

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SUBLINEAR TIME QUANTUM SENSITIVITY SAMPLING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a unified framework for quantum sensitivity sampling, extending the advantages of quantum computing to a broad class of classical approximation problems. Our unified framework provides a streamlined approach for constructing coresets and offers significant runtime improvements in applications such as clustering, regression, and low-rank approximation. Our contributions include:

- **k -median and k -means clustering:** For n points in d -dimensional Euclidean space, we give an algorithm that constructs an ϵ -coreset in time $\tilde{O}(n^{0.5}dk^{2.5} \text{poly}(\epsilon^{-1}))$ for k -median and k -means clustering. Our approach achieves a better dependence on d and constructs smaller coresets that only consist of points in the dataset, compared to recent results of [Xue, Chen, Li and Jiang, ICML'23].
- **ℓ_p regression:** For ℓ_p regression problems $\min_{x \in \mathbb{R}^d} \|Ax - b\|_p$ where $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$, we construct an ϵ -coreset of size $\tilde{O}_p(d^{\max\{1,p/2\}}\epsilon^{-2})$ in time $\tilde{O}_p(n^{0.5}d^{\max\{0.5,p/4\}+1}(\epsilon^{-3} + d^{0.5}))$, improving upon the prior best quantum sampling approach of [Apers and Gribling, QIP'24] for all $p \in (0, 2) \cup (2, 22]$, including the widely studied least absolute deviation regression (ℓ_1 regression).
- **Low-rank approximation with Frobenius norm error:** We introduce the first quantum sublinear-time algorithm for low-rank approximation that approximates the best rank- k solution to a matrix $A \in \mathbb{R}^{d \times n}$ and does not rely on data-dependent parameters, and runs in $\tilde{O}(n^{0.5}dk^{0.5}\epsilon^{-1})$ time. Additionally, we present quantum sublinear algorithms for kernel low-rank approximation and tensor low-rank approximation, broadening the range of achievable sublinear time algorithms in randomized numerical linear algebra.

1 INTRODUCTION

Given a set of points $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, a universe X , and a cost function $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$, we study the problem of constructing a *coreset* of A : a weighted subset B of points along with a nonnegative weight vector $w \in \mathbb{R}_{\geq 0}^{|B|}$ such that

$$\sum_{b \in B} w_b \cdot \text{cost}(b, x) = (1 \pm \epsilon) \cdot \text{cost}(A, x)$$

for all $x \in X$, where $\text{cost}(A, x) = \sum_{i=1}^n \text{cost}(a_i, x)$. A coresset is particularly useful because it enables applying any existing approximation (or exact) algorithm on the smaller summary, yielding a good approximation to the original problem. Applications of coresets span clustering (Chen, 2009; Langberg & Schulman, 2010; Feldman & Langberg, 2011; Varadarajan & Xiao, 2012; Braverman et al., 2022; Huang & Vishnoi, 2020; Braverman et al., 2021; Cohen-Addad et al., 2021; 2022b;a; Huang et al., 2024), graph sparsification (Benczúr & Karger, 1996; Spielman & Teng, 2004; Spielman & Srivastava, 2011; Batson et al., 2012), hypergraph sparsification (Bansal et al., 2019; Kapralov et al., 2022; Jambulapati et al., 2023b; Lee, 2023), ℓ_p regression (Drineas et al., 2006; Clarkson, 2005; Dasgupta et al., 2009; Cohen & Peng, 2015; Woodruff & Yasuda, 2023), submodular optimization (Rafiey & Yoshida, 2022; Jambulapati et al., 2023a), generalized linear models (Mai et al., 2021; Munteanu et al., 2022; Musco et al., 2022; Jambulapati et al., 2024), and subspace approximation (Cohen et al., 2015a; 2017; Woodruff & Yasuda, 2025).

054 Coresets can be constructed via *sensitivity sampling*: the sensitivity of the i -th point is defined as
 055

$$056 \quad s_i = \max_{x \in X} \frac{\text{cost}(a_i, x)}{\text{cost}(A, x)}. \\ 057$$

059 Sensitivity sampling draws point i with probability proportional to s_i , assigning it weight $1/s_i$ to
 060 ensure the estimator is unbiased. The seminal work of Langberg & Schulman (2010) shows that
 061 this yields a coresset with a simple and elegant proof: **for any fixed $x \in X$, sampling proportional to**
 062 **sensitivity ensures low variance, and Bernstein's inequality implies that $O(\epsilon^{-2}S)$ samples suffice,**
 063 **where $S = \sum_{i=1}^n s_i$ is the *total sensitivity*.** Recall our goal is to approximate the cost for *all* $x \in X$,
 064 to do so, we union bound over a discretization of X with size $\exp(\dim(X))$, where $\dim(X)$ is a
 065 notion akin to VC dimension (Feldman & Langberg, 2011). Thus, a coresset can be constructed with
 066 $O(\epsilon^{-2} \cdot \dim(X) \cdot S \log(1/\delta))$ samples, where δ is the failure probability of the algorithm.
 067

068 Algorithmically, a challenge arises: it is necessary to either compute or efficiently approximate s_i
 069 or an upper bound on it. Most of the work in sensitivity sampling focuses on this task, and for
 070 many problems it can be achieved in nearly-linear time in nd (Huang & Vishnoi, 2020; Spielman
 071 & Srivastava, 2011; Cohen & Peng, 2015; Cohen et al., 2017; Woodruff & Yasuda, 2025). Since
 072 scanning the entire dataset already takes $\Omega(nd)$ time, achieving nearly-linear time is close to optimal.
 073

074 Typically, coresets are constructed for downstream *optimization problems*. For instance, coresets for ℓ_p
 075 regression help solve the original regression problem (Jambulapati et al., 2022; Adil et al., 2024), and
 076 coresets for subspace approximation yield column subset selection for low-rank approximation (Cohen
 077 et al., 2017). In certain structured settings, some of these optimization problems admit *sublinear time*
 078 algorithms. For example, if the input matrix A is positive semidefinite (PSD) (Musco & Woodruff,
 079 2017; Bakshi et al., 2020) or Toeplitz (Musco & Sheth, 2024), one can obtain a rank- k approximation
 080 in $n \cdot \text{poly}(k/\epsilon)$ time, despite A having size $n \times n$.
 081

082 Can sensitivity sampling—and subsequently solving downstream optimization problems—be accom-
 083 plished in sublinear time, even without structural assumptions? In this work, we explore this question
 084 through the lens of *quantum computing*, analyzing the time complexity of sensitivity sampling under
 085 quantum algorithms. Notably, tasks like linear regression, low-rank approximation, and clustering
 086 have quantum algorithms running in $o(nd)$ time (Kerenidis & Prakash, 2017; Kerenidis et al., 2019;
 087 Gilyén et al., 2022; Shah & Jaiswal, 2025), though these often rely on special input representations
 088 that support efficient weighted sampling. Moreover, their runtimes often depend on data-specific
 089 parameters such as $\|A\|_F$, condition number $\kappa(A) = \sigma_{\max}(A)/\sigma_{\min}(A)$, or dataset radius. In
 090 contrast, we seek quantum algorithms that (1) operate in sublinear time, (2) are *independent of input*
 091 *representation*, and (3) have *runtime independent of data-specific parameters*.
 092

093 In this work, we provide a generic quantum algorithm applicable to *sensitivity sampling* in general.
 094 **Throughout the paper, we use s to denote the size of the coresset** and let $\mathcal{T}_{\text{sensitivity}}(s, X)$ represent
 095 the time to approximate one sensitivity over a set of s points and universe X . Our algorithm runs in
 096 time $\tilde{O}(\sqrt{ns}) \cdot \mathcal{T}_{\text{sensitivity}}(s, X)$ **and $\tilde{O}(\sqrt{ns})$ queries to the points in A** , which implies that as long
 097 as $s^{0.5} \cdot \mathcal{T}_{\text{sensitivity}}(s, X) = o(n^{0.5}d)$, we achieve sublinear runtime. Moreover, our algorithm avoids
 098 dependence on data-specific parameters: the sample size and sensitivity approximation time depend
 099 only on n , d , $1/\epsilon$, $1/\delta$, and other problem-related parameters (e.g., k in clustering and low-rank
 100 approximation, or p in ℓ_p regression). We summarize the main result in the following theorem.
 101

102 **Theorem 1.1** (Informal version of Theorem B.3). *Let $A \in \mathbb{R}^{n \times d}$ and X be a universe, there exists a*
 103 *quantum algorithm that constructs an ϵ -coreset C of expected size $s := O(\epsilon^{-2} \cdot \dim(X) \cdot S \log(1/\delta))$*
 104 *with probability at least $1 - \delta$, where $\dim(X)$ is the VC dimension of X , S is the total sensitivity and*
 105 *$\epsilon, \delta \in (0, 1)$. Moreover, if there exists a classical oracle that can output a constant factor two-sided*
 106 *approximation to one sensitivity over a set of s points and universe X in $\mathcal{T}_{\text{sensitivity}}(s, X)$ time, then*
 107 *the quantum algorithm can be implemented in time $\tilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{sensitivity}}(s, X))$ **and $\tilde{O}(\sqrt{ns})$ queries***
 108 *to the points in A .*

109 Our approach is simple and general: it constructs the sample by uniformly subsampling half of the
 110 points, recursively computing approximate sensitivities on this subset, and then resampling based on
 111 these estimates. This scheme was first used for leverage score sampling (Cohen et al., 2015b) and in
 112 recent quantum linear programming algorithms (Apers & Gribling, 2024). We extend this strategy to
 113 sensitivity sampling.

108 As a key application, we adapt our framework to solve the low-rank approximation problem. Given a
 109 matrix $A \in \mathbb{R}^{d \times n}$, the goal is to find matrices U, V of rank k such that
 110

$$111 \|A - UV^\top\|_F^2 \leq (1 + \epsilon) \cdot \|A - A_k\|_F^2,$$

112 where A_k is the best rank- k approximation to A . We provide a quantum algorithm that constructs a col-
 113 umn coresnet of A , resulting in a low-rank approximation algorithm that runs in time $\tilde{O}(n^{0.5}dk^{0.5}\epsilon^{-1})$.
 114 We note a recent result by Chen et al. (2025), which provides a quantum algorithm for approximat-
 115 ing the top- k eigenvectors of a Hermitian matrix. Their method computes an orthonormal basis
 116 $W \in \mathbb{R}^{n \times k}$ such that $\|WW^\top - \sum_{i=1}^k v_i v_i^\top\| \leq \epsilon$, where v_i is the i -th eigenvector of A , in time
 117 $\tilde{O}(n^{1.5}k/(\epsilon\gamma))$, where γ is the spectral gap between λ_k and λ_{k-1} . While powerful, their method
 118 targets spectral norm error and depends on γ^{-1} . In contrast, our algorithm selects and reweights
 119 subsets of rows and columns and approximates the Frobenius-norm optimal rank- k solution, with no
 120 dependence on γ . This makes our method suitable for downstream applications for small γ .

121 Our algorithm for (k, p) -clustering has further implications for the *data selection pipeline* used in
 122 training foundation models. As discussed in Axiotis et al. (2024), if the loss function ℓ and all k -center
 123 solutions satisfy the (p, Λ) -well-behaved property, then a subset of $s = O(\epsilon^{-2})$ points suffices for
 124 training or fine-tuning. The pipeline proceeds as follows: (1) compute k centers $x = (x_1, \dots, x_k)$
 125 using a clustering algorithm, and (2) sample s points using the loss values $\ell(x_i)$ to obtain a coresnet.

126 Using our quantum algorithm for (k, p) -clustering, we first construct a coresnet of size $\text{poly}(k/\epsilon)$ in
 127 time $\tilde{O}(n^{0.5}d \cdot \text{poly}(k/\epsilon))$, then solve for the centers x_1, \dots, x_k using only the coresnet. The second
 128 round of sampling requires at most k queries to the loss function and can also be implemented in
 129 $\tilde{O}(n^{0.5}d \cdot \text{poly}(k/\epsilon))$ time. Classical algorithms for this pipeline would require $\Omega(n)$ time. Hence,
 130 our method is the first sublinear-time quantum algorithm for data selection pipelines.

131 We summarize our results in the following tables. Table 1 compares our coresnet construction runtimes
 132 with prior work, and Table 2 compares runtimes for solving the corresponding optimization problems.
 133

	Reference	Previous	Ours
k -Median Clustering	Xue et al. (2023)	$n^{0.5}d^{1.5}k^{0.5}$	$n^{0.5}dk^{2.5}$
k -Means Clustering	Xue et al. (2023)	$n^{0.5}d^{1.5}k^{0.5}$	$n^{0.5}dk^{2.5}$
(k, p) -Clustering	Xue et al. (2023)	$n^{0.5}d^{1.5}k^{0.5}$	$n^{0.5}dk^{2.5}$
$\ell_{p \neq 2}$ Regression †	Apers & Gribling (2024)	$n^{0.5}d^7$	$n^{0.5}(d^{(0.5 \vee p/4)} + 1.5)$
$(k, p < 2)$ -Subspace Approx.	Woodruff & Yasuda (2025)	nd	$n^{1-p/4}dk^{p/4}$
$(k, p \geq 2)$ -Subspace Approx.	Woodruff & Yasuda (2025)	nd	$n^{1-1/p}dk^{0.5}$

142 Table 1: Comparison of running times for constructing an ϵ -coresnet for the respective problems. We
 143 set $\epsilon = O(1)$, **assume $n \gg d, k$** and ignore all dependencies on functions that only depend on p for
 144 simplicity of presentation. For clustering and ℓ_p regression, we compare against prior fastest quantum
 145 algorithms, while for subspace approximation, we compare against prior fastest classical algorithms
 146 as we are unaware of quantum algorithms for these problems. †: We use $a \vee b$ to denote $\max\{a, b\}$.
 147

148 **Our contributions.** We summarize our main contributions below:

- 150 • We introduce a general quantum weighted sampling framework. Given weights $w \in \mathbb{R}_{\geq 0}^n$ satisfying
 151 mild conditions and access to a classical oracle that approximates the weight of a point over a
 152 small set, the framework constructs a coresnet using **$\tilde{O}(\sqrt{n \cdot \text{sum}(w)})$ queries to the input, where
 153 $\text{sum}(w) \geq \sum_{i=1}^n w_i$ is an upper bound on the total weight**. We show that sensitivity, leverage
 154 scores, and Lewis weights all meet these conditions, implying that coresnet construction with these
 155 weights can be accelerated within our framework.
- 156 • We design the first sublinear time quantum algorithms for several fundamental low-rank approxi-
 157 mation tasks: Frobenius-norm approximation, PSD and kernel low-rank approximation, and tensor
 158 low-rank approximation. Our algorithms are purely sampling-based, and avoid dependence on
 159 data-dependent parameters.
- 160 • We develop improved quantum algorithms for (k, p) -clustering in the high-dimensional regime
 161 $d \gg k$, and further demonstrate how our framework can accelerate data selection pipelines for
 training foundation models.

	Reference	Previous	Ours
Low-Rank	Cohen et al. (2017)	nd	$n^{0.5}dk^{0.5}$
PSD Low-Rank	Bakshi et al. (2020)	$nk^{\omega-1}$	$n^{0.75}k^{2.25}$
Kernel Low-Rank	Bakshi et al. (2020)	$nk \mathcal{T}_K$	$n^{0.75}k^{1.25}\mathcal{T}_K$
Tensor Low-Rank: Rank- k	Song et al. (2019)	$n^3 + 2^{k^2}$	$n^2k^{0.5} + 2^{k^2}$
Tensor Low-Rank: Bicriteria	Song et al. (2019)	n^3	$n^2k^{0.5}$

Table 2: Comparison of running times for a variety of low-rank approximation problems. For all of these problems, we only compare with the prior best classical algorithms, as they are either not studied in the context of quantum algorithms, or the respective quantum algorithms require that the input is given in the form of a data structure, or have data-dependent parameters in the running time. We assume all matrices/tensors are dense. We ignore lower order terms for ease of comparison. For kernel low-rank approximation, we use \mathcal{T}_K to denote the time of evaluating kernel function on any two data points.

Roadmap. In Section 2, we provide a technical overview of the main results, including our generic algorithm for constructing coresets and specific applications to low-rank approximation. In Section 3, we summarize our results and discuss open problems. Section A presents preliminary definitions and notation. In Section B, we describe a generic weighted sampling algorithm for coreset construction and discuss its adaptations to regression and subspace approximation. Section C demonstrates how to use weighted sampling to generate a column subset of a matrix and apply it to low-rank approximation. Section D shows how Grover search can be used to accelerate Nyström approximation of kernel matrices, improving upon the runtime of Bakshi et al. (2020). In Section E, we extend our approach to (k, p) -subspace approximation. Section F provides algorithms for low-rank approximation of third-order tensors in the Frobenius norm. Section G presents an improved quantum algorithm for constructing coresets for (k, p) -clustering and applies it to data selection. In Section H, we establish a quantum query lower bound for additive-multiplicative spectral approximation, a key subroutine for computing low-rank approximations. **In Section I, we provide a detailed discussion on simulating query access to a random string with QRAM. In Section J, we give the query complexity of our algorithms which is independent of QRAM and the type of queries to the input.**

Quantum computation model. We adopt the standard quantum computation model used in, e.g., Apers & De Wolf (2022); Apers & Gribling (2024). This model supports quantum subroutines operating on $O(\log n)$ qubits, allows quantum queries to the input, and grants access to a quantum-read/classical-write RAM (QRAM) of size $\text{poly}(n)$ bits. Each quantum read or classical write to QRAM incurs unit cost. We measure *time complexity* by the number of QRAM operations, and *query complexity* by the number of input queries made by the algorithm. **QRAM is a common model studied in quantum algorithms, however it is known that practically realizing the QRAM architecture is challenging.**

2 TECHNICAL OVERVIEW

We give an overview of our techniques in this section. In Section 2.1, we introduce our recursive sampling framework for sensitivity sampling, based on Grover search. In Section 2.2, we generalize the quantum sensitivity sampling framework via approximators. In Section 2.3, we design quantum, sublinear time algorithms for low-rank approximation that are based purely on sampling rows and columns. In Section 2.4, we further extend the sampling-based low-rank approximation to the tensor setting. Finally in Section 2.5, we discuss our coreset algorithm for (k, p) -clustering and its advantages over prior constructions.

2.1 SENSITIVITY SAMPLING VIA GROVER SEARCH

One of the primary advantages of quantum algorithms over their classical counterparts is their ability to search and sample more efficiently. The search procedure developed by Grover (Grover, 1996) addresses the database search problem: given a function $f : [n] \rightarrow \{0, 1\}$, we aim to list up to m indices for which $f(i) = 1$. Assuming access to an oracle that, given an index i , outputs the value

216 $f(i)$, Grover’s seminal work shows that, instead of requiring n queries to the oracle, the problem
 217 can be solved using only $O(\sqrt{mn})$ oracle calls with quantum computation. This provides a notable
 218 advantage as long as $m < n$, which is often the case in applications. Grover search has since been
 219 utilized to achieve speedups in problems such as edit distance (Boroujeni et al., 2021; Gibney et al.,
 220 2024), solving graph Laplacian systems (Apers & De Wolf, 2022), and solving linear programs (Apers
 221 & Gribling, 2024). In particular, Apers & Gribling (2024) develops a method to sample from the
 222 leverage score distribution of an $n \times d$ matrix A , in time $O(n^{0.5}d^{1.5})$. For tall, skinny matrices, this
 223 approach leads to a runtime that is sublinear in the input size of A . Subsequently, the authors construct
 224 spectral approximations of A to speed up various essential procedures within a linear program solver.

225 The key procedure they utilize is a quantum sampling algorithm based on Grover search: **associate
 226 each item with a value $p_i \in [0, 1]$, and the goal is sample a subset with the probability of i -th item
 227 being p_i .** Given p_i ’s, we can sample the subset in $\tilde{O}(\sqrt{n \sum_{i=1}^n p_i})$ time and if $\sum_i^n p_i \leq o(n)$, then
 228 we can achieve this goal in sublinear in n time. However, this sampling procedure requires an oracle
 229 that returns the value of p_i upon query, akin to the oracle for $f(i)$ in Grover search. We refer to
 230 Lemma A.14 for a formal statement.

231 Since the i -th leverage score of A is defined as $a_i^\top (A^\top A)^\dagger a_i$, where M^\dagger is the pseudoinverse
 232 of matrix M , implementing the oracle by computing the Gram matrix $A^\top A$ and its pseudoin-
 233 verse is prohibitively slow. To address this issue, Apers & Gribling (2024) observes that the
 234 algorithm due to Cohen et al. (2015b) can implement such an oracle efficiently: this algorithm
 235 proceeds by recursively halving rows — it first uniformly samples half of the rows of A , denoted
 236 by A' , then recursively computes the leverage score matrix of A' . For an $n \times d$ matrix A , it
 237 suffices to sample $O(d \log d \epsilon^{-2})$ rows according to leverage scores; hence the sampled matrix
 238 $SA' \in \mathbb{R}^{d \log d \times d}$ is small where **$S \in \mathbb{R}^{d \log d \times (n/2)}$ is the sampling matrix that selects the sampled
 239 rows and scales them properly**. In fact, SA' serves as a sketch for the leverage score of matrix A with
 240 $a_i^\top (A'^\top S^\top SA')^\dagger a_i = (1 \pm \epsilon) \cdot a_i^\top (A^\top A)^\dagger a_i$ for all i . Thus, an oracle can be efficiently implemented
 241 by computing $(A'^\top S^\top SA')^\dagger$ in $\tilde{O}(d^\omega)$ time, and by leveraging a trick from Spielman & Srivastava
 242 (2011), the quantity $a_i^\top (A'^\top S^\top SA')^\dagger a_i = \|(A'^\top S^\top SA')^{\dagger/2} a_i\|_2^2$ can be accelerated using a
 243 Johnson-Lindenstrauss transform (Johnson & Lindenstrauss, 1984). Consequently, this approach
 244 results in an algorithm that constructs a leverage score sampler for A in time $\tilde{O}(n^{0.5}d^{1.5}\epsilon^{-1} + d^\omega)$,
 245 with the sum of probabilities being $O(s)$.

246 Can we extend the leverage score sampling algorithm of Apers & Gribling (2024) to generic sen-
 247 sitivity sampling? The first hope is that, instead of sampling directly according to sensitivities, it
 248 might be sufficient to sample based on an overestimate of sensitivities. Consider the following
 249 simplified algorithm: **form A' by sampling each point of A with probability $1/2$ uniformly**, and
 250 define the generalized sensitivity as $s_i(A, A') = \max_{x \in X, \text{cost}(A', x) \neq 0} \frac{\text{cost}(a_i, x)}{\text{cost}(A', x)}$, i.e., we change the
 251 denominator to $\text{cost}(A', x)$. Note that this is *not* necessarily an overestimate of s_i . To see this, let x^*
 252 be the point that realizes the sensitivity for s_i . If $\text{cost}(A', x^*) = 0$, then $s_i(A, A')$ will not be realized
 253 by x^* , and it is possible that $s_i > s_i(A, A')$. On the other hand, we can see that $s_i(A, A' \cup \{a_i\})$
 254 serves as an overestimate. To understand this, consider the case where $s_i(A, A')$ does not hold: if
 255 $\text{cost}(A', x^*) = 0$, then either $\text{cost}(a_i, x^*) = 0$ and $s_i = s_i(A, A' \cup \{a_i\}) = 0$, or $\text{cost}(a_i, x^*) \neq 0$
 256 and $s_i(A, A' \cup \{a_i\}) = \frac{\text{cost}(a_i, x^*)}{\text{cost}(a_i, x^*)} = 1$, an upper bound on any s_i . If $\text{cost}(A', x^*) \neq 0$, then
 257 $\frac{\text{cost}(a_i, x^*)}{\text{cost}(A', x^*)} \geq \frac{\text{cost}(a_i, x^*)}{\text{cost}(A, x^*)}$, as the denominator for A' is smaller. We note that $s_i(A, A' \cup \{a_i\})$ is in
 258 fact the overestimate used by Cohen et al. (2015b) to obtain their initial uniform sampling bound.
 259

260 The recursive framework follows directly: uniformly sample half of the points A' , then compute
 261 a coresnet of A' , called C . To compute the overestimates of s_i , we use $s_i(A, C \cup \{a_i\})$, which is
 262 efficient since C is a small-size coresnet. Note that $s_i(A, C \cup \{a_i\})$ is a valid approximation of
 263 $s_i(A, A' \cup \{a_i\})$ —as C is a coresnet of A' , it approximates the cost of A' with respect to all $x \in X$,
 264 and they have the same kernel.¹ Moreover, it is not hard to see that $C \cup \{a_i\}$ is also a coresnet of
 265 $A' \cup \{a_i\}$, and thus the sensitivity is preserved. To summarize, in each round of recursion, we are
 266 given a size- s coresnet, and assuming we can approximate each $s_i(A, C \cup \{a_i\})$ in $\mathcal{T}_{\text{sensitivity}}(s, d)$
 267 time, then the overall runtime is $\tilde{O}(\sqrt{ns}) \cdot \mathcal{T}_{\text{sensitivity}}(s, d)$, with recursion depth at most $\log n$ as we
 268 halve the points at each step, giving the desired runtime for sensitivity sampling.

269 ¹Given a set of points A and a cost function, the kernel of A is $\ker(A) = \{x \in X : \text{cost}(A, x) = 0\}$.

270 2.2 GENERIC WEIGHTED SAMPLING VIA APPROXIMATOR
271272 While the preceding algorithm handles *all* sensitivity sampling, in many applications, the exact
273 sensitivities can be difficult to compute, and thus proxies are often sought as efficient alternatives.
274275 Take the ℓ_p regression problem as an example, where the sensitivity is $s_i = \max_{x \in \mathbb{R}^d, Ax \neq 0} \frac{|a_i^\top x|^p}{\|Ax\|_p^p}$.
276 For $p = 2$, this corresponds to the leverage score, which can be quickly approximated. However,
277 for general p , this is more complex, and algorithms for ℓ_p sensitivities tend to be less efficient than
278 those for leverage scores (Padmanabhan et al., 2023). Instead, constructing a coresnet for ℓ_p regression
279 is typically done *not* via sensitivity sampling, but through *Lewis weights sampling* (Bourgain et al.,
280 1989; Ledoux & Talagrand, 1991; Talagrand, 1995; Schechtman & Zvavitch, 2001; Cohen & Peng,
281 2015; Woodruff & Yasuda, 2023). These weights are defined as the fixed-point solution for the
282 following equation: $w_i^{2/p} = a_i^\top (A^\top W^{1-2/p} A)^{-1} a_i$, where w_i represents the i -th leverage score of
283 the matrix $W^{1/2-1/p} A$. Lewis weights have several desirable properties, such as $\sum_{i=1}^n w_i = d$, and
284 they serve as proper upper bounds for ℓ_p sensitivities for all $p \in (0, \infty)$. Moreover, Lewis weights
285 can be approximated in nearly-linear time (Cohen & Peng, 2015; Lee, 2016; Jambulapati et al., 2022;
Fazel et al., 2022; Apers et al., 2024).286 To adapt our sensitivity sampling framework to work with Lewis weights sampling, we encounter
287 a notable challenge: given a coresnet B of A , it is guaranteed that any vector in the subspace of A
288 has its ℓ_p norm preserved by B , but the Lewis weights are not defined purely in terms of the ℓ_p
289 norm of vectors in the subspace. Instead, they measure the ℓ_2 norm of the subspace after a density
290 transformation induced by $W^{1/2-1/p}$. Consequently, it might well be the case that B is a coresnet
291 of A , and the Lewis weights of A are not preserved by B . On the other hand, we can instead define
292 a notion of an ϵ -approximator of A : we say B is an ϵ -approximator of A for ℓ_p regression if B is
293 a coresnet and $(1 - \epsilon)A^\top W_A^{1-2/p} A \preceq B^\top W_B^{1-2/p} B \preceq (1 + \epsilon)A^\top W_A^{1-2/p} A$, where W_A, W_B are
294 the diagonal Lewis weights matrices for A and B . Note that this is a different approximation notion
295 than that of a coresnet, as the cost becomes *global* rather than local: for generic sensitivity-based
296 arguments, one relies on the fact that adding a single point to the set will not affect the weights of
297 other points, and hence if B is a coresnet of A , then $B \cup \{p\}$ is also a coresnet of $A \cup \{p\}$, but this is
298 not true for an approximator of A , as adding a single row to both A and B would potentially affect
299 the weights to all existing rows. In Cohen & Peng (2015), they provide a classical recursive sampling
300 algorithm by noting that, if we sample according to the generalized Lewis weights with respect to an
301 approximator, then the resulting weighted sample is *also* an approximator. We further abstract their
302 construction, and provide the most general framework for quantum sublinear weighted sampling: let
303 $w(A, B) \in \mathbb{R}_{\geq 0}^{|A|}$ be the generalized weights of A with respect to B , we say B is an ϵ -approximator of
304 A if for any C and any $i \in [n]$, we have $w_i(C, B) = (1 \pm \epsilon)w_i(C, A)$. We then need three sufficient
305 conditions:306

- Consistent total weights: For any subset $S \subseteq [n]$, $\sum_{i \in S} w_i(A, A) \leq \text{sum}(w)$, where $\text{sum}(w)$ is a
307 finite upper bound on the sum of weights. When the weight is sensitivity, $\text{sum}(w)$ is simply the
308 total sensitivity;
- Uniform sampling bound: Take any uniform subset $A' \subseteq A$, define the new weights $w'_i(A, A')$ as
309 $w_i(A, A')$ if $a_i \in A'$ and $w_i(A, A' \cup \{a_i\})$ otherwise. Then $w'_i(A, A') \geq w_i(A, A)$ for all $i \in [n]$;
- Importance sampling bound: Suppose we sample according to $q_i = \min\{1, \alpha \cdot w_i(A, A)\}$ for
310 some $\alpha \geq 1$, and reweight the sample by $1/q_i$, then with probability at least $1 - \delta$, the weighted
311 sample is an ϵ -approximator of A of size at most $\alpha \cdot \text{sum}(w) \log(1/\delta)$.

312 Let $s = O(\alpha \cdot \text{sum}(w) \log(1/\delta))$. We obtain an algorithm that computes an ϵ -coresnet in the desired
313 $\tilde{O}(\sqrt{ns}) \cdot \mathcal{T}_{\text{sensitivity}}(s, d)$ time. Thus, by using weighted sampling with Lewis weights, we achieve
314 a runtime of $\tilde{O}_p(n^{0.5} d^{(0.5 \vee p/4) + 1} (\epsilon^{-3} + d^{0.5}))$ for generating a coresnet for ℓ_p regression. This
315 improves upon the prior quantum algorithm for Lewis weights sampling that is based on *iterating*
316 *leverage scores* (Apers et al., 2024), with a runtime of $\tilde{O}_p(n^{0.5} d^7 \epsilon^{-3})$. Our algorithm provides a
317 speedup for any $p \in (0, 2) \cup (2, 22]$ (which includes the popular ℓ_1 regression), but it is worth noting
318 that the main purpose of the work of Apers & Gribling (2024) is to estimate Lewis weights up to
319 $p = O(\log n)$ as they use it as a subroutine for solving linear programs, so their algorithm has no p
320 dependence on d . Nevertheless, we provide a completely different sampling algorithm to construct
321 an ℓ_p regression coresnet that is particularly suitable for small p .

324 2.3 PURE-SAMPLING FRAMEWORK FOR LOW-RANK APPROXIMATION
325

326 Given $A \in \mathbb{R}^{d \times n}$, the rank- k low-rank approximation problem seeks to find a pair of matrices
327 $U \in \mathbb{R}^{d \times k}$, $V \in \mathbb{R}^{n \times k}$ such that $\|A - UV^\top\|_F^2 \leq (1 + \epsilon)\|A - A_k\|_F^2$, where A_k is the best rank- k
328 approximation of A . Low-rank approximation is closely related to the $(k, 2)$ -subspace approximation
329 cores: let $\mathcal{F}_k \subset \mathbb{R}^d$ be the set of all k -dimensional subspaces in \mathbb{R}^d , and define $\text{cost}(a_i, x) =$
330 $\|(I - P_x)a_i\|_2^2$ where P_x is the orthogonal projection onto $x \in \mathcal{F}_k$. If we obtain a cores C for A ,
331 then we have for any k -dimensional orthogonal projection P_x , $\|(I - P_x)C\|_F^2 = (1 \pm \epsilon)\|(I - P_x)A\|_F^2$,
332 which is sufficient to show that choosing P_x as the projection onto C_k will give the desired low-rank
333 approximation (Cohen et al., 2017). Moreover, instead of $(k, 2)$ -subspace sensitivities, one could
334 sample according to the *ridge leverage scores*, which can be computed quickly. To adapt our weighted
335 sampling framework, we need to identify the ϵ -approximator for ridge leverage score, which is a
336 cores of A and

$$337 (1 - \epsilon)AA^\top - \epsilon\lambda_{A_k}I \preceq CC^\top \preceq (1 + \epsilon)AA^\top + \epsilon\lambda_{A_k}I,$$

339 where $\lambda_{A_k} = \|A - A_k\|_F^2/k$. Thus, our framework gives an algorithm that runs in time
340 $\tilde{O}(n^{0.5}dk^{0.5}\epsilon^{-1})$.

