Rk and W* € R7<k , and we convert tensor A into matrix A,. Let
vec(Uy @ WT)

matrix Z5 denote vee(Us @ W)

. We consider the following objective function,
vec(Uy, ® W)

: o 2
yoin V22 — Az,
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for which the optimal cost is at most (2 4 ¢) - OPT.

By playing a similar argument and utilizing Lemma we could obtain matrix Cs with O (k/€?)
rescaled columns of As, such that there exists a solution V' = C5X5 with

IV Zy — As|)% < (2+¢) min [[VZ;— Asl|% < (24 €)?- OPT

which implies

Q>
<>

*—All <(2+¢€)? OPT.
F

e

To write down V7, - - -, Vi, we need to use the given matrix Ao, and we need to create s, X k variables
for matrix Xs.

As our third step, we fix the matrices U € Rk and V € R*™*. Let matrix Z3 denote
VEC(Ul ® Vl)

VeC(U2 ® VQ) . We convert tensor A € R™*™*"™ into matrix A3z € R"*"*_ Since U = Ch X4

VEC(Uk X Vk)
and V = Cy X5, define the matrix Zy € Ré*"* where, if we use (i,7) to index rows of Zj, then
(Z3)(i,5) = (C1); ®(C2);, and a key observatlon is there exists a matrix Y € R¥*4s with Z3 = Y Z5.
To form 7%, we take the approach of forming B; and Bs by repeating columns a fixed number of
times, for example, B is defined as

[(C1)1 (Ci)1 oo (Cy)r oo (Co)r oo (Ch)i]

where each column is repeated for s, times, and one could verify that Z; = B; ® Ba.

We consider the following objective function,

W27z, — A
o W Zs — As||%,

which is equivalent to

: I 2
WGR“XI’?,IXI}GR’CMS HWYZ3 ASHF’

if we employ leverage score sampling on the columns of Z}, then by Lemma[A.13] we could find a
pair of matrices W, Y with

WYZ.— A (1+e¢ min WY Z, — A2
[ 5 — As|F < )w%RMkYeMMdII 5 — Asl|®

=(1+e¢) Wmm \WZ5 — A3||F

<(146)(2+¢)?2-OPT.

We briefly explain how to obtain the factorization of W, Y, consider solving the regression

in ||7Z,D3 — A3Ds||7
pouin ||TZ3Ds — AsDs|[w

where D3 € R" *xds g the leverage score samplmg matrix of Z§, then T = A3D3(Z3D3)T and we
could take the top-k left singular vectors as W and the remaining part as Y. All we have shown is
that W is in the column span of A3 D3 with a cost at most (1 + €)(2 + ¢)? of the optimal cost, as
W= TP, = A3D3(Z5D3)t P, where Py, is the projection onto the top-k left singular vectors of 7.

Thus, we have established that

k
Z(Cle)i ® (C2X2); @ (AsD3X3); — A

i=1

< (14€)(2+€)?-OPT.
F
Let Vi = C1,Vo = C9,V3 = AsDs3, we then apply Lemma and we obtain 171, ‘72,173,6'.

We then apply Lemma|[F2] Correctness follows by rescaling e by a constant factor and note that
(1+e)(2+€)2=4+0(e).

min
X1,X2,X3
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Running time. Regarding the running time, computing C; and Cs takes O(e 'n2k%5 +
npoly(k/e)) time, and computing D3 takes O(n poly(k/€)) time. To create matrices Y7, Ya, Y3 and

C, by Lemma F.8] it takes O(n%® poly(k/e)) time, and the runtime of the polynomial system verifier
is due to Lemma .2 O

F.4.2 INPUT SIZE REDUCTION IN SUBLINEAR TIME

Algorithm 12 Input size reduction via leverage score sampling.

1: procedure QSUBLINEARREDUCTION(A, Vi, Vs, V3, n, by, ba, b3, k, €) > Lemma [Fg]
2: €1  ¢cg < c3 < poly(k/e)

3: T, QLS(Vl, c1, 0.0001)

4 Ty < QLS(V43, ¢, 0.0001)

5: T3 QLS(‘/g, C3, 00001)

6 Vi< T,V; e Rexbi i € [3].

7 CFA(Tl,TQ,T?,) € Rerxc2xes

8: return V7, V5, V3 and C

9: end procedure

Lemma F.8. Ler poly(k/e) > bibabs > k. Given a tensor A € R"*™*™ and three matrices
Vi € R0V, € R%b2 and V3 € R™¥Ys, there exists an algorithm that takes n°-° - poly(k/e)
time, O(n"5) row queries to Vi, Va. Vs, and outputs a tensor C' € R®*¢2%¢s and three matrices
‘71 € Rexby 172 e Re2xb2 gpg \72; € Re*¥% with ¢; = ¢y = c3 = poly(k/e), such that with
p}:’obability at least 0.99, for all a > 0, X, X} € RU¥F X, X} € RP2xk X3 X1 € Rb*K satisfy
that,

2 2

k &
Z(VlXi)i ® (VaX3):® (V3X3), — C|| <a Z(lel)i ® (VaX2): ® (V3X3); — C|
i=1 F 1=1 F
then,
k 2 k 2
Z(VlX{)i®(‘/2X£)i®(‘/3Xé)i —All <146 Z(Vle)i ® (VaX2); @ (V3X3)i — A
i—1 F i=1 F

