SUBLINEAR TIME QUANTUM SENSITIVITY SAMPLING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a unified framework for quantum sensitivity sampling, extending the advantages of quantum computing to a broad class of classical approximation problems. Our unified framework provides a streamlined approach for constructing coresets and offers significant runtime improvements in applications such as clustering, regression, and low-rank approximation. Our contributions include:

- k-median and k-means clustering: For n points in d-dimensional Euclidean space, we give an algorithm that constructs an ϵ -coreset in time $\widetilde{O}(n^{0.5}dk^{2.5} \operatorname{poly}(\epsilon^{-1}))$ for k-median and k-means clustering. Our approach achieves a better dependence on d and constructs smaller coresets that only consist of points in the dataset, compared to recent results of [Xue, Chen, Li and Jiang, ICML'23].
- ℓ_p regression: For ℓ_p regression problems, we construct an ϵ -coreset of size $\widetilde{O}_p(d^{\max\{1,p/2\}}\epsilon^{-2})$ in time $\widetilde{O}_p(n^{0.5}d^{\max\{0.5,p/4\}+1}(\epsilon^{-3}+d^{0.5}))$, improving upon the prior best quantum sampling approach of [Apers and Gribling, QIP'24] for all $p \in (0,2) \cup (2,22]$, including the widely studied least absolute deviation regression (ℓ_1 regression).
- Low-rank approximation with Frobenius norm error: We introduce the first quantum sublinear-time algorithm for low-rank approximation that does not rely on data-dependent parameters, and runs in $\widetilde{O}(nd^{0.5}k^{0.5}\epsilon^{-1})$ time. Additionally, we present quantum sublinear algorithms for kernel low-rank approximation and tensor low-rank approximation, broadening the range of achievable sublinear time algorithms in randomized numerical linear algebra.

1 Introduction

Given a set of points $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$, a universe X, and a cost function $\operatorname{cost} : \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$, we study the problem of constructing a *coreset* of A: a weighted subset B of points along with a nonnegative weight vector $w \in \mathbb{R}^{|B|}_{\geq 0}$ such that

$$\sum_{b \in B} w_b \cdot \cot(b, x) = (1 \pm \epsilon) \cdot \cot(A, x)$$

for all $x \in X$, where $\cos(A,x) = \sum_{i=1}^n \cos(a_i,x)$. A coreset is particularly useful because it enables applying any existing approximation (or exact) algorithm on the smaller summary, yielding a good approximation to the original problem. Applications of coresets span clustering (Chen, 2009; Langberg & Schulman, 2010; Feldman & Langberg, 2011; Varadarajan & Xiao, 2012; Braverman et al., 2022; Huang & Vishnoi, 2020; Braverman et al., 2021; Cohen-Addad et al., 2021; 2022b;a; Huang et al., 2024), graph sparsification (Benczúr & Karger, 1996; Spielman & Teng, 2004; Spielman & Srivastava, 2011; Batson et al., 2012), hypergraph sparsification (Bansal et al., 2019; Kapralov et al., 2022; Jambulapati et al., 2023b; Lee, 2023), ℓ_p regression (Drineas et al., 2006; Clarkson, 2005; Dasgupta et al., 2009; Cohen & Peng, 2015; Woodruff & Yasuda, 2023), submodular optimization (Rafiey & Yoshida, 2022; Jambulapati et al., 2023a), generalized linear models (Mai et al., 2021; Munteanu et al., 2022; Musco et al., 2022; Jambulapati et al., 2024), and subspace approximation (Cohen et al., 2015a; 2017; Woodruff & Yasuda, 2025).

Coresets can be constructed via *sensitivity sampling*: the sensitivity of the *i*-th point is defined as

$$s_i = \max_{x \in X} \frac{\cot(a_i, x)}{\cot(A, x)}.$$

Sensitivity sampling draws point i with probability proportional to s_i , assigning it weight $1/s_i$ to ensure the estimator is unbiased. The seminal work of Langberg & Schulman (2010) shows that this yields a coreset with a simple and elegant proof: sampling proportional to sensitivity ensures low variance, and Bernstein's inequality implies that $O(\epsilon^{-2}S)$ samples suffice to approximate the cost for any fixed $x \in X$, where $S = \sum_{i=1}^{n} s_i$ is the *total sensitivity*. A union bound over a discretization of X of size $\exp(\dim(X))$, where $\dim(X)$ is a notion akin to VC dimension (Feldman & Langberg, 2011), yields a bound for all $x \in X$. Thus, a total of $O(\epsilon^{-2} \cdot \dim(X) \cdot S \log(1/\delta))$ samples suffices.

Algorithmically, a challenge arises: it is necessary to either compute or efficiently approximate s_i or an upper bound on it. Most of the work in sensitivity sampling focuses on this task, and for many problems it can be achieved in nearly-linear time in nd (Huang & Vishnoi, 2020; Spielman & Srivastava, 2011; Cohen & Peng, 2015; Cohen et al., 2017; Woodruff & Yasuda, 2025). Since scanning the entire dataset already takes $\Omega(nd)$ time, achieving nearly-linear time is close to optimal.

Typically, coresets are constructed for downstream *optimization problems*. For instance, coresets for ℓ_p regression help solve the original regression problem (Jambulapati et al., 2022; Adil et al., 2024), and coresets for subspace approximation yield column subset selection for low-rank approximation (Cohen et al., 2017). In certain structured settings, some of these optimization problems admit *sublinear time* algorithms. For example, if the input matrix A is positive semidefinite (PSD) (Musco & Woodruff, 2017; Bakshi et al., 2020) or Toeplitz (Musco & Sheth, 2024), one can obtain a rank-k approximation in $n \cdot \operatorname{poly}(k/\epsilon)$ time, despite A having size $n \times n$.

Can sensitivity sampling—and subsequently solving downstream optimization problems—be accomplished in sublinear time, even without structural assumptions? In this work, we explore this question through the lens of *quantum computing*, analyzing the time complexity of sensitivity sampling under quantum algorithms. Notably, tasks like linear regression, low-rank approximation, and clustering have quantum algorithms running in o(nd) time (Kerenidis & Prakash, 2017; Kerenidis et al., 2019; Gilyén et al., 2022; Shah & Jaiswal, 2025), though these often rely on special input representations that support efficient weighted sampling. Moreover, their runtimes often depend on data-specific parameters such as $\|A\|_F$, condition number $\kappa(A) = \sigma_{\max}(A)/\sigma_{\min}(A)$, or dataset radius. In contrast, we seek quantum algorithms that (1) operate in sublinear time, (2) are *independent of input representation*, and (3) have *runtime independent of data-specific parameters*.

In this work, we provide a generic quantum algorithm applicable to *sensitivity sampling* in general. Let s denote the final sample size for sensitivity sampling, and let $\mathcal{T}_{\text{sensitivity}}(s, X)$ represent the time to approximate one sensitivity over a set of s points and universe X. Our algorithm runs in time

$$\widetilde{O}(\sqrt{ns}) \cdot \mathcal{T}_{\text{sensitivity}}(s, X),$$

which implies that as long as $s^{0.5} \cdot \mathcal{T}_{\text{sensitivity}}(s,X) = o(n^{0.5}d)$, we achieve sublinear runtime. Moreover, our algorithm avoids dependence on data-specific parameters: the sample size and sensitivity approximation time depend only on n, d, $1/\epsilon$, $1/\delta$, and other problem-related parameters (e.g., k in clustering and low-rank approximation, or p in ℓ_p regression). We summarize the main result in the following theorem.

Theorem 1.1 (Informal version of Theorem B.3). Let $A \in \mathbb{R}^{n \times d}$ and X be a universe, there exists a randomized, quantum algorithm that constructs an ϵ -coreset C of expected size $s := O(\epsilon^{-2} \cdot \dim(X) \cdot S \log(1/\delta))$ with probability at least $1 - \delta$, where $\dim(X)$ is the VC dimension of X, S is the total sensitivity and $\epsilon, \delta \in (0,1)$. Moreover, if there exists a classical oracle that can output a constant factor two-sided approximation to one sensitivity over a set of s points and universe S in S-ensitivity S-ensitiv

Our approach is simple and general: it constructs the sample by uniformly subsampling half of the points, recursively computing approximate sensitivities on this subset, and then resampling based on these estimates. This scheme was first used for leverage score sampling (Cohen et al., 2015b) and in recent quantum linear programming algorithms (Apers & Gribling, 2024). We extend this strategy to sensitivity sampling.

As a key application, we adapt our framework to solve the low-rank approximation problem. Given a matrix $A \in \mathbb{R}^{n \times d}$, the goal is to find matrices U, V of rank k such that

$$||A - UV^{\top}||_F^2 \le (1 + \epsilon) \cdot ||A - A_k||_F^2,$$

 where A_k is the best rank-k approximation to A. We provide a quantum algorithm that constructs a column coreset of A, resulting in a low-rank approximation algorithm that runs in time $\widetilde{O}(nd^{0.5}k^{0.5}\epsilon^{-1})$. We note a recent result by Chen et al. (2025), which provides a quantum algorithm for approximating the top-k eigenvectors of a Hermitian matrix. Their method computes an orthonormal basis $W \in \mathbb{R}^{d \times k}$ such that $\|WW^\top - \sum_{i=1}^k v_i v_i^\top\| \le \epsilon$, where v_i is the i-th eigenvector of A, in time $\widetilde{O}(kd^{1.5}/(\epsilon\gamma))$, where γ is the spectral gap between λ_k and λ_{k-1} . While powerful, their method targets spectral norm error and depends on γ^{-1} . In contrast, our algorithm selects and reweights subsets of rows and columns and approximates the Frobenius-norm optimal rank-k solution, with no dependence on γ . This makes our method suitable for downstream applications for small γ .

Our algorithm for (k,p)-clustering has further implications for the *data selection pipeline* used in training foundation models. As discussed in Axiotis et al. (2024), if the loss function ℓ and all k-center solutions satisfy the (p,Λ) -well-behaved property, then a subset of $s=O(\epsilon^{-2})$ points suffices for training or fine-tuning. The pipeline proceeds as follows: (1) compute k centers $x=(x_1,\ldots,x_k)$ using a clustering algorithm, and (2) sample s points using the loss values $\ell(x_i)$ to obtain a coreset.

Using our quantum algorithm for (k,p)-clustering, we first construct a coreset of size $\operatorname{poly}(k/\epsilon)$ in time $\widetilde{O}(n^{0.5}d\cdot\operatorname{poly}(k/\epsilon))$, then solve for the centers x_1,\ldots,x_k using only the coreset. The second round of sampling requires at most k queries to the loss function and can also be implemented in $\widetilde{O}(n^{0.5}d\cdot\operatorname{poly}(k/\epsilon))$ time. Classical algorithms for this pipeline would require $\Omega(n)$ time. Hence, our method is the first sublinear-time quantum algorithm for data selection pipelines.

We summarize our results in the following tables. Table 1 compares our coreset construction runtimes with prior work, and Table 2 compares runtimes for solving the corresponding optimization problems.

	Reference	Previous	Ours
k-Median Clustering	Xue et al. (2023)	$n^{0.5}d^{1.5}k^{0.5}$	$n^{0.5}dk^{2.5}$
k-Means Clustering	Xue et al. (2023)	$n^{0.5}d^{1.5}k^{0.5}$	$n^{0.5}dk^{2.5}$
(k,p)-Clustering	Xue et al. (2023)	$n^{0.5}d^{1.5}k^{0.5}$	$n^{0.5}dk^{2.5}$
$\ell_{p\neq 2}$ Regression †	Apers & Gribling (2024)	$n^{0.5}d^7$	$n^{0.5}d^{(0.5\vee p/4)+1.5}$
(k, p < 2)-Subspace Approx.	Woodruff & Yasuda (2025)	$\mid nd \mid$	$n^{1-p/4}dk^{p/4}$
$(k, p \ge 2)$ -Subspace Approx.	Woodruff & Yasuda (2025)	nd	$n^{1-1/p}dk^{0.5}$

Table 1: Comparison of running times for constructing an ϵ -coreset for the respective problems. We set $\epsilon = O(1)$ and ignore all dependencies on functions that only depend on p for simplicity of presentation. For clustering and ℓ_p regression, we compare against prior fastest quantum algorithms, while for subspace approximation, we compare against prior fastest classical algorithms as we are unaware of quantum algorithms for these problems. †: We use $a \vee b$ to denote $\max\{a,b\}$.

	Reference	Previous	Ours
Low-Rank	Cohen et al. (2017)	nd	$nd^{0.5}k^{0.5}$
PSD Low-Rank	Bakshi et al. (2020)	$nk^{\omega-1}$	$n^{0.75}k^{2.25}$
Kernel Low-Rank	Bakshi et al. (2020)	$nk \mathcal{T}_{K}$	$n^{0.75}k^{1.25}\mathcal{T}_{K}$
Tensor Low-Rank: Rank-k	Song et al. (2019)	$n^3 + 2^{k^2}$	$n^2k^{0.5} + 2^{k^2}$
Tensor Low-Rank: Bicriteria	Song et al. (2019)	n^3	$n^2k^{0.5}$

Table 2: Comparison of running times for a variety of low-rank approximation problems. For all of these problems, we only compare with the prior best classical algorithms, as they are either not studied in the context of quantum algorithms, or the respective quantum algorithms require that the input is given in the form of a data structure, or have data-dependent parameters in the running time. We assume all matrices/tensors are dense. We ignore lower order terms for ease of comparison. For kernel low-rank approximation, we use \mathcal{T}_K to denote the time of evaluating kernel function on any two data points.

Our contributions. We summarize our main contributions below:

- We introduce a general quantum weighted sampling framework. Given weights satisfying mild conditions and access to a classical oracle that approximates the weight of a point over a small set, the framework constructs a coreset using $\widetilde{O}(\sqrt{ns})$ oracle queries, where s is an upper bound on the total weight. We show that sensitivity, leverage scores, and Lewis weights all meet these conditions, implying that coreset construction with these weights can be accelerated within our framework.
- We design the first sublinear time quantum algorithms for several fundamental low-rank approximation tasks: Frobenius-norm approximation, PSD and kernel low-rank approximation, and tensor low-rank approximation. Our algorithms are purely sampling-based, and avoid dependence on data-dependent parameters.
- We develop improved quantum algorithms for (k,p)-clustering in the high-dimensional regime $d\gg k$, and further demonstrate how our framework can accelerate data selection pipelines for training foundation models.

Roadmap. In Section 2, we provide a technical overview of the main results, including our generic algorithm for constructing coresets and specific applications to low-rank approximation. In Section 3, we summarize our results and discuss open problems. Section A presents preliminary definitions and notation. In Section B, we describe a generic weighted sampling algorithm for coreset construction and discuss its adaptations to regression and subspace approximation. Section C demonstrates how to use weighted sampling to generate a column subset of a matrix and apply it to low-rank approximation. Section D shows how Grover search can be used to accelerate Nyström approximation of kernel matrices, improving upon the runtime of Bakshi et al. (2020). In Section E, we extend our approach to (k,p)-subspace approximation. Section F provides algorithms for low-rank approximation of third-order tensors in the Frobenius norm. Section G presents an improved quantum algorithm for constructing coresets for (k,p)-clustering and applies it to data selection. Finally, in Section H, we establish a quantum query lower bound for additive-multiplicative spectral approximation, a key subroutine for computing low-rank approximations.

Quantum computation model. We adopt the standard quantum computation model used in, e.g., Apers & De Wolf (2022); Apers & Gribling (2024). This model supports quantum subroutines operating on $O(\log n)$ qubits, allows quantum queries to the input, and grants access to a quantum-read/classical-write RAM (QRAM) of size $\operatorname{poly}(n)$ bits. Each quantum read or classical write to QRAM incurs unit cost. We measure *time complexity* by the number of QRAM operations, and *query complexity* by the number of input queries made by the algorithm.

2 TECHNICAL OVERVIEW

We give an overview of our techniques in this section. In Section 2.1, we introduce our recursive sampling framework for sensitivity sampling, based on Grover search. In Section 2.2, we generalize the quantum sensitivity sampling framework via approximators. In Section 2.3, we design quantum, sublinear time algorithms for low-rank approximation that are based purely on sampling rows and columns. In Section 2.4, further extend the sampling-based low-rank approximation to the tensor setting. Finally in Section 2.5, we discuss our coreset algorithm for (k,p)-clustering and its advantages over prior constructions.