341 While one might be satisfied with the ridge leverage score solution to low-rank approximation, more
342 complexity arises if we aim to recover the solution through the subsampled columns. In particular,
343 if we let $C \in \mathbb{R}^{d \times s}$ denote the weighted subset of columns of A sampled by ridge leverage scores
344 for $s = O(k \log k\epsilon^{-2})$, it is guaranteed that $\min_{X: \text{rank}(X) \leq k} \|CX - A\|_F^2 \leq (1 + \epsilon)\|A_k - A\|_F^2$.
345 Constructing an optimal X would require computing $P_k(C^\dagger A)$ where P_k is the projection onto
346 the top- k principal components. Directly computing $C^\dagger A$ is of course too expensive, and standard
347 approaches mostly involve using an *oblivious subspace embedding* (OSE) matrix, a random matrix
348 that approximates the cost of all regression problems. Matrices such as CountSketch (Charikar et al.,
349 2002; Clarkson & Woodruff, 2013) could be applied in time $\text{nnz}(A)$, but this is already too slow
350 for our purpose. We address this with a pure-sampling framework for low-rank approximation: we
351 demonstrate that it is possible to recover (or approximate) the solution X via leverage score sampling.
352

353 In particular, for the regression problem $\min_{X: \text{rank}(X) \leq k} \|CX - A\|_F^2$, one could sample ac-
354 cording to the leverage score distribution of C and solve the subsampled regression problem
355 $\min_{X: \text{rank}(X) \leq k} \|SCX - SA\|_F^2$. Standard leverage score guarantees ensure that the optimal solution
356 to the subsampled regression closely approximates the original problem (Lemma A.13). Because of
357 this fact, we can show that there exists a good solution \hat{X} in the row span of matrix SA ; hence it is
358 enough to solve the regression problem $\min_{Y: \text{rank}(Y) \leq k} \|A - CYSA\|_F^2$, and we further speed up the
359 algorithm by employing two leverage score sampling matrices T_1 and T_2 on the left and right accord-
360 ingly. Consider the new subsampled regression problem: $\min_{Y: \text{rank}(Y) \leq k} \|T_1AT_2 - T_1CYSAT_2\|_F^2$,
361 and observe that we can compute the subsampled A in *sublinear* in n, d time, because T_1AT_2 and
362 SAT_2 all amount to selecting a $\text{poly}(k/\epsilon)$ subset of entries of A , which, assuming random access to
363 the entries of A , can be done in the same order of time. This pure-sampling approach contrasts with
364 OSE-based methods, which generally require reading all entries of A .
365

366 2.4 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES
367

368 For matrix low-rank approximation and its variants, ridge leverage score sampling is the crucial tool
369 to compute a good approximate solution. Can we extend the framework to solve *tensor* low-rank
370 approximation? Unfortunately, even for a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, it is not always the case that
371 it admits a low-rank approximation, due to the so-called border rank issue (De Silva & Lim, 2008).
372 Even when the low-rank approximation exists, variants of Strong Exponential Time Hypothesis
373 (SETH) rule out polynomial time algorithms to approximate the tensor rank of A (Song et al., 2019).
374 If one relaxes the problem by allowing the output to be a higher-rank solution (bicriteria solution)
375 or a running time that depends exponentially on k and $1/\epsilon$ (fixed-parameter tractable, i.e., FPT),
376 then Song et al. (2019) provides algorithms with leading running time term being $\text{nnz}(A)$. Their core
377 algorithm is as follows: for tensor $A \in \mathbb{R}^{n \times n \times n}$, let $A_1, A_2, A_3 \in \mathbb{R}^{n \times n^2}$ be matrices such that the
378 1st, 2nd, and 3rd dimensions of the array are preserved, while the other 2 dimensions are collapsed
379 and flattened into a dimension of size n^2 . They then apply OSEs S_1, S_2, S_3 with only $\text{poly}(k/\epsilon)$
380 columns to form A_1S_1, A_2S_2 and A_3S_3 .
381

378 Although one might attempt to replace the OSEs S_1, S_2 , and S_3 with leverage score matrices for
 379 A_1, A_2 , and A_3 , *this approach, unfortunately, does not work*. The argument of Song et al. (2019) is
 380 as follows: suppose the optimal rank- k approximation A_k exists, then $A_k = \sum_{i=1}^k U_i^* \otimes V_i^* \otimes W_i^*$.
 381 To reduce the problem dimension, the goal is to demonstrate that a good approximate solution exists
 382 in the column span of $A_1 S_1$ and $A_2 S_2$. In particular, suppose we have access to V^* and W^* , set
 383 $Z_1 \in \mathbb{R}^{k \times n^2}$ where each row i is $V_i^* \otimes W_i^*$, then it is not hard to see that the optimal U^* could be
 384 recovered by solving $\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2$, as $\|UZ_1 - A_1\|_F^2 = \|\sum_{i=1}^k U_i \otimes V_i^* \otimes W_i^* - A\|_F^2$.
 385 The multiple response regression problem above can then be accelerated by applying an OSE on the
 386 right and instead solving $\min_U \|UZ_1 S_1 - A_1 S_1\|_F^2$, where the optimal solution has the closed form
 387 $\widehat{U} = A_1 S_1 (Z_1 S_1)^\dagger$. This establishes that \widehat{U} is in the column span of $A_1 S_1$.
 388

389 For sampling, this setup is more challenging. If we were to replace S_1 with the leverage score
 390 sampling matrix, we would require the *leverage score matrix of Z_1* in order to preserve the cost
 391 of the optimal solution. Thus, we could only argue for the correctness of this approach if S_1 is
 392 chosen according to the leverage score of an unknown matrix Z_1 , which is unclear how to achieve.
 393 On the contrary, we do have access to the response matrix A_1 , and one might wonder if sampling
 394 directly from A_1 is sufficient. However, a simple counterexample demonstrates that this approach
 395 fails: suppose A_1 is a single column equal to e_n , and the design matrix Z_1 is $e_i + e_n$ for i randomly
 396 chosen from 1 to $n - 1$. Any sampling scheme based on A_1 will likely sample the n -th entry but
 397 miss the i -th entry with high probability. This would lead to a solution on the original problem that
 398 has twice the optimal cost.

399 Surprisingly, we show that this 2-approximation is almost as bad as one can get: if one instead
 400 samples from the ridge leverage score distribution of A_1 , then there exists a solution \widehat{U} in the column
 401 span of $A_1 S_1$ (S_1 is the ridge leverage score sampling matrix of A_1) such that $\|\widehat{U} Z_1 - A_1\|_F^2 \leq$
 402 $(2 + \epsilon) \cdot \min_U \|U Z_1 - A_1\|_F^2$. This result is particularly surprising as one might expect an adversarial
 403 choice of A_1 that would disrupt ridge leverage score sampling. However, ridge leverage scores
 404 provide the so-called projection-cost preserving guarantee: for any rank- k projection P , we have
 405 that $(1 - \epsilon) \|(I - P) A_1\|_F^2 \leq \|(I - P) A_1 S_1\|_F^2 \leq (1 + \epsilon) \|(I - P) A_1\|_F^2$, where setting P_k as the
 406 projection onto the top- k principal components of $A_1 S_1$ minimizes $\|(I - P_k) A_1 S_1\|_F^2$. Additionally,
 407 the optimal cost of the regression can be bounded by $\|[A_1]_k - A_1\|_F^2$, the best rank- k approximation
 408 to A_1 . Setting $\widehat{U} = P_k A_1 Z_1^\dagger$, we get

$$\begin{aligned}
 409 \|\widehat{U} Z_1 - A_1\|_F^2 &= \|P_k A_1 Z_1^\dagger Z_1 - A_1\|_F^2 \\
 410 &= \|(P_k A_1 - A_1)(Z_1^\dagger Z_1) + A_1(I - Z_1^\dagger Z_1)\|_F^2 \\
 411 &= \|(P_k A_1 - A_1)(Z_1^\dagger Z_1)\|_F^2 + \|A_1(I - Z_1^\dagger Z_1)\|_F^2 \\
 412 &\leq \|(I - P_k) A_1\|_F^2 + \|A_1(I - Z_1^\dagger Z_1)\|_F^2 \\
 413 &\leq (1 + \epsilon) \text{OPT} + \text{OPT} \\
 414 &= (2 + \epsilon) \text{OPT}, \\
 415
 \end{aligned}$$

416 where $\text{OPT} := \min_U \|U Z_1 - A_1\|_F^2$, and we use the Pythagorean theorem in the proof, along with
 417 the fact that $\|A_1 - A_1 Z_1^\dagger Z_1\|_F^2$ is the optimal solution. To see \widehat{U} is in the column span of $A_1 S_1$, it is
 418 enough to observe that P_k is the projection onto the top- k principal components of $A_1 S_1$, and hence
 419 \widehat{U} is in the column span of P_k , a subset of the column span of $A_1 S_1$. This shows that as long as we
 420 sample according to the ridge leverage score distribution, we can still obtain a $(2 + \epsilon)$ -approximate
 421 solution. Moreover, for 3rd order tensor low-rank approximation, we would only invoke ridge
 422 leverage score sampling on A_1 and A_2 , as the components of the design matrix reside within the
 423 column span of both $A_1 S_1$ and $A_2 S_2$, making the problem tractable. We can, in turn, employ fast
 424 (classical) tensor leverage score sampling algorithms to achieve an overall approximation ratio of
 425 $(4 + \epsilon)$ with a significantly improved running time of $\tilde{O}(n^2 k^{0.5} / \epsilon + n \text{poly}(k/\epsilon))$ for dense tensors.
 426

427 2.5 IMPROVED CORESET FOR CLUSTERING WITH APPLICATIONS

428 We also design an improved quantum algorithm for constructing an ϵ -coreset of (k, p) -clustering.
 429 In contrast to the recursive sampling framework we developed in the preceding discussions, our
 430 algorithm could be viewed as a quantum implementation of Huang & Vishnoi (2020), where the idea

is to first compute a set of approximate k -centers, then perform sensitivity samplings on top of it. Why could our recursive sampling framework not be applied here? This is because the sensitivities of (k, p) -clustering can only be *overestimated*, and these overestimates in general do not satisfy the uniform sampling bound. In fact, a closer examination of our analysis shows that during the intermediate stages in the recursive sampling, we would need the sensitivities to be approximated in a *two-sided* fashion, i.e., let s_i be the exact sensitivities. We require the approximate sensitivities \tilde{s}_i to satisfy $(1 - \epsilon)s_i \leq \tilde{s}_i \leq (1 + \epsilon)s_i$. Nevertheless, we design a sensitivity sampling algorithm for (k, p) -clustering that is based on Huang & Vishnoi (2020), that computes a coresset of size $\tilde{O}_p(k^5\epsilon^{-5p-15})$ in time $\tilde{O}_p(n^{0.5}dk^{2.5}\epsilon^{-2.5p-7.5})$. Compared to the previous work of Xue et al. (2023) where they obtain a coresset in $\tilde{O}_p(n^{0.5}d^{1.5}k^{0.5}\epsilon^{-(p/2\vee 1)})$ time,

- Our algorithm outputs a weighted subset of points $B \subseteq A$, as our coresset. In contrast, Xue et al. (2023) adapts an algorithm of Cohen-Addad et al. (2021), in which the coresset consists of weighted points from A and *all bicriteria approximate centers*. Thus, composing the coresset from Xue et al. (2023) with any optimal-sized coresset algorithm (Huang et al., 2024) will also include points not in A ;
- Our algorithm outputs a coresset of size $\tilde{O}_p(k^5\epsilon^{-5p-15})$, while Xue et al. (2023) outputs a coresset of size $\tilde{O}_p(dk\epsilon^{-(2\vee p)})$. This means to obtain an optimal-sized coresset of size $\tilde{O}_p(k^{\frac{2p+2}{p+2}}\epsilon^{-2})$ by running the algorithm of Huang et al. (2024) on top of our coresset, we can achieve the result with an additional $\tilde{O}_p(d \text{poly}(k, \epsilon^{-p}))$ time, while Xue et al. (2023) would need $\tilde{O}_p(d^2 \text{poly}(k, \epsilon^{-p}))$ time.

As an application, we demonstrate that (k, p) -clustering can be used to bootstrap the construction of the data selection pipeline (Axiotis et al., 2024), as it enables the computation of approximate k -centers in sublinear time. Furthermore, we show that the quantum techniques developed for (k, p) -clustering can also be leveraged to obtain a sublinear-time quantum algorithm for data selection. We defer a more detailed discussion to Section G.

3 CONCLUSION

We present a quantum, sublinear-time algorithm for weighted sampling that yields a broad range of results in coresset construction. These include (k, p) -clustering, ℓ_p regression, (k, p) -subspace approximation, and low-rank approximation. For the low-rank approximation problem, we design specialized algorithms for multiple settings, including Frobenius norm error minimization, PSD low-rank approximation, kernel-based low-rank approximation, and tensor low-rank approximation. For (k, p) -clustering, we develop an improved quantum coresset construction that offers better dependence on the data dimension d , and we generalize this framework to address the data selection problem for foundation models. We highlight three major open problems arising from our work:

- **Two-sided approximation for clustering sensitivities.** Unlike regression and low-rank approximation, where coresets can be constructed efficiently via leverage scores or Lewis weights, the approximate sensitivities used in clustering are only known to be *upper bounds*. This asymmetry significantly limits the applicability of the recursive sampling framework to clustering. It remains an open question whether one can design algorithms that compute *two-sided* approximations to clustering sensitivities, thereby unifying clustering within our weighted sampling framework.
- **Quantum algorithms for Frobenius norm tensor low-rank approximation.** While we achieve a $(1 + \epsilon)$ -approximation for matrix low-rank approximation in sublinear time, the scenario is more complex for tensors. As discussed in Section 2.4, for 3rd-order tensors, we obtain only a $(4 + \epsilon)$ -approximation, and for general q -th order tensors, a $(2^{q-1} + \epsilon)$ -approximation. A compelling open question is whether one can design a sublinear-time quantum algorithm—with potentially worse running time—that achieves a $(1 + \epsilon)$ -multiplicative approximation for tensor low-rank approximation.
- **Query lower bounds for coresset construction.** In Section H, we establish a quantum query lower bound for computing additive-multiplicative spectral approximations, which are sufficient for low-rank approximation. An intriguing direction for future research is to generalize this lower bound to broader classes of coreset constructions.

486 ETHICS STATEMENT
487488 This paper studies novel quantum algorithm for sensitivity sampling which could lead to improvement
489 to various machine learning problems. We don't believe there are significant ethics concerns need to
490 be addressed.
491492 REPRODUCIBILITY STATEMENT
493494 As this paper is theoretical in nature, we include complete proofs in the Appendix. In particular,
495 we prove the generic sensitivity sampling result in Section B, low-rank approximation in Section C,
496 kernel low-rank approximation in Section D, subspace approximation in Section E, tensor low-rank
497 approximation in Section F, clustering and data selection pipeline in Section G and lower bound in
498 Section H.
499500 REFERENCES
501502 Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for ℓ_p -regression.
503 *J. ACM*, October 2024.504 Simon Apers and Ronald De Wolf. Quantum speedup for graph sparsification, cut approximation,
505 and laplacian solving. *SIAM Journal on Computing*, 51(6):1703–1742, 2022.
506507 Simon Apers and Sander Gribling. Quantum speedups for linear programming via interior point
508 methods. In *QIP*, 2024.509 Simon Apers, Sander Gribling, and Aaron Sidford. On computing approximate lewis weights. *arXiv*
510 *preprint arXiv:2404.02881*, 2024.
511512 Kyriakos Axiotis, Vincent Cohen-Addad, Monika Henzinger, Sammy Jerome, Vahab Mirrokni, David
513 Saulpic, David P. Woodruff, and Michael Wunder. Data-efficient learning via clustering-based
514 sensitivity sampling: Foundation models and beyond. In *Proceedings of the 41st International*
515 *Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
516 2086–2107. PMLR, 2024.517 Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Robust and sample optimal algorithms for
518 psd low rank approximation. In *2020 IEEE 61st Annual Symposium on Foundations of Computer*
519 *Science (FOCS)*, 2020.520 Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification
521 for graphs and hypergraphs. In *2019 IEEE 60th Annual Symposium on Foundations of Computer*
522 *Science (FOCS)*, pp. 910–928. IEEE, 2019.
523524 Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. *SIAM*
525 *Journal on Computing*, 41(6):1704–1721, 2012.526 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower
527 bounds by polynomials. *Journal of the ACM*, 48(4):778–797, 2001. doi: 10.1145/502090.502097.
528529 András A Benczúr and David R Karger. Approximating st minimum cuts in $\tilde{O}(n^2)$ time. In
530 *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pp. 47–55,
531 1996.532 Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammadtaghi Hajiaghayi, and Saeed
533 Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce. *J.*
534 *ACM*, 68, 2021.535 Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. Approximation of zonoids by zonotopes.
536 *Acta Mathematica*, 1989.
537538 Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering
539 in excluded-minor graphs and beyond. In *Proceedings of the 2021 ACM-SIAM Symposium on*
Discrete Algorithms (SODA), pp. 2679–2696. SIAM, 2021.

540 Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. New frameworks
 541 for offline and streaming coreset constructions, 2022. URL <https://arxiv.org/abs/1612.00889>.

543

544 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
 545 *Automata, Languages and Programming*, 2002.

546

547 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their
 548 applications. *SIAM Journal on Computing*, 39(3):923–947, 2009.

549

550 Yanlin Chen, András Gilyén, and Ronald de Wolf. A Quantum Speed-Up for Approximating the Top
 551 Eigenvectors of a Matrix. In *Proceedings of the 36th annual ACM-SIAM symposium on Discrete
 552 algorithm (SODA)*, 2025.

553

554 Kenneth L Clarkson. Subgradient and sampling algorithms for 1 1 regression. In *Symposium on
 555 Discrete Algorithms: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
 556 algorithms*, pp. 257–266, 2005.

557

558 Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity
 559 time. In *STOC*, 2013.

560

561 Michael B. Cohen and Richard Peng. L_p row sampling by lewis weights. In *Proceedings of the
 562 Forty-Seventh Annual ACM Symposium on Theory of Computing*, STOC ’15, 2015.

563

564 Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
 565 sionality reduction for k-means clustering and low rank approximation. In *Proceedings of the
 566 Forty-Seventh Annual ACM Symposium on Theory of Computing*, STOC ’15, pp. 163–172, New
 567 York, NY, USA, 2015a. Association for Computing Machinery.

568

569 Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron
 570 Sidford. Uniform sampling for matrix approximation. In *Proceedings of the 2015 Conference on
 571 Innovations in Theoretical Computer Science*, pp. 181–190, 2015b.

572

573 Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approxima-
 574 tion via ridge leverage score sampling. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM
 575 Symposium on Discrete Algorithms (SODA)*, pp. 1758–1777. SIAM, 2017.

576

577 Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coresset framework for
 578 clustering. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*,
 579 STOC 2021, pp. 169–182, New York, NY, USA, 2021. Association for Computing Machinery.

580

581 Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and Omar Ali
 582 Sheikh-Omar. Improved coresets for euclidean k-means. *Advances in Neural Information Process-
 583 ing Systems*, 35:2679–2694, 2022a.

584

585 Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards
 586 optimal lower bounds for k-median and k-means coresets. In *Proceedings of the 54th Annual ACM
 587 SIGACT Symposium on Theory of Computing*, pp. 1038–1051, 2022b.

588

589 Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney. Sampling
 590 algorithms and coresets for ℓ_p regression. *SIAM Journal on Computing*, 38(5):2060–2078,
 591 2009.

592

593 Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approxima-
 594 tion problem. *SIAM Journal on Matrix Analysis and Applications*, 30(3):1084–1127, 2008.

595

596 Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for 1 2
 597 regression and applications. In *Proceedings of the seventeenth annual ACM-SIAM symposium on
 598 Discrete algorithm*, pp. 1127–1136, 2006.

599

Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing lewis weights to
 600 high precision. In *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
 601 (SODA)*, 2022.

594 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In
 595 *Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing*, STOC '11, New
 596 York, NY, USA, 2011. Association for Computing Machinery.

597 Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix approximations. *SIAM*
 598 *Journal on Matrix Analysis and Applications*, 29(2):656–659, 2007.

600 Daniel Gibney, Ce Jin, Tomasz Kociumaka, and Sharma V. Thankachan. Near-optimal quantum
 601 algorithms for bounded edit distance and lempel-ziv factorization. In *Proceedings of the 2024*
 602 *ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 3302–3332. Society for Industrial
 603 and Applied Mathematics, 2024.

604 András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear
 605 regression. *Quantum*, 6:754, June 2022. ISSN 2521-327X. doi: 10.22331/q-2022-06-30-754.
 606 URL <https://doi.org/10.22331/q-2022-06-30-754>.

608 Lov K. Grover. A fast quantum mechanical algorithm for database search. In *Proceedings of*
 609 *the Twenty-Eighth Annual ACM Symposium on Theory of Computing*, STOC '96, pp. 212–219,
 610 New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917855. doi:
 611 10.1145/237814.237866. URL <https://doi.org/10.1145/237814.237866>.

612 Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance
 613 sampling is nearly optimal. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on*
 614 *Theory of Computing*, STOC 2020, New York, NY, USA, 2020. Association for Computing
 615 Machinery. ISBN 9781450369794.

616 Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean (k,z)-clustering.
 617 In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, STOC 2024, New
 618 York, NY, USA, 2024. Association for Computing Machinery.

620 Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Improved iteration complexities for overcon-
 621 strained p-norm regression. In *Proceedings of the 54th Annual ACM SIGACT Symposium on*
 622 *Theory of Computing*, STOC 2022, 2022.

623 Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying sums of norms. In
 624 *2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)*, pp. 1953–1962.
 625 IEEE, 2023a.

627 Arun Jambulapati, Yang P Liu, and Aaron Sidford. Chaining, group leverage score overestimates,
 628 and fast spectral hypergraph sparsification. In *Proceedings of the 55th Annual ACM Symposium on*
 629 *Theory of Computing*, pp. 196–206, 2023b.

630 Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying generalized linear
 631 models. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pp.
 632 1665–1675, 2024.

634 William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
 635 *Contemporary mathematics*, 26(189-206):1, 1984.

636 Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hypergraph
 637 sparsifiers of nearly linear size. In *2021 IEEE 62nd Annual Symposium on Foundations of Computer*
 638 *Science (FOCS)*, pp. 1159–1170. IEEE, 2022.

640 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In *Proceedings of the*
 641 *8th Innovations in Theoretical Computer Science Conference (ITCS 2017)*, volume 67 of *LIPICS*,
 642 pp. 49:1–49:21. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

643 Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means: a quantum
 644 algorithm for unsupervised machine learning. In *Proceedings of the 33rd International Conference*
 645 *on Neural Information Processing Systems*, Red Hook, NY, USA, 2019. Curran Associates Inc.

647 Michael Langberg and Leonard J. Schulman. Universal ϵ -approximators for integrals. In *Proceedings*
 648 *of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2010.

648 Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces: Isoperimetry and Processes*,
 649 volume 23. Springer Science & Business Media, 1991.
 650

651 James R Lee. Spectral hypergraph sparsification via chaining. In *Proceedings of the 55th Annual*
 652 *ACM Symposium on Theory of Computing*, pp. 207–218, 2023.
 653

654 Yin Tat Lee. *Faster algorithms for convex and combinatorial optimization*. PhD thesis, Massachusetts
 655 Institute of Technology, 2016.
 656

656 Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu. Sublinear quantum algorithms for training
 657 linear and kernel-based classifiers. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
 658 *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings*
 659 *of Machine Learning Research*, pp. 3815–3824. PMLR, June 2019.
 660

661 Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification–simplified and strengthened.
 662 *Advances in Neural Information Processing Systems*, 34:11643–11654, 2021.
 663

664 Ramgopal Mettu and Greg Plaxton. Optimal time bounds for approximate clustering. *Mach. Learn.*,
 56(1–3), June 2004.
 665

666 Alexander Munteanu, Simon Omlor, and Christian Peters. p-generalized probit regression and
 667 scalable maximum likelihood estimation via sketching and coresets. In *International Conference*
 668 *on Artificial Intelligence and Statistics*, pp. 2073–2100. PMLR, 2022.
 669

670 Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. In I. Guyon,
 671 U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
 672 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
 673

674 Cameron Musco and Kshiteej Sheth. Sublinear time low-rank approximation of toeplitz matrices.
 675 In *Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp.
 5084–5117, 2024.
 676

677 Cameron Musco and David P Woodruff. Sublinear time low-rank approximation of positive semidefi-
 678 nite matrices. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*,
 679 pp. 672–683. IEEE, 2017.
 680

681 Cameron Musco, Christopher Musco, David P Woodruff, and Taisuke Yasuda. Active linear regression
 682 for l_p norms and beyond. In *2022 IEEE 63rd Annual Symposium on Foundations of Computer*
 683 *Science (FOCS)*, pp. 744–753. IEEE, 2022.
 684

685 Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection sampling. In *Proceedings of*
 686 *the 3rd Innovations in Theoretical Computer Science Conference*, ITCS '12, pp. 290–308, New
 687 York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311151.
 688

689 Swati Padmanabhan, David P. Woodruff, and Qiuyi (Richard) Zhang. Computing approximate
 690 ℓ_p sensitivities. In *Proceedings of the 37th International Conference on Neural Information*
 691 *Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
 692

693 Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. In
 694 *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 10336–10344, 2022.
 695

696 Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
 697 *2006 47th annual IEEE symposium on foundations of computer science (FOCS'06)*, pp. 143–152.
 698 IEEE, 2006.
 699

700 Gideon Schechtman and Artem Zvavitch. Embedding subspaces of l_p into $l^n p$, $0 < p < 1$.
 701 *Mathematische Nachrichten*, 227(1):133–142, 2001.
 702

703 Poojan Chetan Shah and Ragesh Jaiswal. Quantum (inspired) $\$d^2\$$ -sampling with applications. In
 704 *The Thirteenth International Conference on Learning Representations*, 2025.
 705

706 Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
 707 *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 2772–
 708 2789. SIAM, 2019.
 709

702 Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. *SIAM Journal*
 703 *on Computing*, 40(6):1913–1926, 2011.

704

705 Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
 706 graph sparsification, and solving linear systems. In *Proceedings of the thirty-sixth annual ACM*
 707 *symposium on Theory of computing*, pp. 81–90, 2004.

708 Michel Talagrand. Embedding subspaces of l_p in l_p^n . In *Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 1992–94*, pp. 311–326. Springer, 1995.

709

710 Kasturi Varadarajan and Xin Xiao. On the Sensitivity of Shape Fitting Problems. In Deepak D’Souza,
 711 Jaikumar Radhakrishnan, and Kavitha Telikepalli (eds.), *IARCS Annual Conference on Foundations*
 712 *of Software Technology and Theoretical Computer Science (FSTTCS 2012)*, volume 18 of *Leibniz*
 713 *International Proceedings in Informatics (LIPIcs)*, pp. 486–497, Dagstuhl, Germany, 2012. Schloss
 714 Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-939897-47-7.

715

716 David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In *Proceedings of the 2023*
 717 *Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2023.

718

719 David P. Woodruff and Taisuke Yasuda. Root ridge leverage score sampling for ℓ_p subspace approxi-
 720 mation. In *Proceedings of the 67th Annual Symposium on Foundations of Computer Science*
 721 (*FOCS*), 2025. arXiv:2407.03262v3.

722 Yecheng Xue, Xiaoyu Chen, Tongyang Li, and Shaofeng H.-C. Jiang. Near-optimal quantum coresets
 723 construction algorithms for clustering. In *Proceedings of the 40th International Conference on*
 724 *Machine Learning*, ICML’23. JMLR.org, 2023.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A PRELIMINARIES

757

A.1 NOTATION

760 For any $n \in \mathbb{N}$, let $[n]$ denote the set $\{1, 2, \dots, n\}$. We use $\tilde{O}(\cdot)$ to hide polylogarithmic factors in n ,
 761 d , $1/\epsilon$, $1/\delta$, and other problem-related parameters, such as k and p . For two numbers a and b , we use
 762 $a \vee b$ as a shorthand for $\max\{a, b\}$. We use $a = (1 \pm \epsilon)b$ to denote $a \in [(1 - \epsilon)b, (1 + \epsilon)b]$.

763 For a matrix A , we use $\|A\|_2$ or simply $\|A\|$ to denote the spectral norm of A . For a tensor A , let
 764 $\|A\|$ and $\|A\|_2$ (used interchangeably) denote the spectral norm of tensor A ,
 765

$$766 \|A\| = \sup_{x,y,z \neq 0} \frac{|A(x,y,z)|}{\|x\| \cdot \|y\| \cdot \|z\|}.$$

769 Let $A \in \mathbb{R}^{n \times d}$ and $k \leq \min\{n, d\}$. We will use A_k or $[A]_k$ to denote its best rank- k approximation.
 770 Let $\|A\|_F$ denote the Frobenius norm of a matrix/tensor A , i.e., $\|A\|_F$ is the square root of the sum
 771 of squares of all entries of A . For $1 \leq p < 2$, we use $\|A\|_p$ to denote the entry-wise ℓ_p -norm of a
 772 matrix/tensor A , i.e., $\|A\|_p$ is the p -th root of the sum of p -th powers of the absolute values of the
 773 entries of A . $\|A\|_1$ will be an important special case of $\|A\|_p$, representing the sum of the absolute
 774 values of all entries.

775 Let $\text{nnz}(A)$ denote the number of nonzero entries of A . Let $\det(A)$ denote the determinant of a
 776 square matrix A . Let A^\top denote the transpose of A . Let A^\dagger denote the Moore-Penrose pseudoinverse
 777 of A . Let A^{-1} denote the inverse of a full-rank square matrix.

778 For a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, we use $A_{i,j,l}$ to denote its (i, j, l) -th element, $A_{i,*,l}$ to denote
 779 its i -th row, and $A_{i,j,*}$ to denote its j -th column.

780 A tensor A is symmetric if and only if for any i, j, k , $A_{i,j,k} = A_{i,k,j} = A_{j,i,k} = A_{j,k,i} = A_{k,i,j}$.

782 For a tensor $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, we use \top to denote rotation (3-dimensional transpose) so that
 783 $A^\top \in \mathbb{R}^{n_3 \times n_1 \times n_2}$. For a tensor $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and matrix $B \in \mathbb{R}^{n_3 \times k}$, we define the tensor-
 784 matrix dot product to be $A \cdot B \in \mathbb{R}^{n_1 \times n_2 \times k}$.

786

A.2 SENSITIVITY AND CORESET

788 Throughout this paper, we will extensively work with sensitivity and coresets. Let X be some universe
 789 of elements. Our main focus is the cost function: $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$, which measures the cost of
 790 an element $x \in X$ with respect to the first argument. We then define the notion of strong and weak
 791 coresets.

792 **Definition A.1** ((Strong) Coreset). *Let $B \subseteq A$ and $\epsilon \in (0, 1)$. We say that B is an ϵ -strong coresset*
 793 *or ϵ -coreset of A if there exists a nonnegative weight vector $w \in \mathbb{R}_{\geq 0}^{|B|}$ such that for all $x \in X$,*

$$795 \sum_{b \in B} w_b \cdot \text{cost}(b, x) = (1 \pm \epsilon) \cdot \text{cost}(A, x).$$

798 Strong coresets preserves the cost over all possible $x \in X$, but sometimes we only need the optimal
 799 cost preserved. We also introduce the notion of weak coresets.

800 **Definition A.2** (Weak Coreset). *Let $B \subseteq A$ and $\epsilon \in (0, 1)$. We say that B is an ϵ -weak coresset if*
 801 *there exists a nonnegative weight vector $w \in \mathbb{R}_{\geq 0}^{|B|}$ such that*

$$803 \min_{x \in X} \sum_{b \in B} w_b \cdot \text{cost}(b, x) = (1 \pm \epsilon) \cdot \text{OPT},$$

805 where $\text{OPT} = \min_{x \in X} \text{cost}(A, x)$.

807 **Remark A.3.** *Oftentimes, given a weighted subset (B, w) , we will use $\text{cost}(B, x)$ as an abbreviation*
 808 *for $\sum_{b \in B} w_b \cdot \text{cost}(b, x)$, as our analysis and algorithms on the subset of points work in both*
 809 *unweighted and weighted settings. Hence, when the weight is clear from context, we will abuse*
notation and use $\text{cost}(b, x)$ to denote $w_b \cdot \text{cost}(b, x)$.