Proof. Let X; € Rlek,XQ S Rb2><k, X3 € R?s*k_ Define OPT := H Zf:l(lel)i ® (‘/QXQ)Z ®
(V3X3); — A||2. First, we define Z; = ((VaX3)T @ (VaX3)T) € RFX"* (Note that, for each
i € [k], the i-th row of matrix Z; is vec((V2X2); ® (V3X3);).) Then, by flattening we have

b 2

Z(Vle)i ® (VX)) ® (V3X3);, — A
i=1

= |ViX1 - Z1 — A%
a

We choose a sparse diagonal sampling matrix 73 € R“*™ with ¢; = poly(k,1/€) rows. Let
Y1 = argminyep, xp2 |[ViY — A1]|% and A} = ViY; — Ay. Since V4 has by < poly(k/e)
columns, according to Lemma with probability 0.999, for all X; € Rb: Xk, Z e kan2,
(1-9IViX1Z — A1ll7 — | 4517 < IAViX1Z — TV A7 — 1TV AT
<(1+e|ViX1Z — A7 — | Af]3
Therefore, we have
| TV Xy - Zy — T A%
k

Z(Vle)i ® (VhXs5); ® (V3X3);, — A
i=1

2
+ | ATE = 1A -

F N

=(lxe¢)
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Second, we unflatten matrix 77 A; € R xn” {0 obtain a tensor A’ € R1X"X"  Then we flatten
A’ along the second direction to obtain Ay € R™"*“1", We define Zy = (T1V1 X;)T © (VaX3)' €
RExc1n Then, by flattening,
IVaXs - Zo — Ao} = ITAVA X - Z1 — T A |3
k
Z(Vle)i ® (VaXa); ® (V3X3); — A
i=1

F

We choose a diagonal sampling matrix 75 € R*™ with ¢o = poly(k, 1/¢) rows. Then according to
Lemma with probability 0.999, for all X, € Rb2>k 7 ¢ RF*en

(1= VaXaZ — As[f — [ A5[I% < | T2VaX2Z — To o[ — || T2 43I
< (14 6)[VaX2Z — Aoll7 — [ A5,
for A} defined similarly as A}. Define Ay = ||ThA3[|% — || A5]|%, we have
|ToVaXs - Zo — ToAs |5
=(1£o)|[VaXs - Zy — Ao

k
Z(Vle)i ® (VoXa); ® (V3X3); — A

=1

=(1+e¢)? T+ (1+ A + A,

F

Third, we unflatten matrix To A € R°2*°1" to obtain a tensor A" (= A(Ty, T, I)) € Rerxc2xn,
Then we flatten tensor A” along the last direction (the third direction) to obtain matrix A3 € R™*¢1¢2,
We define Z3 = (T1V1.X1) " © (T2V2X3) T € RF*¢1¢2, Then, by flattening, we have

V3 X5 - Z3 — As||% = |T2Va X2 - Zo — Th Ao |7

k
Z(‘/IXI)i ® (VaX2); ® (VaX3); — A

=1

:(1:|:6)2 +(1:|:6)A1+A2

F

We choose a diagonal sampling matrix 75 € R%*™ with ¢35 = poly(k, 1/¢) rows. Then according to
LemmalA.12] with probability 0.999, for all X3 € RVs*k, 7 ¢ RFxc1e2,

(1= IVaXsZ — A3l T + As < | T3VaX5Z — T3 Asl[f < (14 €)[|[VaX5Z — Aslf + As
for Ag := || A%]|% — ||T3A3||%. Therefore, we have
IT5V5 X5 - Zs — T3 As|7
k
> (X1)i @ (VaXa) @ (VaXs); — A

i=1

=(1+e¢)? +(1+6)2A1 + (1+6)As + As.

F

We will argue the additive error terms are small. Examine the term A1, in particular [|A; — V1Y%,
it is not hard to see that ||4; — V1Y1||% < OPT as one could simply realize the cost by choosing
Y; according to V2 X5 and V3 X3. By Markov’s inequality and the leverage score sampling matrix
Ty is an unbiased estimator for the matrix Frobenious norm squared, we could conclude the term
|71 A% ||% = O(OPT) holds with constant probability. Similarly, for || A3[|%, we see that | V2Ys —
As||% < OPT by choosing Y» according to the other two factors. One could conclude analogously
that Ay, A3 = O(OPT). Let A be the sum of all additive error terms, and we have A = O(OPT).

Let ‘A/Z denote T;V; for all ¢ € [3] and C' € R°**¢2*3 and for « > 1, if we have

k 2 k 2
> (iX()i @ (VaXh); @ (VsX5): — C|| <o) (ViXy); ® (VaXa); ® (VaXa)i - C|
i=1 F i=1 F

and we further define f(X;,Xs5,X3) = ||Zf:1(V1X1)i ® (VaXs2); ® (V3X3); — Al and

9(X1,Xo, X3) = || 2521(‘71)(1)1' ® (VaXs); ® (V3X3); — C||, by above derivations we could
conclude

(1 — 6)f(X1,X27X3) + (1 - G)A S g(Xl,XQ,Xg) S (1 + €)f(X1,X2,X3) + (1 + G)A
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by properly scaling €, then
(1- E)f(XivXé»Xé) +(1-€¢A< g(X{,Xé,Xé)
<a-g(Xy, Xa, X3)
- ((1+e)f(X1, X2, X3) + (1+€)A),
thus
FX1, X5, X5) < - (14 €) f(X1, X3, X3) + O(€) - OPT
=a-(1+0(e)) - OPT,
the proof is completed by recalling the definition of OPT and rescaling e.