2.1 SENSITIVITY SAMPLING VIA GROVER SEARCH

One of the primary advantages of quantum algorithms over their classical counterparts is their ability to search and sample more efficiently. The search procedure developed by Grover (Grover, 1996) addresses the database search problem: given a function $f:[n] \to \{0,1\}$, we aim to list up to m indices for which f(i)=1. Assuming access to an oracle that, given an index i, outputs the value f(i), Grover's seminal work shows that, instead of requiring n queries to the oracle, the problem can be solved using only $O(\sqrt{mn})$ oracle calls with quantum computation. This provides a notable advantage as long as m < n, which is often the case in applications. Grover search has since been utilized to achieve speedups in problems such as edit distance (Boroujeni et al., 2021; Gibney et al., 2024), solving graph Laplacian systems (Apers & De Wolf, 2022), and solving linear programs (Apers & Gribling, 2024). In particular, Apers & Gribling (2024) develops a method to sample from the

leverage score distribution of an $n \times d$ matrix A, in time $O(n^{0.5}d^{1.5})$. For tall, skinny matrices, this approach leads to a runtime that is sublinear in the input size of A. Subsequently, the authors construct spectral approximations of A to speed up various essential procedures within a linear program solver.

The key procedure they utilize is a quantum sampling algorithm based on Grover search: suppose we need to sample from a list of n numbers with probabilities p_1,\ldots,p_n , and the goal is to output a list of indices such that index i is returned with probability p_i independently. This list of samples can be computed in $\widetilde{O}(\sqrt{n\sum_{i=1}^n p_i})$ time. This implies that if we are sampling from a distribution over n items and the sum of all p_i is significantly smaller than n, we can avoid computing all n values of p_i . However, this sampling procedure requires an oracle that returns the value of p_i upon query, akin to the oracle for f(i) in Grover search.

Since the i-th leverage score of A is defined as $a_i^\top (A^\top A)^\dagger a_i$, where M^\dagger is the pseudoinverse of matrix M, implementing the oracle by computing the Gram matrix $A^\top A$ and its pseudoinverse is prohibitively slow. To address this issue, Apers & Gribling (2024) observes that the algorithm due to Cohen et al. (2015b) can implement such an oracle efficiently: this algorithm proceeds by recursively halving rows — it first uniformly samples half of the rows of A, denoted by A', then recursively computes the leverage score matrix of A'. For an $n \times d$ matrix A, it suffices to sample $O(d \log d\epsilon^{-2})$ rows according to leverage scores; hence the sampled matrix $SA' \in \mathbb{R}^{d \log d \times d}$ is small. In fact, SA' serves as a sketch for the leverage score of matrix A with $a_i^\top (A'^\top S^\top S A')^\dagger a_i = (1 \pm \epsilon) \cdot a_i^\top (A^\top A)^\dagger a_i$ for all i. Thus, an oracle can be efficiently implemented by computing $(A'^\top S^\top S A')^\dagger$ in $\widetilde{O}(d^\omega)$ time, and by leveraging a trick from Spielman & Srivastava (2011), the quantity $a_i^\top (A'^\top S^\top S A')^\dagger a_i = \left\| (A'^\top S^\top S A')^{\dagger/2} a_i \right\|_2^2$ can be accelerated using a Johnson-Lindenstrauss transform (Johnson & Lindenstrauss, 1984). Consequently, this approach results in an algorithm that constructs a leverage score sampler for A in time $\widetilde{O}(n^{0.5}d^{1.5}\epsilon^{-1} + d^\omega)$, with the sum of probabilities being O(s).

Can we extend the leverage score sampling algorithm of Apers & Gribling (2024) to generic sensitivity sampling? The first hope is that, instead of sampling directly according to sensitivities, it might be sufficient to sample based on an overestimate of sensitivities. Consider the following simplified algorithm: uniformly sample half of the points to form A', and define the generalized sensitivity as $s_i(A,A') = \max_{x \in X, \, \cot(A',x) \neq 0} \frac{\cot(a_{i,x})}{\cot(A',x)}$, i.e., we change the denominator to $\cot(A',x)$. Note that this is not necessarily an overestimate of s_i . To see this, let x^* be the point that realizes the sensitivity for s_i . If $\cot(A',x^*) = 0$, then $s_i(A,A')$ will not be realized by x^* , and it is possible that $s_i > s_i(A,A')$. On the other hand, we can see that $s_i(A,A' \cup \{a_i\})$ serves as an overestimate. To understand this, consider the case where $s_i(A,A')$ does not hold: if $\cot(A',x^*) = 0$, then either $\cot(a_i,x^*) = 0$ and $s_i = s_i(A,A' \cup \{a_i\}) = 0$, or $\cot(a_i,x^*) \neq 0$ and $s_i(A,A' \cup \{a_i\}) = \frac{\cot(a_{i,x})}{\cot(a_{i,x})} = 1$, an upper bound on any s_i . If $\cot(A',x^*) \neq 0$, then $\frac{\cot(a_{i,x})}{\cot(A',x^*)} \geq \frac{\cot(a_{i,x})}{\cot(A',x^*)}$, as the denominator for A' is smaller. We note that $s_i(A,A' \cup \{a_i\})$ is in fact the overestimate used by Cohen et al. (2015b) to obtain their initial uniform sampling bound.

The recursive framework follows directly: uniformly sample half of the points A', then compute a coreset of A', called C. To compute the overestimates of s_i , we use $s_i(A, C \cup \{a_i\})$, which is efficient since C is a small-size coreset. Note that $s_i(A, C \cup \{a_i\})$ is a valid approximation of $s_i(A, A' \cup \{a_i\})$ —as C is a coreset of A', it approximates the cost of A' with respect to all $x \in X$, and they have the same kernel. Moreover, it is not hard to see that $C \cup \{a_i\}$ is also a coreset of $A' \cup \{a_i\}$, and thus the sensitivity is preserved. To summarize, in each round of recursion, we are given a size-s coreset, and assuming we can approximate each $s_i(A, C \cup \{a_i\})$ in $\mathcal{T}_{\text{sensitivity}}(s, d)$ time, then the overall runtime is $\widetilde{O}(\sqrt{ns}) \cdot \mathcal{T}_{\text{sensitivity}}(s, d)$, with recursion depth at most $\log n$ as we halve the points at each step, giving the desired runtime for sensitivity sampling.

¹Note that these probabilities not necessarily form a distribution, i.e., we only have $p_i \in [0, 1]$ for all $i \in [n]$, but not $\sum_{i=1}^{n} p_i = 1$.

²Given a set of points A and a cost function, we define the kernel of A as $ker(A) = \{x \in X : cost(A, x) = 0\}$.

2.2 GENERIC WEIGHTED SAMPLING VIA APPROXIMATOR

While the preceding algorithm handles all sensitivity sampling, in many applications, the exact sensitivities can be difficult to compute, and thus proxies are often sought as efficient alternatives. Take the ℓ_p regression problem as an example, where the sensitivity is $s_i = \max_{x \in \mathbb{R}^d, Ax \neq 0} \frac{|a_i^\top x|^p}{\|Ax\|_p^p}$. For p=2, this corresponds to the leverage score, which can be quickly approximated. However, for general p, this is more complex, and algorithms for ℓ_p sensitivities tend to be less efficient than those for leverage scores (Padmanabhan et al., 2023). Instead, constructing a coreset for ℓ_p regression is typically done not via sensitivity sampling, but through Lewis weights sampling (Bourgain et al., 1989; Ledoux & Talagrand, 1991; Talagrand, 1995; Schechtman & Zvavitch, 2001; Cohen & Peng, 2015; Woodruff & Yasuda, 2023). These weights are defined as the fixed-point solution for the following equation: $w_i^{2/p} = a_i^\top (A^\top W^{1-2/p} A)^{-1} a_i$, where w_i represents the i-th leverage score of the matrix $W^{1/2-1/p}A$. Lewis weights have several desirable properties, such as $\sum_{i=1}^n w_i = d$, and they serve as proper upper bounds for ℓ_p sensitivities for all $p \in (0, \infty)$. Moreover, Lewis weights can be approximated in nearly-linear time (Cohen & Peng, 2015; Lee, 2016; Jambulapati et al., 2022; Fazel et al., 2022; Apers et al., 2024).

To adapt our sensitivity sampling framework to work with Lewis weights sampling, we encounter a notable challenge: given a coreset B of A, it is guaranteed that any vector in the subspace of A has its ℓ_p norm preserved by B, but the Lewis weights are not defined purely in terms of the ℓ_p norm of vectors in the subspace. Instead, they measure the ℓ_2 norm of the subspace after a density transformation induced by $W^{1/2-1/p}$. Consequently, it might well be the case that B is a coreset of A, and the Lewis weights of A are not preserved by B. On the other hand, we can instead define a notion of an ϵ -approximator of A: we say B is an ϵ -approximator of A for ℓ_p regression if B is a coreset and $(1-\epsilon)A^\top W_A^{1-2/p}A \preceq B^\top W_B^{1-2/p}B \preceq (1+\epsilon)A^\top W_A^{1-2/p}A$, where W_A, W_B are the diagonal Lewis weights matrices for A and B. Note that this is a different approximation notion than that of a coreset, as the cost becomes global rather than local: for generic sensitivity-based arguments, one relies on the fact that adding a single point to the set will not affect the weights of other points, and hence if B is a coreset of A, then $B \cup \{p\}$ is also a coreset of $A \cup \{p\}$, but this is not true for an approximator of A, as adding a single row to both A and B would potentially affect the weights to all existing rows. In Cohen & Peng (2015), they provide a classical recursive sampling algorithm by noting that, if we sample according to the generalized Lewis weights with respect to an approximator, then the resulting weighted sample is also an approximator. We further abstract their construction, and provide the most general framework for quantum sublinear weighted sampling: let $w(A,B) \in \mathbb{R}^{|A|}_{\geq 0}$ be the generalized weights of A with respect to B, we say B is an ϵ -approximator of A if for any C and any $i \in [n]$, we have $w_i(C, B) = (1 \pm \epsilon)w_i(C, A)$. We then need three sufficient

- Consistent total weights: For any subset $S \subseteq [n]$, $\sum_{i \in S} w_i(A, A) \le \text{sum}(w)$, where sum(w) is a finite upper bound on the sum of weights. When the weight is sensitivity, sum(w) is simply the total sensitivity;
- Uniform sampling bound: Take any uniform subset $A' \subseteq A$, define the new weights $w'_i(A, A')$ as $w_i(A, A')$ if $a_i \in A'$ and $w_i(A, A' \cup \{a_i\})$ otherwise. Then $w'_i(A, A') \ge w_i(A, A)$ for all $i \in [n]$;
- Importance sampling bound: Suppose we sample according to $q_i = \min\{1, \alpha \cdot w_i(A, A)\}$ for some $\alpha \geq 1$, and reweight the sample by $1/q_i$, then with probability at least 1δ , the weighted sample is an ϵ -approximator of A of size at most $\alpha \cdot \text{sum}(w) \log(1/\delta)$.

Let $s = O(\alpha \cdot \operatorname{sum}(w) \log(1/\delta))$. We obtain an algorithm that computes an ϵ -coreset in the desired $\widetilde{O}(\sqrt{ns}) \cdot \mathcal{T}_{\operatorname{sensitivity}}(s,d)$ time. Thus, by using weighted sampling with Lewis weights, we achieve a runtime of $\widetilde{O}_p(n^{0.5}d^{(0.5\vee p/4)+1}(\epsilon^{-3}+d^{0.5}))$ for generating a coreset for ℓ_p regression. This improves upon the prior quantum algorithm for Lewis weights sampling that is based on *iterating leverage scores* (Apers et al., 2024), with a runtime of $\widetilde{O}_p(n^{0.5}d^7\epsilon^{-3})$. Our algorithm provides a speedup for any $p \in (0,2) \cup (2,22]$ (which includes the popular ℓ_1 regression), but it is worth noting that the main purpose of the work of Apers & Gribling (2024) is to estimate Lewis weights up to $p = O(\log n)$ as they use it as a subroutine for solving linear programs, so their algorithm has no p dependence on d. Nevertheless, we provide a completely different sampling algorithm to construct an ℓ_p regression coreset that is particularly suitable for small p.

2.3 Pure-Sampling Framework For Low-Rank Approximation

Given $A \in \mathbb{R}^{n \times d}$, the rank-k low-rank approximation problem seeks to find a pair of matrices $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{d \times k}$ such that $\|A - UV^{\top}\|_F^2 \leq (1+\epsilon)\|A - A_k\|_F^2$, where A_k is the best rank-k approximation of A. Low-rank approximation is closely related to the (k,2)-subspace approximation coreset: let $\mathcal{F}_k \subset \mathbb{R}^n$ be the set of all k-dimensional subspaces in \mathbb{R}^n , and define $\cot(a_i,x) = \|(I-P_x)a_i\|_2^2$ where P_x is the orthogonal projection onto $x \in \mathcal{F}_k$. If we obtain a coreset C for A, then we have for any k-dimensional orthogonal projection P_x , $\|(I-P_x)C\|_F^2 = (1\pm\epsilon)\|(I-P_x)A\|_F^2$, which is sufficient to show that choosing P_x as the projection onto C_k will give the desired low-rank approximation (Cohen et al., 2017). Moreover, instead of (k,2)-subspace sensitivities, one could sample according to the i-dige leverage scores, which can be computed quickly. To adapt our weighted sampling framework, we need to identify the i-approximator for ridge leverage score, which is a coreset of i-and

$$(1 - \epsilon)AA^{\top} - \epsilon \lambda_{A_k} I \leq CC^{\top} \leq (1 + \epsilon)AA^{\top} + \epsilon \lambda_{A_k} I,$$

where $\lambda_{A_k}=\|A-A_k\|_F^2/k$. Thus, our framework gives an algorithm that runs in time $\widetilde{O}(nd^{0.5}k^{0.5}\epsilon^{-1})$.

While one might be satisfied with the ridge leverage score solution to low-rank approximation, more complexity arises if we aim to recover the solution through the subsampled columns. In particular, if we let $C \in \mathbb{R}^{n \times s}$ denote the weighted subset of columns of A sampled by ridge leverage scores for $s = O(k \log k \epsilon^{-2})$, it is guaranteed that $\min_{X: \operatorname{rank}(X) \le k} \|CX - A\|_F^2 \le (1 + \epsilon) \|A_k - A\|_F^2$. Constructing an optimal X would require computing $P_k(C^\dagger A)$ where P_k is the projection onto the top-k principal components. Directly computing $C^\dagger A$ is of course too expensive, and standard approaches mostly involve using an *oblivious subspace embedding* (OSE) matrix, a random matrix that approximates the cost of all regression problems. Matrices such as CountSketch (Charikar et al., 2002; Clarkson & Woodruff, 2013) could be applied in time $\operatorname{nnz}(A)$, but this is already too slow for our purpose. We address this with a pure-sampling framework for low-rank approximation: we demonstrate that it is possible to recover (or approximate) the solution X via leverage score sampling.

In particular, for the regression problem $\min_{X:\operatorname{rank}(X)\leq k}\|CX-A\|_F^2$, one could sample according to the leverage score distribution of C and solve the subsampled regression problem $\min_{X:\operatorname{rank}(X)\leq k}\|SCX-SA\|_F^2$. Standard leverage score guarantees ensure that the optimal solution to the subsampled regression closely approximates the original problem (Lemma A.13). Because of this fact, we can show that there exists a good solution \widehat{X} in the row span of matrix SA; hence it is enough to solve the regression problem $\min_{Y:\operatorname{rank}(Y)\leq k}\|A-CYSA\|_F^2$, and we further speed up the algorithm by employing two leverage score sampling matrices T_1 and T_2 on the left and right accordingly. Consider the new subsampled regression problem: $\min_{Y:\operatorname{rank}(Y)\leq k}\|T_1AT_2-T_1CYSAT_2\|_F^2$, and observe that we can compute the subsampled A in sublinear in n,d time, because T_1AT_2 and SAT_2 all amount to selecting a $\operatorname{poly}(k/\epsilon)$ subset of entries of A, which, assuming random access to the entries of A, can be done in the same order of time. This pure-sampling approach contrasts with OSE-based methods, which generally require reading all entries of A.