810
 811 **Definition A.4** (Sensitivity and Generalized Sensitivity). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$. We define the*
 812 *sensitivity of a_i as*

$$813 \quad s_i(A, A) = \max_{x \in X} \frac{\text{cost}(a_i, x)}{\text{cost}(A, x)}.$$

$$814$$

815 *Let $B \subset \mathbb{R}^d$. We define the sensitivity of a_i with respect to B as*

$$816$$

$$817 \quad s_i(A, B) = \max_{x \in X, \text{cost}(B, x) \neq 0} \frac{\text{cost}(a_i, x)}{\text{cost}(B, x)}.$$

$$818$$

820 A.3 LEVERAGE SCORE, RIDGE LEVERAGE SCORE, AND LEWIS WEIGHTS

821 **Definition A.5** (Statistical Dimension). *For real value $\lambda \geq 0$ and a rank- d matrix $A \in \mathbb{R}^{n \times d}$ with*
 822 *singular values $\sigma_i(A)$, the quantity $s_d^\lambda(A) := \sum_{i=1}^d \frac{1}{\sqrt{1+\lambda/\sigma_i^2(A)}}$ is the statistical dimension of the*
 823 *ridge regression problem with regularizing weight λ .*

824 **Definition A.6** (Leverage Score). *Given matrix $A \in \mathbb{R}^{n \times d}$, leverage score can be defined as follows:*

$$825 \quad \tau_i(A) := a_i^\top (A^\top A)^\dagger a_i,$$

$$826$$

827 *where a_i^\top is the i -th row of A for all $i \in [n]$.*

$$828$$

829 **Definition A.7** (Ridge Leverage Score). *Given matrix $A \in \mathbb{R}^{n \times d}$, we denote the i -th ridge leverage*
 830 *score, for $i \in [n]$, as follows:*

$$831 \quad \bar{\tau}_i(A, \lambda_{A_k}) := a_i^\top (A^\top A + \lambda_{A_k} I)^{-1} a_i,$$

$$832$$

833 *where $\lambda_{A_k} = \|A - A_k\|_F^2/k$ and $I \in \mathbb{R}^{d \times d}$ is the identity matrix. When the rank k is clear from*
 834 *context, we may abbreviate $\bar{\tau}_i(A)$ as $\bar{\tau}_i(A, \lambda_{A_k})$.*

835 **Definition A.8** (Generalized Ridge Leverage Score). *Let $A \in \mathbb{R}^{n \times d}$, $C \in \mathbb{R}^{n \times d'}$, and $i \in [d]$. We*
 836 *define the i -th generalized ridge leverage score of $A \in \mathbb{R}^{n \times d}$ with respect to $C \in \mathbb{R}^{n \times d'}$ as follows:*

$$837 \quad \bar{\tau}_i(A, C, \lambda_{C_k}) = \begin{cases} a_i^\top (CC^\top + \lambda_{C_k} I_n)^\dagger a_i, & \text{if } a_i \in \text{span}(CC^\top + \lambda I_n); \\ \infty, & \text{otherwise.} \end{cases}$$

$$838$$

839 *When the rank k is clear from context, we may use $\bar{\tau}_i(A, C)$ as shorthand for $\bar{\tau}_i(A, C, \lambda_{C_k})$.*

$$840$$

841 **Definition A.9** (Lewis Weights). *Let $p \in (0, \infty)$ and $A \in \mathbb{R}^{n \times d}$. We define the ℓ_p Lewis weights of*
 842 *A , denoted by w_A , as*

$$843 \quad w_{A,i} = \tau_i(W_A^{1/2-1/p} A),$$

$$844$$

845 *or equivalently,*

$$846$$

$$847 \quad w_{A,i}^{2/p} = a_i^\top (A^\top W_A^{1-2/p} A)^{-1} a_i.$$

$$848$$

849 A.4 MATRIX APPROXIMATIONS

850 **Definition A.10** (Subspace Embedding in Sarlos (2006)). *Let $\epsilon, \delta \in (0, 1)$ and $n > d$. Given a*
 851 *matrix $U \in \mathbb{R}^{n \times d}$ which is orthonormal (i.e., $U^\top U = I_d$), we say $S \in \mathbb{R}^{m \times n}$ is an $\text{SE}(\epsilon, \delta, n, d)$*
 852 *subspace embedding for fixed U if*

$$853 \quad (1 - \epsilon) \|Ux\|_2^2 \leq \|SUx\|_2^2 \leq (1 + \epsilon) \|Ux\|_2^2$$

$$854$$

855 *holds with probability $1 - \delta$. This is equivalent to*

$$856$$

$$857 \quad \|U^\top S^\top S U - U^\top U\| \leq \epsilon.$$

$$858$$

859 **Definition A.11** (Weak ϵ -Affine Embedding, Theorem 39 in Clarkson & Woodruff (2013)). *Let*
 860 *matrices $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{n \times d}$. Given matrix $S \in \mathbb{R}^{t \times n}$, we say S is weak ϵ -affine embedding*
 861 *if the following conditions hold: let $\hat{X} = \arg \min_X \|AX - B\|_F^2$ and $\hat{B} = A\hat{X} - B$ and then*

$$862$$

$$863 \quad \|S(AX - B)\|_F^2 - \|S\hat{B}\|_F^2 = (1 \pm \epsilon) \|AX - B\|_F^2 - \|\hat{B}\|_F^2$$

$$864$$

864 A.5 PROPERTIES OF LEVERAGE SCORE
865

866 Sampling according to leverage score distribution yields a weak affine embedding property; addition-
867 ally, solving the subsampled problem results in an optimal solution whose cost is close to the original
868 optimal cost.

869 **Lemma A.12** (Theorem 42 in Clarkson & Woodruff (2013)). *Let matrix $A \in \mathbb{R}^{n \times r}$ with rank at
870 most k , and let $B \in \mathbb{R}^{n \times d}$. If $S \in \mathbb{R}^{n \times n}$ is a sampling and rescaling diagonal matrix according
871 to the leverage scores of A , let $m = O(\epsilon^{-2}k \log k)$ denote the number of nonzero entries on the
872 diagonal of S . Then for all $X \in \mathbb{R}^{r \times d}$, we have:*

873

- 874 • *S is a weak ϵ -affine embedding (see Definition A.11);*
- 875 • *equivalently, if $\hat{X} = \arg \min_X \|AX - B\|_F^2$, $\hat{B} = A\hat{X} - B$, and $C := \|S\hat{B}\|_F^2 - \|\hat{B}\|_F^2$,
876 then*

877

$$(1 - \epsilon) \cdot \|AX - B\|_F^2 + C \leq \|S(AX - B)\|_F^2 \leq (1 + \epsilon) \cdot \|AX - B\|_F^2 + C.$$

880 **Lemma A.13** (Leverage Score Preserves Optimal Cost, Lemma C.31 of Song et al. (2019)). *Let
881 $A \in \mathbb{R}^{n \times r}$ be a matrix with rank at most k , and let $B \in \mathbb{R}^{n \times d}$. If we sample $O(k \log k + k/\epsilon)$
882 rows of A and B proportional to the leverage scores of A to obtain a sampling matrix S , then with
883 probability at least $1 - \delta$,*

884

$$\|AY_* - B\|_F^2 \leq (1 + \epsilon) \cdot \min_Y \|AY - B\|_F^2,$$

885

886 where $Y_* = \arg \min_Y \|SAY - SB\|_F^2$.

888 A.6 QUANTUM PRIMITIVES
889

890 Our core quantum primitive is a sampling algorithm based on Grover search.

891 **Lemma A.14** (Claim 3 in Apers & De Wolf (2022)). *Let n be a positive integer and let p_i for all
892 $i \in [n]$ with $p_i \in [0, 1]$. There is a quantum algorithm that generates a list of indices with i sampled
893 with probability p_i independently, in time $\tilde{O}(\sqrt{n \sum_{i=1}^n p_i}) \cdot \mathcal{T}$, where \mathcal{T} is the time to compute p_i .*

895 We note that this runtime bound could also be achieved via quantum rejection sampling (Ozols
896 et al., 2012). Let $P = \sum_{i=1}^n p_i$, then p_i/P for all $i \in [n]$ induces a probability distribution, which
897 we denote by σ . Recall that the rejection sampling aims to generate one sample from the target
898 distribution σ (where $\sigma_i = p_i/P$) using a uniform proposal distribution π (where $\pi_i = 1/n$), the
899 query complexity is $\tilde{O}(\max_{i \in [n]} \sqrt{\sigma_i/\pi_i}) \cdot \mathcal{T}$, as each $p_i \leq 1$, the ratio can be upper bounded by
900 $\max_i(p_i/P)/(1/n) \leq n/P$, thus, the complexity to generate *one sample* is $\tilde{O}(\sqrt{n/P}) \cdot \mathcal{T}$. As
901 $\sum_{i=1}^n p_i = P$, if we choose each index i with probability p_i independently, then the expected size is
902 P , hence the total expected complexity is $\tilde{O}(P\sqrt{n/P}) \cdot \mathcal{T} = \tilde{O}(\sqrt{nP}) \cdot \mathcal{T}$, as desired.

904 Throughout the paper, we will use the notation $\text{QLS}(A, s, \delta)$ to denote the procedure of sampling s
905 rows or columns from A according to the leverage score distribution of A , with probability at least
906 $1 - \delta$ that these leverage scores are constant factor approximations to the exact leverage scores. The
907 time for this procedure is $\sqrt{ns} \cdot \mathcal{T}$, where \mathcal{T} is the time to compute a single score. Similarly, we
908 use $\text{QGRRLS}(A, C, \epsilon, \delta, \lambda)$ to denote the procedure of sampling according to the generalized ridge
909 leverage score distribution $\bar{\tau}_i(A, C, \lambda)$.

910 B A QUANTUM RECURSIVE SAMPLING FRAMEWORK FOR CORESET
911

913 Throughout this section, let us consider $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ to be a set of n points in \mathbb{R}^d , and
914 X to be a set. Let $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$ be a cost function, and for $x \in X$, let $\text{cost}(A, x) =$
915 $\sum_{i=1}^n \text{cost}(a_i, x)$. The main objective of this section is to develop a framework for sampling a
916 weighted subset of A that approximates the cost of A . To do so, we prove that if the weights
917 satisfying certain assumptions, then a generic recursive sampling framework could construct a coresset
from these weights. The assumptions are listed in the following.

918 **Assumption B.1.** Given two finite subsets $A, B \subseteq \mathbb{R}^d$, let $w(A, B) \in \mathbb{R}^{|A|}$ be a nonnegative weight
 919 vector where $w_i(A, B)$ is the weight of a_i with respect to B . We assume w satisfies the following
 920 conditions:

- 922 • *Consistent total weights:* for any subset $S \subseteq [n]$, $\sum_{i \in S} w_i(A_S, A_S) \leq \text{sum}(w)$ where
 923 $\text{sum}(w)$ is a finite upper bound on the total weights;
- 924 • *Uniform sampling bound:* let A' be a uniform subset of A with size m and let $w'(A, A') \in$
 925 \mathbb{R}^n be defined as $w'_i(A, A') := \begin{cases} w_i(A, A'), & \text{if } a_i \in A', \\ w_i(A, A' \cup \{a_i\}), & \text{otherwise;} \end{cases}$, then $w'_i(A, A') \geq$
 926 $w_i(A, A)$ for all $i \in [n]$;
- 927 • *Importance sampling bound:* let u_i be an overestimate of $w_i(A, A)$ and suppose we sample
 928 according to $q_i = \min\{1, g(\epsilon, n, d) \cdot u_i\}$, yielding a weighted subset $B \subseteq A$ of size
 929 $g(\epsilon, n, d) \cdot \|u\|_1$, then with high probability, B is an ϵ -coreset of A with size $g(\epsilon, n, d) \cdot \|u\|_1$;
- 930 • *Coreset preserves weights:* let B be an ϵ -coreset of A , then $w_i(C, B) = (1 \pm \epsilon) \cdot w_i(C, A)$
 931 for any fixed C and for all $i \in [n]$.

935 **Algorithm 1** Quantum recursive sampling for coresets.

937 1: **procedure** QRECURSESAMPLE($A \in \mathbb{R}^{n \times d}, \epsilon$)
 938 2: **if** $n \leq g(\epsilon, n, d) \cdot \text{sum}(w)$ **then**
 939 3: **return** (A, I_n)
 940 4: **end if**
 941 5: $c \leftarrow 1000$
 942 6: $A' \subset_{1/2} A$
 943 7: $s \leftarrow g(\epsilon, n, d) \cdot \text{sum}(w)$
 944 8: $(C', D') \leftarrow \text{QRECURSESAMPLE}(A', \epsilon)$
 945 9: Implement a classical oracle for $w'_i(A, C')$ $\triangleright p_i = \min\{1, c \cdot g(\epsilon, n, d) \cdot w'_i(A, C')\}$
 946 10: **for** $i \in [n]$ **do**
 947 11: $D \leftarrow \text{QSAMPLE}(p)$
 948 12: $C \leftarrow D^\top A$
 949 13: **return** (C, D)
 14: **end procedure**

951 Before presenting our most general result, we first show that if B is a coresset of A , then $B \cup \{p\}$ is
 952 also a coresset of $A \cup \{p\}$ for any $p \notin A$.

953 **Lemma B.2.** Let B be an ϵ -coreset of A and let $p \notin A$, then $B \cup \{p\}$ is an ϵ -coreset of $A \cup \{p\}$.

955 *Proof.* Since B is an ϵ -coreset of A , we know that for any $x \in X$, $\text{cost}(B, x) = (1 \pm \epsilon) \cdot \text{cost}(A, x)$
 956 with high probability. Conditioning on this event, we note that

$$\begin{aligned} \text{cost}(B \cup \{p\}, x) &= \text{cost}(B, x) + \text{cost}(\{p\}, x) \\ &\leq (1 + \epsilon) \cdot \text{cost}(A, x) + \text{cost}(\{p\}, x) \\ &\leq (1 + \epsilon) \cdot \text{cost}(A \cup \{p\}, x), \end{aligned}$$

961 the lower bound can be established similarly. \square

962 **Theorem B.3.** Let $A \in \mathbb{R}^{n \times d}$. Then, there exists a quantum algorithm that constructs an ϵ -coreset
 963 C of expected size $s := O(g(\epsilon, n, d) \cdot \text{sum}(w))$. Moreover, if a classical oracle for $w_i(X, Y)$ can be
 964 implemented with

- 966 • Preprocessing in time $\mathcal{T}_{\text{prep}}(|Y|, d)$;
- 967 • Query time $\mathcal{T}_{\text{query}}(|Y|, d)$ for computing $w_i(X, Y)$ for any $i \in X$,

969 the algorithm runs in time

$$\mathcal{T}_{\text{prep}}(s', d) + \tilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{query}}(s', d)),$$

970 where $s' = O(g(0.01, n, d) \cdot \text{sum}(w))$ and uses $\tilde{O}(\sqrt{ns})$ queries to the rows or columns of A .

Proof. As the algorithm is recursive, we will prove by induction on n . For the base case, we have $n \leq g(\epsilon, n, d) \cdot \text{sum}(w)$; in this case, we could simply take the coresets as A , as it satisfies the size guarantee with exact approximation.

For the inductive step, we assume it holds for $n/2$ as our algorithm uniformly samples half of the points. This means that C' is an ϵ -coreset for A' and by the importance sampling bound of Assumption B.1, we have $w_i(A, C') = (1 \pm \epsilon) \cdot w_i(A, A')$ with high probability. Now, we consider two cases: if $a_i \in A'$, then $w'_i(A, A') = w_i(A, A')$ and $w'_i(A, C') = w_i(A, C') = (1 \pm \epsilon)w_i(A, A') = (1 \pm \epsilon)w'_i(A, A')$. If $a_i \notin A'$, then $w'_i(A, A') = w'_i(A, A' \cup \{a_i\}) = (1 \pm \epsilon)w_i(A, C' \cup \{a_i\}) = (1 \pm \epsilon)w'_i(A, C')$ by Lemma B.2.

Next, we prove that for any uniform subset $S \subseteq [n]$ with $|S| = m$, we have

$$\mathbb{E}[\|w'(A, SA)\|_1] \leq \frac{n}{m} \cdot \|w(A, A)\|_1.$$

Let us denote $S^{(i)}$ as the diagonal indicator matrix for $S \cup \{i\}$. Then, note

$$\begin{aligned} \sum_{i=1}^n w'_i(A, SA) &= \sum_{i \in S} w_i(A, SA) + \sum_{i \notin S} w_i(A, S^{(i)} A) \\ &= \|w(SA, SA)\|_1 + \sum_{i \notin S} w_i(A, S^{(i)} A) \\ &\leq \|w(A, A)\|_1 + \sum_{i \notin S} w_i(A, S^{(i)} A), \end{aligned}$$

to bound the second term, note that it is generated via the following random process: first selecting S , then selecting a random $i \notin S$ and returning $w_i(A, S^{(i)}A)$. Since there are $n - m$ points not in SA , the expected value of this process is $\frac{1}{n-m} \mathbb{E}[\sum_{i \notin S} w_i(A, S^{(i)}A)]$. The key observation is that this process is equivalent to another process: pick a random subset $S' \subset [n]$ of size $m + 1$, then randomly pick a point $a_i \in S'A$ and return $w_i(A, S'A)$. In expectation, this is equal to the average weight over $S'A$. Since $S'A$ contains $m + 1$ points and by the consistent total weights assumption, the average weight is at most $\frac{\|w(A, A)\|_1}{m+1}$. Therefore,

$$\mathbb{E}[\sum_{i \in S} w_i(A, S^{(i)}A)] \leq (n-m) \cdot \frac{\|w(A, A)\|_1}{m+1},$$

1026 combining these results, we obtain the following expectation bound:
1027

$$\begin{aligned} 1028 \mathbb{E}[\sum_{i=1}^n w'_i(A, SA)] &\leq \|w(A, A)\|_1 + (n-m) \cdot \frac{\|w(A, A)\|_1}{m+1} \\ 1029 \\ 1030 &\leq \frac{n+1}{m+1} \cdot \|w(A, A)\|_1 \\ 1031 \\ 1032 &\leq \frac{n}{m} \cdot \|w(A, A)\|_1. \\ 1033 \\ 1034 \end{aligned}$$

1035 Hence, since A' is a uniform subset of A with size $n/2$, we know that $\mathbb{E}[\|w'(A, A')\|_1] \leq$
1036 $2\|w(A, A)\|_1$ and $w'_i(A, A') \geq w_i(A, A)$ by the uniform sampling bound. Therefore, if we simply
1037 scale $w'_i(A, C')$ by a factor of $\frac{1}{1-\epsilon}$, then we have
1038

$$1039 w'_i(A, C') \geq w'_i(A, A') \geq w_i(A, A)$$

1040 and moreover
1041

$$\begin{aligned} 1042 \mathbb{E}[\|w'(A, C')\|_1] &\leq (1+3\epsilon) \mathbb{E}[\|w'(A, A')\|_1] \\ 1043 &\leq 4\|w(A, A)\|_1 \\ 1044 &\leq 4 \cdot \text{sum}(w) \\ 1045 \end{aligned}$$

1046 consequently, if we sample according to $c \cdot g(\epsilon, n, d) \cdot w'_i(A, C')$, then the expected size of C is
1047 at most $c' \cdot g(\epsilon, n, d) \cdot \text{sum}(w)$ for $c' = 4c$, and the coresset guarantee follows naturally from the
1048 importance sampling bound of Assumption B.1.

1049 Regarding the running time, we analyze an iterative version of the algorithm that achieves the same
1050 effect, illustrated in Algorithm 2. One key difference is that for the intermediate steps, we use a
1051 constant approximation to improve the runtime. We divide the proof into steps.
1052

- 1053 • To uniformly subsample half of the points, we follow the approach of Apers & Gribling
1054 (2024), which takes $\tilde{O}(\log(n/s))$ time;
- 1055 • For each iteration, we first prepare a classical oracle for $w'_i(A_t, C_{t-1})$ in $\mathcal{T}_{\text{prep}}(s', d)$ time;
- 1056 • Next, we need to sample according to $p_i = \min\{1, g(\epsilon', n, d) \cdot w'_i(A_t, C_{t-1})\}$ with

$$\begin{aligned} 1057 \mathbb{E}[\sum_{i \in A_t} p_i] &\leq c \cdot g(\epsilon', n, d) \cdot \mathbb{E}[\sum_{i \in A_t} w'_i(A_t, C_{t-1})] \\ 1058 &\leq 2c \cdot g(\epsilon', n, d) \cdot \mathbb{E}[\sum_{i \in A_t} w'_i(A_t, A_{t-1})] \\ 1059 &\leq 4c \cdot g(\epsilon', n, d) \cdot \sum_{i \in A_t} w_i(A_t, A_t) \\ 1060 &\leq 4c \cdot g(\epsilon', n, d) \cdot \text{sum}(w) \\ 1061 &= s', \\ 1062 \\ 1063 \end{aligned}$$

1064 using Lemma A.14, this step can be implemented in time
1065

$$1066 \tilde{O}(\sqrt{ns'}) \cdot \mathcal{T}_{\text{query}}(s', d);$$

- 1067 • Forming C_t requires selecting and weighting s' points, which can be done in $O(s')$ time;
- 1068 • Finally, we do a resampling with ϵ to form the final coresset, which takes

$$1069 \mathcal{T}_{\text{prep}}(s, d) + \tilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{query}}(s, d))$$

1070 time, as desired. □

1071 While Theorem B.3 provides both approximation guarantees in terms of coreset and runtime, in
1072 applications it is more convenient to craft an algorithm that takes the size of the coreset as a parameter.
1073

1080 **Algorithm 3** Quantum iterative sampling for coresets: fixed size.

1081 1: **procedure** QITERATEFIXEDSIZE($A \in \mathbb{R}^{n \times d}$, s, s')
1082 2: $c \leftarrow 1000 \cdot s / \|w(A, A)\|_1$
1083 3: $c' \leftarrow 1000 \cdot s' / \|w(A, A)\|_1$
1084 4: $T \leftarrow \log(n/s)$
1085 5: $A_0 \subset_{1/2} A_1 \subset_{1/2} \dots \subset_{1/2} A_{T-1} \subset_{1/2} A_T = A$
1086 6: $C_0 \leftarrow A_0$
1087 7: **for** $t = 1 \rightarrow T - 1$ **do**
1088 8: Implement a classical oracle for $w'_i(A_t, C_{t-1})$ for all $a_i \in A_t$
1089 9: $\triangleright p_i = \min\{1, c' \cdot w'_i(A_t, C_{t-1})\}$
1090 10: $D_t \leftarrow \text{QSAMPLE}(p)$
1091 11: $C_t \leftarrow D_t^\top A_t$
1092 12: **end for**
1093 13: Implement a classical oracle for $w'_i(A_T, C_{T-1})$ for all $a_i \in A_T$
1094 14: $\triangleright p_i = \min\{1, c \cdot w'_i(A_T, C_{T-1})\}$
1095 15: $D_T \leftarrow \text{QSAMPLE}(p)$
1096 16: $C_T \leftarrow D_T^\top A_T$
1097 17: **return** (C_T, D_T)
1098 18: **end procedure**

1100 **Corollary B.4.** Let $A \in \mathbb{R}^{n \times d}$ and $s, s' \in [n]$. Then, there exists a quantum algorithm that constructs
1101 a coreset C of A with expected size s . Assuming access to a classical oracle for $w_i(X, Y)$ with:

1103 • Preprocessing time $\mathcal{T}_{\text{prep}}(|Y|, d)$;
1104 • Query time $\mathcal{T}_{\text{query}}(|Y|, d)$ for computing $w_i(X, Y)$ for any $i \in X$,

1106 the algorithm runs in time

$$\mathcal{T}_{\text{prep}}(s', d) + \tilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{query}}(s', d)),$$

1109 and uses $\tilde{O}(\sqrt{ns})$ queries to the rows or columns of A .

1110 Our main contribution is to prove that *sensitivity sampling* satisfies Assumption B.1.

1111 **Definition B.5.** Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and let $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$ be a cost function. We
1112 define the sensitivity of a_i with respect to B , denoted by $s_i(A, B)$, as

$$s_i(A, B) = \max_{x \in X, \text{cost}(B, x) \neq 0} \frac{\text{cost}(a_i, x)}{\text{cost}(B, x)}$$

1116 We also need to define the dimension of a system (A, w, X, cost) :

1118 **Definition B.6.** Given a point set $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, nonnegative weights $w \in \mathbb{R}_{\geq 0}^{|A|}$, a space
1119 X and a cost function $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$, let $r \in [0, \infty)$ and let $X(A_S)$ be a function that inputs
1120 a subset of points from A and outputs a set of $x \in X$ associated with A_S . We define

$$\text{range}(x, r) = \{a_i \in A : w_i \cdot \text{cost}(a_i, x) \leq r\}.$$

1122 The dimension of (A, w, X, cost) is the smallest integer dim such that for any subset $S \subseteq [n]$ we
1123 have

$$|\{\text{range}(x, r) : x \in X(A_S), r \in [0, \infty)\}| \leq |S|^{\text{dim}}.$$

1125 **Lemma B.7** (Theorem 2.7 of Braverman et al. (2022)). Let dim be the dimension of (A, w, X, cost)
1126 (Def. B.6), let $q_i := \min\{1, w_i \cdot s_i(A, A)\}$ and $t \geq \sum_{i=1}^n q_i$, let $\epsilon, \delta \in (0, 1)$. Let $c \geq 1$ be a
1127 sufficiently large constant, and let S be a sample generated by sampling according to q_i . Then, with
1128 probability at least $1 - \delta$, we can generate a subset $S \subseteq [n]$ such that for all $x \in X(S)$,

$$|\text{cost}(A, x) - \sum_{i \in S} \frac{w_i}{|S| \cdot q_i} \text{cost}(a_i, x)| \leq \epsilon \cdot \text{cost}(A, x),$$

1132 moreover, the size of S is

$$\frac{ct}{\epsilon^2} \cdot (\text{dim} \cdot \log t + \log(1/\delta)).$$

1134 **Theorem B.8.** Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and let $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$. Moreover, suppose the
 1135 total sensitivity has a finite upper bound, i.e., there exists some $\text{sum}(s) < \infty$ such that for any finite
 1136 subset $C \subset \mathbb{R}^d$, $\sum_{i \in C} s_i(C, C) \leq \text{sum}(s)$. Then, the sensitivity of A with respect to B , $s(A, B)$
 1137 (Def. B.5) satisfies Assumption B.1.

1138

1139 *Proof.* We need to prove $s(A, B)$ satisfies the four items in Assumption B.1.

1140

1141 • Consistent total weights: by assumption, we have that for any $S \subseteq [n]$, $\sum_{i \in S} s_i(A_S, A_S) \leq$
 1142 $\text{sum}(s)$ with $\text{sum}(s)$ being finite.

1143 • Uniform sampling bound: we analyze by cases. For the first case, where $a_i \in A'$, we have
 1144 $w'_i(A, A') = s_i(A, A')$. Let x_1, x_2 be the two points that realize $s_i(A, A')$ and $s_i(A, A)$,
 1145 respectively. Suppose $\text{cost}(A', x_2) \neq 0$, then

$$\begin{aligned} \frac{\text{cost}(a_i, x_1)}{\text{cost}(A', x_1)} &\geq \frac{\text{cost}(a_i, x_2)}{\text{cost}(A', x_2)} \\ &\geq \frac{\text{cost}(a_i, x_2)}{\text{cost}(A', x_2) + \text{cost}(A \setminus A', x_2)} \\ &= \frac{\text{cost}(a_i, x_2)}{\text{cost}(A, x_2)} \end{aligned}$$

1146 where we use the fact that cost is nonnegative, therefore increasing the denominator will
 1147 only decrease the fraction. On the other hand, if $\text{cost}(A', x_2) = 0$, then it must be that
 1148 $\text{cost}(a_i, x_2) = 0$ due to the nonnegativity of cost . Hence, $s_i(A, A) = 0$, and consequently
 1149 $s_i(A, A') = 0$ as otherwise we could pick x_1 for $s_i(A, A)$.

1150 For the next case, where $a_i \notin A'$, we have $w'_i(A, A') = s_i(A, A' \cup \{a_i\})$. Again, let
 1151 x_1, x_2 be the two points that realize $s_i(A, A' \cup \{a_i\})$ and $s_i(A, A)$. The argument is similar:
 1152 suppose $\text{cost}(A', x_2) \neq 0$, then

$$\begin{aligned} \frac{\text{cost}(a_i, x_1)}{\text{cost}(A', x_1) + \text{cost}(a_i, x_1)} &\geq \frac{\text{cost}(a_i, x_2)}{\text{cost}(A', x_2) + \text{cost}(a_i, x_2)} \\ &\geq \frac{\text{cost}(a_i, x_2)}{\text{cost}(A', x_2) + \text{cost}(a_i, x_2) + \text{cost}(A \setminus (A' \cup \{a_i\}), x_2)} \\ &= \frac{\text{cost}(a_i, x_2)}{\text{cost}(A, x_2)}. \end{aligned}$$

1153 If $\text{cost}(A', x_2) = 0$, then we claim that in fact, $x_1 = x_2$. This follows because

$$\begin{aligned} \frac{\text{cost}(a_i, x_2)}{\text{cost}(A', x_2) + \text{cost}(a_i, x_2)} &= \frac{\text{cost}(a_i, x_2)}{\text{cost}(a_i, x_2)} \\ &= 1, \end{aligned}$$

1154 by the definition of sensitivity, the max sensitivity is 1, therefore in this case it must be
 1155 $x_1 = x_2$ and $s_i(A, A) \leq 1 = s_i(A, A' \cup \{a_i\})$.

1156 • Importance sampling bound: this can be achieved via Lemma B.7, by taking $m =$
 1157 $O(\epsilon^{-2} \|u\|_1 \cdot (\dim \cdot \log(\|u\|_1) + \log(1/\delta)))$ samples.

1158 • Coreset preserves weights: let B be an ϵ -coreset of A . Then, we know that for any $x \in X$,
 1159 $\text{cost}(B, x) = (1 \pm \epsilon) \cdot \text{cost}(A, x)$. Now, let $C \subset \mathbb{R}^d$ be any fixed set of points, and let
 1160 $x_1, x_2 \in X$ be the points that achieve $s_i(C, A)$ and $s_i(C, B)$. We have:

$$\begin{aligned} w_i(C, B) &= s_i(C, B) \\ &= \frac{\text{cost}(c_i, x_2)}{\text{cost}(B, x_2)} \\ &\leq (1 + \epsilon) \cdot \frac{\text{cost}(c_i, x_2)}{\text{cost}(A, x_2)} \end{aligned}$$

$$\begin{aligned}
&\leq (1 + \epsilon) \cdot \frac{\text{cost}(c_i, x_1)}{\text{cost}(A, x_1)} \\
&= (1 + \epsilon) \cdot s_i(C, A),
\end{aligned}$$

we could similarly establish that $s_i(C, B) \geq (1 - \epsilon) \cdot s_i(C, A)$. This proves the assertion. \square

In what follows, we demonstrate how to concretely implement sensitivity sampling for various cost functions, such as ℓ_p sensitivity and k -subspace sensitivity.

B.1 ℓ_2 SENSITIVITY AND LEVERAGE SCORE

Let $X = \mathbb{R}^d$ and $\text{cost}(a_i, x) = (a_i^\top x)^2$. In this case, the ℓ_2 sensitivity defined as

$$s_i(A, B) = \max_{x \in \mathbb{R}^d, Bx \neq 0} \frac{(a_i^\top x)^2}{\|Bx\|_2^2}$$

is, in fact, the leverage score $\tau_i(A)$. The leverage score has many favorable structures: for example, to obtain an ϵ -coreset, it is sufficient to sample $O(\epsilon^{-2}d \log d)$ points, and one could sample with $w_i(A, A')$ instead of $w'_i(A, A')$.

Algorithm 4 Classical oracle for leverage score.

```

1: data structure LEVERAGESCORE
2: members
3:    $A \in \mathbb{R}^{n \times d}$ 
4:    $C \in \mathbb{R}^{s \times d}$ 
5:    $M \in \mathbb{R}^{O(\log n) \times d}$ 
6: end members
7:
8: procedure PREPROCESS( $A \in \mathbb{R}^{n \times d}, C \in \mathbb{R}^{s \times d}$ )
9:    $c \leftarrow 1000$ 
10:  Compute the thin SVD of  $C$ :  $C = U\Sigma V^\top$   $\triangleright V \in \mathbb{R}^{d \times s}$ 
11:  Let  $G \in \mathbb{R}^{c \log n \times s}$  be a random Gaussian matrix
12:   $M \leftarrow (GV)(\Sigma^\dagger V^\top)$   $\triangleright M \in \mathbb{R}^{c \log n \times d}$ 
13: end procedure
14:
15: procedure QUERY( $i \in [n]$ )
16:   return  $\|Ma_i\|_2^2$ 
17: end procedure
18: end data structure

```

Lemma B.9. Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and define $\text{cost} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ by $\text{cost}(a_i, x) = (a_i^\top x)^2$, and let $w(A, B)$ be defined as

$$w_i(A, B) = \begin{cases} a_i^\top (B^\top B)^\dagger a_i, & \text{if } a_i \in \text{span}(B^\top B); \\ \infty, & \text{otherwise.} \end{cases}$$

Then, the weights w satisfy Assumption B.1. Moreover, there exists a randomized algorithm (Algorithm 4) that implements PREPROCESS and QUERY procedures, with

- $\mathcal{T}_{\text{prep}}(s, d) = \tilde{O}(sd^{\omega-1})$;
- $\mathcal{T}_{\text{query}}(s, d) = \tilde{O}(d)$.

Proof. While leverage score is ℓ_2 sensitivity and we could directly use Theorem B.8, we include a proof that utilizes the structure of leverage score for completeness.

- Consistent total weights: first note that

$$\sum_{i=1}^n w_i(A, A) = \sum_{i=1}^n a_i^\top (A^\top A)^\dagger a_i$$

$$\begin{aligned}
&= \text{tr}[(A^\top A)^\dagger A^\top A] \\
&= \text{rank}(A) \\
&\leq d
\end{aligned}$$

hence we have $\text{sum}(w) = d$. Let $S \subset [n]$ with $|S| \geq d$, then

$$\begin{aligned}
\sum_{i \in S} w_i(A_S, A_S) &= \sum_{i \in S} a_i^\top (A_S^\top A_S)^\dagger a_i \\
&= \text{tr}[(A_S^\top A_S)^\dagger (A_S^\top A_S)] \\
&= \text{rank}(A_S) \\
&\leq d.
\end{aligned}$$

- Uniform sampling bound: the proof closely follows that of (Cohen et al., 2015b, Theorem 1), and we analyze by cases. Let S be an indicator matrix with $A' = SA$ and let $S^{(i)}A$ be the indicator matrix for $S \cup \{i\}$. We will show that $w'_i(A, A') = w_i(A, S^{(i)}A)$ via case analysis. If $a_i \in A'$, then $w'_i(A, A') = w_i(A, A')$ and $S = S^{(i)}$, consequently $w_i(A, SA) = w_i(A, S^{(i)}A)$. If $a_i \notin A'$, then $w'_i(A, A') = w_i(A, A' \cup \{i\}) = w_i(A, S^{(i)}A)$. This completes the proof. To show the overestimate, observe that $S^{(i)}$ is an indicator matrix for the sample and thus $S^{(i)} \preceq I_n$, we can then conclude

$$A^\top (S^{(i)})^2 A \preceq A^\top A$$

and

$$\begin{aligned}
w'_i(A, A') &= a_i^\top (A^\top (S^{(i)})^2 A)^\dagger a_i \\
&\geq a_i^\top (A^\top A)^\dagger a_i \\
&= w_i(A, A).
\end{aligned}$$

- Importance sampling bound: this is standard as $w_i(A, A)$ is the leverage score of matrix A . The proof follows from a standard matrix Chernoff bound (by sampling $O(\epsilon^{-2}d \log d)$ points) and we refer readers to (Cohen et al., 2015b, Lemma 4).