Running time. Since all V3, V5 and V5 have n rows and poly(k/e) columns, computing the
quantum leverage score sampler takes time O(n°-° poly(k/¢)). To compute the matrix C, we note
that since T}, T, and T3 are sampling matrices, each of them has only poly(k/¢) entries. On the other
hand, by the definition of A(T3,T5,T3), we note an entry of A needs to be examined and computed if
and only if all corresponding entries of 77, T, and T35 are nonzero. As these three sampling matrices
have at most poly(k/e€) overlaps on nonzero entries, computing A(7T7, T, T3) amounts to select a
subset of poly(k/e) entries from A and rescale, hence could be done in poly(k/¢) time. O

F.5 QUANTUM TENSOR COLUMN, ROW AND TUBE SUBSET SELECTION APPROXIMATION

In this section, we design a quantum algorithm for selecting a subset of columns, rows and tubes of a
tensor so that there exists a tensor U of rank-poly(k/e), together with these subsets, gives a good
low-rank approximation to A.

Algorithm 13 Quantum tensor CRT subset selection.

1: procedure QCRTSELECTION(A € R™*"X" [ ¢)
2: S1, 82 FO(I{?/E2)
3 €o < 0.001
4 C1 <+ QLOWRANKCMM(Ay, k, €,0.0001) >Cp € R*e,
5: Cy + QLOWRANKCMM( A5, k, €,0.0001) > Cy € R"*52,
6: Form B; by consecutively repeating each column of C by s, times > By € R?*s1s2,
7: Form B, by consecutively repeating each column of C by s; times > By € RM*s152,
8 ds + O(s1s21og(s1582) + s182/€)
9: D3 < TENSORLEVERAGESCORE(B] , B) ,n,n, 5152, €9, d3) > D3 € R xds,
10: M3 <+ AsDs > Ms € R7*ds,
11 Form B; by consecutively repeating each column of C; by ds times > Note Bj is formed by

repeating a different number of columns.

12: Form B3 by consecutively repeating each column of M3 by s; times

13: do 0(81d3 10g(81d3) + 81d3/€)

14: Dy <+ TENSORLEVERAGESCORE(B] , BJ ,n,n, s1d3, €, d2) > Dy € R X2,
15: My <+ As Do > My € R7*dz2,
16: Form Bj by consecutively repeating each column of M by d3 times

17: Form B3 by consecutively repeating each column of M3 by d times

18: di O(dgdg 10g(d2d3) + dgdg/e)

19: D3 < TENSORLEVERAGESCORE(B, , BJ ,n,n, d2ds, o, d1)

20: C «+ A1D1, R+ A2D2, T+ A3D3

21: return C, R, T

22: end procedure

Theorem F.9. Given a 3rd order tensor A € R"*"™*™ and a positive integer k < n, € € (0,0.1),

there exists an algorithm (Algorithm which takes O (e~ n2k%5 +-n poly(k/e€)) time, O (e 1nk"?)
queries to the rows, columns and tubes of A, and outputs three matrices C € R"*¢, a subset of
columns of A; R € R™ 7", a subset of rows of A; and T € R™*?, a subset of tubes of A where
et = poly(k/e) and there exists a tensor U € R**"** such that

IIZZZU,N CioRy@ T — AL < (44€) - min A= Ayl7

i=1 j=1 [=1
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holds with probability 0.99.

Proof. Throughout the proof, let OPT := mingux 4, ||A — Ak||%. Suppose the optimal low-rank
factor A, = U* ® V* @ W* where U*, V*, WW* € R***. Define a matrix Z; € RkX”Z, where the

i-th row of Z; is V;* @ W;*. Note that we do not know V* and W*, nor can we form the matrix Z;.
Consider the following regression problem:

min |UZ; — A%, (®)
UER
clearly, if we set U as U™, then
vec(Vi* @ W) T
. vec(Vy @ W) T
vz, =[U; U5 ... Uf] .

vec(Vy @ W) T
=U"V W),
i.e., the optimal Ay, flattens along the first dimension. Hence, the optimal cost of Eq. (8] would give
OPT. To solve Eq. (), we compute a projection-cost preserving of A; (Theorem|C.2), and according

to Lemma there exists a solution U in the column span of C, i.e., U = C1.X7, and it has cost
|UZy — Ai||% < (2+¢) - OPT.
We can then form Z5 € RF*"* where the i-th row is [71 ® W, then we know that

mm ||VZQ - A2||F 9)
VeR

is at most (2 + €) - OPT as we could choose V' as V*. We approximately solve the regression of
Eq. (9) against Cs, and again by Lemma we know that there exists a solution V' = C5 X5 such
that
|V Zs — As||% < (2+¢) - OPT
< (2+¢€)?-OPT.