2.4 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

For matrix low-rank approximation and its variants, ridge leverage score sampling is the crucial tool to compute a good approximate solution. Can we extend the framework to solve *tensor* low-rank approximation? Unfortunately, even for a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, it is not always the case that it admits a low-rank approximation, due to the so-called border rank issue (De Silva & Lim, 2008). Even when the low-rank approximation exists, variants of Strong Exponential Time Hypothesis (SETH) rule out polynomial time algorithms to approximate the tensor rank of A (Song et al., 2019). If one relaxes the problem by allowing the output to be a higher-rank solution (bicriteria solution) or a running time that depends exponentially on k and $1/\epsilon$ (fixed-parameter tractable, i.e., FPT), then Song et al. (2019) provides algorithms with leading running time term being $\operatorname{nnz}(A)$. Their core algorithm is as follows: for tensor $A \in \mathbb{R}^{n \times n \times n}$, let $A_1, A_2, A_3 \in \mathbb{R}^{n \times n^2}$ be matrices such that the 1st, 2nd, and 3rd dimensions of the array are preserved, while the other 2 dimensions are collapsed and flattened into a dimension of size n^2 . They then apply OSEs S_1, S_2, S_3 with only $\operatorname{poly}(k/\epsilon)$ columns to form A_1S_1, A_2S_2 and A_3S_3 .

Although one might attempt to replace the OSEs S_1, S_2 , and S_3 with leverage score matrices for A_1, A_2 , and A_3 , this approach, unfortunately, does not work. The argument of Song et al. (2019) is as follows: suppose the optimal rank-k approximation A_k exists, then $A_k = \sum_{i=1}^k U_i^* \otimes V_i^* \otimes W_i^*$. To reduce the problem dimension, the goal is to demonstrate that a good approximate solution exists in the column span of A_1S_1 and A_2S_2 . In particular, suppose we have access to V^* and W^* , set $Z_1 \in \mathbb{R}^{k \times n^2}$ where each row i is $V_i^* \otimes W_i^*$, then it is not hard to see that the optimal U^* could be recovered by solving $\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2$, as $\|UZ_1 - A_1\|_F^2 = \|\sum_{i=1}^k U_i \otimes V_i^* \otimes W_i^* - A\|_F^2$. The multiple response regression problem above can then be accelerated by applying an OSE on the right and instead solving $\min_{U} \|UZ_1S_1 - A_1S_1\|_F^2$, where the optimal solution has the closed form $\widehat{U} = A_1S_1(Z_1S_1)^{\dagger}$. This establishes that \widehat{U} is in the column span of A_1S_1 .

For sampling, this setup is more challenging. If we were to replace S_1 with the leverage score sampling matrix, we would require the *leverage score matrix of* Z_1 in order to preserve the cost of the optimal solution. Thus, we could only argue for the correctness of this approach if S_1 is chosen according to the leverage score of an unknown matrix Z_1 , which is unclear how to achieve. On the contrary, we do have access to the response matrix A_1 , and one might wonder if sampling directly from A_1 is sufficient. However, a simple counterexample demonstrates that this approach fails: suppose A_1 is a single column equal to e_n , and the design matrix Z_1 is $e_i + e_n$ for i randomly chosen from 1 to n-1. Any sampling scheme based on A_1 will likely sample the n-th entry but miss the i-th entry with high probability. This would lead to a solution on the original problem that has twice the optimal cost.

Surprisingly, we show that this 2-approximation is almost as bad as one can get: if one instead samples from the ridge leverage score distribution of A_1 , then there exists a solution \widehat{U} in the column span of A_1S_1 (S_1 is the ridge leverage score sampling matrix of A_1) such that $\|\widehat{U}Z_1 - A_1\|_F^2 \leq (2+\epsilon) \cdot \min_U \|UZ_1 - A_1\|_F^2$. This result is particularly surprising as one might expect an adversarial choice of A_1 that would disrupt ridge leverage score sampling. However, ridge leverage scores provide the so-called projection-cost preserving guarantee: for any rank-k projection P, we have that $(1-\epsilon)\|(I-P)A_1\|_F^2 \leq \|(I-P)A_1S_1\|_F^2 \leq (1+\epsilon)\|(I-P)A_1\|_F^2$, where setting P_k as the projection onto the top-k principal components of A_1S_1 minimizes $\|(I-P_k)A_1S_1\|_F^2$. Additionally, the optimal cost of the regression can be bounded by $\|[A_1]_k - A_1\|_F^2$, the best rank-k approximation to A_1 . Setting $\widehat{U} = P_k A_1 Z_1^{\dagger}$, we get

$$\begin{split} \|\widehat{U}Z_1 - A_1\|_F^2 &= \|P_k A_1 Z_1^{\dagger} Z_1 - A_1\|_F^2 \\ &= \|(P_k A_1 - A_1)(Z_1^{\dagger} Z_1) + A_1 (I - Z_1^{\dagger} Z_1)\|_F^2 \\ &= \|(P_k A_1 - A_1)(Z_1^{\dagger} Z_1)\|_F^2 + \|A_1 (I - Z_1^{\dagger} Z_1)\|_F^2 \\ &\leq \|(I - P_k) A_1\|_F^2 + \|A_1 (I - Z_1^{\dagger} Z_1)\|_F^2 \\ &\leq (1 + \epsilon) \text{ OPT + OPT} \\ &= (2 + \epsilon) \text{ OPT,} \end{split}$$

where $\mathrm{OPT} := \min_U \|UZ_1 - A_1\|_F^2$, and we use the Pythagorean theorem in the proof, along with the fact that $\|A_1 - A_1 Z_1^\dagger Z_1\|_F^2$ is the optimal solution. To see \widehat{U} is in the column span of $A_1 S_1$, it is enough to observe that P_k is the projection onto the top-k principal components of $A_1 S_1$, and hence \widehat{U} is in the column span of P_k , a subset of the column span of $A_1 S_1$. This shows that as long as we sample according to the ridge leverage score distribution, we can still obtain a $(2+\epsilon)$ -approximate solution. Moreover, for 3rd order tensor low-rank approximation, we would only invoke ridge leverage score sampling on A_1 and A_2 , as the components of the design matrix reside within the column span of both $A_1 S_1$ and $A_2 S_2$, making the problem tractable. We can, in turn, employ fast (classical) tensor leverage score sampling algorithms to achieve an overall approximation ratio of $(4+\epsilon)$ with a significantly improved running time of $\widetilde{O}(n^2 k^{0.5}/\epsilon + n \operatorname{poly}(k/\epsilon))$ for dense tensors.

2.5 IMPROVED CORESET FOR CLUSTERING WITH APPLICATIONS

We also design an improved quantum algorithm for constructing an ϵ -coreset of (k, p)-clustering. In contrast to the recursive sampling framework we developed in the preceding discussions, our algorithm could be viewed as a quantum implementation of Huang & Vishnoi (2020), where the idea

is to first compute a set of approximate k-centers, then perform sensitivity samplings on top of it. Why could our recursive sampling framework not be applied here? This is because the sensitivities of (k,p)-clustering can only be *overestimated*, and these overestimates in general do not satisfy the uniform sampling bound. In fact, a closer examination of our analysis shows that during the intermediate stages in the recursive sampling, we would need the sensitivities to be approximated in a *two-sided* fashion, i.e., let s_i be the exact sensitivities. We require the approximate sensitivities \widetilde{s}_i to satisfy $(1-\epsilon)s_i \leq \widetilde{s}_i \leq (1+\epsilon)s_i$. Nevertheless, we design a sensitivity sampling algorithm for (k,p)-clustering that is based on Huang & Vishnoi (2020), that computes a coreset of size $\widetilde{O}_p(k^5\epsilon^{-5p-15})$ in time $\widetilde{O}_p(n^{0.5}dk^{2.5}\epsilon^{-2.5p-7.5})$. Compared to the previous work of Xue et al. (2023) where they obtain a coreset in $\widetilde{O}_p(n^{0.5}d^{1.5}k^{0.5}\epsilon^{-(p/2\vee 1)})$ time,

- Our algorithm outputs a weighted subset of points $B \subseteq A$, as our coreset. In contrast, Xue et al. (2023) adapts an algorithm of Cohen-Addad et al. (2021), in which the coreset consists of weighted points from A and all bicriteria approximate centers. Thus, composing the coreset from Xue et al. (2023) with any optimal-sized coreset algorithm (Huang et al., 2024) will also include points not in A:
- Our algorithm outputs a coreset of size $\widetilde{O}_p(k^5\epsilon^{-5p-15})$, while Xue et al. (2023) outputs a coreset of size $\widetilde{O}_p(dk\epsilon^{-(2\vee p)})$. This means to obtain an optimal-sized coreset of size $\widetilde{O}_p(k^{\frac{2p+2}{p+2}}\epsilon^{-2})$ by running the algorithm of Huang et al. (2024) on top of our coreset, we can achieve the result with an additional $\widetilde{O}_p(d\operatorname{poly}(k,\epsilon^{-p}))$ time, while Xue et al. (2023) would need $\widetilde{O}_p(d^2\operatorname{poly}(k,\epsilon^{-p}))$ time.

As an application, we demonstrate that (k,p)-clustering can be used to bootstrap the construction of the data selection pipeline (Axiotis et al., 2024), as it enables the computation of approximate k-centers in sublinear time. Furthermore, we show that the quantum techniques developed for (k,p)-clustering can also be leveraged to obtain a sublinear-time quantum algorithm for data selection. We defer a more detailed discussion to Section G.

3 Conclusion

We present a quantum, sublinear-time algorithm for weighted sampling that yields a broad range of results in coreset construction. These include (k,p)-clustering, ℓ_p regression, (k,p)-subspace approximation, and low-rank approximation. For the low-rank approximation problem, we design specialized algorithms for multiple settings, including Frobenius norm error minimization, PSD low-rank approximation, kernel-based low-rank approximation, and tensor low-rank approximation. For (k,p)-clustering, we develop an improved quantum coreset construction that offers better dependence on the data dimension d, and we generalize this framework to address the data selection problem for foundation models. We highlight three major open problems arising from our work:

- Two-sided approximation for clustering sensitivities. Unlike regression and low-rank approximation, where coresets can be constructed efficiently via leverage scores or Lewis weights, the approximate sensitivities used in clustering are only known to be *upper bounds*. This asymmetry significantly limits the applicability of the recursive sampling framework to clustering. It remains an open question whether one can design algorithms that compute *two-sided* approximations to clustering sensitivities, thereby unifying clustering within our weighted sampling framework.
- Quantum algorithms for Frobenius norm tensor low-rank approximation. While we achieve a $(1+\epsilon)$ -approximation for matrix low-rank approximation in sublinear time, the scenario is more complex for tensors. As discussed in Section 2.4, for 3rd-order tensors, we obtain only a $(4+\epsilon)$ -approximation, and for general q-th order tensors, a $(2^{q-1}+\epsilon)$ -approximation. A compelling open question is whether one can design a sublinear-time quantum algorithm—with potentially worse running time—that achieves a $(1+\epsilon)$ -multiplicative approximation for tensor low-rank approximation.
- Query lower bounds for coreset construction. In Section H, we establish a quantum query lower bound for computing additive-multiplicative spectral approximations, which are sufficient for low-rank approximation. An intriguing direction for future research is to generalize this lower bound to broader classes of coreset constructions.

ETHICS STATEMENT

This paper studies novel quantum algorithm for sensitivity sampling which could lead to improvement to various machine learning problems. We don't believe there are significant ethnics concerns need to be addressed.

REPRODUCIBILITY STATEMENT

As this paper is theoretical in nature, we include complete proofs in the Appendix. In particular, we prove the generic sensitivity sampling result in Section B, low-rank approximation in Section C, kernel low-rank approximation in Section D, subspace approximation in Section E, tensor low-rank approximation in Section F, clustering and data selection pipeline in Section G and lower bound in Section H.

REFERENCES

- Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for ℓ_p -regression. *J. ACM*, October 2024.
- Simon Apers and Ronald De Wolf. Quantum speedup for graph sparsification, cut approximation, and laplacian solving. *SIAM Journal on Computing*, 51(6):1703–1742, 2022.
- Simon Apers and Sander Gribling. Quantum speedups for linear programming via interior point methods. In *QIP*, 2024.
- Simon Apers, Sander Gribling, and Aaron Sidford. On computing approximate lewis weights. *arXiv* preprint arXiv:2404.02881, 2024.
- Kyriakos Axiotis, Vincent Cohen-Addad, Monika Henzinger, Sammy Jerome, Vahab Mirrokni, David Saulpic, David P. Woodruff, and Michael Wunder. Data-efficient learning via clustering-based sensitivity sampling: Foundation models and beyond. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 2086–2107. PMLR, 2024.
- Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Robust and sample optimal algorithms for psd low rank approximation. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), 2020.
- Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification for graphs and hypergraphs. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 910–928. IEEE, 2019.
- Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. *SIAM Journal on Computing*, 41(6):1704–1721, 2012.
- András A Benczúr and David R Karger. Approximating st minimum cuts in õ (n 2) time. In *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pp. 47–55, 1996.
- Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammadtaghi Hajiaghayi, and Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce. *J. ACM*, 68, 2021.
- Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. Approximation of zonoids by zonotopes. *Acta Mathematica*, 1989.
- Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for clustering in excluded-minor graphs and beyond. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 2679–2696. SIAM, 2021.

- Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. New frameworks for offline and streaming coreset constructions, 2022. URL https://arxiv.org/abs/ 1612.00889.
 - Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In *Automata, Languages and Programming*, 2002.
 - Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their applications. *SIAM Journal on Computing*, 39(3):923–947, 2009.
 - Yanlin Chen, András Gilyén, and Ronald de Wolf. A Quantum Speed-Up for Approximating the Top Eigenvectors of a Matrix. In *Proceedings of the 36th annual ACM-SIAM symposium on Discrete algorithm (SODA)*, 2025.
 - Kenneth L Clarkson. Subgradient and sampling algorithms for 1 1 regression. In *Symposium on Discrete Algorithms: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms*, pp. 257–266, 2005.
 - Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity time. In *STOC*, 2013.
 - Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In *Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing*, STOC '15, 2015.
 - Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimensionality reduction for k-means clustering and low rank approximation. In *Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing*, STOC '15, pp. 163–172, New York, NY, USA, 2015a. Association for Computing Machinery.
 - Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In *Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science*, pp. 181–190, 2015b.
 - Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approximation via ridge leverage score sampling. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 1758–1777. SIAM, 2017.
 - Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for clustering. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2021, pp. 169–182, New York, NY, USA, 2021. Association for Computing Machinery.
 - Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and Omar Ali Sheikh-Omar. Improved coresets for euclidean *k*-means. *Advances in Neural Information Processing Systems*, 35:2679–2694, 2022a.
 - Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards optimal lower bounds for k-median and k-means coresets. In *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, pp. 1038–1051, 2022b.
 - Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney. Sampling algorithms and coresets for \ell_p regression. *SIAM Journal on Computing*, 38(5):2060–2078, 2009.
 - Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM Journal on Matrix Analysis and Applications*, 30(3):1084–1127, 2008.
 - Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for 1 2 regression and applications. In *Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm*, pp. 1127–1136, 2006.
 - Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing lewis weights to high precision. In *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2022.

- Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In *Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing*, STOC '11, New York, NY, USA, 2011. Association for Computing Machinery.
 - Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix approximations. *SIAM Journal on Matrix Analysis and Applications*, 29(2):656–659, 2007.
 - Daniel Gibney, Ce Jin, Tomasz Kociumaka, and Sharma V. Thankachan. Near-optimal quantum algorithms for bounded edit distance and lempel-ziv factorization. In *Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 3302–3332. Society for Industrial and Applied Mathematics, 2024.
 - András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear regression. *Quantum*, 6:754, June 2022. ISSN 2521-327X. doi: 10.22331/q-2022-06-30-754. URL https://doi.org/10.22331/q-2022-06-30-754.
 - Lov K. Grover. A fast quantum mechanical algorithm for database search. In *Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing*, STOC '96, pp. 212–219, New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917855. doi: 10.1145/237814.237866. URL https://doi.org/10.1145/237814.237866.
 - Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: importance sampling is nearly optimal. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2020, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450369794.
 - Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean (k,z)-clustering. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, STOC 2024, New York, NY, USA, 2024. Association for Computing Machinery.
 - Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Improved iteration complexities for overconstrained p-norm regression. In *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2022, 2022.
 - Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying sums of norms. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1953–1962. IEEE, 2023a.
 - Arun Jambulapati, Yang P Liu, and Aaron Sidford. Chaining, group leverage score overestimates, and fast spectral hypergraph sparsification. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pp. 196–206, 2023b.
 - Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying generalized linear models. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pp. 1665–1675, 2024.
 - William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. *Contemporary mathematics*, 26(189-206):1, 1984.
 - Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hypergraph sparsifiers of nearly linear size. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 1159–1170. IEEE, 2022.
 - Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In *Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)*, volume 67 of *LIPIcs*, pp. 49:1–49:21. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.
 - Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means: a quantum algorithm for unsupervised machine learning. In *Proceedings of the 33rd International Conference on Neural Information Processing Systems*, Red Hook, NY, USA, 2019. Curran Associates Inc.
 - Michael Langberg and Leonard J. Schulman. Universal ϵ -approximators for integrals. In *Proceedings* of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.

- Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and Processes,
 volume 23. Springer Science & Business Media, 1991.
 - James R Lee. Spectral hypergraph sparsification via chaining. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pp. 207–218, 2023.
 - Yin Tat Lee. Faster algorithms for convex and combinatorial optimization. PhD thesis, Massachusetts Institute of Technology, 2016.
 - Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu. Sublinear quantum algorithms for training linear and kernel-based classifiers. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 3815–3824. PMLR, June 2019.
 - Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification–simplified and strengthened. *Advances in Neural Information Processing Systems*, 34:11643–11654, 2021.
 - Ramgopal Mettu and Greg Plaxton. Optimal time bounds for approximate clustering. *Mach. Learn.*, 56(1–3), June 2004.
 - Alexander Munteanu, Simon Omlor, and Christian Peters. p-generalized probit regression and scalable maximum likelihood estimation via sketching and coresets. In *International Conference on Artificial Intelligence and Statistics*, pp. 2073–2100. PMLR, 2022.
 - Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
 - Cameron Musco and Kshiteej Sheth. Sublinear time low-rank approximation of toeplitz matrices. In *Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 5084–5117, 2024.
 - Cameron Musco and David P Woodruff. Sublinear time low-rank approximation of positive semidefinite matrices. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 672–683. IEEE, 2017.
 - Cameron Musco, Christopher Musco, David P Woodruff, and Taisuke Yasuda. Active linear regression for 1 p norms and beyond. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 744–753. IEEE, 2022.
 - Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection sampling. In *Proceedings of the 3rd Innovations in Theoretical Computer Science Conference*, ITCS '12, pp. 290–308, New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311151.
 - Swati Padmanabhan, David P. Woodruff, and Qiuyi (Richard) Zhang. Computing approximate ℓ_p sensitivities. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
 - Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 10336–10344, 2022.
 - Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In 2006 47th annual IEEE symposium on foundations of computer science (FOCS'06), pp. 143–152. IEEE, 2006.
 - Gideon Schechtman and Artem Zvavitch. Embedding subspaces of lp into $l^n p$, 0 .*Mathematische Nachrichten*, 227(1):133–142, 2001.
 - Poojan Chetan Shah and Ragesh Jaiswal. Quantum (inspired) \$d^2\$-sampling with applications. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 2772–2789. SIAM, 2019.

- Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. *SIAM Journal on Computing*, 40(6):1913–1926, 2011.
- Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In *Proceedings of the thirty-sixth annual ACM symposium on Theory of computing*, pp. 81–90, 2004.
- Michel Talagrand. Embedding subspaces of lp in lp^n . In Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 1992–94, pp. 311–326. Springer, 1995.
- Kasturi Varadarajan and Xin Xiao. On the Sensitivity of Shape Fitting Problems. In Deepak D'Souza, Jaikumar Radhakrishnan, and Kavitha Telikepalli (eds.), *IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)*, volume 18 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pp. 486–497, Dagstuhl, Germany, 2012. Schloss Dagstuhl Leibniz-Zentrum für Informatik. ISBN 978-3-939897-47-7.
- David P. Woodruff and Taisuke Yasuda. Online lewis weight sampling. In *Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2023.
- David P. Woodruff and Taisuke Yasuda. Root ridge leverage score sampling for ℓ_p subspace approximation. In *Proceedings of the 67th Annual Symposium on Foundations of Computer Science (FOCS)*, 2025. arXiv:2407.03262v3.
- Yecheng Xue, Xiaoyu Chen, Tongyang Li, and Shaofeng H.-C. Jiang. Near-optimal quantum coreset construction algorithms for clustering. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.

A PRELIMINARIES

A.1 NOTATION

For any $n \in \mathbb{N}$, let [n] denote the set $\{1, 2, \ldots, n\}$. We use $\widetilde{O}(\cdot)$ to hide polylogarithmic factors in n, d, $1/\epsilon$, $1/\delta$, and other problem-related parameters, such as k and k. For two numbers k and k, we use k0 as a shorthand for $\max\{a, b\}$. We use k2 to denote k3 to denote k4 to denote k5.

For a matrix A, we use $||A||_2$ or simply ||A|| to denote the spectral norm of A. For a tensor A, let ||A|| and $||A||_2$ (used interchangeably) denote the spectral norm of tensor A,

$$||A|| = \sup_{x,y,z \neq 0} \frac{|A(x,y,z)|}{||x|| \cdot ||y|| \cdot ||z||}.$$

Let $A \in \mathbb{R}^{n \times d}$ and $k \leq \min\{n,d\}$. We will use A_k or $[A]_k$ to denote its best rank-k approximation. Let $\|A\|_F$ denote the Frobenius norm of a matrix/tensor A, i.e., $\|A\|_F$ is the square root of the sum of squares of all entries of A. For $1 \leq p < 2$, we use $\|A\|_p$ to denote the entry-wise ℓ_p -norm of a matrix/tensor A, i.e., $\|A\|_p$ is the p-th root of the sum of p-th powers of the absolute values of the entries of A. $\|A\|_1$ will be an important special case of $\|A\|_p$, representing the sum of the absolute values of all entries.

Let $\operatorname{nnz}(A)$ denote the number of nonzero entries of A. Let $\det(A)$ denote the determinant of a square matrix A. Let A^{\top} denote the transpose of A. Let A^{\dagger} denote the Moore-Penrose pseudoinverse of A. Let A^{-1} denote the inverse of a full-rank square matrix.

For a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, we use $A_{i,j,l}$ to denote its (i,j,l)-th element, $A_{i,*,l}$ to denote its i-th row, and $A_{i,j,*}$ to denote its j-th column.

A tensor A is symmetric if and only if for any $i, j, k, A_{i,j,k} = A_{i,k,j} = A_{j,i,k} = A_{j,k,i} = A_{k,i,j}$.

For a tensor $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, we use \top to denote rotation (3-dimensional transpose) so that $A^{\top} \in \mathbb{R}^{n_3 \times n_1 \times n_2}$. For a tensor $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and matrix $B \in \mathbb{R}^{n_3 \times k}$, we define the tensormatrix dot product to be $A \cdot B \in \mathbb{R}^{n_1 \times n_2 \times k}$.

A.2 SENSITIVITY AND CORESET

Throughout this paper, we will extensively work with sensitivity and coreset. Let X be some universe of elements. Our main focus is the cost function: $\cos t : \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$, which measures the cost of an element $x \in X$ with respect to the first argument. We then define the notion of strong and weak coresets.

Definition A.1 ((Strong) Coreset). Let $B \subseteq A$ and $\epsilon \in (0,1)$. We say that B is an ϵ -strong coreset or ϵ -coreset of A if there exists a nonnegative weight vector $w \in \mathbb{R}^{|B|}_{\geq 0}$ such that for all $x \in X$,

$$\sum_{b \in B} w_b \cdot \cot(b, x) = (1 \pm \epsilon) \cdot \cot(A, x).$$

Strong coreset preserves the cost over all possible $x \in X$, but sometimes we only need the optimal cost preserved. We also introduce the notion of weak coreset.

Definition A.2 (Weak Coreset). Let $B \subseteq A$ and $\epsilon \in (0,1)$. We say that B is an ϵ -weak coreset if there exists a nonnegative weight vector $w \in \mathbb{R}^{|B|}_{>0}$ such that

$$\min_{x \in X} \sum_{b \in B} w_b \cdot \cot(b, x) = (1 \pm \epsilon) \cdot \text{OPT},$$

where $OPT = \min_{x \in X} cost(A, x)$.

Remark A.3. Oftentimes, given a weighted subset (B, w), we will use cost(B, x) as an abbreviation for $\sum_{b \in B} w_b \cdot cost(b, x)$, as our analysis and algorithms on the subset of points work in both unweighted and weighted settings. Hence, when the weight is clear from context, we will abuse notation and use cost(b, x) to denote $w_b \cdot cost(b, x)$.

Definition A.4 (Sensitivity and Generalized Sensitivity). Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$. We define the sensitivity of a_i as

$$s_i(A, A) = \max_{x \in X} \frac{\cot(a_i, x)}{\cot(A, x)}.$$

Let $B \subset \mathbb{R}^d$. We define the sensitivity of a_i with respect to B as

$$s_i(A, B) = \max_{x \in X, \cos t(B, x) \neq 0} \frac{\cot(a_i, x)}{\cot(B, x)}.$$

A.3 LEVERAGE SCORE, RIDGE LEVERAGE SCORE, AND LEWIS WEIGHTS

Definition A.5 (Statistical Dimension). For real value $\lambda \geq 0$ and a rank-d matrix $A \in \mathbb{R}^{n \times d}$ with singular values $\sigma_i(A)$, the quantity $s_d^{\lambda}(A) := \sum_{i=1}^d \frac{1}{\sqrt{1+\lambda/\sigma_i^2(A)}}$ is the statistical dimension of the ridge regression problem with regularizing weight λ .

Definition A.6 (Leverage Score). Given matrix $A \in \mathbb{R}^{n \times d}$, leverage score can be defined as follows:

$$\tau_i(A) := a_i^{\top} (A^{\top} A)^{\dagger} a_i,$$

where a_i^{\top} is the *i*-th row of A for all $i \in [n]$.

Definition A.7 (Ridge Leverage Score). *Given matrix* $A \in \mathbb{R}^{n \times d}$, we denote the *i*-th ridge leverage score, for $i \in [n]$, as follows:

$$\overline{\tau_i}(A, \lambda_{A_k}) := a_i^\top (A^\top A + \lambda_{A_k} I)^{-1} a_i,$$

where $\lambda_{A_k} = \|A - A_k\|_F^2/k$ and $I \in \mathbb{R}^{d \times d}$ is the identity matrix. When the rank k is clear from context, we may abbreviate $\overline{\tau}_i(A)$ as $\overline{\tau}_i(A, \lambda_{A_k})$.

Definition A.8 (Generalized Ridge Leverage Score). Let $A \in \mathbb{R}^{n \times d}$, $C \in \mathbb{R}^{n \times d'}$, and $i \in [d]$. We define the *i*-th generalized ridge leverage score of $A \in \mathbb{R}^{n \times d}$ with respect to $C \in \mathbb{R}^{n \times d'}$ as follows:

$$\overline{\tau}_i(A, C, \lambda_{C_k}) = \begin{cases} a_i^\top (CC^\top + \lambda_{C_k} I_n)^\dagger a_i, & \text{if } a_i \in \text{span}(CC^\top + \lambda I_n); \\ \infty, & \text{otherwise.} \end{cases}$$

When the rank k is clear from context, we may use $\overline{\tau}_i(A,C)$ as shorthand for $\overline{\tau}_i(A,C,\lambda_{C_k})$.

Definition A.9 (Lewis Weights). Let $p \in (0, \infty)$ and $A \in \mathbb{R}^{n \times d}$. We define the ℓ_p Lewis weights of A, denoted by w_A , as

$$w_{A,i} = \tau_i(W_A^{1/2 - 1/p}A),$$

or equivalently,

$$w_{A,i}^{2/p} = a_i^{\top} (A^{\top} W_A^{1-2/p} A)^{-1} a_i.$$

A.4 MATRIX APPROXIMATIONS

Definition A.10 (Subspace Embedding in Sarlos (2006)). Let ϵ , $\delta \in (0,1)$ and n > d. Given a matrix $U \in \mathbb{R}^{n \times d}$ which is orthonormal (i.e., $U^{\top}U = I_d$), we say $S \in \mathbb{R}^{m \times n}$ is an $\mathsf{SE}(\epsilon, \delta, n, d)$ subspace embedding for fixed U if

$$(1 - \epsilon) \|Ux\|_2^2 \le \|SUx\|_2^2 \le (1 + \epsilon) \|Ux\|_2^2$$

holds with probability $1 - \delta$. This is equivalent to

$$||U^{\top}S^{\top}SU - U^{\top}U|| \le \epsilon.$$

Definition A.11 (Weak ϵ -Affine Embedding, Theorem 39 in Clarkson & Woodruff (2013)). Let matrices $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{n \times d}$. Given matrix $S \in \mathbb{R}^{t \times n}$, we say S is weak ϵ -affine embedding if the following conditions hold: let $\widehat{X} = \arg\min_{X} \|AX - B\|_F^2$ and $\widehat{B} = A\widehat{X} - B$ and then

$$||S(AX - B)||_F^2 - ||S\widehat{B}||_F^2 = (1 \pm \epsilon)||AX - B||_F^2 - ||\widehat{B}||_F^2$$

A.5 PROPERTIES OF LEVERAGE SCORE

Sampling according to leverage score distribution yields a weak affine embedding property; additionally, solving the subsampled problem results in an optimal solution whose cost is close to the original optimal cost.

Lemma A.12 (Theorem 42 in Clarkson & Woodruff (2013)). Let matrix $A \in \mathbb{R}^{n \times r}$ with rank at most k, and let $B \in \mathbb{R}^{n \times d}$. If $S \in \mathbb{R}^{n \times n}$ is a sampling and rescaling diagonal matrix according to the leverage scores of A, let $m = O(\epsilon^{-2}k \log k)$ denote the number of nonzero entries on the diagonal of S. Then for all $X \in \mathbb{R}^{r \times d}$, we have:

- S is a weak ϵ -affine embedding (see Definition A.11);
- equivalently, if $\widehat{X} = \arg\min_X \|AX B\|_F^2$, $\widehat{B} = A\widehat{X} B$, and $C := \|S\widehat{B}\|_F^2 \|\widehat{B}\|_F^2$, then

$$(1 - \epsilon) \cdot ||AX - B||_F^2 + C \le ||S(AX - B)||_F^2 \le (1 + \epsilon) \cdot ||AX - B||_F^2 + C.$$

Lemma A.13 (Leverage Score Preserves Optimal Cost, Lemma C.31 of Song et al. (2019)). Let $A \in \mathbb{R}^{n \times r}$ be a matrix with rank at most k, and let $B \in \mathbb{R}^{n \times d}$. If we sample $O(k \log k + k/\epsilon)$ rows of A and B proportional to the leverage scores of A to obtain a sampling matrix S, then with probability at least $1 - \delta$,

$$||AY_* - B||_F^2 \le (1 + \epsilon) \cdot \min_{Y} ||AY - B||_F^2,$$

where $Y_* = \arg\min_Y ||SAY - SB||_F^2$.

A.6 QUANTUM PRIMITIVES

Our core quantum primitive is a sampling algorithm based on Grover search.

Lemma A.14 (Claim 3 in Apers & De Wolf (2022)). Let n be a positive integer and let p_i for all $i \in [n]$ with $p_i \in [0,1]$. There is a quantum algorithm that generates a list of indices with i sampled with probability p_i independently, in time $\widetilde{O}(\sqrt{n\sum_{i=1}^n p_i}) \cdot \mathcal{T}$, where \mathcal{T} is the time to compute p_i .

We note that this runtime bound could also be achieved via quantum rejection sampling (Ozols et al., 2012). Let $P = \sum_{i=1}^n p_i$, then p_i/P for all $i \in [n]$ induces a probability distribution, which we denote by σ . Recall that the rejection sampling aims to generate one sample from the target distribution σ (where $\sigma_i = p_i/P$) using a uniform proposal distribution π (where $\pi_i = 1/n$), the query complexity is $\widetilde{O}(\max_{i \in [n]} \sqrt{\sigma_i/\pi_i}) \cdot \mathcal{T}$, as each $p_i \leq 1$, the ratio can be upper bounded by $\max_i(p_i/P)/(1/n) \leq n/P$, thus, the complexity to generate *one sample* is $\widetilde{O}(\sqrt{n/P}) \cdot \mathcal{T}$. As $\sum_{i=1}^n p_i = P$, if we choose each index i with probability p_i independently, then the expected size is P, hence the total expected complexity is $\widetilde{O}(P\sqrt{n/P}) \cdot \mathcal{T} = \widetilde{O}(\sqrt{nP}) \cdot \mathcal{T}$, as desired.