- Coreset preserves weights: because B is an ϵ -coreset of A , we know that for any $x \in \mathbb{R}^d$, $\|Bx\|_2^2 = (1 \pm \epsilon) \cdot \|Ax\|_2^2$. Expanding yields

$$(1 - \epsilon) \cdot x^\top A^\top Ax \preceq x^\top B^\top Bx \preceq (1 + \epsilon) \cdot x^\top A^\top Ax,$$

this implies that $B^\top B$ is a spectral approximation to $A^\top A$ and $\ker(A) = \ker(B)$, and the same holds for $(B^\top B)^\dagger$ with respect to $(A^\top A)^\dagger$. Let $C \subset \mathbb{R}^d$ be any fixed subset of \mathbb{R}^d . We conclude the proof by spectral approximation:

$$(1 - \epsilon) \cdot c_i^\top (A^\top A)^\dagger c_i \preceq c_i^\top (B^\top B)^\dagger c_i \preceq (1 + \epsilon) \cdot c_i^\top (A^\top A)^\dagger c_i.$$

Now, we turn to the runtime analysis of Algorithm 4. Let $C = U\Sigma V^\top$. Then we have $(C^\top C)^\dagger = (V\Sigma^2 V^\top)^\dagger = V(\Sigma^\dagger)^2 V^\top$. By definition,

$$\begin{aligned}
w_i(A, C) &= a_i^\top (C^\top C)^\dagger a_i \\
&= a_i^\top V(\Sigma^\dagger)^2 V^\top a_i \\
&= \|\Sigma^\dagger V^\top a_i\|_2^2,
\end{aligned}$$

using a standard Johnson-Lindenstrauss trick (Spielman & Srivastava, 2011), it is sufficient to apply a JL matrix G and prepare the matrix $G\Sigma^\dagger V^\top$. Then, with high probability, all $w_i(A, C)$ can be approximated within a factor of $1 \pm \epsilon$. By a simple scaling argument, this gives an overestimate. Thus, Algorithm 4 gives the correct overestimates of leverage scores. It remains to analyze the runtime.

- Computing the thin SVD of C takes $O(sd^{\omega-1})$ time;
- Computing GV takes $\tilde{O}(sd)$ time and then we multiply GV with $\Sigma^\dagger V^\top$ which takes $\tilde{O}(sd)$ time as well;

1296 • For query, note that $M \in \mathbb{R}^{\log n \times d}$, and thus computing $\|Ma_i\|_2^2$ takes $\tilde{O}(d)$ time.
 1297

1298 This completes the proof of the assertion. \square
 1299

1300 **Remark B.10.** If we faithfully execute the framework of Theorem B.8, then we would need to compute
 1301 the $w_i(A, C \cup \{a_i\})$ instead of $w_i(A, C)$. Instead, we only need to sample with $w_i(A, C)$. This is a
 1302 key feature for leverage score and related notions, which we summarize below.

1303 **Lemma B.11** (Theorem 4 of Cohen et al. (2015b)). Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$. Suppose we sample
 1304 points uniformly and independently with probability $\frac{m}{n}$ to obtain SA . Let $q_i = \min\{1, w_i(A, SA)\}$
 1305 and sample points of A according to q and reweight them accordingly to obtain a weighted subset B .
 1306 Then, with high probability, B is an ϵ -coreset of A with size $O(\frac{nd \log d}{\epsilon^2 m})$.

1307 Setting $m = n/2$, Lemma B.11 itself is sufficient to prove Theorem B.3, without resorting to use
 1308 $w_i(A, C \cup \{a_i\})$. Our following theorem recovers the main result of Apers & Gribling (2024).
 1309

1310 **Theorem B.12.** Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and $\epsilon, \delta \in (0, 1)$. Then, there exists a quantum
 1311 algorithm that with probability $1 - \delta$, constructs an ϵ -coreset B of A of size $O(\epsilon^{-2} d \log(d/\delta))$, in
 1312 time $\tilde{O}(\epsilon^{-1} n^{0.5} d^{1.5} + d^\omega)$ and $\tilde{O}(\epsilon^{-1} n^{0.5} d^{0.5})$ queries to points in A .

1313 Furthermore, if we wish to construct a fixed-size sample of size s , we use $QLS(A, s, \delta)$ to denote this
 1314 algorithm. This variant succeeds with probability at least $1 - \delta$ to sample s weighted points, in time
 1315 $\tilde{O}(n^{0.5} s^{0.5} d + s d^{\omega-1})$ and $\tilde{O}(n^{0.5} s^{0.5})$ queries to points in A .
 1316

1317 *Proof.* The proof follows by observing that we could replace condition 2 and 3 of Assumption B.1
 1318 by Lemma B.11, and then we could integrate Lemma B.9 into Theorem B.3. To achieve the desired
 1319 ϵ -coreset guarantee, we choose
 1320

- $s = O(\epsilon^{-2} d \log(d/\delta))$;
- $s' = O(d \log(d/\delta))$.

1324 Plugging in the choices of s, s' into Lemma B.9 and Theorem B.3 yields an overall runtime of
 1325

$$\tilde{O}(\epsilon^{-1} n^{0.5} d^{1.5} + d^\omega). \quad \square$$

1328 B.2 ℓ_p SENSITIVITY AND LEWIS WEIGHTS

1330 To preserve ℓ_p subspace, one could sample according to ℓ_p sensitivity: let us define $\text{cost}(a_i, x) =$
 1331 $|a_i^\top x|^p$ for $p \in (0, \infty)$, then the ℓ_p sensitivity is
 1332

$$s_i(A, B) = \max_{x \in \mathbb{R}^d, Bx \neq 0} \frac{|a_i^\top x|^p}{\|Bx\|_p^p},$$

1335 and a computationally efficient proxy for ℓ_p sensitivity is ℓ_p Lewis weights, defined as the unique
 1336 nonnegative weight vector $w_A \in \mathbb{R}^n$ with
 1337

$$w_{A,i}^{2/p} = a_i^\top (A^\top W_A^{1-2/p} A)^{-1} a_i,$$

1340 where $W_A \in \mathbb{R}^{n \times n}$ is the diagonal matrix of w_A . Naturally, we define our weights as
 1341

$$w_i(A, B) = (a_i^\top (B^\top W_B^{1-2/p} B)^{-1} a_i)^{p/2}.$$

1343 To implement recursive sampling according to Lewis weights, we need a stronger notion of approxi-
 1344 mation for ϵ -coreset, as beyond sensitivity, the weights might not be preserved by an ϵ -coreset. We
 1345 explicitly define the notion of an ϵ -approximator, a weighted subset of points that preserves the
 1346 weights. Note that an ϵ -approximator is not necessarily an ϵ -coreset.

1347 **Definition B.13.** Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$. We say a weighted subset B of A is an ϵ -approximator
 1348 if for any fixed C and for any $i \in [n]$,
 1349

$$w_i(C, B) = (1 \pm \epsilon) \cdot w_i(C, A).$$

1350 For ℓ_p Lewis weights, it might be simpler to talk about approximating the $2/p$ -th power of w ; in this
 1351 case, we have that $B^\top W_B^{1-2/p} B$ is a $1 \pm \epsilon$ spectral approximation to $A^\top W_A^{1-2/p} A$. Cohen & Peng
 1352 (2015) proves an analogous result to Lemma B.11 for ℓ_p Lewis weights, and in turn this satisfies the
 1353 requirements of Theorem B.3.

1354 **Lemma B.14** (Lemma 6.2 of Cohen & Peng (2015)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$. Suppose we sample points uniformly and independently with probability $\frac{1}{2}$ to obtain SA . Let $q_i = \min\{1, w_i(A, SA)\}$ and sample points of A according to q and reweight them accordingly to obtain a weighted subset B . Then, with high probability, B is an ϵ -approximator of A with expected size $O_p(\epsilon^{-(2\vee p)} d^{(p/2\vee 1)+1} \log d)$.*

1360 We also need the following result due to Fazel et al. (2022) that approximates ℓ_p Lewis weights in
 1361 nearly exact leverage score time:

1362 **Lemma B.15** (Theorem 2 of Fazel et al. (2022)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $p \in (0, \infty)$ and
 1363 $\epsilon \in (0, 1)$. Then, there exists a deterministic algorithm that outputs a vector $\tilde{w}_A \in \mathbb{R}^n$ such that for
 1364 any $i \in [n]$, $\tilde{w}_{A,i} = (1 \pm \epsilon) \cdot w_{A,i}$. Moreover, the runtime of this algorithm is*

$$1366 \quad O_p(nd^{\omega-1} \log(np/\epsilon)).$$

1368 **Algorithm 5** Classical oracle for Lewis weights.

```

1370 1: data structure LEWISWEIGHTS
1371 2: members
1372 3:    $A \in \mathbb{R}^{n \times d}$ 
1373 4:    $C \in \mathbb{R}^{s \times d}$ 
1374 5:    $M \in \mathbb{R}^{O(p^2 \log n) \times d}$ 
1375 6: end members
1376 7:
1377 8: procedure PREPROCESS( $A \in \mathbb{R}^{n \times d}$ ,  $C \in \mathbb{R}^{s \times d}$ )
1378 9:    $c \leftarrow 1000p^2$ 
1379 10:  Generate  $\tilde{W}_C$  via Lemma B.15 on  $C$   $\triangleright \tilde{W}_C \in \mathbb{R}^{s \times s}$ 
1380 11:  Compute the thin SVD of  $\tilde{W}_C^{1/2-1/p} C$ :  $\tilde{W}_C^{1/2-1/p} C = U \Sigma V^\top$ 
1381 12:  Let  $G \in \mathbb{R}^{c \log n \times s}$  be a random Gaussian matrix
1382 13:   $M \leftarrow (GV)(\Sigma^{-1} V^\top)$   $\triangleright M \in \mathbb{R}^{c \log n \times d}$ 
1383 14: end procedure
1384 15:
1385 16: procedure QUERY( $i \in [n]$ )
1386 17:   return  $\|Ma_i\|_2^p$ 
1387 18: end procedure
1388 19: end data structure

```

1389 Note the striking similarity between Algorithm 5 and Algorithm 4, as Lewis weights are leverage
 1390 scores of A after appropriate reweighting.

1391 **Lemma B.16.** *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $p \in (0, \infty)$, $\epsilon, \delta \in (0, 1)$, and define $w(A, B)$ as*

$$1393 \quad w_i(A, B)^{p/2} = a_i^\top (B^\top W_B^{1-2/p} B)^{-1} a_i,$$

1395 *Then, the weights w satisfy the requirements for Theorem B.3 for an ϵ -approximator. Moreover, there
 1396 exists a randomized algorithm (Algorithm 5) that implements PREPROCESS and QUERY procedures
 1397 with*

- 1398 • $\mathcal{T}_{\text{prep}}(s, d) = \tilde{O}_p(s d^{\omega-1})$;
- 1400 • $\mathcal{T}_{\text{query}}(s, d) = \tilde{O}_p(d)$.

1402 *Proof.* The proof is similar to Theorem B.12 by observing that we can replace condition 2 and 3 of
 1403 Assumption B.1 by Lemma B.14. It remains to verify condition 1 and 4.

- Consistent total weights: observe that we can alternatively define w_A as $w_{A,i} = \tau_i(W_A^{1/2-1/p} A)$, i.e., it is the leverage score of $W_A^{1/2-1/p} A$. Since the sum of the leverage scores is at most the rank, we have $\text{sum}(w) = d$.
- Coreset preserves weights: instead of a coresset, we will be generating a sequence of ϵ -approximators, so we will instead prove that: if B is an ϵ -approximator of A , then for any fixed C and any $i \in [n]$, $w_i(C, B) = (1 \pm \epsilon) \cdot w_i(C, A)$. By definition, if B is an ϵ -approximator of A , then we have the following:

$$c_i^\top (B^\top W_B B)^{-1} c_i = (1 \pm \epsilon) \cdot c_i^\top (A^\top W_A A)^{-1} c_i,$$

however, this shows that $w_i(C, B)^{2/p} = (1 \pm \epsilon) \cdot w_i(C, A)^{2/p}$. By raising both sides to the appropriate power, we see that $w_i(C, B) = (1 \pm \epsilon)^{p/2} \cdot w_i(C, A) = (1 \pm p\epsilon/2) \cdot w_i(C, A)$. What we have just shown is that an ϵ -approximator preserves weights up to a factor of $1 \pm O(p\epsilon)$, so to achieve $(1 \pm \epsilon)$ factor approximation for the weights, we would need an ϵ/p -approximator.

Since in the end, we will do a final resampling using the approximated Lewis weights, we will stick to obtaining an ϵ/p -approximator.

To analyze Algorithm 5, we first consider a variant where the Johnson-Lindenstrauss transformation is not applied. We compute \widetilde{W}_C using Lemma B.15 which is a $1 \pm \epsilon$ spectral approximation to W_C , then we know that $\widetilde{W}_C^{1-2/p}$ is a $(1 \pm \epsilon)^{|1-2/p|}$ spectral approximation to $W_C^{1-2/p}$, and this approximation guarantee propagates to $C^\top \widetilde{W}_C^{1-2/p} C$ and $(C^\top \widetilde{W}_C^{1-2/p} C)^{-1}$. So far, we have established that for any a_i , $a_i^\top (C^\top \widetilde{W}_C^{1-2/p} C)^{-1} a_i = (1 \pm \epsilon)^{|1-2/p|} \cdot a_i^\top (C^\top W_C^{1-2/p} C)^{-1} a_i$, and our final output is the $(p/2)$ -th power of the quantity, hence the approximate weight is a $(1 \pm \epsilon)^{|p/2-1|}$ approximation to the true weight. Hence, for $p \in (0, 2)$, our output is already a $1 \pm O(\epsilon)$ approximation to the true quantity, and for $p \geq 2$, we are outputting a $1 \pm p\epsilon/2$ approximation. To obtain the correct $1 \pm \epsilon$ approximation, we need to set the correct approximation factor.

When applying the Johnson-Lindenstrauss transformation, we are effectively approximating $a_i^\top (C^\top \widetilde{W}_C^{1-2/p} C)^{-1} a_i$, and by the same argument, we could use a $1 \pm O(1/p)$ approximation for Johnson-Lindenstrauss, resulting in a dimension of $O(p^2 \log n)$. Let us analyze the runtime.

- PREPROCESS: to compute \widetilde{W}_C , we need to set the ϵ parameter in Lemma B.15 to $O(1/p)$, and it runs in time $\widetilde{O}_p(s d^{\omega-1})$. Computing the SVD takes $O(s d^{\omega-1})$ time, and applying the random Gaussian matrix takes $\widetilde{O}_p(s d)$ time.
- QUERY: note that $M \in \mathbb{R}^{\widetilde{O}_p(1) \times d}$, hence answering one query takes time $\widetilde{O}_p(d)$.

This completes the proof. □

Lemma B.16 gives an approach to compute an ϵ -approximator for A , but our ultimate goal is to compute an ϵ -coreset for A , which has a different objective. The following result states that sampling according to the appropriate scaling of overestimates of Lewis weights indeed yields an ϵ -coreset:

Lemma B.17 (Theorem 1.3 of Woodruff & Yasuda (2023)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $\epsilon, \delta \in (0, 1)$ and $p \in (0, \infty)$ and let $u \in \mathbb{R}^n$ be an overestimate of w_A with $\|u\|_1 \leq O(d)$. Consider the sampling scheme where each point is sampled with probability $q_i = \min\{1, \alpha \cdot u_i\}$ where*

- $\alpha = \epsilon^{-2}(\log^3 d + \log(1/\delta))$ for $p \in (0, 1)$;
- $\alpha = \epsilon^{-2} \log(n/\delta)$ for $p = 1$;
- $\alpha = \epsilon^{-2}(\log^2 d \log n + \log(1/\delta))$ for $p \in (1, 2)$;
- $\alpha = \epsilon^{-2} d^{p/2-1} (\log^2 d \log n + \log(1/\delta))$ for $p \geq 2$.

1458 Set $s_i = q_i^{-1/p}$. Then, with probability at least $1 - \delta$, SA is an ϵ -coreset of A , and the number of
 1459 samples is at most $\alpha \cdot \|u\|_1$.
 1460

1461 We are now ready to state our main result for constructing an ϵ -coreset. Due to Lemma B.17, we only
 1462 need an overestimate for Lewis weights, so we will obtain an $O(1/p)$ -approximator first, and then
 1463 use it to generate approximate Lewis weights.

1464 **Theorem B.18.** *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $\epsilon, \delta \in (0, 1)$ and $p \in (0, \infty)$. There exists a quantum
 1465 algorithm that with probability at least $1 - \delta$, constructs an ϵ -coreset of A with size $\alpha \cdot d$, for α given
 1466 in Lemma B.17. The runtimes for generating the coresets are*

- 1467 • $\tilde{O}_p(d^{\omega+1} + \epsilon^{-2}d^3) + \tilde{O}_p(n^{0.5}d^{1.5}(\epsilon^{-3} + d^{0.5}))$ for $p \in (0, 2)$;
- 1468 • $\tilde{O}_p(d^{p/2}(d^\omega + \epsilon^{-2}d^2)) + \tilde{O}_p(n^{0.5}d^{p/4+1}(\epsilon^{-3} + d^{0.5}))$ for $p \geq 2$.

1471 *The number of queries to the points in A for generating the coresets are*

- 1472 • $\tilde{O}_p(\epsilon^{-1}n^{0.5}d^{0.5})$ for $p \in (0, 2)$;
- 1473 • $\tilde{O}_p(\epsilon^{-1}n^{0.5}d^{p/4})$ for $p \geq 2$.

1476 *Proof.* Our strategy will be to first construct an $O(1/p)$ -approximator of A , which in turn gives an
 1477 $O(1)$ -approximation to w_A , then we will sample according to these approximations, in conjunction
 1478 with Lemma A.14.

1480 • Stage 1: constructing an $O(1/p)$ -approximator of A . The proof follows by combining
 1481 Lemma B.16 and Theorem B.3, with $s = s'$ and

$$s = \tilde{O}_p(d^{(p/2\vee 1)+1}),$$

1484 and the time to generate such an $O(1/p)$ -approximator is

$$\tilde{O}_p(d^{(p/2\vee 1)+\omega}) + \tilde{O}_p(n^{0.5}d^{(p/2\vee 1)/2+1.5}).$$

1486 We let \tilde{B} denote the resulting approximator. Note that the size of \tilde{B} is $\tilde{O}_p(d^{(p/2\vee 1)+1})$.

1488 • Stage 2: constructing an ϵ -coreset of A . Observe that \tilde{B} gives an $O(1)$ -approximation to
 1489 w_A , as for any a_i ,

$$\begin{aligned} (a_i^\top (\tilde{B}^\top W_{\tilde{B}}^{1-2/p} \tilde{B})^{-1} a_i)^{p/2} &= O(1) \cdot (a_i^\top (A^\top W_A^{1-2/p} A)^{-1} a_i)^{p/2} \\ &= O(1) \cdot w_{A,i}, \end{aligned}$$

1493 and after appropriately rescaling this yields the desired oversampling vector u . Note that

$$\begin{aligned} \|u\|_1 &= \sum_{i=1}^n (a_i^\top (\tilde{B}^\top W_{\tilde{B}}^{1-2/p} \tilde{B})^{-1} a_i)^{p/2} \\ &= O(1) \cdot (a_i^\top (A^\top W_A^{1-2/p} A)^{-1} a_i)^{p/2} \\ &= O(d), \end{aligned}$$

1499 and we could invoke Lemma B.17 to generate the desired ϵ -coreset. We could still use
 1500 Algorithm 5 as our oracle to supply the sampling probability, except we need to use
 1501 a Johnson-Lindenstrauss transformation that gives $(1 \pm \epsilon/p)$ -approximation. Given \tilde{B} ,
 1502 generating $\tilde{W}_{\tilde{B}}$ takes $\tilde{O}_p(d^{(p/2\vee 1)+\omega})$ time, and the next time-consuming operation is
 1503 applying the JL. Note that the JL has dimension $\tilde{O}_p(\epsilon^{-2})$, hence applying the JL takes time
 1504 $\tilde{O}_p(\epsilon^{-2}d^{(p/2\vee 1)+2})$. For query, note that the dimension of M is $\tilde{O}_p(\epsilon^{-2}) \times d$, and each
 1505 query can be implemented in $\tilde{O}_p(\epsilon^{-2}d)$ time. All in all, we obtain the following (simplified)
 1506 runtime for generating the ϵ -coreset:

- 1508 – For $p \in (0, 2)$, it takes time $\tilde{O}_p(d^{\omega+1} + \epsilon^{-2}d^3 + \epsilon^{-3}n^{0.5}d^{1.5})$;
- 1509 – For $p \geq 2$, it takes time $\tilde{O}_p(d^{p/2+\omega} + \epsilon^{-2}d^{p/2+2} + \epsilon^{-3}n^{0.5}d^{p/4+1})$.

1511 This concludes the proof. □

1512 B.3 k -SUBSPACE SENSITIVITY AND RIDGE LEVERAGE SCORE
15131514 Let \mathcal{F}_k be the set of all k -dimensional subspaces in \mathbb{R}^d . We can define the cost with respect to a
1515 subspace by identifying $X = \mathcal{F}_k$ and cost : $\mathbb{R}^d \rightarrow \mathcal{F}_k \rightarrow \mathbb{R}_{\geq 0}$ as

1516
$$\text{cost}(a_i, x) = \|a_i^\top (I - P_x)\|_2^2,$$

1517

1518 where P_x is the orthogonal projection onto x . Then, the k -subspace sensitivity is

1519
$$s_i(A, B) = \max_{x \in X} \frac{\|a_i^\top (I - P_x)\|_2^2}{\|B(I - P_x)\|_F^2}.$$

1520
1521

1522 Similar to ℓ_p sensitivity, k -subspace sensitivity can be overestimated by *ridge leverage score*, defined
1523 as

1524
$$\bar{\tau}_i(A) = a_i^\top (A^\top A + \lambda_{A_k} I)^{-1} a_i$$

1525

1526 where $\lambda_{A_k} = \|A - A_k\|_F^2/k$. We then define the weights similar to leverage score:

1527
$$w_i(A, B) = \begin{cases} a_i^\top (B^\top B + \lambda_{B_k} I)^\dagger a_i, & \text{if } a_i \in \text{span}(B^\top B + \lambda_{B_k} I), \\ \infty, & \text{otherwise.} \end{cases}$$

1528
1529

1530 We will explicitly define the notion of ϵ -approximator:1531 **Definition B.19.** Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $\epsilon \in (0, 1)$ and $1 \leq k \leq d$. We say B is an
1532 ϵ -approximator of A if1533

- B is an ϵ -coreset of A ;
- The following additive-multiplicative spectral approximation guarantee holds:

1534

1535
$$(1 - \epsilon)B^\top B - \epsilon\lambda_{A_k} I \preceq A^\top A \preceq (1 + \epsilon)B^\top B + \epsilon\lambda_{A_k} I.$$

1536
1537

1538 The following two results due to Cohen et al. (2017) illustrate that an ϵ -approximator indeed preserves
1539 all weights, and uniform sampling gives sufficiently good approximation.1540 **Lemma B.20** (Lemma 12 of Cohen et al. (2017)²). Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and $\epsilon \in (0, 1)$. If B
1541 is an ϵ -approximator of A , then for any fixed C and for all $i \in [n]$, $w_i(C, B) = (1 \pm \epsilon) \cdot w_i(C, A)$.1542 **Lemma B.21** (Theorem 14 of Cohen et al. (2017)). Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$. Suppose we sample
1543 points uniformly and independently with probability $\frac{1}{2}$ to obtain SA . Let $q_i = \min\{1, w_i(A, SA)\}$
1544 and sample points of A according to q and reweight them accordingly to obtain a weighted subset B .
1545 Then, with high probability, B is an ϵ -approximator of A with expected size $O(\epsilon^{-2}k \log k)$.1546
1547 **Lemma B.22.** Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $k \leq d$, $\epsilon, \delta \in (0, 1)$, and define $w(A, B)$ as

1548
$$w_i(A, B) = \begin{cases} a_i^\top (B^\top B + \lambda_{B_k} I)^\dagger a_i, & \text{if } a_i \in \text{span}(B^\top B + \lambda_{B_k} I), \\ \infty, & \text{otherwise.} \end{cases}$$

1549
1550

1551 Then, the weights w satisfy the requirements for Theorem B.3 for an ϵ -approximator. Moreover, there
1552 exists a randomized algorithm (Algorithm 6) that implements PREPROCESS and QUERY procedures
1553 with1554

- $\mathcal{T}_{\text{prep}}(s, d) = \tilde{O}(ds^{\omega-1})$;
- $\mathcal{T}_{\text{query}}(s, d) = \tilde{O}(d)$.

1555
1556
15571558 *Proof.* We only need to derive a total weights upper bound, as other conditions of Assumption B.1
1559 are already satisfied by Lemma B.21. Let $A = U\Sigma V^\top$ be the SVD of A . Then,

1560
$$\sum_{i=1}^n w_i(A, A) = \sum_{i=1}^n a_i^\top (A^\top A + \lambda_{A_k} I)^\dagger a_i$$

1561
1562
1563

1564 ²Note that while the original Lemma in Cohen et al. (2017) states the result in terms of ridge leverage score,
1565 their proof essentially shows that $B^\top B + \lambda_{B_k} I$ is a $1 \pm \epsilon$ spectral approximation of $A^\top A + \lambda_{A_k} I$, which gives
the desired approximator guarantee.

1566 **Algorithm 6** Classical oracle for ridge leverage score.
1567
1568 1: **data structure** RIDGELEVERAGESCORE
1569 2: **members**
1570 3: $A \in \mathbb{R}^{n \times d}$
1571 4: $C \in \mathbb{R}^{s \times d}$
1572 5: $M \in \mathbb{R}^{O(\log n) \times d}$
1573 6: **end members**
1574 7:
1575 8: **procedure** PREPROCESS($A \in \mathbb{R}^{n \times d}, C \in \mathbb{R}^{s \times d}$)
1576 9: $c \leftarrow 1000$
1577 10: Compute the thin SVD of C : $C = U\Sigma V^\top$ $\triangleright V \in \mathbb{R}^{d \times s}$
1578 11: $\lambda \leftarrow \sum_{i=k+1}^d \sigma_i$
1579 12: Let $G \in \mathbb{R}^{c \log n \times s}$ be a random Gaussian matrix
1580 13: $M \leftarrow (GV)(\Sigma^\dagger V^\top + \frac{1}{\sqrt{\lambda}}V^\top)$ $\triangleright M \in \mathbb{R}^{c \log n \times d}$
1581 14: **end procedure**
1582 15:
1583 16: **procedure** QUERY($i \in [n]$)
1584 17: **return** $\|Ma_i\|_2^2$
1585 18: **end procedure**
1586 19: **end data structure**

$$\begin{aligned}
&= \text{tr}[A^\top A(A^\top A + \lambda_{A_k} I)^\dagger] \\
&= \text{tr}[V\Sigma^2 V^\top (V(\Sigma^2)^\dagger V^\top + \frac{1}{\lambda_{A_k}} VV^\top)] \\
&= \sum_{i=1}^n \frac{\sigma_i^2}{\sigma_i^2 + \frac{\|A - A_k\|_F^2}{k}} \\
&\leq k + \sum_{i=k+1}^n \frac{\sigma_i^2}{\sigma_i^2 + \frac{\|A - A_k\|_F^2}{k}} \\
&\leq k + \sum_{i=k+1}^n \frac{\sigma_i^2}{\frac{\|A - A_k\|_F^2}{k}} \\
&= k + k \cdot \frac{\|A - A_k\|_F^2}{\|A - A_k\|_F^2} \\
&\leq 2k
\end{aligned}$$

where for the fifth step, we upper bound $\frac{\sigma_i^2}{\sigma_i^2 + \frac{\|A - A_k\|_F^2}{k}}$ by 1 for $i \leq k$. The runtime analysis is identical to that of Lemma B.9. \square

1608 One of the key features of the ϵ -approximator for k -subspace approximation is that it is also an
 1609 ϵ -coreset.

Theorem B.23. Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $\epsilon, \delta \in (0, 1)$ and $k \in [d]$. There exists a quantum algorithm $\text{QRRLS}(A, k, \epsilon, \delta)$ that with probability at least $1 - \delta$, constructs an ϵ -coreset of A with size $O(\epsilon^{-2}k \log(k/\delta))$, in time $\tilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1})$ and $\tilde{O}(\epsilon^{-1}n^{0.5}k^{0.5})$ queries to the points in A .

Proof. The proof is almost identical to the proof of Theorem B.12, except that the sizes s and s' are

- $s = \tilde{O}(\epsilon^{-2}k)$;
- $s' = \tilde{O}(k)$.

1620 Plugging these choices into Lemma B.22 and Theorem B.3 gives a runtime of
 1621

$$1622 \tilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1}). \quad \square$$

1624 **C QUANTUM COLUMN SUBSET SELECTION AND LOW-RANK
 1625 APPROXIMATION**

1627 In this section, we present the first application of the generic sampling framework developed in
 1628 Section B. In particular, when the cost is the k -subspace cost defined as $\text{cost}(A, x) = \|A(I -$
 1629 $P_x)\|_F^2$ where $x \in \mathcal{F}_k$, then an ϵ -coreset of A can be used to compute a Frobenius norm low-rank
 1630 approximation. Let $A \in \mathbb{R}^{d \times n}$, we let the set of points be $\{a_1, \dots, a_n\} \subset \mathbb{R}^d$, and the goal is to
 1631 compute a weighted subset of columns of A .

1632 **Lemma C.1** (Lemma 3 of Cohen et al. (2015a)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $\epsilon \in (0, 1)$, $k \in [\min\{n, d\}]$ and let $B \subset A$ be an ϵ -coreset of A with respect to the k -subspace cost. Then, the
 1633 projection onto the top- k left singular vectors of B , denoted by P_{B_k} , satisfies*

$$1636 \|A - P_{B_k}P_{B_k}^\top A\|_F^2 = (1 \pm \epsilon)\|A - A_k\|_F^2.$$

1637 Cohen et al. (2017) is the first to observe that ridge leverage score is in fact an overestimate of
 1638 k -subspace sensitivity, and sampling according to ridge leverage score gives in fact a stronger
 1639 ϵ -approximator (see Section B.3), which is an ϵ -coreset. We hence summarize the result below.

1640 **Corollary C.2.** *Let $A \in \mathbb{R}^{d \times n}$, $\epsilon \in (0, 1)$, $k \leq \min\{n, d\}$ be a positive integer. There exists a quantum
 1641 algorithm QLOWRANKCMM(A, k, ϵ, δ) that constructs an ϵ -coreset C of A for the k -subspace
 1642 cost with probability at least $1 - \delta$. The size of the coresnet is at most $O(k \log(k/\delta)/\epsilon^2)$, the runtime
 1643 is $\tilde{O}(n^{0.5}dk^{0.5}\epsilon^{-1} + dk^{\omega-1})$, and the number of queries to the columns of A is $\tilde{O}(\epsilon^{-1}n^{0.5}k^{0.5})$.*

1644 We note that in addition, C is a column subset selection of A :

1645 **Definition C.3** (Rank- k Column Subset Selection). *For $n' < n$, a subset of A 's columns $C \in \mathbb{R}^{d \times n'}$
 1646 is a $(1 + \epsilon)$ factor column subset selection if there exists a rank- k matrix $X \in \mathbb{R}^{n' \times n}$ with*

$$1649 \|A - CX\|_F^2 \leq (1 + \epsilon)\|A - A_k\|_F^2.$$

1650 We utilize this fact to further derive an algorithm for outputting a low-rank approximation of A ,
 1651 which could subsequently be generalized to tensor. We state a tool for solving a bilinear multiple
 1652 response regression.

1653 **Lemma C.4** (Generalized Low-Rank Approximation (Friedland & Torokhti, 2007)). *Let $A \in \mathbb{R}^{d \times n}$,
 1654 $B \in \mathbb{R}^{d \times k'}$ and $C \in \mathbb{R}^{k' \times d}$, let $k \leq \min\{n, d\}$ be a positive integer. The following bilinear
 1655 regression problem*

$$1657 \min_{X: \text{rank}(X) \leq k} \|A - BXC\|_F^2$$

1658 is minimized by $X_* = B^\dagger [P_B A P_C]_k C^\dagger$ where P_B, P_C are the projection matrices onto B, C
 1659 respectively.

1660 **Theorem C.5.** *Let $A \in \mathbb{R}^{d \times n}$ and $\epsilon \in (0, 0.1)$, and let $k \leq \min\{d, n\}$ be a positive integer.
 1661 Then, there exists a quantum algorithm (Algorithm 7) that outputs a pair of rank- k matrices $M \in \mathbb{R}^{d \times k}$, $N \in \mathbb{R}^{n \times k}$ such that*

$$1665 \|A - MN^\top\|_F^2 \leq (1 + \epsilon) \cdot \|A - A_k\|_F^2$$

1666 holds with probability at least 0.99. Moreover, Algorithm 7 runs in time

$$1668 \tilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1} + \epsilon^{-1.5}d^{0.5}k^{1.5} + \epsilon^{-2}n^{0.5}k^{1.5} + \epsilon^{-3}nk),$$

1669 and uses $\tilde{O}(\epsilon^{-1}n^{0.5}k^{0.5})$ queries to the columns and $\tilde{O}(\epsilon^{-1.5}d^{0.5}k^{0.5})$ to the rows of A .