We then define Z3 € RE*"* where the i-th row is (A]Z ® ‘71-, note that Z3 is no longer intractable to

us, because we know U and V are in the column span of C1, Cy respectively. Define Z} € R% xn?
such that, if we index the row of Z3 as (7, j), then (Z3)(; ;) is (C1); ® (C2);. Note that Z3 let us
to express the column span of Cy and Cs, consequently there exists some X such that Z3 = X 7},
(note that due to the property of ®, column span of C; and C'5 are formed by multiplying on the left
instead of on the right). Consequently, consider the following optimization problem

WXZ, — As||%, 10
WeRan’fHXelexd ” 3 SHF (10)

as one could set X so that Z3 = X Zj, we have the cost of Eq. is at most (2 + €)? - OPT.
Computing the leverage score sampling of Z} using TENSORLEVERAGESCORE and by Lemma(A.13]
we have that if we solve the following regression

min ||Y Z3D5 — A3Ds||%,
Y eRn 43

with optimal being Y’ = A3D3(Z}D3)T, then

1A3D5(Z3D3)" 2 — A3 < (1 +¢) - yln ||YZ5 — Al

< (1+¢)(2+¢€)?-OPT,
this suggests we could consider the regression

min ([ AsDs X Z5 — Ay |7 (11)
ck
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as X = (Z4Ds)1 is a good solution. Letting W’ := A3Ds € R"*% define Z} € R%*"" with U
and W’ such that (Z3); ;) = (C1)s ® (W');, note that Z; contains the column span of C; and W,
and although Z5 is not in the row span of Z} as in the case of Z3, the W’ component of Z) gives
good approximation to W* as we have shown above. Hence, if we consider
min VXZ,— A%,
v ernelI iy VX Z2 = Aol
its cost is upper bounded by Eq. as we could choose V as V and flatten A alongside the third
direction to recover the same regression. Employing a similar argument, if we sample according to
the leverage score Z) and consider
min ||YZ5Ds — A3 Ds|%,

Y eR™ X% do
the optimal solution is in the column span of A D5 and it blows up the cost by a factor at most 1 + e,
which gives us the following:

in ||A2D2 X Zh — Ao} 12

oin [|A2D2X Z5 — Asfe, (12)
and the cost of Eq. is atmost (1+€)?(2+¢)2-OPT. Set V' := Ay D5 and repeat the construction
of Z] with V', W', then we end up with

min | A, D1 XZ, — A% (13)

Xekadl
whose cost is at most (1 + €)3(2 + €)? - OPT = (4 + O(e)) - OPT after properly scaling €. Setting
U’ := Ay D, and unwrap Z;, we see Eq. in fact gives our desired result, as U’, V', W' are
weighted subset of columns, rows and tubes of A, we could craft the desired C, R, T" by removing
the weights, and completing U by solving the regression Eq. (T3)), incorporating the solution to the
weights. Since our statement only states the existence of such U, we do not consider the problem of
finding it.

We complete the proof by analyzing its runtime. The most time consuming step is to compute C
and Cs, since we are sampling columns as in the case of Theorem [C.2} the runtime of these steps is

O(e *n2k%5 4 npoly(k/e)), and it is not hard to see that all subsequent steps take O(n poly (k/€))
time as we either perform operations that run in nearly linear time in n on matrices of size n x
poly(k/e), or we select poly(k/¢) columns from an n x n? matrix. O

Note that Theorem [F.9]only gives a column, row and tube subset selection, but not with the weights
tensor U. To output the tensor U, we first provide quantum bicriteria tensor low-rank approximation
algorithm.

F.6 TENSOR CURT DECOMPOSITION: FIXED-PARAMETER TRACTABLE AND BICRITERIA

Theorem F.10 (A modification of Theorem C.40 in|Song et al.|(2019)). Given a 3rd order tensor
A € RWX"XN otk > 1, and let Ug, Vg, Wy € R™*¥ denote a rank-k, a-approximation to A. Then
there is a classical algorithm (Algorithm[I4)) which takes O(n poly(k/e)) time and outputs three
matrices C € R™%¢ with columns from A, R € R™*" with rows from A, T € R™*t with tubes from
A, and a tensor U € R with rank(U) = k such that c = r =t = O(klogk + k/€), and

2

c T t
ZZZ Uji-CiR; 0Ty — Al < (1+ e)aran{(nirli v A — Al%
i=1j=11=1 s
holds with probability 9/10.
Theorem F.11 (Bicriteria Tensor CURT Decomposition). Given a 3rd order tensor A € R"*"*™
and a positive integer k < n, € € (0,0.1), there exists an algorithm which takes 5(6_1n2k0'5 +
npoly(k/e€)) time, 6(6’171,/‘70'5) queries to the rows, columns and tubes of A and outputs three

matrices C, R,T € R™*" with r = O(k2 /e*) and U € R"™"*" such that
2

c T t
YYD U CioR;j@Ti— Al <(4+€)- min [A- A7
i=1j=11=1 rank —k Ay

with probability 0.99.

F
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Algorithm 14 Converting a tensor low-rank approximation to a CURT decomposition.