Throughout the paper, we will use the notation QLS (A,s,δ) to denote the procedure of sampling s rows or columns from A according to the leverage score distribution of A, with probability at least $1-\delta$ that these leverage scores are constant factor approximations to the exact leverage scores. The time for this procedure is $\sqrt{ns}\cdot\mathcal{T}$, where \mathcal{T} is the time to compute a single score. Similarly, we use QGRLS $(A,C,\epsilon,\delta,\lambda)$ to denote the procedure of sampling according to the generalized ridge leverage score distribution $\overline{\tau}_i(A,C,\lambda)$.

B A QUANTUM RECURSIVE SAMPLING FRAMEWORK FOR CORESET

Throughout this section, let us consider $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ to be a set of n points in \mathbb{R}^d , and X to be a set. Let $\operatorname{cost} : \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$ be a cost function, and for $x \in X$, let $\operatorname{cost}(A, x) = \sum_{i=1}^n \operatorname{cost}(a_i, x)$. The main objective of this section is to develop a framework for sampling a weighted subset of A that approximates the cost of A. To do so, we prove that if the weights satisfying certain assumptions, then a generic recursive sampling framework could construct a coreset from these weights. The assumptions are listed in the following.

919

920

921

922

923 924

925

926 927

928 929

930

931

932

933

934 935

936 937

938

939

940

941

942

943

944

945

946

947

948

949

950 951

952

953

954 955

956

957

958

959

960

961 962

963

964

965

966 967

968 969

970

971

Assumption B.1. Given two finite subsets $A, B \subseteq \mathbb{R}^d$, let $w(A, B) \in \mathbb{R}^{|A|}$ be a nonnegative weight vector where $w_i(A, B)$ is the weight of a_i with respect to B. We assume w satisfies the following conditions:

- Consistent total weights: for any subset $S \subseteq [n]$, $\sum_{i \in S} w_i(A_S, A_S) \leq \text{sum}(w)$ where sum(w) is a finite upper bound on the total weights;
- Uniform sampling bound: let A' be a uniform subset of A with size m and let $w'(A, A') \in \mathbb{R}^n$ be defined as $w'_i(A, A') := \begin{cases} w_i(A, A'), & \text{if } a_i \in A', \\ w_i(A, A' \cup \{a_i\}), & \text{otherwise}; \end{cases}$, then $w'_i(A, A') \geq w_i(A, A)$ for all $i \in [n]$;
- Importance sampling bound: let u_i be an overestimate of $w_i(A, A)$ and suppose we sample according to $q_i = \min\{1, g(\epsilon, n, d) \cdot u_i\}$, yielding a weighted subset $B \subseteq A$ of size $g(\epsilon, n, d) \cdot ||u||_1$, then with high probability, B is an ϵ -coreset of A with size $g(\epsilon, n, d) \cdot ||u||_1$;
- Coreset preserves weights: let B be an ϵ -coreset of A, then $w_i(C, B) = (1 \pm \epsilon) \cdot w_i(C, A)$ for any fixed C and for all $i \in [n]$.

Algorithm 1 Quantum recursive sampling for coreset.

```
1: procedure QRECURSESAMPLE(A \in \mathbb{R}^{n \times d}, \epsilon)
          if n \leq g(\epsilon, n, d) \cdot \text{sum}(w) then
 2:
 3:
                return (A, I_n)
 4:
          end if
 5:
          c \leftarrow 1000
 6:
          A' \subset_{1/2} A
 7:
          s \leftarrow g(\epsilon, n, d) \cdot \text{sum}(w)
           (C', D') \leftarrow QRecurseSample(A', \epsilon)
 8:
 9:
          Implement a classical oracle for w'_i(A, C')
                                                                                  \triangleright p_i = \min\{1, c \cdot q(\epsilon, n, d) \cdot w_i'(A, C')\}
10:
           D \leftarrow \mathsf{QSample}(p)
11:
12:
          C \leftarrow D^{\top} A
          return (C, D)
13:
14: end procedure
```

Before presenting our most general result, we first show that if B is a coreset of A, then $B \cup \{p\}$ is also a coreset of $A \cup \{p\}$ for any $p \notin A$.

Lemma B.2. Let B be an ϵ -coreset of A and let $p \notin A$, then $B \cup \{p\}$ is an ϵ -coreset of $A \cup \{p\}$.

Proof. Since B is an ϵ -coreset of A, we know that for any $x \in X$, $cost(B, x) = (1 \pm \epsilon) \cdot cost(A, x)$ with high probability. Conditioning on this event, we note that

$$\begin{aligned} \cos(B \cup \{p\}, x) &= \cos(B, x) + \cos(\{p\}, x) \\ &\leq (1 + \epsilon) \cdot \cot(A, x) + \cot(\{p\}, x) \\ &\leq (1 + \epsilon) \cdot \cot(A \cup \{p\}, x), \end{aligned}$$

the lower bound can be established similarly.

Theorem B.3. Let $A \in \mathbb{R}^{n \times d}$. Then, there exists a randomized, quantum algorithm that constructs an ϵ -coreset C of expected size $s := O(g(\epsilon, n, d) \cdot \text{sum}(w))$ Moreover, if a classical oracle for $w_i(X,Y)$ can be implemented with

- Preprocessing in time $\mathcal{T}_{prep}(|Y|, d)$;
- Query time $\mathcal{T}_{query}(|Y|, d)$ for computing $w_i(X, Y)$ for any $i \in X$,

the algorithm runs in time

$$\mathcal{T}_{\text{prep}}(s',d) + \widetilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{query}}(s',d)),$$
where $s' = O(g(0.01,n,d) \cdot \text{sum}(w)).$

Algorithm 2 Quantum iterative sampling for coreset.

972

993 994

995

996

997

998

999

1000

1002 1003

1004

1005

1008

1010 1011

1012 1013

1014 1015 1016

1017

1018

1019

1020

1021

1022

1023 1024

1025

```
973
                 1: procedure QITERATESAMPLE(A \in \mathbb{R}^{n \times d}, \epsilon)
974
                            c \leftarrow 1000
975
                3:
                            s \leftarrow 4c \cdot g(\epsilon, n, d) \cdot \text{sum}(w)
976
                4:
                            T \leftarrow \log(n/s)
977
                            \epsilon_0 \leftarrow 0.01
                 5:
978
                            s' \leftarrow 4c \cdot g(\epsilon', n, d) \cdot \text{sum}(w) 
A_0 \subset_{1/2} A_1 \subset_{1/2} \dots \subset_{1/2} A_{T-1} \subset_{1/2} A_T = A
979
                 7:
980
                8:
                            for t=1 \rightarrow T-1 do
981
                9:
                                  Implement a classical oracle for w_i'(A_t, C_{t-1}) for all a_i \in A_t
               10:
982
                                                                                                          \triangleright p_i = \min\{1, c \cdot g(\epsilon', n, d) \cdot w_i'(A_t, C_{t-1})\}\
               11:
983
                                  D_t \leftarrow \mathsf{QSample}(p)
               12:
984
                                  C_t \leftarrow D_t^{\top} A_t
                                                                                                                                                               \triangleright C_t \in \mathbb{R}^{s' \times d}
               13:
985
               14:
986
                            Implement a classical oracle for w_i'(A_T, C_{T-1}) for all a_i \in A_T
               15:
987
                                                                                            \triangleright p_i = \min\{1, c \cdot g(\epsilon, n, d) \cdot w_i'(A_T, C_{T-1} \cup \{a_i\})\}\
               16:
988
                            D_T \leftarrow \mathsf{QSAMPLE}(p)
                                                                                                                                                               \triangleright \|D_T\|_0 = s
               17:
                            C_T \leftarrow D_T^{\top} A_T
return (C_T, D_T)
                                                                                                                                                               \triangleright C_T \in \mathbb{R}^{s \times d}
               18:
990
               19:
991
               20: end procedure
992
```

Proof. As the algorithm is recursive, we will prove by induction on n. For the base case, we have $n \leq g(\epsilon, n, d) \cdot \operatorname{sum}(w)$; in this case, we could simply take the coreset as A, as it satisfies the size guarantee with exact approximation.

For the inductive step, we assume it holds for n/2 as our algorithm uniformly samples half of the points. This means that C' is an ϵ -coreset for A' and by the importance sampling bound of Assumption B.1, we have $w_i(A,C')=(1\pm\epsilon)\cdot w_i(A,A')$ with high probability. Now, we consider two cases: if $a_i\in A'$, then $w_i'(A,A')=w_i(A,A')$ and $w_i'(A,C')=w_i(A,C')=(1\pm\epsilon)w_i(A,A')=(1\pm\epsilon)w_i'(A,A')$. If $a_i\not\in A'$, then $w_i'(A,A')=w_i'(A,A')=(1\pm\epsilon)w_i'(A,A')=(1\pm\epsilon)w_i(A,C')$ by Lemma B.2.

Next, we prove that for any uniform subset $S \subseteq [n]$ with |S| = m, we have

$$\mathbb{E}[\|w'(A, SA)\|_1] \le \frac{n}{m} \cdot \|w(A, A)\|_1.$$

Let us denote $S^{(i)}$ as the diagonal indicator matrix for $S \cup \{i\}$. Then, note

$$\sum_{i=1}^{n} w_i'(A, SA) = \sum_{i \in S} w_i(A, SA) + \sum_{i \notin S} w_i(A, S^{(i)}A)$$
$$= \|w(SA, SA)\|_1 + \sum_{i \notin S} w_i(A, S^{(i)}A)$$
$$\leq \|w(A, A)\|_1 + \sum_{i \notin S} w_i(A, S^{(i)}A),$$

to bound the second term, note that it is generated via the following random process: first selecting S, then selecting a random $i \not\in S$ and returning $w_i(A, S^{(i)}A)$. Since there are n-m points not in SA, the expected value of this process is $\frac{1}{n-m} \mathbb{E}[\sum_{i \not\in S} w_i(A, S^{(i)}A)]$. The key observation is that this process is equivalent to another process: pick a random subset $S' \subset [n]$ of size m+1, then randomly pick a point $a_i \in S'A$ and return $w_i(A, S'A)$. In expectation, this is equal to the average weight over S'A. Since S'A contains m+1 points and by the consistent total weights assumption, the average weight is at most $\frac{\|w(A,A)\|_1}{m+1}$. Therefore,

$$\mathbb{E}[\sum_{i \notin S} w_i(A, S^{(i)}A)] \le (n - m) \cdot \frac{\|w(A, A)\|_1}{m + 1},$$

combining these results, we obtain the following expectation bound:

$$\mathbb{E}\left[\sum_{i=1}^{n} w_{i}'(A, SA)\right] \leq \|w(A, A)\|_{1} + (n - m) \cdot \frac{\|w(A, A)\|_{1}}{m + 1}$$

$$\leq \frac{n + 1}{m + 1} \cdot \|w(A, A)\|_{1}$$

$$\leq \frac{n}{m} \cdot \|w(A, A)\|_{1}.$$

Hence, since A' is a uniform subset of A with size n/2, we know that $\mathbb{E}[\|w'(A,A')\|_1] \le 2\|w(A,A)\|_1$ and $w'_i(A,A') \ge w_i(A,A)$ by the uniform sampling bound. Therefore, if we simply scale $w'_i(A,C')$ by a factor of $\frac{1}{1-\epsilon}$, then we have

$$w_i'(A, C') \ge w_i'(A, A') \ge w_i(A, A)$$

and moreover

$$\mathbb{E}[\|w'(A, C')\|_1] \le (1 + 3\epsilon) \, \mathbb{E}[\|w'(A, A')\|_1]$$

$$\le 4\|w(A, A)\|_1$$

$$< 4 \cdot \text{sum}(w)$$

consequently, if we sample according to $c \cdot g(\epsilon, n, d) \cdot w_i'(A, C')$, then the expected size of C is at most $c' \cdot g(\epsilon, n, d) \cdot \operatorname{sum}(w)$ for c' = 4c, and the coreset guarantee follows naturally from the importance sampling bound of Assumption B.1.

Regarding the running time, we analyze an iterative version of the algorithm that achieves the same effect, illustrated in Algorithm 2. One key difference is that for the intermediate steps, we use a constant approximation to improve the runtime. We divide the proof into steps.

- To uniformly subsample half of the points, we follow the approach of Apers & Gribling (2024), which takes $\widetilde{O}(\log(n/s))$ time;
- For each iteration, we first prepare a classical oracle for $w_i'(A_t, C_{t-1})$ in $\mathcal{T}_{prep}(s', d)$ time;
- Next, we need to sample according to $p_i = \min\{1, g(\epsilon', n, d) \cdot w_i'(A_t, C_{t-1})\}$ with

$$\mathbb{E}\left[\sum_{i \in A_t} p_i\right] \le c \cdot g(\epsilon', n, d) \cdot \mathbb{E}\left[\sum_{i \in A_t} w_i'(A_t, C_{t-1})\right]$$

$$\le 2c \cdot g(\epsilon', n, d) \cdot \mathbb{E}\left[\sum_{i \in A_t} w_i'(A_t, A_{t-1})\right]$$

$$\le 4c \cdot g(\epsilon', n, d) \cdot \sum_{i \in A_t} w_i(A_t, A_t)$$

$$\le 4c \cdot g(\epsilon', n, d) \cdot \text{sum}(w)$$

$$= s'.$$

using Lemma A.14, this step can be implemented in time

$$\widetilde{O}(\sqrt{ns'}) \cdot \mathcal{T}_{\text{query}}(s', d);$$

- Forming C_t requires selecting and weighting s' points, which can be done in O(s') time;
- ullet Finally, we do a resampling with ϵ to form the final coreset, which takes

$$\mathcal{T}_{\text{prep}}(s,d) + \widetilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{query}}(s,d))$$

time, as desired.

While Theorem B.3 provides both approximation guarantees in terms of coreset and runtime, in applications it is more convenient to craft an algorithm that takes the size of the coreset as a parameter.

Algorithm 3 Quantum iterative sampling for coreset: fixed size.

```
1: procedure QITERATEFIXEDSIZE(A \in \mathbb{R}^{n \times d}, s, s')
1082
                        c \leftarrow 1000 \cdot s / \|w(A, A)\|_1
                        c' \leftarrow 1000 \cdot s' / \|w(A, A)\|_1
              3:
1084
              4:
                        T \leftarrow \log(n/s)
                        A_0 \subset_{1/2} A_1 \subset_{1/2} \ldots \subset_{1/2} A_{T-1} \subset_{1/2} A_T = A
              5:
              6:
                        C_0 \leftarrow A_0
                        for t=1 \rightarrow T-1 do
              7:
                             Implement a classical oracle for w_i'(A_t, C_{t-1}) for all a_i \in A_t  p_i = \min\{1, c' \cdot w_i'(A_t, C_{t-1})\} 
1088
              8:
1089
              9:
                             D_t \leftarrow \mathsf{QSample}(p)
             10:
1090
                             C_t \leftarrow D_t^{\top} A_t
                                                                                                                                           \triangleright C_t \in \mathbb{R}^{s' \times d}
            11:
            12:
                        Implement a classical oracle for w'_i(A_T, C_{T-1}) for all a_i \in A_T
            13:
1093
                                                                                                            \triangleright p_i = \min\{1, c \cdot w_i'(A_T, C_{T-1})\}
            14:
1094
                                                                                                                                           |D_T||_0 = s
|C_T| \in \mathbb{R}^{s \times d}
            15:
                        D_T \leftarrow \mathsf{QSAMPLE}(p)
1095
                        C_T \leftarrow D_T^{\perp} A_T
            16:
1096
                        return (C_T, D_T)
            17:
            18: end procedure
```

Corollary B.4. Let $A \in \mathbb{R}^{n \times d}$ and $s, s' \in [n]$. Then, there exists a quantum, randomized algorithm that constructs a coreset C of A with expected size s. Assuming access to a classical oracle for $w_i(X,Y)$ with:

- Preprocessing time $\mathcal{T}_{prep}(|Y|, d)$;
- Query time $\mathcal{T}_{\text{query}}(|Y|, d)$ for computing $w_i(X, Y)$ for any $i \in X$,

the algorithm runs in time

1099 1100

1101

1102

1103

1104 1105

1106

1107 1108

1109

1110 1111

1112

1113

1114 1115 1116

1117

1118

1119

1120

1121 1122

1123 1124

1125

1126 1127

1128

1129

11301131

11321133

$$\mathcal{T}_{\text{prep}}(s',d) + \widetilde{O}(\sqrt{ns} \cdot \mathcal{T}_{\text{query}}(s',d)).$$

Our main contribution is to prove that sensitivity sampling satisfies Assumption B.1.