1670 *Proof.* We start by proving the correctness of Algorithm 7. First note that C is a column subset
 1671 selection (Definition C.3), meaning that there exists a rank- k matrix X with

$$1673 \|A - CX\|_F^2 \leq (1 + \epsilon)\|A - A_k\|_F^2,$$

1674 **Algorithm 7** Quantum low-rank approximation.

1675

1676 1: **procedure** QLOWRANK($A \in \mathbb{R}^{d \times n}, k, \epsilon$)

1677 2: $k_1 \leftarrow O(\epsilon^{-2} k \log k)$

1678 3: $k_2 \leftarrow O(k_1 \log k_1 + \epsilon^{-1} k_1)$

1679 4: $k_3 \leftarrow O(k_2 \log k_2 + \epsilon^{-1} k_2)$

1680 5: $C \leftarrow \text{QLOWRANKCMM}(A, k, \epsilon, 0.001)$ $\triangleright C \in \mathbb{R}^{d \times k_1}$, Corollary C.2.

1681 6: $S \leftarrow \text{QLS}(C, k_2, 0.001)$ $\triangleright S \in \mathbb{R}^{k_2 \times d}$, Theorem B.12.

1682 7: $T_1 \leftarrow \text{QLS}(C, k_2, 0.001)$ $\triangleright T_1 \in \mathbb{R}^{k_2 \times d}$, Theorem B.12.

1683 8: $T_2 \leftarrow \text{QLS}(SA, k_3, 0.001)$ $\triangleright T_2 \in \mathbb{R}^{n \times k_3}$, Theorem B.12.

1684 9: $X, Y \leftarrow \min_{X \in \mathbb{R}^{k_1 \times k}, Y \in \mathbb{R}^{k \times k_2}} \|T_1 C X Y S A T_2 - T_1 A T_2\|_F^2$

1685 10: $\widehat{M} \leftarrow (T_1 C)^\dagger [P_{T_1 C} T_1 A T_2 P_{S A T_2}]_k (S A T_2)^\dagger$ $\triangleright \widehat{M} \in \mathbb{R}^{k_1 \times k_2}$ and $\text{rank}(\widehat{M}) = k$.

1686 11: Write \widehat{M} into factored form $\widehat{M} = \widehat{X} \widehat{Y}$ $\triangleright \widehat{X} \in \mathbb{R}^{k_1 \times k}, \widehat{Y} \in \mathbb{R}^{k \times k_2}$.

1687 12: **return** $C \widehat{X}, \widehat{Y} S A$ in factored form

1688 13: **end procedure**

solving the above regression exactly is costly, so we employ a leverage score sampling matrix S of matrix C , and consider the sketched regression

$$\min_{X: \text{rank}(X) \leq k} \|SCX - SA\|_F^2,$$

letting \hat{X} denote the optimal solution to the above regression, then by Lemma A.13, we know that

$$\begin{aligned} \|A - C\widehat{X}\|_F^2 &\leq (1 + \epsilon) \min_{X: \text{rank}(X) \leq k} \|A - CX\|_F^2 \\ &\leq (1 + \epsilon)^2 \|A - A_k\|_F^2, \end{aligned}$$

for simplicity, we scale ϵ so that the last inequality holds with multiplicative factor $1 + \epsilon$. To find \widehat{X} , we note that $\widehat{X} = (SC)^\dagger SA$, which means that the optimal solution lives in the row span of matrix SA . Writing $\widehat{X} = \widehat{Y}SA$, we see that

$$\min_{Y: \text{rank}(Y) \leq k} \|A - CYSA\|_F^2 \leq (1 + \epsilon) \|A - A_k\|_F^2.$$

To further speed up, we employ two leverage score samplings to reduce dimensions. Let T_1 be the leverage score sampling matrix of C , then by Lemma A.13, we could solve the regression $\min_{Z: \text{rank}(Z) \leq k} \|T_1 A - T_1 C Z\|_F^2$ and recover Y through $\min_Y \|Z - Y S A\|_F^2$ (where the latter could be solved exactly), let Y_1 denote the optimal solution to the Y recovered through this procedure and Z_1 be the optimal solution to the first regression, then $Y_1 = Z_1 (S A)^\dagger$. Z_1 has the guarantee that

$$\begin{aligned} \|CZ_1 - A\|_F^2 &\leq (1 + \epsilon) \min_{Z: \text{rank}(Z) \leq k} \|CZ - A\|_F^2 \\ &\leq (1 + \epsilon)^2 \|A - A_k\|_F^2 \end{aligned}$$

and subsequently

$$\|CY_1SA - A\|_F^2 < (1 + \epsilon)^2 \|A - A_k\|_F^2$$

follow the same argument, we could also sample according to the leverage score of SA and sketch on the right. By properly scaling ϵ , we could then conclude that the optimal cost of

$$\min_{Z: \text{rank}(Z) \leq k} \|T_1 CZSAT_2 - T_1 AT_2\|_F^2$$

is at most $1 + \epsilon$ factor of $\|A - A_k\|_F^2$, as desired.

For the running time, by Corollary C.2, generating C takes $\tilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1})$ time, generating the matrix S with a total row count of k_2 takes $\tilde{O}(\sqrt{dk_2}k_1 + k_1^\omega) = \tilde{O}(\epsilon^{-1.5}d^{0.5}k^{1.5})$ time. Computing SA is simply selecting and rescaling k_2 rows from A , which takes $O(nk_2) = \tilde{O}(\epsilon^{-3}nk)$ time. Generating T_2 takes $\tilde{O}(\sqrt{nk_3}k_2 + k_2^\omega) = \tilde{O}(\epsilon^{-2}n^{0.5}k^{1.5})$ time. Finally, computing T_1C , SAT_2 , their pseudoinverses and projection takes $\text{poly}(k/\epsilon)$ time, since forming these matrices is

simply selecting and rescaling entries, and the resulting matrices are of size $\text{poly}(k/\epsilon)$. Computing $T_1 A T_2$ takes $\text{poly}(k/\epsilon)$ by selecting and rescaling such number of entries from A , hence \widehat{M} can be computed in $\text{poly}(k/\epsilon)$ time.

In summary, Algorithm 7 takes time

$$\tilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1} + \epsilon^{-1.5}d^{0.5}k^{1.5} + \epsilon^{-2}n^{0.5}k^{1.5} + \epsilon^{-3}nk).$$

□

D QUANTUM KERNEL LOW-RANK APPROXIMATION

Given a set of points $\{x_1, \dots, x_n\} \subset \mathbb{R}^d$ and a positive definite kernel function $\mathbf{K} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, the kernel low-rank approximation problem asks to find a pair $M, N \in \mathbb{R}^{n \times k}$ such that $\|K - MN^\top\|_F^2 \leq (1+\epsilon) \cdot \|K - K_k\|_F^2$, where $K \in \mathbb{R}^{n \times n}$ is the kernel matrix induced by \mathbf{K} , with $K_{i,j} = \mathbf{K}(x_i, x_j)$. Note that explicitly forming the matrix K takes $\Omega(n^2)$ evaluations of $\mathbf{K}(\cdot, \cdot)$, which is usually too expensive to be afforded. Since \mathbf{K} is positive definite, there exists feature mapping $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^m$ such that $K = \Phi \Phi^\top$ where $\Phi \in \mathbb{R}^{n \times m}$ with the i -th row being $\phi(x_i)$. Musco & Musco (2017) gives a low-rank approximation for Φ using $\tilde{O}(\epsilon^{-2}nk)$ evaluations of $\mathbf{K}(\cdot, \cdot)$ and an additional $\tilde{O}(\epsilon^{-2(\omega-1)}nk^{\omega-1})$ time. Musco & Woodruff (2017); Bakshi et al. (2020) show that the low-rank approximation guarantee can be achieved, albeit with $\tilde{O}(\epsilon^{-1}nk)$ kernel evaluations and an additional $\tilde{O}(\epsilon^{-(\omega-1)}nk^{\omega-1})$ time³. In this section, we will present a quantum algorithm based on the techniques developed in Section B and C, that computes a low-rank approximation for the kernel matrix using *sublinear number of kernel evaluations and additional operations*.

Before diving into our main result, we introduce some notations. We will extensively use KD_1 or $D_2^\top KD_1$ to denote a weighted sampling of K , in particular,

- If $D \in \mathbb{R}^{n \times t}$, we use $D^\top K_i \in \mathbb{R}^t$ to denote the vector v with $v_j := D(j) \cdot \mathbf{K}(x_i, x_j)$, where $j \in D$ is the j -th sample of D , and $D(j)$ is the corresponding weight;
- If $D \in \mathbb{R}^{n \times t}$, we use “ KD in factored form” to denote a data structure that when i -th row is queried, compute $v \in \mathbb{R}^t$ where $v_j := D(j) \cdot \mathbf{K}(x_i, x_j)$ for $j \in D$.
- If $D_1 \in \mathbb{R}^{n \times t_1}$ and $D_2 \in \mathbb{R}^{n \times t_2}$, we use “ $D_2^\top KD_1$ in factored form” to denote a data structure that supports queries to either row or column, where for i -th row, it computes a vector $v^{\text{row}} \in \mathbb{R}^{t_1}$ where $v_j^{\text{row}} := D_1(j)D_2(i) \cdot \mathbf{K}(x_i, x_j)$ for $j \in D_1$ and $i \in D_2$. Similarly the operation applies to the column.
- Sometimes given $KD \in \mathbb{R}^{n \times t_1}$ in factored form, we will compose it with another matrix $M \in \mathbb{R}^{t_1 \times t_2}$, we use “ KDM in factored form” to denote a data structure that supports row queries, such that when the i -th row is queried, it returns Mv where $v_j := D(j) \cdot \mathbf{K}(x_i, x_j)$ for $j \in D$.

Theorem D.1. *There exists a quantum algorithm (Algorithm 8) that given any set of points $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ and a positive definite kernel function $\mathbf{K} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ and any positive integer $k \leq n$, $\epsilon \in (0, 1)$, runs in*

$$\tilde{O}(n^{0.75}k^{1.25}\epsilon^{-1.25}(\mathcal{T}_K + k\epsilon^{-1}) + n^{0.5}k^{1.5}\epsilon^{-2.5}(\mathcal{T}_K + \epsilon^{-0.5}) + n^{0.5}k^{\omega-0.5}\epsilon^{0.5-\omega})$$

time, where \mathcal{T}_K is the time to evaluate \mathbf{K} on any pair of points x_i, x_j , and $\tilde{O}(\epsilon^{-2}k^2 + \epsilon^{-2.5}n^{0.5}k^{1.5} + \epsilon^{-1.25}n^{0.75}k^{1.25})$ queries to the points in X , and returns a pair of rank- k matrices $M, N \in \mathbb{R}^{n \times k}$ (given implicitly in factor form) such that

$$\|K - MN^\top\|_F^2 \leq (1 + \epsilon)\|K - K_k\|_F^2$$

holds with probability at least 0.99.

Proof. Our algorithm could be interpreted a quantum implemented of a generalization of Bakshi et al. (2020), where they only tackle the case where $\mathbf{K}(x_i, x_j) = x_i^\top x_j$, and we are given directly the kernel matrix K . We also note several differences between ours and Bakshi et al. (2020):

³Note that Musco & Woodruff (2017); Bakshi et al. (2020) phrase their algorithm as a low-rank approximation for PSD matrix A , and their runtime is stated in terms of reads to A . Observe that a read to an entry of A could be translated to one kernel evaluation.

Algorithm 8 Quantum kernel low-rank approximation.

```

1: procedure QLOWRANKKERNEL( $\{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n, K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}, k, \epsilon, \delta$ )
2:    $c \leftarrow 1000$ 
3:    $t \leftarrow c\sqrt{\frac{nk}{\epsilon}} \log(n/\delta)$ 
4:    $k' \leftarrow \tilde{O}(k/\epsilon)$ 
5:    $D_1 \leftarrow \text{QNYSTRÖMKERNEL}(\{x_1, \dots, x_n\}, K, k', \delta/6)$  with each GRLS scaled by  $\sqrt{\frac{n}{\epsilon k}}$   $\triangleright$ 
1789   Algorithm 9,  $D_1 \in \mathbb{R}^{n \times t}$ , oversample columns.
6:    $D_2 \leftarrow \text{QNYSTRÖMKERNEL}(x_1, \dots, x_n, K, k', \delta/6)$  with each GRLS scaled by  $\sqrt{\frac{n}{\epsilon k}}$   $\triangleright$ 
1791   Algorithm 9,  $D_2 \in \mathbb{R}^{n \times t}$ , oversample rows.
1792    $C \leftarrow K D_1$  in factored form  $\triangleright C \in \mathbb{R}^{n \times t}$ .
1793    $R \leftarrow D_2^\top K D_1$  in factored form  $\triangleright R \in \mathbb{R}^{t \times t}$ .
1794    $\epsilon_0 \leftarrow 0.01$ 
1795    $\tilde{R} \leftarrow \text{QLOWRANKCMM}(R, k/\epsilon, \epsilon_0, \delta/6)$   $\triangleright$  Corollary C.2,  $\tilde{R} \in \mathbb{R}^{t \times \epsilon^{-1} k \log(k/\delta)}$ .
1796    $Z \leftarrow \text{top-}k/\epsilon \text{ singular vectors of } \tilde{R}$   $\triangleright Z \in \mathbb{R}^{t \times k/\epsilon}$ 
1797    $\triangleright$  Solve the regression  $\min_{W \in \mathbb{R}^{n \times k/\epsilon}} \|C - WZ^\top\|$ .
1798   Implement oracle for  $p_i = \min\{1, \sqrt{\frac{n}{\epsilon k}} \cdot \|z_i\|_2^2\}$  where  $z_i$  is the  $i$ -th row of  $Z$ 
1799    $D_3 \leftarrow \text{QSAMPLE}(p)$   $\triangleright D_3 \in \mathbb{R}^{t \times k'}$ .
1800    $\triangleright$  Solve the surrogate regression  $\min_W \|CD_3 - WZ^\top D_3\|$ .
1801    $W \leftarrow CD_3(Z^\top D_3)^\dagger$  in factored form  $\triangleright W = K(D_1 D_3 (Z^\top D_3)^\dagger) \in \mathbb{R}^{n \times k/\epsilon}$ .
1802    $\triangleright$  Solve the regression  $\min_{Y: \text{rank}(Y) \leq k} \|K - WYW^\top\|_F^2$ .
1803    $D_4 \leftarrow \text{QLS}(W, k'/\epsilon^2, \delta/6)$   $\triangleright D_4 \in \mathbb{R}^{n \times k'/\epsilon^2}$ , sample rows.
1804    $D_5 \leftarrow \text{QLS}(W, k'/\epsilon^2, \delta/6)$   $\triangleright D_5 \in \mathbb{R}^{n \times k'/\epsilon^2}$ , sample columns.
1805   Compute  $D_4^\top W$  and  $W^\top D_5$   $\triangleright D_4^\top W \in \mathbb{R}^{k'/\epsilon^2 \times k/\epsilon}, W^\top D_5 \in \mathbb{R}^{k/\epsilon \times k'/\epsilon^2}$ .
1806    $P_{D_4^\top W} \leftarrow D_4^\top W (W^\top D_4 D_4^\top W)^\dagger W^\top D_4, P_{W^\top D_5} \leftarrow W^\top D_5 (D_5^\top W W^\top D_5)^\dagger D_5^\top W$ 
1807   Compute  $D_4^\top K D_5$   $\triangleright D_4^\top K D_5 \in \mathbb{R}^{k'/\epsilon^2 \times k'/\epsilon^2}$ .
1808   Compute  $[P_{D_4^\top W} (D_4^\top K D_5) P_{W^\top D_5}]_k$   $\triangleright [P_{D_4^\top W} (D_4^\top K D_5) P_{W^\top D_5}]_k \in \mathbb{R}^{k'/\epsilon^2 \times k'/\epsilon^2}$  of
1809   rank- $k$ .
1810    $Y_* \leftarrow (D_4^\top W)^\dagger [P_{D_4^\top W} (D_4^\top K D_5) P_{W^\top D_5}]_k (W^\top D_5)^\dagger$   $\triangleright Y_* \in \mathbb{R}^{k/\epsilon \times k/\epsilon}$  of rank- $k$ .
1811    $U_* \leftarrow \text{top-}k$  singular vectors of  $Y_*$   $\triangleright U_* \in \mathbb{R}^{k/\epsilon \times k}$ .
1812    $D_6 \leftarrow \text{QLS}(WU_*, k/\epsilon, \delta/6)$   $\triangleright D_6 \in \mathbb{R}^{n \times k/\epsilon}$ .
1813    $\triangleright$  Solve the regression  $\min_{N \in \mathbb{R}^{k \times n}} \|D_6^\top K - D_6^\top WU_* N\|_F^2$ .
1814    $N \leftarrow (D_6^\top WU_*)^\dagger (D_6^\top K)$ 
1815   return  $WU_*, N$  in factored form
1816
1817 end procedure

```

- To compute the initial $t \times t$ matrix, we use quantum Nyström method to sample from the generalized ridge leverage score of $K^{1/2}$, then rescale;
- To compute the low-rank approximation of the $t \times t$ matrix, we use quantum low-rank approximation algorithm developed in preceding section;
- To solve the spectral regression $\min_{W \in \mathbb{R}^{n \times k/\epsilon}} \|C - WZ^\top\|$, we use quantum sampling algorithm to sample from (rescaled) row norms of Z ;
- The rank-constrained regression in Bakshi et al. (2020) is by first computing an orthonormal basis of W , denoted by Q , then solve the regression $\min_{X: \text{rank}(X) \leq k} \|K - QXQ^\top\|_F^2$. To solve this regression, Bakshi et al. (2020) samples rows and columns of K according to column norms of Q , then solve the sketched regression after subsampling via these two matrices. Given the optimal solution X_* , Bakshi et al. (2020) finds an orthonormal basis of X_* as U_* , set M as QU_* and then sample rows of K according to row norms of M . In our case, we can't afford to form Q (because $W \in \mathbb{R}^{n \times k/\epsilon}$), but we could instead solve the regression $\min_{Y: \text{rank}(Y) \leq k} \|K - WYW^\top\|_F^2$, then X could be recovered via $Y \mapsto TYT^\top$ where T is the change-of-basis matrix. We then solve all subsequent regression using Y instead of X .

1836 **Algorithm 9** Quantum generalized ridge leverage score sampling via recursive Nyström method.

1837 1: **procedure** QNYSTRÖMKERNEL($\{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n, \mathbf{K} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^m, s, \delta$)
1838 2: $c \leftarrow 100$
1839 3: $T \leftarrow O(\log(n/s))$
1840 4: Let $S_0 \subset_{1/2} S_1 \subset_{1/2} \dots \subset_{1/2} S_T = [n]$ \triangleright Starting from $[n]$, uniformly sampling half of the
1841 indices.
1842 5: Set k to be the largest integer with $ck \log(2k/\delta) \leq s$
1843 6: $M_0 \leftarrow \{\mathbf{K}(x_i, x_j)\}_{(i,j) \in S_0 \times S_0}$ $\triangleright |S_0| = s$.
1844 7: Let $D_0 \in \mathbb{R}^{n \times |S_0|}$ be the sampling matrix of S_0
1845 8: **for** $t = 1 \rightarrow T$ **do**
1846 9: $\lambda \leftarrow \frac{1}{k} \sum_{i=k+1}^s \sigma_i(M_{t-1})$
1847 10: $\widehat{M} \leftarrow (M_{t-1} + \lambda I_s)^{-1}$
1848 11: \triangleright Let $D_{t-1}^\top K_i := \{D_{t-1}(j) \cdot \mathbf{K}(x_i, x_j)\}_{j \in D_{t-1}} \in \mathbb{R}^s$ for $i \in S_t$ where $D_{t-1}(j)$ is the
1849 weight corresponding to x_j specified by D_{t-1} .
1850 12: Implement oracle for $q_i \leftarrow \frac{5}{\lambda} \cdot (\mathbf{K}(x_i, x_i) - (D_{t-1}^\top K_i)^\top \widehat{M} D_{t-1}^\top K_i)$ for $i \in S_t$
1851 13: $\triangleright p_i = \min\{1, 16q_i \log(2k/\delta)\}$.
1852 14: $\widetilde{D}_t \leftarrow \text{QSAMPLE}(p)$ $\triangleright \widetilde{D}_t \in \mathbb{R}^{|S_t| \times s}$.
1853 15: $D_t \leftarrow D_{S_t} \cdot \widetilde{D}_t$ $\triangleright D_t \in \mathbb{R}^{n \times s}$.
1854 16: $M_t \leftarrow \{D_t(i) D_t(j) \cdot \mathbf{K}(x_i, x_j)\}_{(i,j) \in D_t \times D_t}$ $\triangleright M_t \in \mathbb{R}^{s \times s}$.
1855 17: **end for**
1856 18: **return** D_T
1857 19: **end procedure**

1860 To prove the correctness of the algorithm, we note that except for the above steps, all other steps are
1861 identical to the algorithm of Bakshi et al. (2020), so we just need to show our quantum implementation
1862 preserves key properties of Bakshi et al. (2020). For computing the sampling matrices D_1 and D_2 , the
1863 only difference is when computing the generalized ridge leverage scores of $K^{1/2}$, Bakshi et al. (2020)
1864 uses fast matrix multiplication to compute all scores while we use quantum sampling algorithm to
1865 do so, so the guarantees of the sampling probabilities remain unchanged. The next major difference
1866 is we use quantum low-rank approximation of Corollary C.2, that provides precisely the desired
1867 ϵ -coreset (and subsequently low-rank approximation). Forming the matrix D_3 is almost identical to
1868 that of Bakshi et al. (2020) except we use quantum sampling procedure to generate it.

1869 We will focus on solving the rank-constrained regression $\min_{Y: \text{rank}(Y) \leq k} \|K - WYW^\top\|_F^2$, which
1870 is the major divergence of our approach and that of Bakshi et al. (2020). In Bakshi et al. (2020),
1871 since they could afford linear in n time, they compute an orthonormal basis for W denoted by Q ,
1872 and instead solving the regression $\min_{X: \text{rank}(X) \leq k} \|K - QXQ^\top\|_F^2$. Let $T \in \mathbb{R}^{k/\epsilon \times k/\epsilon}$ be the
1873 change-of-basis matrix such that $QT = W$, then we observe that X could be recovered via the
1874 following procedures:

1875 • Solve

$$\min_{Y: \text{rank}(Y) \leq k} \|K - WYW^\top\|_F^2 \quad (1)$$

1879 , let Y_* denote the optimal solution of the above regression;

1880 • Set $X_* := RY_*R^\top$.

1882 To see X_* is the optimal to the rank-constrained regression against Q , note

$$\begin{aligned} QX_*Q^\top &= QRY_*R^\top Q^\top \\ &= WY_*W^\top, \end{aligned}$$

1887 and if there exists a solution X' with lower cost, then

$$\begin{aligned} \|K - WR^\top X'RW^\top\|_F^2 &= \|K - QX'Q^\top\|_F^2 \\ &< \|K - QX_*Q^\top\|_F^2 \end{aligned}$$

1890

1891

1892 contradicting the definition of Y_* . Both Bakshi et al. (2020) and Algorithm 8 construct leverage score
 1893 sampling matrices according to the leverage scores of W (in the context of Bakshi et al. (2020), they
 1894 sample according to the row norms of Q , which are the leverage scores of W), then we solve the
 1895 surrogate regression

$$1896 \min_{Y: \text{rank}(Y) \leq k} \|D_4^\top K D_5 - D_4^\top W Y W^\top D_5\|_F^2, \quad (2)$$

1897

1898 it suffices to show that the optimal solution of Eq. (2) is a good approximation to the optimal solution
 1899 of Eq. (1). To prove this, note that both D_4 and D_5 sample k'/ϵ^2 rows and columns together
 1900 with the fact $W \in \mathbb{R}^{n \times k'}$ implies that they are weak affine embeddings (Lemma A.12). However,
 1901 $K - W Y W^\top$ is not an affine subspace, so we could instead consider the matrix $H \in \mathbb{R}^{k' \times n}$ and
 1902 let $H_* := \arg \min_{H \in \mathbb{R}^{k' \times n}} \|A - WH\|_F^2$ and $K_* = K - WH_*$. With probability at least $1 - \delta$, we
 1903 have

$$1904 \|D_4^\top K - D_4^\top W H\|_F^2 - \|D_4^\top K_*\|_F^2 = (1 \pm \epsilon) \cdot \|K - WH\|_F^2 - \|K_*\|_F^2,$$

1905

1906 for all $H \in \mathbb{R}^{k' \times n}$. Since it holds for all H , it in particular holds for all $H = Y W^\top$, hence, with
 1907 probability at least $1 - \delta$,

$$1908 \|D_4^\top K - D_4^\top W Y W^\top\|_F^2 - \|D_4^\top K_*\|_F^2 = (1 \pm \epsilon) \cdot \|K - W Y W^\top\|_F^2 - \|K_*\|_F^2.$$

1909

1910 We could then run a symmetric argument on D_5 : consider the regression $\min_{Z \in \mathbb{R}^{k'/\epsilon^2 \times k'}} \|D_4^\top K -$
 1911 $Z W^\top\|_F^2$. Let $Z' := \arg \min_Z \|D_4^\top K - Z W^\top\|_F^2$ and $(D_4^\top K)' := D_4^\top K - Z' W^\top$. With probability
 1912 at least $1 - \delta$ and due to Lemma A.12,

$$1913 \|D_4^\top K D_5 - Z W^\top D_5\|_F^2 - \|(D_4^\top K)' D_5\|_F^2 = (1 \pm \epsilon) \cdot \|D_4^\top K - Z W^\top\|_F^2 - \|(D_4^\top K)'\|_F^2,$$

1914

1915 this holds for all $Z \in \mathbb{R}^{k'/\epsilon^2 \times k'}$ in particular $Z = D_4^\top W Y$. Plug in such Z yields

$$1916 \|D_4^\top K D_5 - D_4^\top W Y W^\top D_5\|_F^2 - \|(D_4^\top K)' D_5\|_F^2$$

$$1917 = (1 \pm \epsilon)^2 \cdot (\|K - W Y W^\top\|_F^2 + \|D_4^\top K_*\|_F^2 - \|K_*\|_F^2) - \|(D_4^\top K)'\|_F^2,$$

1918

1919 holds with probability at least $1 - 2\delta$. Observe that the additive error is at most $\Delta := (1 +$
 1920 $\epsilon)^2 (\|D_4^\top K_*\|_F^2 - \|K_*\|_F^2 + \|(D_4^\top K)' D_5\|_F^2 - \|(D_4^\top K)'\|_F^2)$, it is fixed and independence of Y . We
 1921 will further show that the magnitude of Δ is small, let $\text{OPT} := \min_{Y: \text{rank}(Y) \leq k} \|K - W Y W^\top\|_F^2$,
 1922 then $\Delta = O(\text{OPT})$. To see this, we first observe that

$$1923 \|K_*\|_F^2 = \|K - W H_*\|_F^2$$

$$1924 \leq \text{OPT},$$

1925

1926 this is because H_* is the optimal solution to a regression problem with larger solution space. Next, we
 1927 will show $\|D_4^\top K_*\|_F^2$ is a constant approximation to $\|K_*\|_F^2$ with constant probability, via Markov's
 1928 inequality:

$$1929 \mathbb{E}[\|D_4^\top K_*\|_F^2] = \mathbb{E}[\text{tr}[K_*^\top D_4 D_4^\top K_*]]$$

$$1930 = \text{tr}[K_*^\top \mathbb{E}[D_4 D_4^\top] K_*]$$

$$1931 = \text{tr}[K_*^\top I_n K_*]$$

$$1932 = \|K_*\|_F^2,$$

1933

1934 since D_4 is a leverage score sampling matrix. Hence, by Markov's inequality, with probability at least
 1935 $1 - 1/300$, $\|D_4^\top K_*\|_F^2 \leq 300 \|K_*\|_F^2$. Hence, $\|D_4^\top K_*\|_F^2 - \|K_*\|_F^2 = O(\text{OPT})$. Next, note that

$$1937 \|(D_4^\top K)'\|_F^2 = \|D_4^\top K - Z' W^\top\|_F^2$$

$$1938 \leq \min_{Y: \text{rank}(Y) \leq k} \|D_4^\top K - D_4^\top W Y W^\top\|_F^2$$

$$1939 = O(\text{OPT}),$$

1940

1941 where the second step is again, by Z' is a solution to an optimization problem with larger solution
 1942 space, and the last step is again, by Markov's inequality. By similar argument, we could conclude
 1943 that $\|(D_4^\top K)' D_5\|_F^2 = O(\text{OPT})$. Hence, we have shown that $\Delta = O(\text{OPT})$.

1944 Let $Y_* := \arg \min_{Y: \text{rank}(Y) \leq k} \|D_4^\top K D_5 - D_4^\top W Y W^\top D_5\|_F^2$, and set $g(X) = \|D_4^\top K D_5 - D_4^\top W X W^\top D_5\|_F^2$ to be the cost of approximate regression, and $f(X) = \|K - W X W^\top\|_F^2$ to be the cost of the exact regression respectively, then we could conclude with the preceding argument that

$$1948 \quad g(Y_*) \geq (1 - \epsilon)f(Y_*) + \Delta, \quad (3)$$

1949 on the other hand, if we let Y' be the solution to f , i.e., $f(Y') = \text{OPT}$, then it must be the case that
1950 $g(Y_*) \leq g(Y')$ and similarly

$$1952 \quad g(Y') \leq (1 + \epsilon)f(Y') + \Delta \\ 1953 \quad = (1 + \epsilon) \cdot \text{OPT} + \Delta \quad (4)$$

1954 combining Eq. (3), (4) and the fact that $g(Y_*) \leq g(Y')$, we obtain

$$1955 \quad (1 - \epsilon)f(Y_*) + \Delta \leq (1 + \epsilon) \cdot \text{OPT} + \Delta, \\ 1956 \quad f(Y_*) \leq \frac{1 + \epsilon}{1 - \epsilon} \cdot \text{OPT} + \frac{\epsilon}{1 - \epsilon} \cdot \Delta \\ 1957 \quad \leq (1 + \epsilon)^2 \cdot \text{OPT} + O(\epsilon) \cdot \Delta \\ 1958 \quad = (1 + \epsilon)^2 \cdot \text{OPT} + O(\epsilon) \cdot \text{OPT} \\ 1959 \quad = (1 + O(\epsilon)) \cdot \text{OPT},$$

1963 as desired. This establishes that the optimal solution to Eq. (2) is a good approximation to Eq. (1),
1964 and the optimal solution of Eq. (2) admits a closed-form (see Theorem 4.15 of Bakshi et al. (2020)),
1965 which is precisely what has been computed on line 29 of Algorithm 8.