1: procedure FROMLOWRANKTOCURT(A, Ug, Vg, Wg,n, k, €) > Lemma [F10]
2: d1<—d2<—d3(—0(l€10gk‘+k/€)

3 €0 < 0.01.

4: Form B, = VE—; ® W]—'g— € Rkxn*

5: Dy <+ TENSORLEVERAGESCORE(VZ , W, n,n, k, o, dr)

6

7

8

9

Form [7 A1Dq (BlDl)]L € R¥F,
Form By = 74N I/V—r RExn’
D eTENSORLEVERAGESCORE(ﬁT, WS, n,n, k, e, do).
: Form V = Ay Do(ByDy)t € R*F
10: Form B3 = U7 oVT e Rkx»?
11: D3 +TENSORLEVERAGESCORE(U T, VT n,n, k, €, d3)
12: C + AlDl,R(* AQDQ,T(* A3D3

13 U+ Y (BiD)); @ (BaD2)1); @ ((BsD3)t);
14: return C, R, T and U
15: end procedure

Proof. Tt directly follows from combining Theorem |[F.5]and Lemma [F.10} O

Theorem F.12 (Fixed-Parameter Tractable Tensor CURT Decomposition). Given a tensor A €
R™X"X%, we could obtain a tensor CURT decomposition with the guarantee of Theorem[E.6) in time
O(e n2k%5 + n poly (k/€) + 2%/ nd and O (e~ nk®5) queries to the rows, columns and tubes
of A.

G IMPROVED QUANTUM CORESET ALGORITHM FOR (k, p)-CLUSTERING AND
APPLICATION

In this section, we give an improved quantum coreset construction for (k, p)-clustering. We observe
that the coreset obtained in prior work (1) The size scales linearly with d, this causes an additional
d%-® factor in their final runtime; (2) The coreset consists of points not from A and the weights for
these points could be negative, therefore it might pose challenges if one wants to compose it with
algorithm that induces optimal-sized coreset.

We begin by recalling the (k, p)-clustering problem in R%: let A = {a1,...,a,} C R%, X = (R9)*
and cost(a;, ) = min;cy [la; — ;5. where p > 1 is the power of the distance, and x; is one of the
centers in x. When p = 1, this is the well-studied k-median problem, and when p = 2, this captures
the k-means problem. To construct a coreset, a popular approach is through sensitivity sampling.
Here, we demonstrate how to implement the sensitivity sampling framework in quantum sublinear
time.

We need the following quantum algorithm, due to [Xue et al.[(2023), that computes a set of («, §)-
bicriteria approximation.

Definition G.1 (Bicriteria Approximation). Let A C RY, assume OPT is the optimal cost of the
(k, p)-clustering problem for A, we say a set = C R is an (c, 3)-bicriteria approximation if |z| < ak
and cost(A,z) < S OPT.

Lemma G.2 (Lemma 3.7 of [Xue et al.| (2023)). Ler A C RY, there exists a quantum algorithm
that outputs an (O(log? n), 2°P))-bicriteria approximation , to the (k,p)- clustering problem for

A, with probability at least 99/100. The algorithm uses O(\/ k) queries to A, O(\/ kd) time and
poly(klogn) additional preprocessing time.

We also need a quantum approximate nearest neighbor oracle, which would be crucial to approxi-
mately find the center a point belongs to.

Lemma G.3 (Lemma 3.4 of [Xue et al.|(2023)). Ler A C R? and z ¢ R? = m, given two
parameters 6 > 0, c; € [2.5,3), there exists a quantum oracle that give a; € A, returns 7(a;) € ,
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using poly(mlog(n/0)) preprocessing time. With probability at least 1 — 0, T : A — x is a mapping
such that
lla; — 7(a;)||5 < ¢r - cost(as, x).

Each query to T takes O(d poly log(mn/¢)) time.

Note that 7 is also a partition oracle, as we could assign a; to 7(a;), which is one of the m clusters.

We need two other ingredients: one being estimate cost(A4,z) = > .-, cost(a;, z) and the other
being estimating the number of points falls in each cluster.

Lemma G.4 (Lemma 6 of |Li et al.| (2019)). Let C = {cy,...,cn} be a collection of nonnegative
numbers, let ¢ = Y, ¢;, there exists a quantum algorithm such that given § > 0, it outputs an
approximation ¢ where ¢ = (1x¢) - ¢ with probability at least 1 — 6, using O(y/nlog(1/5)/€) queries
to C.

Lemma G.5 (Theorem 4.4 of Xue et al.[(2023)). Let A € (RY)" x € (R)™ and 7 : A — z, let
C;={ac€A:7(a) =}, lete € (0,1/3),0 > 0, then there exists a quantum algorithm that with
probability at least 1 — ¢, outputs a list of estimates 1v; for all j € [m] where n; = (1+¢)-|C;

using O(y/nm/elog(1/8)) queries to T and an additional O((\/nm]e + m/e)log(n/d)) time.

The algorithm we will be using is based onHuang & Vishnoi| (2020), in particular, we use the first
stage of their algorithm, as it has two main advantages: (1) It computes a coreset with points only
from A; (2) The weights are relatively easy to compute. After computing the coreset, we can compose
it with the optimal-sized coreset construction algorithm to obtain the final result (Huang et al.; 2024)).