Definition B.5. Let $A = \{a_1, \dots, a_n\} \subset \mathbb{R}^d$ and let $\operatorname{cost} : \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$ be a cost function. We define the sensitivity of a_i with respect to B, denoted by $s_i(A, B)$, as

$$s_i(A, B) = \max_{x \in X, \cot(B, x) \neq 0} \frac{\cot(a_i, x)}{\cot(B, x)}$$

We also need to define the dimension of a system (A, w, X, cost):

Definition B.6. Given a point set $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, nonnegative weights $w \in \mathbb{R}^{|A|}_{\geq 0}$, a space X and a cost function $\cos t : \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$, let $r \in [0, \infty)$ and let $X(A_S)$ be a function that inputs a subset of points from A and outputs a set of $x \in X$ associated with A_S . We define

$$\operatorname{range}(x,r) = \{a_i \in A : w_i \cdot \operatorname{cost}(a_i,x) \le r\}.$$

The dimension of (A, w, X, cost) is the smallest integer dim such that for any subset $S \subseteq [n]$ we have

$$|\{\operatorname{range}(x,r): x \in X(A_S), r \in [0,\infty)\}| \le |S|^{\dim}.$$

Lemma B.7 (Theorem 2.7 of Braverman et al. (2022)). Let dim be the dimension of $(A, w, X, \cos t)$ (Def. B.6), let $q_i := \min\{1, w_i \cdot s_i(A, A)\}$ and $t \geq \sum_{i=1}^n q_i$, let $\epsilon, \delta \in (0, 1)$. Let $c \geq 1$ be a sufficiently large constant, and let S be a sample generated by sampling according to q_i . Then, with probability at least $1 - \delta$, we can generate a subset $S \subseteq [n]$ such that for all $x \in X(S)$,

$$|\operatorname{cost}(A, x) - \sum_{i \in S} \frac{w_i}{|S| \cdot q_i} \operatorname{cost}(a_i, x)| \le \epsilon \cdot \operatorname{cost}(A, x),$$

moreover, the size of S is

$$\frac{ct}{\epsilon^2} \cdot (\dim \cdot \log t + \log(1/\delta)).$$

Theorem B.8. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and let $\cos : \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$. Moreover, suppose the total sensitivity has a finite upper bound, i.e., there exists some $\operatorname{sum}(s) < \infty$ such that for any finite subset $C \subset \mathbb{R}^d$, $\sum_{i \in C} s_i(C, C) \leq \operatorname{sum}(s)$. Then, the sensitivity of A with respect to B, s(A, B) (Def. B.5) satisfies Assumption B.1.

Proof. We need to prove s(A, B) satisfies the four items in Assumption B.1.

- Consistent total weights: by assumption, we have that for any $S \subseteq [n]$, $\sum_{i \in S} s_i(A_S, A_S) \le \text{sum}(s)$ with sum(s) being finite.
- Uniform sampling bound: we analyze by cases. For the first case, where $a_i \in A'$, we have $w_i'(A, A') = s_i(A, A')$. Let x_1, x_2 be the two points that realize $s_i(A, A')$ and $s_i(A, A)$, respectively. Suppose $cost(A', x_2) \neq 0$, then

$$\frac{\cos(a_i, x_1)}{\cot(A', x_1)} \ge \frac{\cos(a_i, x_2)}{\cot(A', x_2)}$$

$$\ge \frac{\cot(a_i, x_2)}{\cot(A', x_2) + \cot(A \setminus A', x_2)}$$

$$= \frac{\cot(a_i, x_2)}{\cot(A, x_2)}$$

$$= \frac{\cot(a_i, x_2)}{\cot(A, x_2)}$$

where we use the fact that cost is nonnegative, therefore increasing the denominator will only decrease the fraction. On the other hand, if $\cot(A', x_2) = 0$, then it must be that $\cot(a_i, x_2) = 0$ due to the nonnegativity of cost. Hence, $s_i(A, A) = 0$, and consequently $s_i(A, A') = 0$ as otherwise we could pick x_1 for $s_i(A, A)$.

For the next case, where $a_i \notin A'$, we have $w_i'(A, A') = s_i(A, A' \cup \{a_i\})$. Again, let x_1, x_2 be the two points that realize $s_i(A, A' \cup \{a_i\})$ and $s_i(A, A)$. The argument is similar: suppose $cost(A', x_2) \neq 0$, then

$$\frac{\cot(a_i, x_1)}{\cot(A', x_1) + \cot(a_i, x_1)} \ge \frac{\cot(a_i, x_2)}{\cot(A', x_2) + \cot(a_i, x_2)}$$

$$\ge \frac{\cot(a_i, x_2)}{\cot(A', x_2) + \cot(a_i, x_2)}$$

$$= \frac{\cot(a_i, x_2)}{\cot(A', x_2) + \cot(a_i, x_2) + \cot(A \setminus (A' \cup \{a_i\}), x_2)}$$

$$= \frac{\cot(a_i, x_2)}{\cot(A, x_2)}.$$

If $cost(A', x_2) = 0$, then we claim that in fact, $x_1 = x_2$. This follows because

$$\frac{\cot(a_i, x_2)}{\cot(A', x_2) + \cot(a_i, x_2)} = \frac{\cot(a_i, x_2)}{\cot(a_i, x_2)}$$

$$= 1$$

by the definition of sensitivity, the max sensitivity is 1, therefore in this case it must be $x_1 = x_2$ and $s_i(A, A) \le 1 = s_i(A, A' \cup \{a_i\})$.

- Importance sampling bound: this can be achieved via Lemma B.7, by taking $m = O(\epsilon^{-2} \|u\|_1 \cdot (\dim \cdot \log(\|u\|_1) + \log(1/\delta)))$ samples.
- Coreset preserves weights: let B be an ϵ -coreset of A. Then, we know that for any $x \in X$, $\cos t(B,x) = (1 \pm \epsilon) \cdot \cos t(A,x)$. Now, let $C \subset \mathbb{R}^d$ be any fixed set of points, and let $x_1, x_2 \in X$ be the points that achieve $s_i(C,A)$ and $s_i(C,B)$. We have:

$$w_i(C, B) = s_i(C, B)$$

$$= \frac{\cot(c_i, x_2)}{\cot(B, x_2)}$$

$$\leq (1 + \epsilon) \cdot \frac{\cot(c_i, x_2)}{\cot(A, x_2)}$$

1188
1189 $\leq (1+\epsilon) \cdot \frac{\cot(c_i, x_1)}{\cot(A, x_1)}$ 1190 $= (1+\epsilon) \cdot s_i(C, A),$

we could similarly establish that $s_i(C, B) \ge (1 - \epsilon) \cdot s_i(C, A)$. This proves the assertion. \Box

In what follows, we demonstrate how to concretely implement sensitivity sampling for various cost functions, such as ℓ_p sensitivity and k-subspace sensitivity.

B.1 ℓ_2 Sensitivity and Leverage Score

Let $X = \mathbb{R}^d$ and $\cot(a_i, x) = (a_i^\top x)^2$. In this case, the ℓ_2 sensitivity defined as

$$s_i(A, B) = \max_{x \in \mathbb{R}^d, Bx \neq 0} \frac{(a_i^\top x)^2}{\|Bx\|_2^2}$$

is, in fact, the leverage score $\tau_i(A)$. The leverage score has many favorable structures: for example, to obtain an ϵ -coreset, it is sufficient to sample $O(\epsilon^{-2}d\log d)$ points, and one could sample with $w_i(A,A')$ instead of $w_i'(A,A')$.

Algorithm 4 Classical oracle for leverage score.

```
1: data structure LEVERAGESCORE
```

1208 2: **members**

1209 3: $A \in \mathbb{R}^{n \times d}$

1210 4: $C \in \mathbb{R}^{s \times d}$

1211 5: $M \in \mathbb{R}^{O(\log n) \times d}$

6: end members

7

1192 1193

1194

1195 1196

1197 1198

1199

1200 1201 1202

1203

1204

1206

1207

1212 1213

1214

1215

1217

1218

1219

1224

1225

1226

1227 1228 1229

1230

1231 1232

1233

1234

1237

1239

1240

1241

8: **procedure** PREPROCESS $(A \in \mathbb{R}^{n \times d}, C \in \mathbb{R}^{s \times d})$

9: $c \leftarrow 1000$

10: Compute the thin SVD of $C: C = U\Sigma V^{\top}$

11: Let $G \in \mathbb{R}^{c \log n \times s}$ be a random Gaussian matrix

12: $M \leftarrow (GV)(\Sigma^{\dagger}V^{\perp})$

13: end procedure

1

15: **procedure** QUERY $(i \in [n])$

16: **return** $||Ma_i||_2^2$

2 17: end procedure

18: end data structure

Lemma B.9. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and define $\cos : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ by $\cos (a_i, x) = (a_i^\top x)^2$, and let w(A, B) be defined as

 $\triangleright\,V\in\mathbb{R}^{d\times s}$

 $\triangleright M \in \mathbb{R}^{c \log n \times d}$

$$w_i(A, B) = \begin{cases} a_i^{\top} (B^{\top} B)^{\dagger} a_i, & \text{if } a_i \in \text{span}(B^{\top} B); \\ \infty, & \text{otherwise.} \end{cases}$$

Then, the weights w satisfy Assumption B.1. Moreover, there exists a randomized algorithm (Algorithm 4) that implements PREPROCESS and QUERY procedures, with

- $\mathcal{T}_{\text{prep}}(s,d) = \widetilde{O}(sd^{\omega-1});$
- $\mathcal{T}_{\text{query}}(s, d) = \widetilde{O}(d)$.

Proof. While leverage score is ℓ_2 sensitivity and we could directly use Theorem B.8, we include a proof that utilizes the structure of leverage score for completeness.

• Consistent total weights: first note that

$$\sum_{i=1}^{n} w_i(A, A) = \sum_{i=1}^{n} a_i^{\top} (A^{\top} A)^{\dagger} a_i$$

1242
$$= \operatorname{tr}[(A^{\top}A)^{\dagger}A^{\top}A]$$
1244
$$= \operatorname{rank}(A)$$
1245
$$\leq d$$

hence we have sum(w) = d. Let $S \subset [n]$ with $|S| \geq d$, then

$$\sum_{i \in S} w_i(A_S, A_S) = \sum_{i \in S} a_i^\top (A_S^\top A_S)^\dagger a_i$$

$$= \operatorname{tr}[(A_S^\top A_S)^\dagger (A_S^\top A_S)]$$

$$= \operatorname{rank}(A_S)$$

$$< d.$$

• Uniform sampling bound: the proof closely follows that of (Cohen et al., 2015b, Theorem 1), and we analyze by cases. Let S be an indicator matrix with A' = SA and let $S^{(i)}A$ be the indicator matrix for $S \cup \{i\}$. We will show that $w_i'(A,A') = w_i(A,S^{(i)}A)$ via case analysis. If $a_i \in A'$, then $w_i'(A,A') = w_i(A,A')$ and $S = S^{(i)}$, consequently $w_i(A,SA) = w_i(A,S^{(i)}A)$. If $a_i \notin A'$, then $w_i'(A,A') = w_i(A,A' \cup \{i\}) = w_i(A,S^{(i)}A)$. This completes the proof. To show the overestimate, observe that $S^{(i)}$ is an indicator matrix for the sample and thus $S^{(i)} \leq I_n$, we can then conclude

$$A^{\top}(S^{(i)})^2 A \preceq A^{\top} A$$

and

$$w_i'(A, A') = a_i^{\top} (A^{\top} (S^{(i)})^2 A)^{\dagger} a_i$$

$$\geq a_i^{\top} (A^{\top} A)^{\dagger} a_i$$

$$= w_i (A, A).$$

- Importance sampling bound: this is standard as $w_i(A, A)$ is the leverage score of matrix A. The proof follows from a standard matrix Chernoff bound (by sampling $O(\epsilon^{-2}d\log d)$ points) and we refer readers to (Cohen et al., 2015b, Lemma 4).
- Coreset preserves weights: because B is an ϵ -coreset of A, we know that for any $x \in \mathbb{R}^d$, $\|Bx\|_2^2 = (1 \pm \epsilon) \cdot \|Ax\|_2^2$. Expanding yields

$$(1 - \epsilon) \cdot x^{\mathsf{T}} A^{\mathsf{T}} A x \leq x^{\mathsf{T}} B^{\mathsf{T}} B x \leq (1 + \epsilon) \cdot x^{\mathsf{T}} A^{\mathsf{T}} A x,$$

this implies that $B^{\top}B$ is a spectral approximation to $A^{\top}A$ and $\ker(A) = \ker(B)$, and the same holds for $(B^{\top}B)^{\dagger}$ with respect to $(A^{\top}A)^{\dagger}$. Let $C \subset \mathbb{R}^d$ be any fixed subset of \mathbb{R}^d . We conclude the proof by spectral approximation:

$$(1 - \epsilon) \cdot c_i^{\top} (A^{\top} A)^{\dagger} c_i \leq c_i^{\top} (B^{\top} B)^{\dagger} c_i \leq (1 + \epsilon) \cdot c_i^{\top} (A^{\top} A)^{\dagger} c_i.$$

Now, we turn to the runtime analysis of Algorithm 4. Let $C = U\Sigma V^{\top}$. Then we have $(C^{\top}C)^{\dagger} = (V\Sigma^2V^{\top})^{\dagger} = V(\Sigma^{\dagger})^2V^{\top}$. By definition,

$$w_i(A, C) = a_i^{\top} (C^{\top} C)^{\dagger} a_i$$

= $a_i^{\top} V (\Sigma^{\dagger})^2 V^{\top} a_i$
= $\|\Sigma^{\dagger} V^{\top} a_i\|_2^2$,

using a standard Johnson-Lindenstrauss trick (Spielman & Srivastava, 2011), it is sufficient to apply a JL matrix G and prepare the matrix $G\Sigma^\dagger V^\top$. Then, with high probability, all $w_i(A,C)$ can be approximated within a factor of $1\pm\epsilon$. By a simple scaling argument, this gives an overestimate. Thus, Algorithm 4 gives the correct overestimates of leverage scores. It remains to analyze the runtime.

- Computing the thin SVD of C takes $O(sd^{\omega-1})$ time;
- Computing GV takes O(sd) time and then we multiply GV with $\Sigma^{\dagger}V^{\top}$ which takes O(sd) time as well;

• For query, note that $M \in \mathbb{R}^{\log n \times d}$, and thus computing $||Ma_i||_2^2$ takes $\widetilde{O}(d)$ time.

This completes the proof of the assertion.

Remark B.10. If we faithfully execute the framework of Theorem B.8, then we would need to compute the $w_i(A, C \cup \{a_i\})$ instead of $w_i(A, C)$. Instead, we only need to sample with $w_i(A, C)$. This is a key feature for leverage score and related notions, which we summarize below.

Lemma B.11 (Theorem 4 of Cohen et al. (2015b)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$. Suppose we sample points uniformly and independently with probability $\frac{m}{n}$ to obtain SA. Let $q_i = \min\{1, w_i(A, SA)\}$ and sample points of A according to q and reweight them accordingly to obtain a weighted subset B. Then, with high probability, B is an ϵ -coreset of A with size $O(\frac{nd \log d}{\epsilon^2 m})$.

Setting m = n/2, Lemma B.11 itself is sufficient to prove Theorem B.3, without resorting to use $w_i(A, C \cup \{a_i\})$. Our following theorem recovers the main result of Apers & Gribling (2024).

Theorem B.12. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and $\epsilon, \delta \in (0, 1)$. Then, there exists a randomized quantum algorithm that with probability $1 - \delta$, constructs an ϵ -coreset B of A of size $O(\epsilon^{-2}d\log(d/\delta))$, in time $\widetilde{O}(\epsilon^{-1}n^{0.5}d^{1.5} + d^{\omega})$.

Furthermore, if we wish to construct a fixed-size sample of size s, we use $QLS(A, s, \delta)$ to denote this algorithm. This variant succeeds with probability at least $1 - \delta$ to sample s weighted points, in time $\widetilde{O}(n^{0.5}s^{0.5}d + sd^{\omega-1})$.

Proof. The proof follows by observing that we could replace condition 2 and 3 of Assumption B.1 by Lemma B.11, and then we could integrate Lemma B.9 into Theorem B.3. To achieve the desired ϵ -coreset guarantee, we choose

- $s = O(\epsilon^{-2} d \log(d/\delta));$
- $s' = O(d \log(d/\delta))$.