1966 Observe that we already have a good (partial) low-rank approximation solution, as per the proof of
1967 Theorem 4.16 of Bakshi et al. (2020),

$$1968 \quad \min_{X: \text{rank}(X) \leq k} \|K - Q X Q^\top\|_F^2 \leq (1 + \epsilon) \cdot \|K - K_k\|_F^2,$$

1971 and we have established that the value of Eq. (1) is the same as the LHS of the above inequality,
1972 hence we already have a rank- k solution in factored form, which is $WY \in \mathbb{R}^{n \times k}$. Compute the
1973 top- k left vectors of Y_* , denoted as U_* , and write $Y_* = U_* V_*$. Plug in the decomposition into the
1974 regression, we get

$$1975 \quad \|K - W U_* V_* W^\top\|_F^2 \leq (1 + \epsilon) \|K - K_k\|_F^2,$$

1976 by setting $M := W U_*$ and the right low-rank factor could be found by solving

$$1978 \quad \min_{N \in \mathbb{R}^{n \times k}} \|K - M N^\top\|_F^2 \leq \|K - W U_* V_* W^\top\|_F^2 \\ 1979 \\ 1980 \quad \leq (1 + \epsilon) \|K - K_k\|_F^2.$$

1981 To solve the regression, we employ leverage score sampling on the rows of M , by Lemma A.13, it
1982 suffices to sample k/ϵ rows and the solution to the sketched regression

$$1984 \quad \min_{N \in \mathbb{R}^{n \times k}} \|D_6^\top K - D_6^\top M N^\top\|_F^2,$$

1985 denoted by N_* , satisfies

$$1987 \quad \|K - M N_*^\top\|_F^2 \leq (1 + \epsilon) \min_{N \in \mathbb{R}^{n \times k}} \|K - M N\|_F^2 \\ 1988 \\ 1989 \quad \leq (1 + \epsilon)^2 \|K - K_k\|_F^2.$$

1990 Finally, by properly scaling ϵ , we conclude the proof of correctness.

1992 Next, we analyze the runtime of Algorithm 8, item by item as follows:

1993

- 1994 Form the generalized ridge leverage score sampling matrix D_1 and D_2 (Algorithm 9)
1995 involves selecting $O(k'^2)$ entries from K , which could be implemented by k'^2 evaluations
1996 to the kernel function. In the loop, we compute the SVD of an $k' \times k'$ matrix, takes $O(k'^\omega)$
1997 time, and forming \widehat{M} also takes $O(k'^\omega)$ time. Next, we need to analyze the complexity of
1998 implementing the sampling oracle, for any fixed i , we form $D_{t-1}^\top K_i$ by forming a vector

1998 of length k' through k' kernel evaluations and an extra k'^2 time for the quadratic form. To
 1999 oversample t rows/columns, we could simply scale the sampling probability, this yields a
 2000 larger sum of all p_i 's:
 2001

$$2002 \quad \sum_{i=1}^n p_i = \tilde{O}(\sqrt{nk/\epsilon}),$$

$$2003$$

2004 thus, the overall runtime of this part is
 2005

$$2006 \quad \tilde{O}(\sqrt{n} \sum_i p_i) \cdot (k' \mathcal{T}_K + k'^2) + k'^2 \mathcal{T}_K + k'^\omega$$

$$2007$$

$$2008 = \tilde{O}(n^{0.75} k^{1.25} \epsilon^{-1.25} (\mathcal{T}_K + k\epsilon^{-1})) + k^2 \epsilon^{-2} (\mathcal{T}_K + k^{\omega-2} \epsilon^{2-\omega}).$$

$$2009$$

$$2010$$

- 2011 • For matrices C and R , we do not explicit compute the data structure for them.
 2012
- 2013 • Form the low-rank approximation \tilde{R} of matrix R , we need to show that the generic quantum
 2014 sampling algorithm could be implemented even though the input is given in factor
 2015 form. Observe that the algorithm requires uniformly sampling columns of the input
 2016 matrix, which is oblivious to the input. To form the initial cores C_0 , we need to query a
 2017 total of $\tilde{O}(\sqrt{nk/\epsilon}) \times \tilde{O}(k/\epsilon)$ entries of K , which can be done in $\tilde{O}(n^{0.5} k^{1.5} \epsilon^{-1.5})$ kernel
 2018 evaluations. Then we compute the SVD of this matrix, in time $\tilde{O}(n^{0.5} k^{\omega-0.5} \epsilon^{0.5-\omega})$.
 2019 Subsequently we need to implemet the classical ridge leverage score data structure (Al-
 2020 gorithm 6), which can be done in time $\tilde{O}(n^{0.5} k^{\omega-0.5} \epsilon^{0.5-\omega})$ and then apply the random
 2021 Gaussian matrix takes $\tilde{O}(n^{0.5} k^{1.5} \epsilon^{-1.5})$ time. To implement each query, we can form the
 2022 query vector by $\tilde{O}(n^{0.5} k^{0.5} \epsilon^{-0.5})$ kernel evaluations and an additional $\tilde{O}(n^{0.5} k^{0.5} \epsilon^{-0.5})$
 2023 time. The total runtime is

$$2024 \quad \tilde{O}(n^{0.75} k^{1.25} \epsilon^{-1.25} + n^{0.5} k^{1.5} \epsilon^{-1.5}) \cdot \mathcal{T}_K.$$

$$2025$$

- 2026 • Form matrix Z by computing SVD of \tilde{R} , since $\tilde{R} \in \mathbb{R}^{\sqrt{nk/\epsilon} \times k/\epsilon}$, this step could be done in
 2027 time $O(\epsilon^{0.5-\omega} n^{0.5} k^{\omega-0.5})$.
 2028
- 2029 • Form the sampling matrix D_3 involves sampling according to a rescaled row norm of Z ,
 2030 where each oracle call could be implemented in time $O(k/\epsilon)$ time, and the sum of p_i 's is
 2031

$$2032 \quad \sum_i p_i = \sqrt{\frac{n}{\epsilon k}} \cdot \sum_i \|z_i\|_2^2$$

$$2033$$

$$2034 = \sqrt{\frac{n}{\epsilon k}} \cdot \|Z\|_F^2$$

$$2035$$

$$2036 = \sqrt{\frac{nk}{\epsilon^3}}$$

$$2037$$

$$2038$$

2039 because Z has orthonormal columns. Thus, the overall runtime of this step is
 2040

$$2041 \quad \tilde{O}(\sqrt{nk/\epsilon^4} \cdot k/\epsilon) = \tilde{O}(n^{0.5} k^{1.5} \epsilon^{-3}).$$

$$2042$$

- 2043 • Form matrix W , we only need to explicitly compute $(Z^\top D_3)^\dagger$, which is a small matrix and
 2044 could be computed in time $\tilde{O}(k^\omega/\epsilon^\omega)$. Note that again, we won't explicit compute the data
 2045 structure for W .
 2046
- 2047 • Form the leverage score sampling matrix D_4 and D_5 with respect to W and sample k'/ϵ^2
 2048 rows/columns. The argument is similar to forming that of \tilde{R} , except we use Algorithm 4
 2049 and the size of matrix C is $\tilde{O}(k/\epsilon^2) \times k/\epsilon$. Since we need to oversample $k'/\epsilon^2 = \tilde{O}(k/\epsilon^3)$
 2050 rows and columns, we could scale the scores accordingly and make the sum of probabilities
 2051 be at most $\tilde{O}(k/\epsilon^3)$. To implement the oracle call, note that we need to make $\tilde{O}(k^2 \epsilon^{-3})$
 kernel evaluations to form the initial matrix C_0 , and subsequent operations such as SVD

2052 and applying an JL matrix takes time $\tilde{O}(k^\omega \epsilon^{-\omega-1})$. Then the query can be implemented
 2053 by forming each row of W using $k\epsilon^{-1}$ kernel evaluations with an additional $\tilde{O}(k\epsilon^{-1})$ time.
 2054 Thus, the total runtime is
 2055

$$2056 \quad \tilde{O}(n^{0.5} k^{1.5} \epsilon^{-2.5}) \cdot \mathcal{T}_K.$$

2058 • Form matrix $D_4^\top W$ and $W^\top D_5$ could be done via selecting entries, in time $\tilde{O}(k^2 \epsilon^{-4}) \cdot \mathcal{T}_K$.
 2059
 2060 • Form the projection matrices $P_{D_4^\top W}$ and $P_{W^\top D_5}$ takes time $\text{poly}(k/\epsilon)$.
 2061
 2062 • Form the matrix $D_4^\top K D_5$ is again selecting $\text{poly}(k/\epsilon)$ entries from K , in time $\text{poly}(k/\epsilon) \cdot \mathcal{T}_K$.
 2063
 2064 • Compute $[P_{D_4^\top W} (D_4^\top W D_5) P_{W^\top D_5}]_k$ involves multiplying a sequence of $\text{poly}(k/\epsilon)$ size
 2065 matrices, and computing an SVD, which takes $\text{poly}(k/\epsilon)$ time.
 2066
 2067 • Form the matrix Y_* involves computing the pseudoinverse of $\text{poly}(k/\epsilon)$ size matrices and
 2068 multiplying them together, which takes $\text{poly}(k/\epsilon)$ time. Computing the top- k singular
 2069 vectors of Y_* also takes $\text{poly}(k/\epsilon)$ time.
 2070
 2071 • Form the sampling matrix D_6 involves performing leverage score sampling according to
 2072 matrix $WU_* \in \mathbb{R}^{n \times k}$ with a smaller target row count k/ϵ , so the runtime is subsumed by
 2073 the time to form D_4 and D_5 .
 2074
 2075 • Finally, forming the matrix N only requires computing $(D_6^\top WU_*)^\dagger$, which takes $\text{poly}(k/\epsilon) \cdot \mathcal{T}_K$ time.

2076 Hence, the overall running time of Algorithm 8 is
 2077

$$2078 \quad \tilde{O}(n^{0.75} k^{1.25} \epsilon^{-1.25} (\mathcal{T}_K + k\epsilon^{-1}) + n^{0.5} k^{1.5} \epsilon^{-2.5} (\mathcal{T}_K + \epsilon^{-0.5}) + n^{0.5} k^{\omega-0.5} \epsilon^{0.5-\omega}). \quad \square$$

2080 E QUANTUM (k, p) -SUBSPACE APPROXIMATION

2082 In this section, we consider a generalized version of the k -subspace cost studied in Section B.3,
 2083 for which we call the (k, p) -subspace cost (Woodruff & Yasuda, 2025): let \mathcal{F}_k be the space of all
 2084 k -dimensional subspace, then
 2085

$$2086 \quad \text{cost}(A, x) = \left(\sum_{i=1}^n \|a_i^\top (I - P_x)\|_2^p \right)^{1/p}.$$

2089 By defining the matrix $(p, 2)$ -norm as
 2090

$$2091 \quad \|Y\|_{p,2} = \left(\sum_{i=1}^n \|e_i^\top Y\|_2^p \right)^{1/p},$$

2094 then we could alternatively write the cost function as
 2095

$$2096 \quad \text{cost}(A, F) = \|A(I - P_x)\|_{p,2}.$$

2097 The k -subspace cost function we studied in Section B.3 is just the $(k, 2)$ -subspace cost, and Woodruff
 2098 & Yasuda (2025) has shown that, similar to the k -subspace cost, one could sample according to the
 2099 powers of the ridge leverage score. We recall their main result in the following.

2100 **Lemma E.1** (Theorem 3.9 and 3.11 of Woodruff & Yasuda (2025)). *Let $A \in \mathbb{R}^{n \times d}$ and $\epsilon \in (0, 1)$,
 2101 let S be the sampling matrix that samples according to the distribution $\{p_i\}_{i=1}^n$ where*

$$2103 \quad p_i = \begin{cases} \min\{1, n^{p/2-1} \bar{\tau}_i(A, \lambda_{A_s})^{p/2} / \alpha\}, & \text{if } p \geq 2, \\ \min\{1, \bar{\tau}_i(A, \lambda_{A_s})^{p/2} / \alpha\}, & \text{if } 1 \leq p < 2. \end{cases}$$

2105 Then, $\|SA(I - P_x)\|_{p,2} = (1 \pm \epsilon) \|A(I - P_x)\|_{p,2}$ for all $x \in \mathcal{F}_k$. Moreover,

- For $p \geq 2$, $\alpha = O(\epsilon^2) / \log^3 n$ and $s = O(k/\epsilon^p)$, and S samples $O(k^{p/2}/\epsilon^{O(p^2)} \cdot \log^{O(p)} n)$ rows;
- For $1 \leq p < 2$, $\alpha = O(\epsilon^2) / \log^3 n$ and $s = O(k/\epsilon^2)$, and S samples $O(k/\epsilon^{O(1)} \cdot \log^{O(1)} n)$ rows.

Finally, the algorithm runs in $\tilde{O}(\text{nnz}(A) + d^\omega)$ time.

To speed up their algorithm, we note that the dominating runtime part is to sample from the rescaled leverage score distribution, and we could use Theorem B.23 with an inflated sample size.

Theorem E.2. *There exists a quantum algorithm that achieves the same guarantee as Lemma E.1 while*

- For $p \geq 2$, it runs in time $\tilde{O}(n^{1-1/p} dk^{0.5}/\epsilon^{p/2} + d^\omega)$ and uses $\tilde{O}(n^{1-1/p} k^{0.5}/\epsilon^{p/2})$ queries to the points in A .
- For $p \in [1, 2)$, it runs in time $\tilde{O}(n^{1-p/4} dk^{p/4}/\epsilon + d^\omega)$ and uses $\tilde{O}(n^{1-p/4} k^{p/4}/\epsilon)$ queries to the points in A .

Proof. By Theorem 3.9 and Theorem 3.11 of Woodruff & Yasuda (2025), we know that the sum of sampling probabilities could be upper bounded by $O(sn^{1-2/p})$ for $p \geq 2$ and $O(s^{p/2}n^{1-p/2})$ for $p \in [1, 2)$, meaning that for $p \geq 2$, we obtain a total number of queries being $\tilde{O}(k^{0.5}n^{1-1/p}/\epsilon^{p/2})$ with per query cost d , plus the preprocessing time of d^ω gives the result. For $p \in [1, 2)$, this bound becomes $\tilde{O}(k^{p/4}n^{1-p/4}/\epsilon)$. \square

F QUANTUM TENSOR LOW-RANK APPROXIMATION

In this section, we provide a quantum algorithm for computing the Frobenius norm low-rank approximation of a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$. The goal is to find a rank- k tensor $B := \sum_{i=1}^k u_i \otimes v_i \otimes w_i$ for $u_i, v_i, w_i \in \mathbb{R}^n$, such that $\|A - B\|_F^2 \leq (1 + \epsilon) \cdot \text{OPT}$ where $\text{OPT} := \inf_{B: \text{rank}(B)=k} \|A - B\|_F^2$. The first caveat is that such an optimal rank- k solution might not even exist. We provide algorithms with $1 + \epsilon$ relative error when optimal rank- k solution exists, and an additive error solution when it does not (in such case, $\text{OPT} = 0$ so one has to allow small additive errors). We will then generalize the result for q -th order tensor where $q \geq 3$.

F.1 PRELIMINARY

Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, we define the rank of A as the smallest integer k such that $A = \sum_{i=1}^k u_i \otimes v_i \otimes w_i$ where $u_i, v_i, w_i \in \mathbb{R}^n$. We use \otimes to denote the Kronecker product of two matrices,

i.e., for $A \in \mathbb{R}^{a \times b}, B \in \mathbb{R}^{c \times d}, A \otimes B \in \mathbb{R}^{ac \times bd}$ and $A \otimes B = \begin{bmatrix} A_{1,1}B & A_{1,2}B & \dots & A_{1,b}B \\ \vdots & \vdots & \dots & \vdots \\ A_{a,1}B & A_{a,2}B & \dots & A_{a,b}B \end{bmatrix}$.

We use \odot to denote a product of two matrices defined as for $A \in \mathbb{R}^{a \times b}, B \in \mathbb{R}^{a \times d}, A \odot B \in$

$\mathbb{R}^{a \times bd}$ where $A \odot B = \begin{bmatrix} A_{1,*} \otimes B_{1,*} \\ A_{2,*} \otimes B_{2,*} \\ \vdots \\ A_{a,*} \otimes B_{a,*} \end{bmatrix}$, i.e., the matrix formed by computing tensor product

between corresponding rows of A and B . Given a tensor $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and three matrices $B_1 \in \mathbb{R}^{n_1 \times d_1}, B_2 \in \mathbb{R}^{n_2 \times d_2}$ and $B_3 \in \mathbb{R}^{n_3 \times d_3}$, we define the (\cdot, \cdot, \cdot) operator as

$$A(B_1, B_2, B_3)_{i,j,l} = \sum_{i'=1}^{n_1} \sum_{j'=1}^{n_2} \sum_{l'=1}^{n_3} A_{i',j',l'}(B_1)_{i',i}(B_2)_{j',j}(B_3)_{l',l}, \forall (i, j, l) \in [d_1] \times [d_2] \times [d_3],$$

subsequently, $A(B_1, B_2, B_3) \in \mathbb{R}^{d_1 \times d_2 \times d_3}$. One could also set any of the B_i 's as I_{n_i} and for example, $A(B_1, I_{n_2}, I_{n_3}) \in \mathbb{R}^{d_1 \times n_2 \times n_3}$. When the dimension of the identity matrix is clear

from context, we abbreviate it as I for notational simplicity. For $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, we use $A_1 \in \mathbb{R}^{n_1 \times n_2 n_3}$, $A_2 \in \mathbb{R}^{n_2 \times n_1 n_3}$ and $A_3 \in \mathbb{R}^{n_3 \times n_1 n_2}$ to denote the three matrices such that the $[3] \setminus \{i\}$ dimensions are flattened.

We also state an algorithm due to Song et al. (2019) for sampling according to leverage scores of $U \odot V$:

Lemma F.1. *Given two matrices $U \in \mathbb{R}^{k \times n_1}$ and $V \in \mathbb{R}^{k \times n_2}$, there exists an algorithm*

`TENSORLEVERAGESCORE($U, V, n_1, n_2, k, \epsilon, R_{\text{sample}}$)`

that takes

$$O((n_1 + n_2) \cdot \text{poly}(\log(n_1 n_2), k, \epsilon^{-1}) \cdot R_{\text{sample}})$$

time to generate a weighted sampling matrix $D \in \mathbb{R}^{n_1 n_2 \times R_{\text{sample}}}$ according to the leverage score distribution of the columns of $U \odot V$.

To obtain our fixed-parameter tractable algorithm for rank- k tensor low-rank approximation, we require the following result from Song et al. (2019):

Lemma F.2. *Let $\max\{t_i, d_i\} \leq n$, given a $t_1 \times t_2 \times t_3$ tensor A and three matrices: $T_1 \in \mathbb{R}^{t_1 \times d_1}$, $T_2 \in \mathbb{R}^{t_2 \times d_2}$ and $T_3 \in \mathbb{R}^{t_3 \times d_3}$, if for any $\delta > 0$ there exist a solution to*

$$\min_{X_1, X_2, X_3} \left\| \sum_{i=1}^k (T_1 X_1)_i \otimes (T_2 X_2)_i \otimes (T_3 X_3)_i - A \right\|_F^2 := \text{OPT},$$

and each entry of X_i could be expressed with $O(n^\delta)$ bits, then there exists an algorithm that takes $n^{O(\delta)} \cdot 2^{O(d_1 k + d_2 k + d_3 k)}$ time and outputs three matrices $\widehat{X}_1, \widehat{X}_2$ and \widehat{X}_3 such that $\left\| \sum_{i=1}^k (T_1 \widehat{X}_1)_i \otimes (T_2 \widehat{X}_2)_i \otimes (T_3 \widehat{X}_3)_i - A \right\|_F^2 = \text{OPT}$.

F.2 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

The key we will be utilizing is the following lemma that, to solve a regression up to $(2 + \epsilon)$ factor, it is sufficient to sample the response matrix. As a consequence, we obtain a slew of tensor low-rank approximation algorithms with a $(4 + \epsilon)$ -approximation ratio. This is worse than what is achieved in Song et al. (2019), but we would like to point out this is inherent due to all prior algorithms rely on *oblivious subspace embedding*. In fact, their algorithms utilize OSEs to show an *existence* argument: consider any rank- k regression $\min_X \|XA - B\|_F^2$ where we do not have access to the design matrix A but access to the target matrix B . One could still apply an OSE S on the right of A and solve the sketched regression $\min_X \|XAS^\top - BS^\top\|_F^2$ and argue the solution to the sketched regression is a good approximation. However, if one is only allowed to perform sampling procedures, then it is instructive to sample according to the structure of the unknown matrix A . In the following, we show that it is in fact enough to *sample from B* , this would not lead to a $1 + \epsilon$ approximate solution to the original regression problem, but we still manage to prove this is a $2 + \epsilon$ approximate solution. This is surprising — as an adversary could set B so that the resulting sampling procedure misses all important entries of A . Hence, we devise an approach that utilizes the low-rank approximation of the sampled matrix B to provide a good solution to the regression.

Lemma F.3. *Let $A \in \mathbb{R}^{k \times n}$, $B \in \mathbb{R}^{n \times d}$ and $\epsilon \in (0, 1)$, consider the following rank-constrained regression problem:*

$$\min_{X: \text{rank}(X) \leq k} \|XA - B\|_F^2, \quad (5)$$

for $r = k/\epsilon^2$, let $S \in \mathbb{R}^{r \times n}$ be the ridge leverage score sampling matrix of B , then there exists a solution X' in the column span of BS^\top , such that

$$\|X'A - B\|_F^2 \leq (2 + \epsilon) \min_{X: \text{rank}(X) \leq k} \|XA - B\|_F^2.$$

Proof. Throughout the proof, let $\text{OPT} := \min_{X: \text{rank}(X) \leq k} \|XA - B\|_F^2$. We first note that if we sample columns of B according its ridge leverage scores with r columns, then we obtain an ϵ -coreset of B as for all rank- k projection matrix Q ,

$$(1 - \epsilon) \cdot \|B - QB\|_F^2 \leq \|BS^\top - QBS^\top\|_F^2 \leq (1 + \epsilon) \cdot \|B - QB\|_F^2,$$

in particular, let Q_* be the projection onto the top- k principal components of B , then the above suggests that

$$\begin{aligned} \|BS^\top - Q_*BS^\top\|_F^2 &\leq (1 + \epsilon) \cdot \|B - B_k\|_F^2 \\ &\leq (1 + \epsilon) \cdot \text{OPT}, \end{aligned}$$

because B_k is the optimal rank- k solution. On the other hand, let Q' be the projection onto the top- k principal components of BS^\top , then

$$\begin{aligned} \|B - Q'B\|_F^2 &\leq \frac{1}{1 - \epsilon} \|BS^\top - Q'BS^\top\|_F^2 \\ &\leq \frac{1}{1 - \epsilon} \|BS^\top - Q_*BS^\top\|_F^2 \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \cdot \text{OPT}, \end{aligned}$$

by scaling ϵ , we get the cost is at most $1 + \epsilon$ factor of OPT . We will set $X' := Q'BA^\dagger$, we obtain

$$\begin{aligned} \|X'A - B\|_F^2 &= \|Q'BA^\dagger A - B\|_F^2 \\ &= \|(Q'B - B)A^\dagger A + B(A^\dagger A - I)\|_F^2 \\ &= \|Q'B - B\|_F^2 + \|B(I - A^\dagger A)\|_F^2 \\ &\leq (1 + \epsilon) \cdot \text{OPT} + \|BA^\dagger A - B\|_F^2 \\ &\leq (1 + \epsilon) \cdot \text{OPT} + \text{OPT} \\ &= (2 + \epsilon) \cdot \text{OPT} \end{aligned}$$

where we use Pythagorean theorem and the fact that BA^\dagger is the optimal solution to the regression. Write $BS^\top = U\Sigma V^\top$, then $Q' = U_k U_k^\top$, so X' lies in the column span of U_k which in turn, is a subset of the column span of BS^\top . \square

Remark F.4. One might wonder whether the bound obtained in Lemma F.3 is loose, we provide an instance where sampling according to B would necessarily give a 2-approximation, hence showing the tightness of Lemma F.3. Consider both A and B are n -dimensional column vectors (hence $k = 1$), where $A = e_i + e_n$ for i randomly chosen from $[n - 1]$, and $B = e_n$. It is not hard to see that the optimal solution to the regression $\min_{x \in \mathbb{R}} \|Ax - B\|_2^2$ is given by $x = \frac{1}{2}$, with the cost $\frac{1}{2}$. On the other hand, if we perform any variant of importance sampling on B would, with high probability, only hits the last entry of B since all the mass is on the last entry, while missing the i -th entry for which A is nonzero. Conditioning on this event, then the subsampled regression becomes $\min_{x \in \mathbb{R}} \|e_n x - e_n\|_2^2$ with an optimal solution $x' = 1$. Plug in x' to the original regression would give a cost of 1, which is only a 2-approximation to the optimal cost.

F.3 QUANTUM BICRITERIA TENSOR LOW-RANK APPROXIMATION

We design a quantum bicriteria tensor low-rank approximation algorithm that outputs a rank- k^2/ϵ^4 tensor that approximates rank- k low-rank approximation of A .

Theorem F.5. Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ and a positive integer $k \leq n$, $\epsilon \in (0, 0.1)$, there exists an algorithm (Algorithm 10) which takes $\tilde{O}(\epsilon^{-1}n^2k^{0.5} + n \text{poly}(k/\epsilon))$ time and outputs three matrices $U, V, W \in \mathbb{R}^{n \times r}$ with $r = \tilde{O}(k^2/\epsilon^4)$ such that

$$\left\| \sum_{i=1}^r U_i \otimes V_i \otimes W_i - A \right\|_F^2 \leq (4 + \epsilon) \cdot \min_{\text{rank } -k A_k} \|A - A_k\|_F^2$$

with probability 0.99.

Proof. The proof will be similar to that of Theorem F.9. Let U^*, V^*, W^* be the optimal rank- k factor, set $Z_1 \in \mathbb{R}^{k \times n^2}$ to be the matrix where i -th row is $V_i^* \otimes W_i^*$, then clearly

$$\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2 = \text{OPT}$$

2268

2269

Algorithm 10 Quantum bicriteria rank- k^2/ϵ^4 tensor low-rank approximation algorithm.

```

2270 1: procedure QBICRITERIATENSORLOWRANK( $A \in \mathbb{R}^{n \times n \times n}$ ,  $k, \epsilon$ )
2271 2:    $s_1, s_2 \leftarrow \tilde{O}(k/\epsilon^2)$ 
2272 3:    $C_1 \leftarrow \text{QLOWRANKCMM}(A_1, k, \epsilon, 0.001)$ 
2273 4:    $C_2 \leftarrow \text{QLOWRANKCMM}(A_2, k, \epsilon, 0.001)$ 
2274 5:   Form  $\hat{U}$  by repeating each column of  $C_1$  by  $s_2$  times
2275 6:   Form  $\hat{V}$  by repeating each column of  $C_2$  by  $s_1$  times
2276 7:    $s_3 \leftarrow O(s_1 s_2 \log(s_1 s_2) + s_1 s_2 / \epsilon)$ 
2277 8:    $\epsilon_0 \leftarrow 0.0001$ 
2278 9:    $D_3 \leftarrow \text{TENSORLEVERAGESCORE}(\hat{U}^\top, \hat{V}^\top, n, n, s_1 s_2, \epsilon_0, s_3)$ 
2279 10:   $B \leftarrow (\hat{U}^\top \odot \hat{V}^\top) D_3$ 
2280 11:   $\hat{W} \leftarrow A_3 D_3 B^\dagger$ 
2281 12:  return  $\hat{U}, \hat{V}, \hat{W}$ 
2282 13: end procedure

```

2285 where OPT is the optimal cost and the cost is achieved by picking U as U^* . By Lemma F.3, there
 2286 exists a solution $\bar{U} = C_1 X_1$ in the column span of C_1 such that

$$\|\overline{U}Z_1 - A_1\|_F^2 \leq (2 + \epsilon) \cdot \text{OPT}, \quad (6)$$

we setup $Z_2 \in \mathbb{R}^{k \times n^2}$ where the i -th row of Z_2 is $\bar{U}_i \otimes W_i^*$, and consider the regression

$$\min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A_2\|_F^2,$$

2292 if we pick V as V^* , then it degenerates to Eq. (6), so the optimal cost of the above regression is at
 2293 most $(2 + \epsilon) \cdot \text{OPT}$. By Lemma F.3, we could find a solution $\bar{V} = C_2 X_2$ with

$$\|\overline{V}Z_2 - A_2\|_F^2 \leq (2 + \epsilon)^2 \cdot \text{OPT}.$$

Finally, set $Z_3 \in \mathbb{R}^{k \times n^2}$ with the i -th row being $\bar{U}_i \otimes \bar{V}_i$, and we know that

$$\min_{W \in \mathbb{R}^{n \times k}} \|WZ_3 - A_3\|_F^2 \leq (2 + \epsilon)^2 \cdot \text{OPT},$$

similar to the proof of Theorem F.9, we create $Z'_3 \in \mathbb{R}^{s_1 s_2 \times n^2}$ such that $(Z'_3)_{(i,j)} = (C_1)_i \otimes (C_2)_j$ hence $Z'_3 = \widehat{U}^\top \odot \widehat{V}^\top$ for \widehat{U}, \widehat{V} defined in Algorithm 10. As Z_3 is in the row span of Z'_3 , we could alternatively consider

$$\min_{W \in \mathbb{R}^{n \times s_1 s_2}} \|W Z'_3 - A_3\|_F^2$$

where one could solve up to $1 + \epsilon$ approximation by using leverage score sampling of matrix Z'_3 , and the optimal solution is indeed given by $A_3 D_3 (Z'_3 D_3)^\dagger$, which is precisely the matrix \widehat{W} we have computed. Therefore, we end up with an approximate solution whose cost is at most $(2 + \epsilon)^2(1 + \epsilon) \cdot \text{OPT} = (4 + O(\epsilon)) \cdot \text{OPT}$. The rank of these matrices is $s_1 s_2 = \widetilde{O}(k^2/\epsilon^4)$ as advertised.

Finally, for the running time, computing C_1 and C_2 takes $\tilde{O}(\epsilon^{-1}n^2k^{0.5} + n \text{ poly}(k/\epsilon))$ time, and computing the leverage score sampling matrix D_3 takes $O(n \text{ poly}(k/\epsilon))$ by Lemma F.1. Forming the matrix B naïvely would take $O(n^2k)$ time, but we could compute entries of B on demand: the sampling matrix D_3 tells us which entries among the n^2 need to be computed, and one only needs to compute $s_3 = \text{poly}(k/\epsilon)$ of them. Further, computing each entry takes $O(1)$ time, so the overall time to form B is $\text{poly}(k/\epsilon)$. Computing A_3D_3 could be done via selecting a total of $n \text{ poly}(k/\epsilon)$ entries, so the overall runtime is

$$\tilde{O}(\epsilon^{-1}n^2k^{0.5} + n \operatorname{poly}(k/\epsilon)).$$

2319 F.4 QUANTUM TENSOR LOW-RANK APPROXIMATION: FIXED-PARAMETER TRACTABLE 2320 ALGORITHM

The main result of this subsection is the following:

2322 **Theorem F.6.** *Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ such that each entry could be written with*
 2323 *$O(n^\delta)$ bits for $\delta > 0$. Define $\text{OPT} := \inf_{\text{rank } k} \|A - A_k\|_F^2$, for any $k \geq 1$ and $\epsilon \in (0, 1)$, define*
 2324 *$n^{\delta'} = O(n^\delta 2^{O(k^2/\epsilon)})$.*

2326 • *If $\text{OPT} > 0$, and there exists a tensor $A_k = U^* \otimes V^* \otimes W^*$ with $\|A - A_k\|_F^2 = \text{OPT}$,*
 2327 *and $\max\{\|U^*\|_F, \|V^*\|_F, \|W^*\|_F\} \leq 2^{O(n^{\delta'})}$, then there exists an algorithm that takes*
 2328 *$(n^2 k^{0.5}/\epsilon + n \text{poly}(k/\epsilon) + 2^{O(k^2/\epsilon)}) n^\delta$ time in the unit cost RAM model with word size*
 2329 *$O(\log n)$ bits and outputs $n \times k$ matrices U, V, W such that*

$$\|U \otimes V \otimes W\|_F^2 \leq (4 + \epsilon) \text{OPT} \quad (7)$$

2334 with probability at least 0.99 and entries of U, V, W fit in $n^{\delta'}$ bits;

2336 • *If $\text{OPT} > 0$ and A_k does not exist, and there exists $U', V', W' \in \mathbb{R}^{n \times k}$ with*
 2337 *$\max\{\|U'\|_F, \|V'\|_F, \|W'\|_F\} \leq 2^{O(n^{\delta'})}$ with $\|U' \otimes V' \otimes W' - A\|_F^2 \leq (1 + \epsilon/4) \text{OPT}$,*
 2338 *then we can find U, V, W with Eq. (7) holds;*

2340 • *If $\text{OPT} = 0$ and A_k does not exist and there exists a solution U^*, V^*, W^* with each entry*
 2341 *in $n^{O(\delta')}$ bits, then Eq. (7) holds;*

2342 • *If $\text{OPT} = 0$ and there exists three $n \times k$ matrices U, V, W such that*
 2343 *$\max\{\|U\|_F, \|V\|_F, \|W\|_F\} \leq 2^{O(n^{\delta'})}$ and*

$$\|U \otimes V \otimes W - A\|_F^2 \leq (4 + \epsilon) \text{OPT} + 2^{-\Omega(n^{\delta'})} = 2^{-\Omega(n^{\delta'})},$$

2347 then we can output U, V, W with the above guarantee.

2349 Further, if A_k exists, we can output a number Z such that $\text{OPT} \leq Z \leq (4 + \epsilon) \text{OPT}$. For all the
 2350 cases above, the algorithm runs in the same time as the first case, and succeeds with probability at
 2351 least 0.999.

2352 The proof will be a consequence of Theorem F.7 and Lemma F.8, which we will discuss in the
 2353 following sections.

F.4.1 META ALGORITHM AND BOUNDED ENTRY ASSUMPTION

2358 **Algorithm 11** Quantum FPT rank- k low-rank approximation.

2359 1: **procedure** QFPTLOWRANK(A, k, ϵ) ▷ Theorem F.7
 2360 2: $s_1 \leftarrow s_2 \leftarrow \tilde{O}(k/\epsilon^2)$
 2361 3: $C_1 \leftarrow \text{QLOWRANKCMM}(A_1, k, \epsilon, 0.0001)$ ▷ $C_1 \in \mathbb{R}^{n \times s_1}$.
 2362 4: $C_2 \leftarrow \text{QLOWRANKCMM}(A_2, k, \epsilon, 0.0001)$ ▷ $C_2 \in \mathbb{R}^{n \times s_2}$.
 2363 5: Form B_1 by consecutively repeating each column of C_1 by s_2 times
 2364 6: Form B_2 by consecutively repeating each column of C_2 by s_1 times
 2365 7: $d_3 \leftarrow O(s_1 s_2 \log(s_1 s_2) + s_1 s_2/\epsilon)$
 2366 8: $D_3 \leftarrow \text{TENSORLEVERAGESCORE}(B_1^\top, B_2^\top, n, n, s_1 s_2, \epsilon_0, d_3)$
 2367 9: $M_3 \leftarrow A_3 D_3$
 2368 10: $Y_1, Y_2, Y_3, C \leftarrow \text{QSUBLINEARREDUCTION}(A, A_1 S_1, A_2 S_2, A_3 S_3, n, s_1, s_2, d_3, k, \epsilon)$. ▷
 2369 Algorithm 12
 2370 11: Create variables for $X_i \in \mathbb{R}^{s_i \times k}, \forall i \in [3]$
 2371 12: Run polynomial system verifier for $\|(Y_1 X_1) \otimes (Y_2 X_2) \otimes (Y_3 X_3) - C\|_F^2$
 2372 13: **return** $C_1 X_1, C_2 X_2$, and $M_3 X_3$
 2373 14: **end procedure**

2374 **Theorem F.7.** *Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, for any $k \geq 1, \epsilon \in (0, 1)$ and $\delta > 0$, there is*
 2375 *a quantum algorithm which takes $n^2 k^{0.5}/\epsilon + n^{O(\delta)} 2^{O(k^2/\epsilon)}$ time where δ is defined as in Lemma F.2,*

2376 $\tilde{O}(nk^{0.5}/\epsilon)$ queries to the rows, columns and tubes of A , and outputs three matrices $U \in \mathbb{R}^{n \times k}$,
 2377 $V \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{n \times k}$ such that

$$2379 \quad \left\| \sum_{i=1}^k U_i \otimes V_i \otimes W_i - A \right\|_F^2 \leq (4 + \epsilon) \min_{\text{rank } -k} A_k \|A_k - A\|_F^2$$

2382 holds with probability 0.99.