>

Algorithm 15 Quantum coreset algorithm for (k, p)-clustering: no dependence on d (Huang &
Vishnoil, 2020)).

1: procedure QCLUSTER(A € R™*? ¢ € (0,1))
2 m + O(klog®n)

3 5+ O((168p)10Pe=5P=15k5 100 k)

4: € +0.01

5: Generate 2’ € (R?)™ via Lemma

6.

7

8

Generate 7 on A, 2’ via Lemma
LetCj ={a € A:7(a) =z} } and n; = |C}]
Generate 11, . . . 1, via Lemma using 7 with accuracy ¢’

9: Generate cost(A, ') via Lemma |G 4| with accuracy ¢

10: Implement an oracle for any a; € A as follows

11: x*(a;) < 7(a;)

12: 5; ¢ 24 t2. (% + %m) > Let i(j) denote the index of z*(a;) among z’
13: p; + min{1,3;}

14: D < QSAMPLE(p) >||Dllo = s

15: end procedure

Lemma G.6 (Theorem 5.2 of Huang & Vishnoi (2020)). Let A = {a1,...,a,} C R% X = (RY)k,
and define cost : R x X — R as cost(a;, ) = minjepy [|a; — x;]5. Givene, 6 € (0,1), p > 1,
suppose quantities in Algorithm [[3|are computed exactly except for the bicriteria approximation,
then the weights in D give rise to an e-coreset of size s = O, (e P~10k?).

While the quantities in Algorithm [15|are computed approximately, they are all two-sided constant
factor approximation, therefore we still get desired guarantees. We present the main result in the
following.

Theorem G.7. Let A = {a1,...,a,} C RL X = (RY)* p > 1,¢ € (0,1), define cost(a;, x) =
minjepy [la; — z; ||5. There exists a quantum algorithm (Algorithm such that, with probability at

least 0.99, constructs an e-coreset of A with size O, (e~ 5P~1°k) in time O, (e~ 2P~ 7-5n0-5k25()

and O, (e=25P=1:5n0-5k2:5) queries to the points in A.

Proof. We first prove that it indeed constructs a coreset. There are three main differences between
Algorithmand stage 1 of [ Huang & Vishnoi| (2020):
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* We use bicriteria approximation while [ Huang & Vishnoi|(2020) computes k-approximate
centers;
* We have to use approximate nearest neighbor to find the approximate center for each a;;

» We approximately compute cost(A, z’) and |61‘i| .

For the first and second item, one could easily see that Lemma 5.5 and Claim 5.6 of|[Huang & Vishnoi
(2020) do not require exactly k-approximate centers, as they only need to use the cost of these
approximate centers as a proxy, hence, an («, 3)-bicriteria approximation is sufficient. Moreover,
their proof relies on a simple generalized triangle inequality argument, so as long as the approximate
cluster we assign a; is a constant factor approximation to the optimal distance, we are fine. For the
third item, note that by Lemma we have cost(A,2') = (1+¢) - cost(A, 2’) and by Lemma
ni(;) = (1 £ €) - |Cj(jyl. therefore the sampling probability 5; is a constant factor approximation if
we set to the approximate sensitivity o used in[Huang & Vishnoi|(2020). Thus, if we oversample
by a constant factor, we could indeed get the desired coreset property according to Lemma|G.6] It
remains to analyze the runtime.

To generate =/, by Lemma , it takes O(v/nkd) time, and oracle 7 takes poly (k) time to preprocess,
and each oracle call to 7 takes O(d) time due to Lemma Generate the estimates 71; for all j € [m]
takes O(y/nmd) = O(v/nkd) time, and cost(A, z') takes O(y/nd) time owing to Lemma
Finally, note that each s; can be computed in é(d) time, by Lemma the sample and weights D
can be generated in O(y/nsd) = O, (e=25P~75p0-525 ) time, as desired. O

Remark G.8. While the coreset size of Theorem is not optimal, it produces coreset of size
O, (e7P=15k5). This is sufficient as we could run any refinement to obtain the optimal size, as
demonstrated by composing our coreset with the following result due to Huang et al.| (12024)).
Lemma G.9 (Theorem B.1 of Huang et al.| (2024)). Let A = {a1,...,a,} C RYand X = (R4,
p > 1606 € (0,1), and define cost(a;, ) = minjepy [|la; — x;(|5. There exists a randomized
algorithm that with probability at least 1 — § constructs an e-strong coreset of size 617(6_2]@‘% ), in
time O(ndk).

Corollary G.10. Let A = {a1,...,a,} C R and X = (RY)*, p > 1, ¢,6 € (0,1), and define
cost(a;, x) = minjey [|a; — x;||5. There exists a quantum algorithm that with probability at least

g .
0.99 constructs: an e-coreset of size O, (e~ 2k »+2 ), in time

6p(€72.5p77.5n0.5k_2.5d) ]
Proof. The proof is by composing Theorem [G.7| with Lemma|[G.9 O

G.1 QUANTUM ALGORITHM FOR DATA SELECTION

As an application, we study the data selection pipeline in machine learning, where the goal is to
select a weighted subset of data points that can be used for training or fine-tuning the model, while
preserving desirable properties. In this model, data are given as d-dimensional embeddings, and a
loss function ¢ : R? — R>¢ is used to grade the quality of the embedding. ¢ can be expensive to
evaluate, such as a deep neural network. |Axiotis et al.[(2024)) provides a principled way for data
selection using the coreset of (k, p)-clustering, under some mild assumptions on .