Plugging in the choices of s, s' into Lemma B.9 and Theorem B.3 yields an overall runtime of

$$\widetilde{O}(\epsilon^{-1}n^{0.5}d^{1.5}+d^{\omega}).$$

B.2 ℓ_p Sensitivity and Lewis Weights

To preserve ℓ_p subspace, one could sample according to ℓ_p sensitivity: let us define $\cot(a_i, x) = |a_i^\top x|^p$ for $p \in (0, \infty)$, then the ℓ_p sensitivity is

$$s_i(A, B) = \max_{x \in \mathbb{R}^d, Bx \neq 0} \frac{|a_i^\top x|^p}{\|Bx\|_p^p},$$

and a computationally efficient proxy for ℓ_p sensitivity is ℓ_p Lewis weights, defined as the unique nonnegative weight vector $w_A \in \mathbb{R}^n$ with

$$w_{A,i}^{2/p} = a_i^{\top} (A^{\top} W_A^{1-2/p} A)^{-1} a_i,$$

where $W_A \in \mathbb{R}^{n \times n}$ is the diagonal matrix of w_A . Naturally, we define our weights as

$$w_i(A, B) = (a_i^{\top} (B^{\top} W_B^{1-2/p} B)^{-1} a_i)^{p/2}.$$

To implement recursive sampling according to Lewis weights, we need a stronger notion of approximation for ϵ -coreset, as beyond sensitivity, the weights might not be preserved by an ϵ -coreset. We explicitly define the notion of an ϵ -approximator, a weighted subset of points that preserves the weights. Note that an ϵ -approximator is not necessarily an ϵ -coreset.

Definition B.13. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$. We say a weighted subset B of A is an ϵ -approximator if for any fixed C and for any $i \in [n]$,

$$w_i(C, B) = (1 \pm \epsilon) \cdot w_i(C, A).$$

1351

1352

1353

1354

1355

1356

1357

1358

1359 1360

1361

1362

1363

1364

1365

1367 1368

1369

1388 1389

1390

1391

1392 1393

1394

1395

1396

1398

1399 1400

1401 1402

1403

For ℓ_p Lewis weights, it might be simpler to talk about approximating the 2/p-th power of w; in this case, we have that $B^\top W_B^{1-2/p}B$ is a $1\pm\epsilon$ spectral approximation to $A^\top W_A^{1-2/p}A$. Cohen & Peng (2015) proves an analogous result to Lemma B.11 for ℓ_p Lewis weights, and in turn this satisfies the requirements of Theorem B.3.

Lemma B.14 (Lemma 6.2 of Cohen & Peng (2015)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$. Suppose we sample points uniformly and independently with probability $\frac{1}{2}$ to obtain SA. Let $q_i = \min\{1, w_i(A, SA)\}$ and sample points of A according to q and reweight them accordingly to obtain a weighted subset B. Then, with high probability, B is an ϵ -approximator of A with expected size $O_p(\epsilon^{-(2\vee p)}d^{(p/2\vee 1)+1}\log d)$.

We also need the following result due to Fazel et al. (2022) that approximates ℓ_p Lewis weights in nearly exact leverage score time:

Lemma B.15 (Theorem 2 of Fazel et al. (2022)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $p \in (0, \infty)$ and $\epsilon \in (0, 1)$. Then, there exists a deterministic algorithm that outputs a vector $\widetilde{w}_A \in \mathbb{R}^n$ such that for any $i \in [n]$, $\widetilde{w}_{A,i} = (1 \pm \epsilon) \cdot w_{A,i}$. Moreover, the runtime of this algorithm is

$$O_p(nd^{\omega-1}\log(np/\epsilon)).$$

Algorithm 5 Classical oracle for Lewis weights.

```
1370
             1: data structure LEWISWEIGHTS
1371
             2: members
                       A \in \mathbb{R}^{n \times d}
1372
             3:
                      C \in \mathbb{R}^{s \times d}
             4:
1373
                      M \in \mathbb{R}^{O(p^2 \log n) \times d}
             5:
1374
             6: end members
1375
1376
             8: procedure PREPROCESS(A \in \mathbb{R}^{n \times d}, C \in \mathbb{R}^{s \times d})
1377
                       c \leftarrow 1000p^2
             9:
                                                                                                                                   \triangleright \widetilde{W}_C \in \mathbb{R}^{s \times s}
                       Generate W_C via Lemma B.15 on C
            10:
1379
                      Compute the thin SVD of \widetilde{W}_C^{1/2-1/p}C\colon \widetilde{W}_C^{1/2-1/p}C=U\Sigma V^\top
            11:
1380
                       Let G \in \mathbb{R}^{c \log n \times s} be a random Gaussian matrix
            12:
1381
                                                                                                                              \triangleright M \in \mathbb{R}^{c\log n \times d}
                       M \leftarrow (GV)(\Sigma^{-1}V^{\top})
            13:
            14: end procedure
            15:
1384
            16: procedure QUERY(i \in [n])
1385
                       return ||Ma_i||_2^p
            17:
1386
            18: end procedure
1387
            19: end data structure
```

Note the striking similarity between Algorithm 5 and Algorithm 4, as Lewis weights are leverage scores of A after appropriate reweighting.

Lemma B.16. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $p \in (0, \infty)$, $\epsilon, \delta \in (0, 1)$, and define w(A, B) as

$$w_i(A, B)^{p/2} = a_i^{\top} (B^{\top} W_B^{1-2/p} B)^{-1} a_i,$$

Then, the weights w satisfy the requirements for Theorem B.3 for an ϵ -approximator. Moreover, there exists a randomized algorithm (Algorithm 5) that implements PREPROCESS and QUERY procedures with

- $\mathcal{T}_{\text{prep}}(s,d) = \widetilde{O}_p(sd^{\omega-1});$
- $\mathcal{T}_{\text{query}}(s,d) = \widetilde{O}_p(d)$.

Proof. The proof is similar to Theorem B.12 by observing that we can replace condition 2 and 3 of Assumption B.1 by Lemma B.14. It remains to verify condition 1 and 4.

- Consistent total weights: observe that we can alternatively define w_A as $w_{A,i} = \tau_i(W_A^{1/2-1/p}A)$, i.e., it is the leverage score of $W_A^{1/2-1/p}A$. Since the sum of the leverage scores is at most the rank, we have $\operatorname{sum}(w) = d$.
- Coreset preserves weights: instead of a coreset, we will be generating a sequence of ϵ -approximators, so we will instead prove that: if B is an ϵ -approximator of A, then for any fixed C and any $i \in [n]$, $w_i(C,B) = (1 \pm \epsilon) \cdot w_i(C,A)$. By definition, if B is an ϵ -approximator of A, then we have the following:

$$c_i^{\top} (B^{\top} W_B B)^{-1} c_i = (1 \pm \epsilon) \cdot c_i (A^{\top} W_A A)^{-1} c_i,$$

however, this shows that $w_i(C,B)^{2/p}=(1\pm\epsilon)\cdot w_i(C,A)^{2/p}$. By raising both sides to the appropriate power, we see that $w_i(C,B)=(1\pm\epsilon)^{p/2}\cdot w_i(C,A)=(1\pm p\epsilon/2)\cdot w_i(C,A)$. What we have just shown is that an ϵ -approximator preserves weights up to a factor of $1\pm O(p\epsilon)$, so to achieve $(1\pm\epsilon)$ factor approximation for the weights, we would need an ϵ/p -approximator.

Since in the end, we will do a final resampling using the approximated Lewis weights, we will stick to obtaining an ϵ/p -approximator.

To analyze Algorithm 5, we first consider a variant where the Johnson-Lindenstrauss transformation is not applied. We compute \widetilde{W}_C using Lemma B.15 which is a $1\pm\epsilon$ spectral approximation to W_C , then we know that $\widetilde{W}_C^{1-2/p}$ is a $(1\pm\epsilon)^{|1-2/p|}$ spectral approximation to $W_C^{1-2/p}$, and this approximation guarantee propagates to $C^\top\widetilde{W}_C^{1-2/p}C$ and $(C^\top\widetilde{W}_C^{1-2/p}C)^{-1}$. So far, we have established that for any a_i , $a_i^\top(C^\top\widetilde{W}_C^{1-2/p}C)^{-1}a_i=(1\pm\epsilon)^{|1-2/p|}\cdot a_i^\top(C^\top W_C^{1-2/p}C)^{-1}a_i$, and our final output is the (p/2)-th power of the quantity, hence the approximate weight is a $(1\pm\epsilon)^{|p/2-1|}$ approximation to the true weight. Hence, for $p\in(0,2)$, our output is already a $1\pm O(\epsilon)$ approximation to the true quantity, and for $p\geq 2$, we are outputting a $1\pm p\epsilon/2$ approximation. To obtain the correct $1\pm\epsilon$ approximation, we need to set the correct approximation factor.

When applying the Johnson-Lindenstrauss transformation, we are effectively approximating $a_i^{\top}(C^{\top}\widetilde{W}_C^{1-2/p}C)^{-1}a_i$, and by the same argument, we could use a $1 \pm O(1/p)$ approximation for Johnson-Lindenstrauss, resulting in a dimension of $O(p^2 \log n)$. Let us analyze the runtime.

• PREPROCESS: to compute \widetilde{W}_C , we need to set the ϵ parameter in Lemma B.15 to O(1/p), and it runs in time $\widetilde{O}_p(sd^{\omega-1})$. Computing the SVD takes $O(sd^{\omega-1})$ time, and applying the random Gaussian matrix takes $\widetilde{O}_p(sd)$ time.

• QUERY: note that $M \in \mathbb{R}^{\widetilde{O}_p(1) \times d}$, hence answering one query takes time $\widetilde{O}_p(d)$.

This completes the proof.

Lemma B.16 gives an approach to compute an ϵ -approximator for A, but our ultimate goal is to compute an ϵ -coreset for A, which has a different objective. The following result states that sampling according to the appropriate scaling of overestimates of Lewis weights indeed yields an ϵ -coreset:

Lemma B.17 (Theorem 1.3 of Woodruff & Yasuda (2023)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $\epsilon, \delta \in (0,1)$ and $p \in (0,\infty)$ and let $u \in \mathbb{R}^n$ be an overestimate of w_A with $||u||_1 \leq O(d)$. Consider the sampling scheme where each point is sampled with probability $q_i = \min\{1, \alpha \cdot u_i\}$ where

- $\alpha = \epsilon^{-2}(\log^3 d + \log(1/\delta))$ for $p \in (0, 1)$;
- $\alpha = \epsilon^{-2} \log(n/\delta)$ for p = 1;
- $\alpha = \epsilon^{-2}(\log^2 d \log n + \log(1/\delta))$ for $p \in (1, 2)$;
- $\alpha = \epsilon^{-2} d^{p/2-1} (\log^2 d \log n + \log(1/\delta))$ for $p \ge 2$.

 Set $s_i = q_i^{-1/p}$. Then, with probability at least $1 - \delta$, SA is an ϵ -coreset of A, and the number of samples is at most $\alpha \cdot ||u||_1$.

We are now ready to state our main result for constructing an ϵ -coreset. Due to Lemma B.17, we only need an overestimate for Lewis weights, so we will obtain an O(1/p)-approximator first, and then use it to generate approximate Lewis weights.

Theorem B.18. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $\epsilon, \delta \in (0,1)$ and $p \in (0,\infty)$. There exists a randomized quantum algorithm that with probability at least $1 - \delta$, constructs an ϵ -coreset of A with size $\alpha \cdot d$, for α given in Lemma B.17. The runtimes for generating the coreset are

•
$$\widetilde{O}_p(d^{\omega+1} + \epsilon^{-2}d^3) + \widetilde{O}_p(n^{0.5}d^{1.5}(\epsilon^{-3} + d^{0.5}))$$
 for $p \in (0, 2)$;

•
$$\widetilde{O}_p(d^{p/2}(d^{\omega} + \epsilon^{-2}d^2)) + \widetilde{O}_p(n^{0.5}d^{p/4+1}(\epsilon^{-3} + d^{0.5}))$$
 for $p \ge 2$.

Proof. Our strategy will be to first construct an O(1/p)-approximator of A, which in turn gives an O(1)-approximation to w_A , then we will sample according to these approximations, in conjunction with Lemma A.14.

• Stage 1: constructing an O(1/p)-approximator of A. The proof follows by combining Lemma B.16 and Theorem B.3, with s=s' and

$$s = \widetilde{O}_p(d^{(p/2\vee 1)+1}),$$

and the time to generate such an O(1/p)-approximator is

$$\widetilde{O}_p(d^{(p/2\vee1)+\omega}) + \widetilde{O}_p(n^{0.5}d^{(p/2\vee1)/2+1.5}).$$

We let \widetilde{B} denote the resulting approximator. Note that the size of \widetilde{B} is $\widetilde{O}_p(d^{(p/2\vee 1)+1})$.

• Stage 2: constructing an ϵ -coreset of A. Observe that \widetilde{B} gives an O(1)-approximation to w_A , as for any a_i ,

$$(a_i^{\top} (\widetilde{B}^{\top} W_{\widetilde{B}}^{1-2/p} \widetilde{B})^{-1} a_i)^{p/2} = O(1) \cdot (a_i^{\top} (A^{\top} W_A^{1-2/p} A)^{-1} a_i)^{p/2}$$
$$= O(1) \cdot w_{A,i},$$

and after appropriately rescaling this yields the desired oversampling vector u. Note that

$$||u||_1 = \sum_{i=1}^n (a_i^\top (\widetilde{B}^\top W_{\widetilde{B}}^{1-2/p} \widetilde{B})^{-1} a_i)^{p/2}$$

= $O(1) \cdot (a_i^\top (A^\top W_A^{1-2/p} A)^{-1} a_i)^{p/2}$
= $O(d)$,

and we could invoke Lemma B.17 to generate the desired ϵ -coreset. We could still use Algorithm 5 as our oracle to supply the sampling probability, except we need to use a Johnson-Lindenstrauss transformation that gives $(1 \pm \epsilon/p)$ -approximation. Given \widetilde{B} , generating $\widetilde{W}_{\widetilde{B}}$ takes $\widetilde{O}_p(d^{(p/2\vee 1)+\omega})$ time, and the next time-consuming operation is applying the JL. Note that the JL has dimension $\widetilde{O}_p(\epsilon^{-2})$, hence applying the JL takes time $\widetilde{O}_p(\epsilon^{-2}d^{(p/2\vee 1)+2})$. For query, note that the dimension of M is $\widetilde{O}_p(\epsilon^{-2}) \times d$, and each query can be implemented in $\widetilde{O}_p(\epsilon^{-2}d)$ time. All in all, we obtain the following (simplified) runtime for generating the ϵ -coreset:

- For $p \in (0,2)$, it takes time $\widetilde{O}_p(d^{\omega+1}+\epsilon^{-2}d^3+\epsilon^{-3}n^{0.5}d^{1.5});$
- For $p\geq 2$, it takes time $\widetilde{O}_p(d^{p/2+\omega}+\epsilon^{-2}d^{p/2+2}+\epsilon^{-3}n^{0.5}d^{p/4+1})$.

This concludes the proof.

B.3 k-Subspace Sensitivity and Ridge Leverage Score

Let \mathcal{F}_k be the set of all k-dimensional subspaces in \mathbb{R}^d . We can define the cost with respect to a subspace by identifying $X = \mathcal{F}_k$ and $\cos t : \mathbb{R}^d \to \mathcal{F}_k \to \mathbb{R}_{>0}$ as

 $cost(a_i, x) = ||a_i^{\top}(I - P_x)||_2^2$

where P_x is the orthogonal projection onto x. Then, the k-subspace sensitivity is

 $s_i(A, B) = \max_{x \in X} \frac{\|a_i^\top (I - P_x)\|_2^2}{\|B(I - P_x)\|_F^2}.$

Similar to ℓ_p sensitivity, k-subspace sensitivity can be overestimated by ridge leverage score, defined as

$$\overline{\tau}_i(A) = a_i^{\top} (A^{\top} A + \lambda_{A_k} I)^{-1} a_i$$

where $\lambda_{A_k} = \|A - A_k\|_F^2/k$. We then define the weights similar to leverage score:

$$w_i(A,B) = \begin{cases} a_i^\top (B^\top B + \lambda_{B_k} I)^\dagger a_i, & \text{if } a_i \in \text{span}(B^\top B + \lambda_{B_k} I), \\ \infty, & \text{otherwise.} \end{cases}$$

We will explicitly define the notion of ϵ -approximator:

Definition B.19. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $\epsilon \in (0,1)$ and $1 \leq k \leq d$. We say B is an ϵ -approximator of A if

- B is an ϵ -coreset of A;
- The following additive-multiplicative spectral approximation guarantee holds:

$$(1 - \epsilon)B^{\top}B - \epsilon \lambda_{A_k}I \leq A^{\top}A \leq (1 + \epsilon)B^{\top}B + \epsilon \lambda_{A_k}I.$$

The following two results due to Cohen et al. (2017) illustrate that an ϵ -approximator indeed preserves all weights, and uniform sampling gives sufficiently good approximation.