2383 *Proof.* We define OPT as

$$2385 \quad \text{OPT} = \min_{\text{rank } -k} A' \|A' - A\|_F^2.$$

2387 Suppose the optimal $A_k = U^* \otimes V^* \otimes W^*$. We fix $V^* \in \mathbb{R}^{n \times k}$ and $W^* \in \mathbb{R}^{n \times k}$. We use
 2388 $V_1^*, V_2^*, \dots, V_k^*$ to denote the columns of V^* and $W_1^*, W_2^*, \dots, W_k^*$ to denote the columns of W^* .

2390 We consider the following optimization problem,

$$2391 \quad \min_{U_1, \dots, U_k \in \mathbb{R}^n} \left\| \sum_{i=1}^k U_i \otimes V_i^* \otimes W_i^* - A \right\|_F^2,$$

2395 which is equivalent to

$$2396 \quad \min_{U_1, \dots, U_k \in \mathbb{R}^n} \left\| \begin{bmatrix} U_1 & U_2 & \dots & U_k \end{bmatrix} \begin{bmatrix} V_1^* \otimes W_1^* \\ V_2^* \otimes W_2^* \\ \dots \\ V_k^* \otimes W_k^* \end{bmatrix} - A \right\|_F^2.$$

2401 We use matrix Z_1 to denote $\begin{bmatrix} \text{vec}(V_1^* \otimes W_1^*) \\ \text{vec}(V_2^* \otimes W_2^*) \\ \dots \\ \text{vec}(V_k^* \otimes W_k^*) \end{bmatrix} \in \mathbb{R}^{k \times n^2}$ and matrix U to denote
 2402 $[U_1 \ U_2 \ \dots \ U_k]$. Then we can obtain the following equivalent objective function,

$$2406 \quad \min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2.$$

2408 Notice that $\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2 = \text{OPT}$, since $A_k = U^*Z_1$. By Lemma F.3, we know that if
 2409 we sample columns of A_1 according to its ridge leverage score distribution with $\tilde{O}(k/\epsilon^2)$ columns
 2410 and let C_1 denote the resulting matrix, then there exists a solution $\hat{U} = C_1X_1$ in the column span of
 2411 C_1 , such that

$$2413 \quad \|\hat{U}Z_1 - A_1\|_F^2 \leq (2 + \epsilon) \min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2$$

$$2414 \quad = (2 + \epsilon) \cdot \text{OPT},$$

2416 which implies

$$2418 \quad \left\| \sum_{i=1}^k \hat{U}_i \otimes V_i^* \otimes W_i^* - A \right\|_F^2 \leq (2 + \epsilon) \cdot \text{OPT}.$$

2421 To write down $\hat{U}_1, \dots, \hat{U}_k$, we use the given matrix A_1 , and we create $s_1 \times k$ variables for matrix
 2422 X_1 .

2423 As our second step, we fix $\hat{U} \in \mathbb{R}^{n \times k}$ and $W^* \in \mathbb{R}^{n \times k}$, and we convert tensor A into matrix A_2 . Let

2425 matrix Z_2 denote $\begin{bmatrix} \text{vec}(\hat{U}_1 \otimes W_1^*) \\ \text{vec}(\hat{U}_2 \otimes W_2^*) \\ \dots \\ \text{vec}(\hat{U}_k \otimes W_k^*) \end{bmatrix}$. We consider the following objective function,

$$2429 \quad \min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A_2\|_F^2,$$

2430 for which the optimal cost is at most $(2 + \epsilon) \cdot \text{OPT}$.
2431

2432 By playing a similar argument and utilizing Lemma F.3, we could obtain matrix C_2 with $\tilde{O}(k/\epsilon^2)$
2433 rescaled columns of A_2 , such that there exists a solution $\widehat{V} = C_2 X_2$ with

$$2434 \quad \|\widehat{V} Z_2 - A_2\|_F^2 \leq (2 + \epsilon) \min_{V \in \mathbb{R}^{n \times k}} \|V Z_2 - A_2\|_F^2 \leq (2 + \epsilon)^2 \cdot \text{OPT},$$

2435 which implies

$$2436 \quad \left\| \sum_{i=1}^k \widehat{U}_i \otimes \widehat{V}_i \otimes W_i^* - A \right\|_F^2 \leq (2 + \epsilon)^2 \cdot \text{OPT}.$$

2437 To write down $\widehat{V}_1, \dots, \widehat{V}_k$, we need to use the given matrix A_2 , and we need to create $s_2 \times k$ variables
2438 for matrix X_2 .

2439 As our third step, we fix the matrices $\widehat{U} \in \mathbb{R}^{n \times k}$ and $\widehat{V} \in \mathbb{R}^{n \times k}$. Let matrix Z_3 denote
2440 $\begin{bmatrix} \text{vec}(\widehat{U}_1 \otimes \widehat{V}_1) \\ \text{vec}(\widehat{U}_2 \otimes \widehat{V}_2) \\ \dots \\ \text{vec}(\widehat{U}_k \otimes \widehat{V}_k) \end{bmatrix}$. We convert tensor $A \in \mathbb{R}^{n \times n \times n}$ into matrix $A_3 \in \mathbb{R}^{n \times n^2}$. Since $\widehat{U} = C_1 X_1$
2441 and $\widehat{V} = C_2 X_2$, define the matrix $Z'_3 \in \mathbb{R}^{d_3 \times n^2}$ where, if we use (i, j) to index rows of Z'_3 , then
2442 $(Z'_3)_{(i,j)} = (C_1)_i \otimes (C_2)_j$, and a key observation is there exists a matrix $Y \in \mathbb{R}^{k \times d_3}$ with $Z_3 = Y Z'_3$.
2443 To form Z'_3 , we take the approach of forming B_1 and B_2 by repeating columns a fixed number of
2444 times, for example, B_1 is defined as

$$2445 \quad [(C_1)_1 \quad (C_1)_1 \quad \dots \quad (C_1)_1 \quad \dots \quad (C_1)_k \quad \dots \quad (C_1)_k]$$

2446 where each column is repeated for s_2 times, and one could verify that $Z'_3 = B_1 \odot B_2$.

2447 We consider the following objective function,

$$2448 \quad \min_{W \in \mathbb{R}^{n \times k}} \|W Z_3 - A_3\|_F^2,$$

2449 which is equivalent to

$$2450 \quad \min_{W \in \mathbb{R}^{n \times k}, Y \in \mathbb{R}^{k \times d_3}} \|W Y Z'_3 - A_3\|_F^2,$$

2451 if we employ leverage score sampling on the columns of Z'_3 , then by Lemma A.13, we could find a
2452 pair of matrices \widehat{W}, \widehat{Y} with

$$2453 \quad \begin{aligned} \|\widehat{W} \widehat{Y} Z'_3 - A_3\|_F^2 &\leq (1 + \epsilon) \min_{W \in \mathbb{R}^{n \times k}, Y \in \mathbb{R}^{k \times d_3}} \|W Y Z'_3 - A_3\|_F^2 \\ 2454 &= (1 + \epsilon) \min_{W \in \mathbb{R}^{n \times k}} \|W Z_3 - A_3\|_F^2 \\ 2455 &\leq (1 + \epsilon)(2 + \epsilon)^2 \cdot \text{OPT}. \end{aligned}$$

2456 We briefly explain how to obtain the factorization of \widehat{W}, \widehat{Y} , consider solving the regression

$$2457 \quad \min_{T \in \mathbb{R}^{n \times d_3}} \|T Z'_3 D_3 - A_3 D_3\|_F^2$$

2458 where $D_3 \in \mathbb{R}^{n^2 \times d_3}$ is the leverage score sampling matrix of Z'_3 , then $T = A_3 D_3 (Z'_3 D_3)^\dagger$ and we
2459 could take the top- k left singular vectors as \widehat{W} and the remaining part as \widehat{Y} . All we have shown is
2460 that \widehat{W} is in the column span of $A_3 D_3$ with a cost at most $(1 + \epsilon)(2 + \epsilon)^2$ of the optimal cost, as
2461 $\widehat{W} = T P_k = A_3 D_3 (Z'_3 D_3)^\dagger P_k$ where P_k is the projection onto the top- k left singular vectors of T .

2462 Thus, we have established that

$$2463 \quad \min_{X_1, X_2, X_3} \left\| \sum_{i=1}^k (C_1 X_1)_i \otimes (C_2 X_2)_i \otimes (A_3 D_3 X_3)_i - A \right\|_F^2 \leq (1 + \epsilon)(2 + \epsilon)^2 \cdot \text{OPT}.$$

2464 Let $V_1 = C_1, V_2 = C_2, V_3 = A_3 D_3$, we then apply Lemma F.8, and we obtain $\widehat{V}_1, \widehat{V}_2, \widehat{V}_3, C$.
2465 We then apply Lemma F.2. Correctness follows by rescaling ϵ by a constant factor and note that
2466 $(1 + \epsilon)(2 + \epsilon)^2 = 4 + O(\epsilon)$.

2484 **Running time.** Regarding the running time, computing C_1 and C_2 takes $\tilde{O}(\epsilon^{-1}n^2k^{0.5} +$
 2485 $n \text{poly}(k/\epsilon))$ time, and computing D_3 takes $\tilde{O}(n \text{poly}(k/\epsilon))$ time. To create matrices Y_1, Y_2, Y_3 and
 2486 C , by Lemma F.8, it takes $\tilde{O}(n^{0.5} \text{poly}(k/\epsilon))$ time, and the runtime of the polynomial system verifier
 2487 is due to Lemma F.2. \square
 2488

2489 **F.4.2 INPUT SIZE REDUCTION IN SUBLINEAR TIME**

2490 **Algorithm 12** Input size reduction via leverage score sampling.

2493 1: **procedure** QSUBLINEARREDUCTION($A, V_1, V_2, V_3, n, b_1, b_2, b_3, k, \epsilon$) ▷ Lemma F.8
 2494 2: $c_1 \leftarrow c_2 \leftarrow c_3 \leftarrow \text{poly}(k/\epsilon)$
 2495 3: $T_1 \leftarrow \text{QLS}(V_1, c_1, 0.0001)$
 2496 4: $T_2 \leftarrow \text{QLS}(V_2, c_2, 0.0001)$
 2497 5: $T_3 \leftarrow \text{QLS}(V_3, c_3, 0.0001)$
 2498 6: $\hat{V}_i \leftarrow T_i V_i \in \mathbb{R}^{c_i \times b_i}, \forall i \in [3]$.
 2499 7: $C \leftarrow A(T_1, T_2, T_3) \in \mathbb{R}^{c_1 \times c_2 \times c_3}$
 2500 8: **return** $\hat{V}_1, \hat{V}_2, \hat{V}_3$ and C
 2501 9: **end procedure**

2503 **Lemma F.8.** *Let $\text{poly}(k/\epsilon) \geq b_1 b_2 b_3 \geq k$. Given a tensor $A \in \mathbb{R}^{n \times n \times n}$ and three matrices
 2504 $V_1 \in \mathbb{R}^{n \times b_1}$, $V_2 \in \mathbb{R}^{n \times b_2}$, and $V_3 \in \mathbb{R}^{n \times b_3}$, there exists an algorithm that takes $n^{0.5} \cdot \text{poly}(k/\epsilon)$
 2505 time, $\tilde{O}(n^{0.5})$ row queries to V_1, V_2, V_3 , and outputs a tensor $C \in \mathbb{R}^{c_1 \times c_2 \times c_3}$ and three matrices
 2506 $\hat{V}_1 \in \mathbb{R}^{c_1 \times b_1}$, $\hat{V}_2 \in \mathbb{R}^{c_2 \times b_2}$ and $\hat{V}_3 \in \mathbb{R}^{c_3 \times b_3}$ with $c_1 = c_2 = c_3 = \text{poly}(k/\epsilon)$, such that with
 2507 probability at least 0.99, for all $\alpha > 0$, $X_1, X'_1 \in \mathbb{R}^{b_1 \times k}$, $X_2, X'_2 \in \mathbb{R}^{b_2 \times k}$, $X_3, X'_3 \in \mathbb{R}^{b_3 \times k}$ satisfy
 2508 that,*

2509

$$\left\| \sum_{i=1}^k (\hat{V}_1 X'_1)_i \otimes (\hat{V}_2 X'_2)_i \otimes (\hat{V}_3 X'_3)_i - C \right\|_F^2 \leq \alpha \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2,$$

2513 then,

2514

$$\left\| \sum_{i=1}^k (V_1 X'_1)_i \otimes (V_2 X'_2)_i \otimes (V_3 X'_3)_i - A \right\|_F^2 \leq (1 + \epsilon) \alpha \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2.$$

2518 *Proof.* Let $X_1 \in \mathbb{R}^{b_1 \times k}$, $X_2 \in \mathbb{R}^{b_2 \times k}$, $X_3 \in \mathbb{R}^{b_3 \times k}$. Define $\text{OPT} := \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2$. First, we define $Z_1 = ((V_2 X_2)^\top \odot (V_3 X_3)^\top) \in \mathbb{R}^{k \times n^2}$. (Note that, for each
 2519 $i \in [k]$, the i -th row of matrix Z_1 is $\text{vec}((V_2 X_2)_i \otimes (V_3 X_3)_i)$.) Then, by flattening we have
 2520

2522

$$\left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 = \|V_1 X_1 \cdot Z_1 - A\|_F^2.$$

2525 We choose a sparse diagonal sampling matrix $T_1 \in \mathbb{R}^{c_1 \times n}$ with $c_1 = \text{poly}(k, 1/\epsilon)$ rows. Let
 2526 $Y_1 := \arg \min_{Y \in b_1 \times n^2} \|V_1 Y - A\|_F^2$ and $A_1^* := V_1 Y_1 - A$. Since V_1 has $b_1 \leq \text{poly}(k/\epsilon)$
 2527 columns, according to Lemma A.12 with probability 0.999, for all $X_1 \in \mathbb{R}^{b_1 \times k}$, $Z \in \mathbb{R}^{k \times n^2}$,

2529

$$\begin{aligned} (1 - \epsilon) \|V_1 X_1 Z - A\|_F^2 - \|A_1^*\|_F^2 &\leq \|T_1 V_1 X_1 Z - T_1 A\|_F^2 - \|T_1 A_1^*\|_F^2 \\ 2530 &\leq (1 + \epsilon) \|V_1 X_1 Z - A\|_F^2 - \|A_1^*\|_F^2. \end{aligned}$$

2531 Therefore, we have

2532

$$\begin{aligned} 2533 &\|T_1 V_1 X_1 \cdot Z_1 - T_1 A\|_F^2 \\ 2534 &= (1 \pm \epsilon) \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + \underbrace{\|T_1 A_1^*\|_F^2 - \|A_1^*\|_F^2}_{\Delta_1}. \end{aligned}$$

2538 Second, we unflatten matrix $T_1 A_1 \in \mathbb{R}^{c_1 \times n^2}$ to obtain a tensor $A' \in \mathbb{R}^{c_1 \times n \times n}$. Then we flatten
 2539 A' along the second direction to obtain $A_2 \in \mathbb{R}^{n \times c_1 n}$. We define $Z_2 = (T_1 V_1 X_1)^\top \odot (V_3 X_3)^\top \in$
 2540 $\mathbb{R}^{k \times c_1 n}$. Then, by flattening,

$$2541 \quad \|V_2 X_2 \cdot Z_2 - A_2\|_F^2 = \|T_1 V_1 X_1 \cdot Z_1 - T_1 A_1\|_F^2 \\ 2542 \quad = (1 \pm \epsilon) \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + \Delta_1. \\ 2543 \\ 2544 \\ 2545$$

2546 We choose a diagonal sampling matrix $T_2 \in \mathbb{R}^{c_2 \times n}$ with $c_2 = \text{poly}(k, 1/\epsilon)$ rows. Then according to
 2547 Lemma A.12 with probability 0.999, for all $X_2 \in \mathbb{R}^{b_2 \times k}$, $Z \in \mathbb{R}^{k \times c_1 n}$,

$$2548 \quad (1 - \epsilon) \|V_2 X_2 Z - A_2\|_F^2 - \|A_2^*\|_F^2 \leq \|T_2 V_2 X_2 Z - T_2 A_2\|_F^2 - \|T_2 A_2^*\|_F^2 \\ 2549 \quad \leq (1 + \epsilon) \|V_2 X_2 Z - A_2\|_F^2 - \|A_2^*\|_F^2, \\ 2550$$

2551 for A_2^* defined similarly as A_1^* . Define $\Delta_2 = \|T_2 A_2^*\|_F^2 - \|A_2^*\|_F^2$, we have

$$2552 \quad \|T_2 V_2 X_2 \cdot Z_2 - T_2 A_2\|_F^2 \\ 2553 \quad = (1 \pm \epsilon) \|V_2 X_2 \cdot Z_2 - A_2\|_F^2 \\ 2554 \quad = (1 \pm \epsilon)^2 \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + (1 \pm \epsilon) \Delta_1 + \Delta_2. \\ 2555 \\ 2556 \\ 2557 \\ 2558$$

2559 Third, we unflatten matrix $T_2 A_2 \in \mathbb{R}^{c_2 \times c_1 n}$ to obtain a tensor $A'' (= A(T_1, T_2, I)) \in \mathbb{R}^{c_1 \times c_2 \times n}$.
 2560 Then we flatten tensor A'' along the last direction (the third direction) to obtain matrix $A_3 \in \mathbb{R}^{n \times c_1 c_2}$.
 2561 We define $Z_3 = (T_1 V_1 X_1)^\top \odot (T_2 V_2 X_2)^\top \in \mathbb{R}^{k \times c_1 c_2}$. Then, by flattening, we have

$$2562 \quad \|V_3 X_3 \cdot Z_3 - A_3\|_F^2 = \|T_2 V_2 X_2 \cdot Z_2 - T_2 A_2\|_F^2 \\ 2563 \quad = (1 \pm \epsilon)^2 \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + (1 \pm \epsilon) \Delta_1 + \Delta_2. \\ 2564 \\ 2565 \\ 2566$$

2567 We choose a diagonal sampling matrix $T_3 \in \mathbb{R}^{c_3 \times n}$ with $c_3 = \text{poly}(k, 1/\epsilon)$ rows. Then according to
 2568 Lemma A.12 with probability 0.999, for all $X_3 \in \mathbb{R}^{b_3 \times k}$, $Z \in \mathbb{R}^{k \times c_1 c_2}$,

$$2569 \quad (1 - \epsilon) \|V_3 X_3 Z - A_3\|_F^2 + \Delta_3 \leq \|T_3 V_3 X_3 Z - T_3 A_3\|_F^2 \leq (1 + \epsilon) \|V_3 X_3 Z - A_3\|_F^2 + \Delta_3$$

2570 for $\Delta_3 := \|A_3^*\|_F^2 - \|T_3 A_3^*\|_F^2$. Therefore, we have

$$2571 \quad \|T_3 V_3 X_3 \cdot Z_3 - T_3 A_3\|_F^2 \\ 2572 \quad = (1 \pm \epsilon)^3 \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + (1 \pm \epsilon)^2 \Delta_1 + (1 \pm \epsilon) \Delta_2 + \Delta_3. \\ 2573 \\ 2574 \\ 2575$$

2576 We will argue the additive error terms are small. Examine the term Δ_1 , in particular $\|A_1 - V_1 Y_1\|_F^2$,
 2577 it is not hard to see that $\|A_1 - V_1 Y_1\|_F^2 \leq \text{OPT}$ as one could simply realize the cost by choosing
 2578 Y_1 according to $V_2 X_2$ and $V_3 X_3$. By Markov's inequality and the leverage score sampling matrix
 2579 T_1 is an unbiased estimator for the matrix Frobenius norm squared, we could conclude the term
 2580 $\|T_1 A_1^*\|_F^2 = O(\text{OPT})$ holds with constant probability. Similarly, for $\|A_2^*\|_F^2$, we see that $\|V_2 Y_2 -$
 2581 $A_2\|_F^2 \leq \text{OPT}$ by choosing Y_2 according to the other two factors. One could conclude analogously
 2582 that $\Delta_2, \Delta_3 = O(\text{OPT})$. Let Δ be the sum of all additive error terms, and we have $\Delta = O(\text{OPT})$.

2583 Let \widehat{V}_i denote $T_i V_i$ for all $i \in [3]$ and $C \in \mathbb{R}^{c_1 \times c_2 \times c_3}$, and for $\alpha > 1$, if we have

$$2584 \quad \left\| \sum_{i=1}^k (\widehat{V}_1 X'_1)_i \otimes (\widehat{V}_2 X'_2)_i \otimes (\widehat{V}_3 X'_3)_i - C \right\|_F^2 \leq \alpha \left\| \sum_{i=1}^k (\widehat{V}_1 X_1)_i \otimes (\widehat{V}_2 X_2)_i \otimes (\widehat{V}_3 X_3)_i - C \right\|_F^2, \\ 2585 \\ 2586 \\ 2587$$

2588 and we further define $f(X_1, X_2, X_3) = \|\sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A\|$ and
 2589 $g(X_1, X_2, X_3) = \|\sum_{i=1}^k (\widehat{V}_1 X_1)_i \otimes (\widehat{V}_2 X_2)_i \otimes (\widehat{V}_3 X_3)_i - C\|$, by above derivations we could
 2590 conclude

$$2591 \quad (1 - \epsilon) f(X_1, X_2, X_3) + (1 - \epsilon) \Delta \leq g(X_1, X_2, X_3) \leq (1 + \epsilon) f(X_1, X_2, X_3) + (1 + \epsilon) \Delta$$

2592 by properly scaling ϵ , then

$$\begin{aligned} 2593 \quad (1 - \epsilon)f(X'_1, X'_2, X'_3) + (1 - \epsilon)\Delta &\leq g(X'_1, X'_2, X'_3) \\ 2594 \quad &\leq \alpha \cdot g(X_1, X_2, X_3) \\ 2595 \quad &\leq \alpha \cdot ((1 + \epsilon)f(X_1, X_2, X_3) + (1 + \epsilon)\Delta), \end{aligned}$$

2596 thus

$$\begin{aligned} 2597 \quad f(X'_1, X'_2, X'_3) &\leq \alpha \cdot (1 + \epsilon)f(X_1, X_2, X_3) + O(\epsilon) \cdot \text{OPT} \\ 2598 \quad &= \alpha \cdot (1 + O(\epsilon)) \cdot \text{OPT}, \end{aligned}$$

2599 the proof is completed by recalling the definition of OPT and rescaling ϵ .

2600

2601 **Running time.** Since all V_1, V_2 and V_3 have n rows and $\text{poly}(k/\epsilon)$ columns, computing the
2602 quantum leverage score sampler takes time $\tilde{O}(n^{0.5} \text{poly}(k/\epsilon))$. To compute the matrix C , we note
2603 that since T_1, T_2 and T_3 are sampling matrices, each of them has only $\text{poly}(k/\epsilon)$ entries. On the other
2604 hand, by the definition of $A(T_1, T_2, T_3)$, we note an entry of A needs to be examined and computed if
2605 and only if all corresponding entries of T_1, T_2 and T_3 are nonzero. As these three sampling matrices
2606 have at most $\text{poly}(k/\epsilon)$ overlaps on nonzero entries, computing $A(T_1, T_2, T_3)$ amounts to select a
2607 subset of $\text{poly}(k/\epsilon)$ entries from A and rescale, hence could be done in $\text{poly}(k/\epsilon)$ time. \square

2608

2609 F.5 QUANTUM TENSOR COLUMN, ROW AND TUBE SUBSET SELECTION APPROXIMATION

2610

2611 In this section, we design a quantum algorithm for selecting a subset of columns, rows and tubes of a
2612 tensor so that there exists a tensor U of rank- $\text{poly}(k/\epsilon)$, together with these subsets, gives a good
2613 low-rank approximation to A .

2614

2615 **Algorithm 13** Quantum tensor CRT subset selection.

2616

2617 1: **procedure** QCRTSLECTION($A \in \mathbb{R}^{n \times n \times n}, k, \epsilon$)
2618 2: $s_1, s_2 \leftarrow \tilde{O}(k/\epsilon^2)$
2619 3: $\epsilon_0 \leftarrow 0.001$
2620 4: $C_1 \leftarrow \text{QLOWRANKCMM}(A_1, k, \epsilon, 0.0001)$ $\triangleright C_1 \in \mathbb{R}^{n \times s_1}$.
2621 5: $C_2 \leftarrow \text{QLOWRANKCMM}(A_2, k, \epsilon, 0.0001)$ $\triangleright C_2 \in \mathbb{R}^{n \times s_2}$.
2622 6: Form B_1 by consecutively repeating each column of C_1 by s_2 times $\triangleright B_1 \in \mathbb{R}^{n \times s_1 s_2}$.
2623 7: Form B_2 by consecutively repeating each column of C_2 by s_1 times $\triangleright B_2 \in \mathbb{R}^{n \times s_1 s_2}$.
2624 8: $d_3 \leftarrow O(s_1 s_2 \log(s_1 s_2) + s_1 s_2 / \epsilon)$
2625 9: $D_3 \leftarrow \text{TENSORLEVERAGESCORE}(B_1^\top, B_2^\top, n, n, s_1 s_2, \epsilon_0, d_3)$ $\triangleright D_3 \in \mathbb{R}^{n^2 \times d_3}$.
2626 10: $M_3 \leftarrow A_3 D_3$ $\triangleright M_3 \in \mathbb{R}^{n \times d_3}$.
2627 11: Form B_1 by consecutively repeating each column of C_1 by d_3 times \triangleright Note B_1 is formed by
2628 repeating a different number of columns.
2629 12: Form B_3 by consecutively repeating each column of M_3 by s_1 times
2630 13: $d_2 \leftarrow O(s_1 d_3 \log(s_1 d_3) + s_1 d_3 / \epsilon)$
2631 14: $D_2 \leftarrow \text{TENSORLEVERAGESCORE}(B_1^\top, B_3^\top, n, n, s_1 d_3, \epsilon_0, d_2)$ $\triangleright D_2 \in \mathbb{R}^{n^2 \times d_2}$.
2632 15: $M_2 \leftarrow A_2 D_2$ $\triangleright M_2 \in \mathbb{R}^{n \times d_2}$.
2633 16: Form B_2 by consecutively repeating each column of M_2 by d_3 times
2634 17: Form B_3 by consecutively repeating each column of M_3 by d_2 times
2635 18: $d_1 \leftarrow O(d_2 d_3 \log(d_2 d_3) + d_2 d_3 / \epsilon)$
2636 19: $D_3 \leftarrow \text{TENSORLEVERAGESCORE}(B_2^\top, B_3^\top, n, n, d_2 d_3, \epsilon_0, d_1)$
2637 20: $C \leftarrow A_1 D_1, R \leftarrow A_2 D_2, T \leftarrow A_3 D_3$
2638 21: **return** C, R, T
2639 22: **end procedure**

2640

2641 **Theorem F.9.** Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ and a positive integer $k \leq n$, $\epsilon \in (0, 0.1)$,
2642 there exists an algorithm (Algorithm 13) which takes $\tilde{O}(\epsilon^{-1} n^2 k^{0.5} + n \text{poly}(k/\epsilon))$ time, $\tilde{O}(\epsilon^{-1} n k^{0.5})$
2643 **queries to the rows, columns and tubes of A** , and outputs three matrices $C \in \mathbb{R}^{n \times c}$, a subset of
2644 columns of A ; $R \in \mathbb{R}^{n \times r}$, a subset of rows of A ; and $T \in \mathbb{R}^{n \times t}$, a subset of tubes of A where
2645 $c, r, t = \text{poly}(k/\epsilon)$, and there exists a tensor $U \in \mathbb{R}^{c \times r \times t}$ such that

$$2646 \quad \left\| \sum_{i=1}^c \sum_{j=1}^r \sum_{l=1}^t U_{i,j,l} \cdot C_i \otimes R_j \otimes T_l - A \right\|_F^2 \leq (4 + \epsilon) \cdot \min_{\text{rank-}k A_k} \|A - A_k\|_F^2$$

2646 holds with probability 0.99.
 2647

2648 *Proof.* Throughout the proof, let $\text{OPT} := \min_{\text{rank-}k A_k} \|A - A_k\|_F^2$. Suppose the optimal low-rank
 2649 factor $A_k = U^* \otimes V^* \otimes W^*$ where $U^*, V^*, W^* \in \mathbb{R}^{n \times k}$. Define a matrix $Z_1 \in \mathbb{R}^{k \times n^2}$, where the
 2650 i -th row of Z_1 is $V_i^* \otimes W_i^*$. Note that we do not know V^* and W^* , nor can we form the matrix Z_1 .
 2651 Consider the following regression problem:
 2652

$$\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2, \quad (8)$$

2653 clearly, if we set U as U^* , then
 2654

$$\begin{aligned} U^* Z_1 &= [U_1^* \quad U_2^* \quad \dots \quad U_k^*] \begin{bmatrix} \text{vec}(V_1^* \otimes W_1^*)^\top \\ \text{vec}(V_2^* \otimes W_2^*)^\top \\ \vdots \\ \text{vec}(V_k^* \otimes W_k^*)^\top \end{bmatrix} \\ &= (U^* \otimes V^* \otimes W^*)_1, \end{aligned}$$

2655 i.e., the optimal A_k flattens along the first dimension. Hence, the optimal cost of Eq. (8) would give
 2656 OPT . To solve Eq. (8), we compute a projection-cost preserving of A_1 (Theorem C.2), and according
 2657 to Lemma F.3, there exists a solution \widehat{U} in the column span of C_1 , i.e., $\widehat{U} = C_1 X_1$, and it has cost
 2658

$$\|\widehat{U} Z_1 - A_1\|_F^2 \leq (2 + \epsilon) \cdot \text{OPT}.$$

2659 We can then form $Z_2 \in \mathbb{R}^{k \times n^2}$ where the i -th row is $\widehat{U}_i \otimes W_i^*$, then we know that
 2660

$$\min_{V \in \mathbb{R}^{n \times k}} \|V Z_2 - A_2\|_F^2 \quad (9)$$

2661 is at most $(2 + \epsilon) \cdot \text{OPT}$ as we could choose V as V^* . We approximately solve the regression of
 2662 Eq. (9) against C_2 , and again by Lemma F.3, we know that there exists a solution $\widehat{V} = C_2 X_2$ such
 2663 that
 2664

$$\begin{aligned} \|\widehat{V} Z_2 - A_2\|_F^2 &\leq (2 + \epsilon) \cdot \text{OPT} \\ &\leq (2 + \epsilon)^2 \cdot \text{OPT}. \end{aligned}$$

2665 We then define $Z_3 \in \mathbb{R}^{k \times n^2}$ where the i -th row is $\widehat{U}_i \otimes \widehat{V}_i$, note that Z_3 is no longer intractable to
 2666 us, because we know \widehat{U} and \widehat{V} are in the column span of C_1, C_2 respectively. Define $Z'_3 \in \mathbb{R}^{d_3 \times n^2}$
 2667 such that, if we index the row of Z'_3 as (i, j) , then $(Z'_3)_{(i, j)}$ is $(C_1)_i \otimes (C_2)_j$. Note that Z'_3 let us
 2668 to express the column span of C_1 and C_2 , consequently there exists some X such that $Z_3 = X Z'_3$
 2669 (note that due to the property of \otimes , column span of C_1 and C_2 are formed by multiplying on the left
 2670 instead of on the right). Consequently, consider the following optimization problem
 2671

$$\min_{W \in \mathbb{R}^{n \times k}, X \in \mathbb{R}^{k \times d_3}} \|W X Z'_3 - A_3\|_F^2, \quad (10)$$

2672 as one could set X so that $Z_3 = X Z'_3$, we have the cost of Eq. (10) is at most $(2 + \epsilon)^2 \cdot \text{OPT}$.
 2673 Computing the leverage score sampling of Z'_3 using TENSORLEVERAGESCORE and by Lemma A.13,
 2674 we have that if we solve the following regression
 2675

$$\min_{Y \in \mathbb{R}^{n \times d_3}} \|Y Z'_3 D_3 - A_3 D_3\|_F^2,$$

2676 with optimal being $Y' = A_3 D_3 (Z'_3 D_3)^\dagger$, then
 2677

$$\begin{aligned} \|A_3 D_3 (Z'_3 D_3)^\dagger Z'_3 - A_3\|_F^2 &\leq (1 + \epsilon) \cdot \min_{Y \in \mathbb{R}^{n \times d_3}} \|Y Z'_3 - A_3\|_F^2 \\ &\leq (1 + \epsilon)(2 + \epsilon)^2 \cdot \text{OPT}, \end{aligned}$$

2678 this suggests we could consider the regression
 2679

$$\min_{X \in \mathbb{R}^{k \times d_3}} \|A_3 D_3 X Z'_3 - A_3\|_F^2 \quad (11)$$

as $X = (Z'_3 D_3)^\dagger$ is a good solution. Letting $W' := A_3 D_3 \in \mathbb{R}^{n \times d_3}$, define $Z'_2 \in \mathbb{R}^{d_2 \times n^2}$ with \widehat{U} and W' such that $(Z'_2)_{(i,j)} = (C_1)_i \otimes (W')_j$, note that Z'_2 contains the column span of C_1 and W' , and although Z_2 is not in the row span of Z'_2 as in the case of Z_3 , the W' component of Z'_2 gives good approximation to W^* as we have shown above. Hence, if we consider

$$\min_{V \in \mathbb{R}^{n \times k}, X \in \mathbb{R}^{k \times d_2}} \|V X Z'_2 - A_2\|_F^2,$$

its cost is upper bounded by Eq. (11) as we could choose V as \widehat{V} and flatten A alongside the third direction to recover the same regression. Employing a similar argument, if we sample according to the leverage score Z'_2 and consider

$$\min_{Y \in \mathbb{R}^{n \times d_2}} \|Y Z'_2 D_2 - A_2 D_2\|_F^2,$$

the optimal solution is in the column span of $A_2 D_2$ and it blows up the cost by a factor at most $1 + \epsilon$, which gives us the following:

$$\min_{X \in \mathbb{R}^{k \times d_2}} \|A_2 D_2 X Z'_2 - A_2\|_F^2, \quad (12)$$

and the cost of Eq. (12) is at most $(1 + \epsilon)^2 (2 + \epsilon)^2 \cdot \text{OPT}$. Set $V' := A_2 D_2$ and repeat the construction of Z'_1 with V', W' , then we end up with

$$\min_{X \in \mathbb{R}^{k \times d_1}} \|A_1 D_1 X Z'_1 - A_1\|_F^2 \quad (13)$$

whose cost is at most $(1 + \epsilon)^3 (2 + \epsilon)^2 \cdot \text{OPT} = (4 + O(\epsilon)) \cdot \text{OPT}$ after properly scaling ϵ . Setting $U' := A_1 D_1$, and unwrap Z'_1 , we see Eq. (13) in fact gives our desired result, as U', V', W' are weighted subset of columns, rows and tubes of A , we could craft the desired C, R, T by removing the weights, and completing U by solving the regression Eq. (13), incorporating the solution to the weights. Since our statement only states the existence of such U , we do not consider the problem of finding it.