Assumption G.11. Let A = (Aq,...,Ay) € RE 2 € (R and let E C RY be a set of embeddings,

we say the loss function is (p, A)-well-behaved with respect to E and x if for any x; € x and let
Cj ={e € E:argming,c, ||z; — e||5 = z;}, then for any e € C},

[6(e) = £(z;)] < Ajlle = ¢jf5-

Define the weighed cost as cost®(a;,z) = A cost(a;,z) where we use i(j) to denote

the index of the cluster assigned to a;, and similarly cost®(4,z) = >, cost®(a;,z) =

k
Zi:l AL ZaJ eC;

a; — x;]|5. Axiotis et al.{(2024) essentially proves that under Assumption ,

54



Under review as a conference paper at ICLR 2026

one could perform weighted sampling according to cost™(a;, x). In addition, the expensive loss func-
tion only needs to be evaluated on the centers. For convenience, we state an approximate k-centers
algorithm below.

Lemma G.12 (Mettu & Plaxton|(2004)). Let A = {ay,...,a,} C R?and X = (RY)¥, let§ € (0,1).
Then, there exists an algorithm that computes a solution x' € X such that

cost(4,z') <200 - min cost(A, ),
Te

holds with probability at least 1 — 5. Moreover;, x' can be computed in time

O(ndk + ndlog(n/8) + k*log® n + log?(1/6) log® n) = O(ndk).

We know state a quantum implementaion of the adaptive sampling due to|Axiotis et al.|(2024).

Algorithm 16 Quantum one-round adaptive sampling for data selection.

procedure QDATASELECTION(A € R™*? 7 € (RY)* £ : R? — Rxg,e € (0,1))
: s+ O(e72),¢ + 0.01
Let7: A — z be that 7(a;) = argming ¢, [|a; — ;5

1:

2

3
—A ) .

4 Generate cost (A, z’) via Lemma with accuracy €

5: LetC; ={a€ A:7(a) =z;} and n; = |C}|

6: Generate Ny, . . .,y via Lemma[G.5|using 7 with accuracy €’

7: Compute £(x1),...,0(xx)

8 sum <— 2521 n; - 0(x;)

9 Implement an oracle for each a; € A as follows:

0

1 U(a;) — U1(a;)),v(a;)  [la; — 7(a;)15

1: i —gutola)
cost” (A,z)+sum

12: p; < min{l, ¢;}

13: D’ + QSAMPLE(p)

14: return D’

15: end procedure

We then prove Algorithm [I6]implements the data selection procedure in sublinear time.

Theorem G.13. Lete € (0,1),p > 1,A € R}, A € (Rdzn and ¢ be a loss function that is (p, A)-
well-behaved with respect to A and a clustering x € (R%)*. Then, there exists a quantum algorithm
(Algorithm that outputs a weight vector w € R%q with ||w|lo = O(e™?), such that

1> ai) = > wil(ai)] < e (> Lai) + 2cost™ (A, z))
i=1 i=1 i=1
holds with probability at least 0.99. Moreover, the algorithm makes at most k queries to the loss

Sfunction ¢, (3(6’172,0‘%0'5) queries to the points in A, and uses an additional 5(n0'5kd(6_1 + K9-9Y)
time.

Proof. We first note that the only difference between Algorithm |16|and Theorem 2 of |Axiotis et al.

(2024) is that we approximately compute the quantity c/(;/stA(A, z')and Y7, {(a;), by a similar
argument as Theorem [G.7] these quantities are estimated within a constant factor, therefore the
sampling probability p; is at most a constant factor of the sampling probability used in|Axiotis et al.
(2024), we can obtain the same guarantee via oversampling by a constant factor.

—A
To analyze the runtime, note that the oracle 7 can be queried in O(kd) time, and cost (A, x) can

be computed in O(y/nkd) time by Lemma n1,...,n can be estimated in O(y/nk!-?d) time.
Finally, each sampling probability can be computed in O(kd) time, so the time for the final sampling

is O(e'n°®kd) time. Thus, the overall runtime is

O kd(e~" + k°9)). O
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Note that compute the weights classically would take O(ndk) time, so ours is the first to achieve this
goal in sublinear in n time. To compute a set of approximate k-centers, one could either directly
use the bicriteria approximation due to Lemma|G.2]and use these centers as a proxy instead, or first
compute an e-coreset using Theorem [G.7]then apply Lemma|G.12]to find the approximate k-centers
using the coreset.

H LOWER BOUND

In this section, we provide a quantum query lower bound on computing a rank-k, 1/2-additive-

multiplicative spectral approximation to a matrix A € R"*¢, We show that Q(v/dk) queries to the
columns of A are needed.

Theorem H.1. For any positive integers n, d, and k < d, there is a family of matrices A € R"*¢
for which finding a constant factor additive-multiplicative spectral approximation of rank-k requires

Q(vVdk) column queries to A.