We complete the proof by analyzing its runtime. The most time consuming step is to compute C_1 and C_2 , since we are sampling columns as in the case of Theorem C.2, the runtime of these steps is $\tilde{O}(\epsilon^{-1} n^2 k^{0.5} + n \text{poly}(k/\epsilon))$, and it is not hard to see that all subsequent steps take $O(n \text{poly}(k/\epsilon))$ time as we either perform operations that run in nearly linear time in n on matrices of size $n \times \text{poly}(k/\epsilon)$, or we select $\text{poly}(k/\epsilon)$ columns from an $n \times n^2$ matrix. \square

Note that Theorem F.9 only gives a column, row and tube subset selection, but not with the weights tensor U . To output the tensor U , we first provide quantum bicriteria tensor low-rank approximation algorithm.

F.6 TENSOR CURT DECOMPOSITION: FIXED-PARAMETER TRACTABLE AND BICRITERIA

Theorem F.10 (A modification of Theorem C.40 in Song et al. (2019)). *Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, let $k \geq 1$, and let $U_B, V_B, W_B \in \mathbb{R}^{n \times k}$ denote a rank- k , α -approximation to A . Then there is a classical algorithm (Algorithm 14) which takes $O(n \text{poly}(k/\epsilon))$ time and outputs three matrices $C \in \mathbb{R}^{n \times c}$ with columns from A , $R \in \mathbb{R}^{n \times r}$ with rows from A , $T \in \mathbb{R}^{n \times t}$ with tubes from A , and a tensor $U \in \mathbb{R}^{c \times r \times t}$ with rank(U) = k such that $c = r = t = O(k \log k + k/\epsilon)$, and*

$$\left\| \sum_{i=1}^c \sum_{j=1}^r \sum_{l=1}^t U_{i,j,l} \cdot C_i \otimes R_j \otimes T_l - A \right\|_F^2 \leq (1 + \epsilon) \alpha \min_{\text{rank } k A'} \|A' - A\|_F^2$$

holds with probability 9/10.

Theorem F.11 (Bicriteria Tensor CURT Decomposition). *Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ and a positive integer $k \leq n$, $\epsilon \in (0, 0.1)$, there exists an algorithm which takes $\tilde{O}(\epsilon^{-1} n^2 k^{0.5} + n \text{poly}(k/\epsilon))$ time, $\tilde{O}(\epsilon^{-1} n k^{0.5})$ queries to the rows, columns and tubes of A and outputs three matrices $C, R, T \in \mathbb{R}^{n \times r}$ with $r = \tilde{O}(k^2/\epsilon^4)$ and $U \in \mathbb{R}^{r \times r \times r}$ such that*

$$\left\| \sum_{i=1}^c \sum_{j=1}^r \sum_{l=1}^t U_{i,j,l} \cdot C_i \otimes R_j \otimes T_l - A \right\|_F^2 \leq (4 + \epsilon) \cdot \min_{\text{rank } k A_k} \|A - A_k\|_F^2$$

with probability 0.99.

2754 **Algorithm 14** Converting a tensor low-rank approximation to a CURT decomposition.

```

2755 1: procedure FROMLOWRANKTOCURT( $A, U_B, V_B, W_B, n, k, \epsilon$ ) ▷ Lemma F.10
2756 2:    $d_1 \leftarrow d_2 \leftarrow d_3 \leftarrow O(k \log k + k/\epsilon)$ .
2757 3:    $\epsilon_0 \leftarrow 0.01$ .
2758 4:   Form  $B_1 = V_B^\top \odot W_B^\top \in \mathbb{R}^{k \times n^2}$ 
2759 5:    $D_1 \leftarrow \text{TENSORLEVERAGESCORE}(V_B^\top, W_B^\top, n, n, k, \epsilon_0, d_1)$ 
2760 6:   Form  $\hat{U} = A_1 D_1 (B_1 D_1)^\dagger \in \mathbb{R}^{n \times k}$ .
2761 7:   Form  $B_2 = \hat{U}^\top \odot W_B^\top \in \mathbb{R}^{k \times n^2}$ 
2762 8:    $D_2 \leftarrow \text{TENSORLEVERAGESCORE}(\hat{U}^\top, W_B^\top, n, n, k, \epsilon_0, d_2)$ .
2763 9:   Form  $\hat{V} = A_2 D_2 (B_2 D_2)^\dagger \in \mathbb{R}^{n \times k}$ 
2764 10:  Form  $B_3 = \hat{U}^\top \odot \hat{V}^\top \in \mathbb{R}^{k \times n^2}$ 
2765 11:   $D_3 \leftarrow \text{TENSORLEVERAGESCORE}(\hat{U}^\top, \hat{V}^\top, n, n, k, \epsilon_0, d_3)$ 
2766 12:   $C \leftarrow A_1 D_1, R \leftarrow A_2 D_2, T \leftarrow A_3 D_3$ 
2767 13:   $U \leftarrow \sum_{i=1}^k ((B_1 D_1)^\dagger)_i \otimes ((B_2 D_2)^\dagger)_i \otimes ((B_3 D_3)^\dagger)_i$ 
2768 14:  return  $C, R, T$  and  $U$ 
2769 15: end procedure

```

2771 *Proof.* It directly follows from combining Theorem F.5 and Lemma F.10. □

2772 **Theorem F.12** (Fixed-Parameter Tractable Tensor CURT Decomposition). *Given a tensor $A \in \mathbb{R}^{n \times n \times n}$, we could obtain a tensor CURT decomposition with the guarantee of Theorem F.6, in time $\tilde{O}(\epsilon^{-1} n^2 k^{0.5} + n \text{poly}(k/\epsilon) + 2^{O(k^2/\epsilon)}) n^\delta$ and $\tilde{O}(\epsilon^{-1} n k^{0.5})$ queries to the rows, columns and tubes of A .*

2773 **G IMPROVED QUANTUM CORESET ALGORITHM FOR (k, p) -CLUSTERING AND**
2774 **APPLICATION**

2775 In this section, we give an improved quantum coresset construction for (k, p) -clustering. We observe
2776 that the coresset obtained in prior work (1) The size scales linearly with d , this causes an additional
2777 $d^{0.5}$ factor in their final runtime; (2) The coresset consists of points not from A and the weights for
2778 these points could be negative, therefore it might pose challenges if one wants to compose it with
2779 algorithm that induces optimal-sized coresset.

2780 We begin by recalling the (k, p) -clustering problem in \mathbb{R}^d : let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $X = (\mathbb{R}^d)^k$
2781 and $\text{cost}(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$, where $p \geq 1$ is the power of the distance, and x_j is one of the
2782 centers in x . When $p = 1$, this is the well-studied k -median problem, and when $p = 2$, this captures
2783 the k -means problem. To construct a coresset, a popular approach is through sensitivity sampling.
2784 Here, we demonstrate how to implement the sensitivity sampling framework in quantum sublinear
2785 time.

2786 We need the following quantum algorithm, due to Xue et al. (2023), that computes a set of (α, β) -
2787 bicriteria approximation.

2788 **Definition G.1** (Bicriteria Approximation). *Let $A \subset \mathbb{R}^d$, assume OPT is the optimal cost of the
2789 (k, p) -clustering problem for A , we say a set $x \subset \mathbb{R}^d$ is an (α, β) -bicriteria approximation if $|x| \leq \alpha k$
2790 and $\text{cost}(A, x) \leq \beta \text{OPT}$.*

2791 **Lemma G.2** (Lemma 3.7 of Xue et al. (2023)). *Let $A \subset \mathbb{R}^d$, there exists a quantum algorithm
2792 that outputs an $(O(\log^2 n), 2^{O(p)})$ -bicriteria approximation x , to the (k, p) -clustering problem for
2793 A , with probability at least 99/100. The algorithm uses $\tilde{O}(\sqrt{nk})$ queries to A , $\tilde{O}(\sqrt{nk}d)$ time and
2794 $\text{poly}(k \log n)$ additional preprocessing time.*

2795 We also need a quantum approximate nearest neighbor oracle, which would be crucial to approxi-
2796 mately find the center a point belongs to.

2797 **Lemma G.3** (Lemma 3.4 of Xue et al. (2023)). *Let $A \subset \mathbb{R}^d$ and $x \subset \mathbb{R}^d$ wth $|x| = m$, given two
2798 parameters $\delta > 0$, $c_\tau \in [2.5, 3]$, there exists a quantum oracle that give $a_i \in A$, returns $\tau(a_i) \in x$,*

using $\text{poly}(m \log(n/\delta))$ preprocessing time. With probability at least $1 - \delta$, $\tau : A \rightarrow x$ is a mapping such that

$$\|a_i - \tau(a_i)\|_2^p \leq c_\tau \cdot \text{cost}(a_i, x).$$

Each query to τ takes $O(d \text{ poly log}(mn/\delta))$ time.

Note that τ is also a *partition oracle*, as we could assign a_i to $\tau(a_i)$, which is one of the m clusters.

We need two other ingredients: one being estimate $\text{cost}(A, x) = \sum_{i=1}^n \text{cost}(a_i, x)$ and the other being estimating the number of points falls in each cluster.

Lemma G.4 (Lemma 6 of Li et al. (2019)). *Let $C = \{c_1, \dots, c_n\}$ be a collection of nonnegative numbers, let $c = \sum_{i=1}^n c_i$, there exists a quantum algorithm such that given $\delta > 0$, it outputs an approximation \tilde{c} where $\tilde{c} = (1 \pm \epsilon) \cdot c$ with probability at least $1 - \delta$, using $\tilde{O}(\sqrt{n} \log(1/\delta)/\epsilon)$ queries to C .*

Lemma G.5 (Theorem 4.4 of Xue et al. (2023)). *Let $A \in (\mathbb{R}^d)^n$, $x \in (\mathbb{R}^d)^m$ and $\tau : A \rightarrow x$, let $C_j = \{a \in A : \tau(a) = x_j\}$, let $\epsilon \in (0, 1/3)$, $\delta > 0$, then there exists a quantum algorithm that with probability at least $1 - \delta$, outputs a list of estimates \tilde{n}_j for all $j \in [m]$ where $\tilde{n}_j = (1 \pm \epsilon) \cdot |C_j|$, using $\tilde{O}(\sqrt{nm/\epsilon} \log(1/\delta))$ queries to τ and an additional $\tilde{O}((\sqrt{nm/\epsilon} + m/\epsilon) \log(n/\delta))$ time.*

The algorithm we will be using is based on Huang & Vishnoi (2020), in particular, we use the first stage of their algorithm, as it has two main advantages: (1) It computes a coresnet with points only from A ; (2) The weights are relatively easy to compute. After computing the coresnet, we can compose it with the optimal-sized coresnet construction algorithm to obtain the final result (Huang et al., 2024).

Algorithm 15 Quantum coresets algorithm for (k, p) -clustering: no dependence on d (Huang & Vishnoi, 2020).

```

1: procedure QCLUSTER( $A \in \mathbb{R}^{n \times d}$ ,  $\epsilon \in (0, 1)$ )
2:    $m \leftarrow O(k \log^2 n)$ 
3:    $s \leftarrow O((168p)^{10p} \epsilon^{-5p-15} k^5 \log k)$ 
4:    $\epsilon' \leftarrow 0.01$ 
5:   Generate  $x' \in (\mathbb{R}^d)^m$  via Lemma G.2
6:   Generate  $\tau$  on  $A, x'$  via Lemma G.3
7:   Let  $C_j = \{a \in A : \tau(a) = x'_j\}$  and  $n_j = |C_j|$ 
8:   Generate  $\tilde{n}_1, \dots, \tilde{n}_m$  via Lemma G.5 using  $\tau$  with accuracy  $\epsilon'$ 
9:   Generate  $\text{cost}(A, x')$  via Lemma G.4 with accuracy  $\epsilon'$ 
10:  Implement an oracle for any  $a_i \in A$  as follows
11:     $x^*(a_i) \leftarrow \tau(a_i)$ 
12:     $\tilde{s}_i \leftarrow 2^{4p+2} \cdot \left( \frac{\|a_i - x^*(a_i)\|_2^p}{\text{cost}(A, x')} + \frac{1}{\tilde{n}_{i(j)}} \right)$      $\triangleright$  Let  $i(j)$  denote the index of  $x^*(a_i)$  among  $x'$ 
13:     $p_i \leftarrow \min\{1, \tilde{s}_i\}$ 
14:     $D \leftarrow \text{QSAMPLE}(p)$                                                $\triangleright \|D\|_0 = s$ 
15: end procedure

```

Lemma G.6 (Theorem 5.2 of Huang & Vishnoi (2020)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $X = (\mathbb{R}^d)^k$, and define $\text{cost} : \mathbb{R}^d \times X \rightarrow \mathbb{R}_{\geq 0}$ as $\text{cost}(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. Given $\epsilon, \delta \in (0, 1)$, $p \geq 1$, suppose quantities in Algorithm 15 are computed exactly except for the bicriteria approximation, then the weights in D give rise to an ϵ -coreset of size $s = \tilde{O}_n(\epsilon^{-5p-15}k^5)$.*

While the quantities in Algorithm 15 are computed approximately, they are all two-sided constant factor approximation, therefore we still get desired guarantees. We present the main result in the following.

Theorem G.7. Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, $X = (\mathbb{R}^d)^k$, $p \geq 1$, $\epsilon \in (0, 1)$, define $\text{cost}(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. There exists a quantum algorithm (Algorithm 15) such that, with probability at least 0.99, constructs an ϵ -coreset of A with size $\tilde{O}_p(\epsilon^{-5p-15}k^5)$ in time $\tilde{O}_p(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5}d)$ and $\tilde{O}_p(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5})$ queries to the points in A .

Proof. We first prove that it indeed constructs a coresnet. There are three main differences between Algorithm 15 and stage 1 of Huang & Vishnoi (2020):

- We use bicriteria approximation while Huang & Vishnoi (2020) computes k -approximate centers;
- We have to use approximate nearest neighbor to find the approximate center for each a_i ;
- We approximately compute $\text{cost}(A, x')$ and $\frac{1}{|C_i|}$.

For the first and second item, one could easily see that Lemma 5.5 and Claim 5.6 of Huang & Vishnoi (2020) do not require exactly k -approximate centers, as they only need to use the cost of these approximate centers as a proxy, hence, an (α, β) -bicriteria approximation is sufficient. Moreover, their proof relies on a simple generalized triangle inequality argument, so as long as the approximate cluster we assign a_i is a constant factor approximation to the optimal distance, we are fine. For the third item, note that by Lemma G.4, we have $\widetilde{\text{cost}}(A, x') = (1 \pm \epsilon') \cdot \text{cost}(A, x')$ and by Lemma G.5, $\widetilde{n}_{i(j)} = (1 \pm \epsilon') \cdot |C_{i(j)}|$, therefore the sampling probability \widetilde{s}_i is a constant factor approximation if we set to the approximate sensitivity σ_1 used in Huang & Vishnoi (2020). Thus, if we oversample by a constant factor, we could indeed get the desired coresset property according to Lemma G.6. It remains to analyze the runtime.

To generate x' , by Lemma G.2, it takes $\widetilde{O}(\sqrt{nk}d)$ time, and oracle τ takes $\text{poly}(k)$ time to preprocess, and each oracle call to τ takes $\widetilde{O}(d)$ time due to Lemma G.3. Generate the estimates \widetilde{n}_j for all $j \in [m]$ takes $\widetilde{O}(\sqrt{n}md) = \widetilde{O}(\sqrt{nk}d)$ time, and $\widetilde{\text{cost}}(A, x')$ takes $\widetilde{O}(\sqrt{nd})$ time owing to Lemma G.4. Finally, note that each \widetilde{s}_i can be computed in $\widetilde{O}(d)$ time, by Lemma A.14, the sample and weights D can be generated in $\widetilde{O}(\sqrt{nsd}) = \widetilde{O}_p(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5}d)$ time, as desired. \square

Remark G.8. While the coresset size of Theorem G.7 is not optimal, it produces coresset of size $\widetilde{O}_p(\epsilon^{-5p-15}k^5)$. This is sufficient as we could run any refinement to obtain the optimal size, as demonstrated by composing our coresset with the following result due to Huang et al. (2024).

Lemma G.9 (Theorem B.1 of Huang et al. (2024)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and $X = (\mathbb{R}^d)^k$, $p \geq 1$, $\epsilon, \delta \in (0, 1)$, and define $\text{cost}(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. There exists a randomized algorithm that with probability at least $1 - \delta$ constructs an ϵ -strong coresset of size $\widetilde{O}_p(\epsilon^{-2}k^{\frac{2p+2}{p+2}})$, in time $\widetilde{O}(ndk)$.*

Corollary G.10. *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and $X = (\mathbb{R}^d)^k$, $p \geq 1$, $\epsilon, \delta \in (0, 1)$, and define $\text{cost}(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. There exists a quantum algorithm that with probability at least 0.99 constructs: an ϵ -coreset of size $\widetilde{O}_p(\epsilon^{-2}k^{\frac{2p+2}{p+2}})$, in time*

$$\widetilde{O}_p(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5}d).$$

Proof. The proof is by composing Theorem G.7 with Lemma G.9. \square

G.1 QUANTUM ALGORITHM FOR DATA SELECTION

As an application, we study the *data selection pipeline* in machine learning, where the goal is to select a weighted subset of data points that can be used for training or fine-tuning the model, while preserving desirable properties. In this model, data are given as d -dimensional embeddings, and a loss function $\ell : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ is used to grade the quality of the embedding. ℓ can be expensive to evaluate, such as a deep neural network. Axiotis et al. (2024) provides a principled way for data selection using the coresset of (k, p) -clustering, under some mild assumptions on ℓ .

Assumption G.11. *Let $\Lambda = (\Lambda_1, \dots, \Lambda_k) \in \mathbb{R}_{\geq 0}^k$, $x \in (\mathbb{R}^d)^k$ and let $E \subseteq \mathbb{R}^d$ be a set of embeddings, we say the loss function is (p, Λ) -well-behaved with respect to E and x if for any $x_j \in x$ and let $C_j = \{e \in E : \arg \min_{x_i \in x} \|x_i - e\|_2^p = x_j\}$, then for any $e \in C_j$,*

$$|\ell(e) - \ell(x_j)| \leq \Lambda_j \|e - c_j\|_2^p.$$

Define the weighed cost as $\text{cost}^\Lambda(a_i, x) = \Lambda_{i(j)} \text{cost}(a_i, x)$ where we use $i(j)$ to denote the index of the cluster assigned to a_i , and similarly $\text{cost}^\Lambda(A, x) = \sum_{i=1}^n \text{cost}^\Lambda(a_i, x) = \sum_{i=1}^k \Lambda_i \sum_{a_j \in C_i} \|a_j - x_i\|_2^p$. Axiotis et al. (2024) essentially proves that under Assumption G.11,

one could perform weighted sampling according to $\text{cost}^\Lambda(a_i, x)$. In addition, the expensive loss function only needs to be evaluated on the centers. For convenience, we state an approximate k -centers algorithm below.

Lemma G.12 (Mettu & Plaxton (2004)). *Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and $X = (\mathbb{R}^d)^k$, let $\delta \in (0, 1)$. Then, there exists an algorithm that computes a solution $x' \in X$ such that*

$$\text{cost}(A, x') \leq 2^{O(p)} \cdot \min_{x \in X} \text{cost}(A, x),$$

holds with probability at least $1 - \delta$. Moreover, x' can be computed in time

$$O(ndk + nd \log(n/\delta) + k^2 \log^2 n + \log^2(1/\delta) \log^2 n) = \tilde{O}(ndk).$$

We know state a quantum implementaion of the adaptive sampling due to Axiotis et al. (2024).

Algorithm 16 Quantum one-round adaptive sampling for data selection.

```

1: procedure QDATASELECTION( $A \in \mathbb{R}^{n \times d}, x \in (\mathbb{R}^d)^k, \ell : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}, \epsilon \in (0, 1)$ )
2:    $s \leftarrow O(\epsilon^{-2}), \epsilon' \leftarrow 0.01$ 
3:   Let  $\tau : A \rightarrow x$  be that  $\tau(a_i) = \arg \min_{x_j \in x} \|a_i - x_j\|_2^p$ 
4:   Generate  $\tilde{\text{cost}}^\Lambda(A, x')$  via Lemma G.4 with accuracy  $\epsilon'$ 
5:   Let  $C_j = \{a \in A : \tau(a) = x_j\}$  and  $n_j = |C_j|$ 
6:   Generate  $\tilde{n}_1, \dots, \tilde{n}_k$  via Lemma G.5 using  $\tau$  with accuracy  $\epsilon'$ 
7:   Compute  $\ell(x_1), \dots, \ell(x_k)$ 
8:   sum  $\leftarrow \sum_{j=1}^k \tilde{n}_j \cdot \ell(x_j)$ 
9:   Implement an oracle for each  $a_i \in A$  as follows:
10:     $\hat{\ell}(a_i) \leftarrow \ell(\tau(a_i)), v(a_i) \leftarrow \|a_i - \tau(a_i)\|_2^p$ 
11:     $q_i \leftarrow \frac{\hat{\ell}(a_i) + v(a_i)}{\tilde{\text{cost}}^\Lambda(A, x) + \text{sum}}$ 
12:     $p_i \leftarrow \min\{1, q_i\}$ 
13:     $D' \leftarrow \text{QSAMPLE}(p)$ 
14:    return  $D'$ 
15: end procedure

```

We then prove Algorithm 16 implements the data selection procedure in sublinear time.

Theorem G.13. *Let $\epsilon \in (0, 1), p \geq 1, \Lambda \in \mathbb{R}^k, A \in (\mathbb{R}^d)^n$ and ℓ be a loss function that is (p, Λ) -well-behaved with respect to A and a clustering $x \in (\mathbb{R}^d)^k$. Then, there exists a quantum algorithm (Algorithm 16) that outputs a weight vector $w \in \mathbb{R}_{\geq 0}^n$ with $\|w\|_0 = O(\epsilon^{-2})$, such that*

$$|\sum_{i=1}^n \ell(a_i) - \sum_{i=1}^n w_i \ell(a_i)| \leq \epsilon \cdot (\sum_{i=1}^n \ell(a_i) + 2 \text{cost}^\Lambda(A, x))$$

holds with probability at least 0.99. Moreover, the algorithm makes at most k queries to the loss function ℓ , $\tilde{O}(\epsilon^{-1} n^{0.5} k^{0.5})$ queries to the points in A , and uses an additional $\tilde{O}(n^{0.5} kd(\epsilon^{-1} + k^{0.5}))$ time.

Proof. We first note that the only difference between Algorithm 16 and Theorem 2 of Axiotis et al. (2024) is that we approximately compute the quantity $\tilde{\text{cost}}^\Lambda(A, x')$ and $\sum_{i=1}^n \hat{\ell}(a_i)$, by a similar argument as Theorem G.7, these quantities are estimated within a constant factor, therefore the sampling probability p_i is at most a constant factor of the sampling probability used in Axiotis et al. (2024), we can obtain the same guarantee via oversampling by a constant factor.

To analyze the runtime, note that the oracle τ can be queried in $O(kd)$ time, and $\tilde{\text{cost}}^\Lambda(A, x)$ can be computed in $\tilde{O}(\sqrt{nk}d)$ time by Lemma G.4. $\tilde{n}_1, \dots, \tilde{n}_k$ can be estimated in $\tilde{O}(\sqrt{n}k^{1.5}d)$ time. Finally, each sampling probability can be computed in $O(kd)$ time, so the time for the final sampling is $\tilde{O}(\epsilon^{-1} n^{0.5} kd)$ time. Thus, the overall runtime is

$$\tilde{O}(n^{0.5} kd(\epsilon^{-1} + k^{0.5})).$$

□

2970 Note that compute the weights classically would take $O(ndk)$ time, so ours is the first to achieve this
 2971 goal in sublinear in n time. To compute a set of approximate k -centers, one could either directly
 2972 use the bicriteria approximation due to Lemma G.2 and use these centers as a proxy instead, or first
 2973 compute an ϵ -coreset using Theorem G.7 then apply Lemma G.12 to find the approximate k -centers
 2974 using the coreset.
 2975

2976 H LOWER BOUND

2977 In this section, we provide a quantum query lower bound on computing a rank- k , $1/2$ -additive-
 2978 multiplicative spectral approximation to a matrix $A \in \mathbb{R}^{n \times d}$. We show that $\Omega(\sqrt{dk})$ queries to the
 2980 columns of A are needed.
 2981

2982 **Theorem H.1.** *For any positive integers n, d , and $k \leq d$, there is a family of matrices $A \in \mathbb{R}^{n \times d}$
 2983 for which finding a constant factor additive-multiplicative spectral approximation of rank- k requires
 2984 $\Omega(\sqrt{dk})$ column queries to A .*

2985
 2986 *Proof.* Without loss of generality let k divide d , let $z_1, \dots, z_k \in \{0, 1\}^{d/k}$ be a collection of bit
 2987 strings, we construct A similar to the construction of Apers & Gribling (2024) but padding extra 0's:
 2988 we start a matrix $\bar{A} \in \mathbb{R}^{k \times d}$, consists of k blocks of $k \times d/k$: for the j -th block, it contains z_j as its
 2989 j -th row, and zero elsewhere. We then pad $n - k$ rows of zeros to form the $n \times d$ matrix A , one could
 2990 visualize A as follows:
 2991

$$A = \begin{bmatrix} z_1^\top & 0 & \dots & 0 \\ 0 & z_2^\top & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & z_k^\top \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

3000 where 0 is the zero vector of size d/k . Note that A is rank- k , hence $A_k = A$. Consequently,

$$3001 \quad AA^\top = \begin{bmatrix} \|z_1\|_0 & 0 & \dots & 0 & \dots & 0 \\ 0 & \|z_2\|_0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \|z_k\|_0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 \end{bmatrix}, \text{ i.e., its top-}k \text{ diagonal entries are the number of}$$

3002 nonzeros in each of z_i 's. Note that a rank- k additive-multiplicative spectral approximation has the
 3003 guarantee that

$$3004 \quad 0.5CC^\top - 0.5 \frac{\|A - A_k\|_F^2}{k} I_n \preceq AA^\top \preceq 1.5CC^\top + 0.5 \frac{\|A - A_k\|_F^2}{k} I_n$$

3005 since A is rank- k , we have $\|A - A_k\|_F^2 = 0$ and therefore, the approximation C has the property that

$$3006 \quad 0.5CC^\top \preceq AA^\top \preceq 1.5CC^\top,$$

3007 since AA^\top is diagonal, we must have the nonzero diagonals of CC^\top is a 0.5-approximation to the
 3008 nonzero diagonals of AA^\top . This allows us to compute $(\text{OR}(z_1), \dots, \text{OR}(z_k))$ where $\text{OR}(x) =$
 3009 $x_1 \vee x_2 \vee \dots \vee x_{d/k}$. By a similar argument as Apers & Gribling (2024), this would require
 3010 $\Omega(k\sqrt{d/k}) = \Omega(\sqrt{dk})$ quantum queries to the bit strings z_1, \dots, z_k . Finally, note that a column
 3011 query to A can be simulated by a query access to one of the z_j 's. This completes the proof. \square

3024 **I SIMULATING RANDOM ORACLE ACCESS**
3025

3026 In this section, we discuss how to simulate query access to a uniformly random string without
 3027 impairing the runtime of our algorithm. We observe that this is necessary, as our classical oracle is
 3028 inherently randomized, converting it into a quantum circuit will produce a superposition of estimates,
 3029 incurring additional approximation errors. We resolve this issue by “derandomize” the algorithm by
 3030 giving it query access to a uniformly random string. Specifically, suppose an algorithm has runtime q ,
 3031 then we need to attach a random string of length at most q . As observed in Apers & Gribling (2024),
 3032 if we only care about query complexity, then we could explicitly sample these bitstrings and use
 3033 QRAM to access them. In addition, if we want to achieve a sublinear runtime, then explicitly drawing
 3034 these bitstrings would be too slow. On the other hand, Beals et al. (2001) shows that any $(k/2)$ -query
 3035 quantum algorithm cannot distinguish a uniformly random from a k -wise independent string, hence it
 3036 is enough to use a k -wise independent hash function to simulate query access to uniformly random
 3037 strings. The following result is due to Apers & De Wolf (2022) and elaborated in Apers & Gribling
 3038 (2024):

3039 **Lemma I.1** (Lemma 3.12 in Apers & Gribling (2024)). *Consider any quantum algorithm with
 3040 runtime q that uses a uniformly random string, then we can simulate this algorithm with a quantum
 3041 algorithm with runtime $\tilde{O}(q)$ without random string, using an additional QRAM of $\tilde{O}(q)$ bits.*

3042 Hence, to implement our algorithm in QRAM, we apply I.1 to derandomize the procedure, this would
 3043 allow us to use more standard approaches to deal with deterministic routines: we convert them to
 3044 quantum oracles using quantum arithmetic gates and Toffoli gates, which is common in quantum
 3045 algorithm literature.

3046 **J QUERY COMPLEXITY OF OUR ALGORITHMS**
3047

3048 In this section, we summarize the complexity of our algorithms in terms of *query complexity*, which
 3049 is independent of the QRAM model: as noted in Apers & De Wolf (2022); Apers & Gribling (2024),
 3050 we can remove the QRAM assumption at the cost of a polynomial increase in the *time complexity*.
 3051

	Reference	Query Type	Complexity
k -Median Clustering	Theorem G.7	Rows	$\epsilon^{-10} n^{0.5} k^{2.5}$
k -Means Clustering	Theorem G.7	Rows	$\epsilon^{-12.5} n^{0.5} k^{2.5}$
(k, p) -Clustering	Theorem G.7	Rows	$\epsilon^{-2.5p-7.5} n^{0.5} k^{2.5}$
$\ell_{p \neq 2}$ Regression	Theorem B.18	Rows	$\epsilon^{-1} n^{0.5} d^{0.5 \vee p/4}$
$(k, p \leq 2)$ -Subspace Approx.	Theorem E.2	Rows	$\epsilon^{-1} n^{1-p/4} k^{p/4}$
$(k, p \geq 2)$ -Subspace Approx.	Theorem E.2	Rows	$\epsilon^{-p/2} n^{1-1/p} k^{0.5}$
Low-Rank	Theorem C.2	Columns	$\epsilon^{-1} n^{0.5} k^{0.5}$
PSD Low-Rank	Theorem D.1	Entries	$\epsilon^{-1.25} n^{0.75} k^{1.5}$
Kernel Low-Rank	Theorem D.1	Kernel Eval	$\epsilon^{-1.25} n^{0.75} k^{1.5}$
Tensor Low-Rank: Rank- k	Theorem F.6	Rows, Columns and Tubes	$\epsilon^{-1} nk^{0.5}$
Tensor Low-Rank: Bicriteria	Theorem F.5	Rows, Columns and Tubes	$\epsilon^{-1} nk^{0.5}$

3065 Table 3: Query complexity of our algorithms. We specify the types of query to measure the complexity
 3066 for various problems, for most of the problems, the input is $A \in \mathbb{R}^{n \times d}$ that consists of n points
 3067 in d -dimensional Euclidean space, hence the row query corresponds to querying the points. For
 3068 low-rank approximation, the input is $A \in \mathbb{R}^{d \times n}$ and the query corresponds to column queries. For
 3069 PSD and kernel low-rank approximation, the query corresponds to evaluating the kernel function over
 3070 two points, where in the PSD low-rank approximation, this is equivalent to querying the entries of A .
 3071 Finally, for tensor low-rank approximation, we allow queries to the rows, columns and tubes of A ,
 3072 which would require at most a constant factor more qubits to store in the QRAM.

3073 **LLM USAGE DISCLOSURE**
3074

3075 LLMs were used only to polish language, such as grammar and wording. These models did not
 3076 contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
 3077