Proof. Without loss of generality let k& divide d, let z1,. .., 2, € {0,1}%* be a collection of bit
strings, we construct A similar to the construction of [Apers & Gribling| (2024)) but padding extra 0’s:
we start a matrix A € R¥*?_ consists of k blocks of & x d/k: for the j-th block, it contains z; as its
j-th row, and zero elsewhere. We then pad n — k rows of zeros to form the n x d matrix A, one could
visualize A as follows:

0 ... 0]
0 2zg ... 0
A=10 0 ... z,;r
0 0 ... O
L0 0 ... 0
where 0 is the zero vector of size d/k. Note that A is rank-k, hence A, = A. Consequently,
_HZlH() 0 0 ... 0]
AAT = 0 0 oo lzkllo ... 0], i.e., its top-k diagonal entries are the number of
0
0 0 e 0 ... 0

nonzeros in each of z;’s. Note that a rank-k add_itive-multiplicative spectral approximation has the
guarantee that

— 2 _ 2
0.5CCT — 0.5%& < AAT 215007 + 0.5%%

since A is rank-k, we have || A — Ay ||% = 0 and therefore, the approximation C has the property that
0.50CT < AAT < 1.50CT,

since AAT is diagonal, we must have the nonzero diagonals of CC' is a 0.5-approximation to the
nonzero diagonals of AAT. This allows us to compute (OR(z1), ..., OR(2;)) where OR(x) =
z1Vx2 V...V x4/ By asimilar argument as |Apers & Gribling| (2024), this would require

Q(k+/d/k) = Q(v/dk) quantum queries to the bit strings 21, . .., z;. Finally, note that a column
query to A can be simulated by a query access to one of the z;’s. This completes the proof. O
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I SIMULATING RANDOM ORACLE ACCESS

In this section, we discuss how to simulate query access to a uniformly random string without
impairing the runtime of our algorithm. We observe that this is necessary, as our classical oracle is
inherently randomized, converting it into a quantum circuit will produce a superposition of estimates,
incurring additional approximation errors. We resolve this issue by “derandomize” the algorithm by
giving it query access to a uniformly random string. Specifically, suppose an algorithm has runtime g,
then we need to attach a random string of length at most ¢. As observed in[Apers & Gribling| (2024),
if we only care about query complexity, then we could explicitly sample these bitstrings and use
QRAM to access them. In addition, if we want to achieve a sublinear runtime, then explicitly drawing
these bitstrings would be too slow. On the other hand, shows that any (k/2)-query
quantum algorithm cannot distinguish a uniformly random from a k-wise independent string, hence it
is enough to use a k-wise independent hash function to simulate query access to uniformly random
strings. The following result is due to[Apers & De Wolf| (2022)) and elaborated in[Apers & Gribling|
(2024):

Lemma I.1 (Lemma 3.12 in [Apers & Gribling| (2024)). Consider any quantum algorithm with
runtime q that uses a uniformly random string, then we can simulate this algorithm with a quantum

algorithm with runtime O(q) without random string, using an additional QRAM of O(q) bits.

Hence, to implement our algorithm in QRAM, we apply [L.T]to derandomize the procedure, this would
allow us to use more standard approaches to deal with deterministic routines: we convert them to
quantum oracles using quantum arithmetic gates and Toffoli gates, which is common in quantum
algorithm literature.

J  QUERY COMPLEXITY OF OUR ALGORITHMS

In this section, we summarize the complexity of our algorithms in terms of query complexity, which
is independent of the QRAM model: as noted in[Apers & De Wolf] (2022); |Apers & Gribling|(2024)),
we can remove the QRAM assumption at the cost of a polynomial increase in the time complexity.

Reference Query Type Complexity
k-Median Clustering Theorem|G.7| | Rows e 10n0-5k25
k-Means Clustering Theorem|G.7| | Rows e 1250525
(k, p)-Clustering Theorem|G.7| | Rows € 2P~ T U525
;2 Regression Theorem|B.18| | Rows e tnV-5q0-5vr/4
(k,p < 2)-Subspace Approx. | Theorem|E.2| | Rows e tnt—p/Afp/4
(k,p > 2)-Subspace Approx. | Theorem|E.2| | Rows e P/2pt=1/pE05
Low-Rank Theorem|C.2| | Columns e 1n0-2L0->
PSD Low-Rank Theorem|D.1| | Entries e 12501515
Kernel Low-Rank Theorem|D.1[ | Kernel Evals e 120l
Tensor Low-Rank: Rank-% Theorem|F.6 Rows, Columns and Tubes | e 'nk®>
Tensor Low-Rank: Bicriteria | Theorem|F.5 Rows, Columns and Tubes | e 1nk®®

Table 3: Query complexity of our algorithms. We specify the types of query to measure the complexity
for various problems, for most of the problems, the input is A € R™* that consists of n points
in d-dimensional Euclidean space, hence the row query corresponds to querying the points. For
low-rank approximation, the input is A € R%*" and the query corresponds to column queries. For
PSD and kernel low-rank approximation, the query corresponds to evaluating the kernel function over
two points, where in the PSD low-rank approximation, this is equivalent to querying the entries of A.
Finally, for tensor low-rank approximation, we allow queries to the rows, columns and tubes of A,
which would require at most a constant factor more qubits to store in the QRAM.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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