Lemma B.20 (Lemma 12 of Cohen et al. $(2017)^3$). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and $\epsilon \in (0,1)$. If B is an ϵ -approximator of A, then for any fixed C and for all $i \in [n]$, $w_i(C,B) = (1 \pm \epsilon) \cdot w_i(C,A)$.

Lemma B.21 (Theorem 14 of Cohen et al. (2017)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$. Suppose we sample points uniformly and independently with probability $\frac{1}{2}$ to obtain SA. Let $q_i = \min\{1, w_i(A, SA)\}$ and sample points of A according to q and reweight them accordingly to obtain a weighted subset B. Then, with high probability, B is an ϵ -approximator of A with expected size $O(\epsilon^{-2}k\log k)$.

Lemma B.22. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $k \leq d$, $\epsilon, \delta \in (0, 1)$, and define w(A, B) as

$$w_i(A,B) = \begin{cases} a_i^\top (B^\top B + \lambda_{B_k} I)^\dagger a_i, & \text{if } a_i \in \text{span}(B^\top B + \lambda_{B_k} I), \\ \infty, & \text{otherwise.} \end{cases}$$

Then, the weights w satisfy the requirements for Theorem B.3 for an ϵ -approximator. Moreover, there exists a randomized algorithm (Algorithm 6) that implements PREPROCESS and QUERY procedures with

- $\mathcal{T}_{\text{prep}}(s,d) = \widetilde{O}(ds^{\omega-1});$
- $\mathcal{T}_{\text{query}}(s, d) = \widetilde{O}(d)$.

Proof. We only need to derive a total weights upper bound, as other conditions of Assumption B.1 are already satisfied by Lemma B.21. Let $A = U\Sigma V^{\top}$ be the SVD of A. Then,

$$\sum_{i=1}^n w_i(A,A) = \sum_{i=1}^n a_i^\top (A^\top A + \lambda_{A_k} I)^\dagger a_i$$

³Note that while the original Lemma in Cohen et al. (2017) states the result in terms of ridge leverage score, their proof essentially shows that $B^{\top}B + \lambda_{B_k}I$ is a $1 \pm \epsilon$ spectral approximation of $A^{\top}A + \lambda_{A_k}I$, which gives the desired approximator guarantee.

Algorithm 6 Classical oracle for ridge leverage score.

1566

1567

1586 1587

1590 1591

1592 1593

1594

1596

1597

1602

1604 1605

1606 1607 1608

1609 1610

1611

1612

1613 1614 1615

1616 1617

1618 1619

```
1: data structure RIDGELEVERAGESCORE
1568
              2: members
1569
                        A \in \mathbb{R}^{n \times d}
              3:
1570
                        C \in \mathbb{R}^{s \times d}
              4:
                        M \in \mathbb{R}^{O(\log n) \times d}
1571
              5:
1572
              6: end members
1573
              8: procedure PREPROCESS(A \in \mathbb{R}^{n \times d}, C \in \mathbb{R}^{s \times d})
1574
                         c \leftarrow 1000
              9:
1575
                                                                                                                                               \triangleright \, V \in \mathbb{R}^{d \times s}
                         Compute the thin SVD of C: C = U\Sigma V^{\top}
             10:
1576
                        \lambda \leftarrow \sum_{i=k+1}^d \sigma_i
Let G \in \mathbb{R}^{c \log n \times s} be a random Gaussian matrix
1577
             11:
             12:
                        M \leftarrow (GV)(\Sigma^{\dagger}V^{\top} + \frac{1}{\sqrt{\lambda}}V^{\top})
                                                                                                                                        \triangleright M \in \mathbb{R}^{c\log n \times d}
             13:
1580
             14: end procedure
             15:
1581
             16: procedure QUERY(i \in [n])
                         return ||Ma_i||_2^2
             18: end procedure
             19: end data structure
1585
```

$$= \operatorname{tr}[A^{\top} A (A^{\top} A + \lambda_{A_k} I)^{\dagger}]$$

$$= \operatorname{tr}[V \Sigma^2 V^{\top} (V (\Sigma^2)^{\dagger} V^{\top} + \frac{1}{\lambda_{A_k}} V V^{\top})]$$

$$= \sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \frac{\|A - A_k\|_F^2}{k}}$$

$$\leq k + \sum_{i=k+1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \frac{\|A - A_k\|_F^2}{k}}$$

$$\leq k + \sum_{i=k+1}^{n} \frac{\sigma_i^2}{\frac{\|A - A_k\|_F^2}{k}}$$

$$= k + k \cdot \frac{\|A - A_k\|_F^2}{\|A - A_k\|_F^2}$$

$$\leq 2k$$

where for the fifth step, we upper bound $\frac{\sigma_i^2}{\sigma_i^2 + \frac{\|A - A_k\|_F^2}{k}}$ by 1 for $i \leq k$. The runtime analysis is identical to that of Lemma B.9.

One of the key features of the ϵ -approximator for k-subspace approximation is that it is also an ϵ -coreset.

Theorem B.23. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $\epsilon, \delta \in (0, 1)$ and $k \in [d]$. There exists a randomized quantum algorithm QRLS (A, k, ϵ, δ) that with probability at least $1 - \delta$, constructs an ϵ -coreset of A with size $O(\epsilon^{-2}k\log(k/\delta))$, in time $\widetilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1})$.

Proof. The proof is almost identical to the proof of Theorem B.12, except that the sizes s and s' are

•
$$s = \widetilde{O}(\epsilon^{-2}k);$$

• $s' = \widetilde{O}(k)$.

Plugging these choices into Lemma B.22 and Theorem B.3 gives a runtime of

 $\widetilde{O}(\epsilon^{-1}n^{0.5}dk^{0.5} + dk^{\omega-1}).$

C QUANTUM COLUMN SUBSET SELECTION AND LOW-RANK APPROXIMATION

In this section, we present the first application of the generic sampling framework developed in Section B. In particular, when the cost is the k-subspace cost defined as $\cot(A,x) = \|A(I-P_x)\|_F^2$ where $x \in \mathcal{F}_k$, then an ϵ -coreset of A can be used to compute a Frobenius norm low-rank approximation. In the following, we slightly change the notation, let $A \in \mathbb{R}^{n \times d}$, we let the set of points be $\{a_1,\ldots,a_d\} \subset \mathbb{R}^n$, and the goal is to compute a weighted subset of columns of A.

Lemma C.1 (Lemma 3 of Cohen et al. (2015a)). Let $A = \{a_1, \ldots, a_d\} \subset \mathbb{R}^n$, $\epsilon \in (0,1)$, $k \in [\min\{n,d\}]$ and let $B \subset A$ be an ϵ -coreset of A with respect to the k-subspace cost. Then, the projection onto the top-k left singular vectors of B, denoted by P_{B_k} , satisfies

$$||A - P_{B_k} P_{B_k}^{\top} A||_F^2 = (1 \pm \epsilon) ||A - A_k||_F^2.$$

Cohen et al. (2017) is the first to observe that ridge leverage score is in fact an overestimate of k-subspace sensitivity, and sampling according to ridge leverage score gives in fact a stronger ϵ -approximator (see Section B.3), which is an ϵ -coreset. We hence summarize the result below.

Corollary C.2. Let $A \in \mathbb{R}^{n \times d}$, $\epsilon \in (0,1)$, $k \leq \min\{n,d\}$ be a positive integer. There exists a quantum randomized algorithm QLOWRANKCMM (A,k,ϵ,δ) that constructs an ϵ -coreset C of A for the k-subspace cost with probability at least $1 - \delta$. The size of the coreset is at most $O(k \log(k/\delta)/\epsilon^2)$ and the runtime is $\widetilde{O}(nd^{0.5}k^{0.5}\epsilon^{-1} + nk^{\omega-1})$.

We note that in addition, C is a column subset selection of A:

Definition C.3 (Rank-k Column Subset Selection). For d' < d, a subset of A's columns $C \in \mathbb{R}^{n \times d'}$ is a $(1 + \epsilon)$ factor column subset selection if there exists a rank-k matrix $X \in \mathbb{R}^{d' \times d}$ with

$$||A - CX||_F^2 \le (1 + \epsilon)||A - A_k||_F^2$$
.

We utilize this fact to further derive an algorithm for outputting a low-rank approximation of A, which could subsequently be generalized to tensor. We state a tool for solving a bilinear multiple response regression.

Lemma C.4 (Generalized Low-Rank Approximation (Friedland & Torokhti, 2007)). Let $A \in \mathbb{R}^{n \times d}$, $B \in \mathbb{R}^{n \times k'}$ and $C \in \mathbb{R}^{k' \times n}$, let $k \leq \min\{n, d\}$ be a positive integer. The following bilinear regression problem

$$\min_{X: \mathrm{rank}(X) \leq k} \|A - BXC\|_F^2$$

is minimized by $X_* = B^{\dagger}[P_BAP_C]_kC^{\dagger}$ where P_B, P_C are the projection matrices onto B, C respectively.

Theorem C.5. Let $A \in \mathbb{R}^{n \times d}$ and $\epsilon \in (0,0.1)$, and let $k \leq \min\{d,n\}$ be a positive integer. Then, there exists a randomized algorithm (Algorithm 7) that outputs a pair of rank-k matrices $M \in \mathbb{R}^{n \times k}$, $N \in \mathbb{R}^{d \times k}$ such that

$$||A - MN^{\top}||_F^2 \le (1 + \epsilon) \cdot ||A - A_k||_F^2$$

holds with probability at least 0.99. Moreover, Algorithm 7 runs in time

$$\widetilde{O}(\epsilon^{-1}nd^{0.5}k^{0.5} + nk^{\omega - 1} + \epsilon^{-1.5}n^{0.5}k^{1.5} + \epsilon^{-2}d^{0.5}k^{1.5} + \epsilon^{-3}kd).$$

Proof. We start by proving the correctness of Algorithm 7. First note that C is a column subset selection (Definition C.3), meaning that there exists a rank-k matrix X with

$$||A - CX||_F^2 \le (1 + \epsilon)||A - A_k||_F^2$$

Algorithm 7 Quantum low-rank approximation.

1674

1675

1689

1693

1695 1696

1698

1700

1701

1702

1703

1704 1705

1706

1707

1708

1709

1710

1711 1712

1713 1714

1715

1716 1717

1718

1719

1720

1722 1723

1724

1725

1726

1727

```
1: procedure QLowRank(A \in \mathbb{R}^{n \times d}, k, \epsilon)
1676
                               k_1 \leftarrow O(\epsilon^{-2}k\log k)
1677
                               k_2 \leftarrow O(k_1 \log k_1 + \epsilon^{-1} k_1)
1678
                               k_3 \leftarrow O(k_2 \log k_2 + \epsilon^{-1} k_2)
                  4:
1679
                               C \leftarrow \mathsf{QLowRankCMM}(A, k, \epsilon, 0.001)
                                                                                                                                                       \triangleright C \in \mathbb{R}^{n \times k_1}, Corollary C.2.
                                                                                                                                                      \triangleright S \in \mathbb{R}^{k_2 \times n}, Theorem B.12.
                               S \leftarrow \text{QLS}(C, k_2, 0.001)
                                                                                                                                                     \triangleright T_1 \in \mathbb{R}^{k_2 \times n}, Theorem B.12.
\triangleright T_2 \in \mathbb{R}^{d \times k_3}, Theorem B.12.
1681
                               T_1 \leftarrow \mathsf{QLS}(C, k_2, 0.001)
1682
                               T_2 \leftarrow \text{QLS}(SA, k_3, 0.001)
                  8:
                               X, Y \leftarrow \min_{X \in \mathbb{R}^{k_1 \times k}, Y \in \mathbb{R}^{k \times k_2}} \|T_1 C X Y S A T_2 - T_1 A T_2\|_F^2
1683
                  9:
                                                                                                                                            \triangleright \widehat{M} \in \mathbb{R}^{k_1 \times k_2} and \operatorname{rank}(\widehat{M}) = k.
                               \widehat{M} \leftarrow (T_1 C)^{\dagger} [P_{T_1 C} T_1 A T_2 P_{SAT_2}]_k (SAT_2)^{\dagger}
                 10:
1685
                                                                                                                                                           \triangleright \widehat{X} \in \mathbb{R}^{k_1 \times k}, \widehat{Y} \in \mathbb{R}^{k \times k_2}.
                               Write \widehat{M} into factored form \widehat{M} = \widehat{X}\widehat{Y}
                 11:
                               return C\widehat{X}, \widehat{Y}SA in factored form
                12:
1687
                13: end procedure
1688
```

solving the above regression exactly is costly, so we employ a leverage score sampling matrix S of matrix C, and consider the sketched regression

$$\min_{X: \operatorname{rank}(X) \le k} \|SCX - SA\|_F^2,$$

letting \hat{X} denote the optimal solution to the above regression, then by Lemma A.13, we know that

$$||A - C\widehat{X}||_F^2 \le (1 + \epsilon) \min_{X: rank(X) \le k} ||A - CX||_F^2$$

$$\le (1 + \epsilon)^2 ||A - A_k||_F^2,$$

for simplicity, we scale ϵ so that the last inequality holds with multiplicative factor $1 + \epsilon$. To find \widehat{X} , we note that $\widehat{X} = (SC)^{\dagger}SA$, which means that the optimal solution lives in the row span of matrix SA. Writing $\widehat{X} = \widehat{Y}SA$, we see that

$$\min_{Y: \text{rank}(Y) \le k} ||A - CYSA||_F^2 \le (1 + \epsilon) ||A - A_k||_F^2.$$

To further speed up, we employ two leverage score samplings to reduce dimensions. Let T_1 be the leverage score sampling matrix of C, then by Lemma A.13, we could solve the regression $\min_{Z:\operatorname{rank}(Z)\leq k}\|T_1A-T_1CZ\|_F^2$ and recover Y through $\min_Y\|Z-YSA\|_F^2$ (where the latter could be solved exactly), let Y_1 denote the optimal solution to the Y recovered through this procedure and Z_1 be the optimal solution to the first regression, then $Y_1=Z_1(SA)^{\dagger}$. Z_1 has the guarantee that

$$||CZ_1 - A||_F^2 \le (1 + \epsilon) \min_{Z: \text{rank}(Z) \le k} ||CZ - A||_F^2$$

$$\le (1 + \epsilon)^2 ||A - A_k||_F^2$$

and subsequently

$$||CY_1SA - A||_F^2 \le (1 + \epsilon)^2 ||A - A_k||_F^2,$$

follow the same argument, we could also sample according to the leverage score of SA and sketch on the right. By properly scaling ϵ , we could then conclude that the optimal cost of

$$\min_{Z: \operatorname{rank}(Z) \le k} \|T_1 C Z S A T_2 - T_1 A T_2\|_F^2$$

is at most $1 + \epsilon$ factor of $||A - A_k||_E^2$, as desired.

For the running time, by Corollary C.2, generating C takes $\widetilde{O}(\epsilon^{-1}nd^{0.5}k^{0.5}+nk^{\omega-1})$ time, generating the matrix S with a total row count of k_2 takes $\widetilde{O}(\sqrt{nk_2}k_1+k_1^{\omega})=\widetilde{O}(\epsilon^{-1.5}n^{0.5}k^{1.5})$ time. Computing SA is simply selecting and rescaling k_2 rows from A, which takes $O(k_2d)=\widetilde{O}(\epsilon^{-3}kd)$ time. Generating T_2 takes $\widetilde{O}(\sqrt{dk_3}k_2+k_2^{\omega})=\widetilde{O}(\epsilon^{-2}d^{0.5}k^{1.5})$ time. Finally, computing T_1C , SAT_2 , their pseudoinverses and projection takes $\operatorname{poly}(k/\epsilon)$ time, since forming these matrices is

simply selecting and rescaling entries, and the resulting matrices are of size $\operatorname{poly}(k/\epsilon)$. Computing T_1AT_2 takes $\operatorname{poly}(k/\epsilon)$ by selecting and rescaling such number of entries from A, hence \widehat{M} can be computed in $\operatorname{poly}(k/\epsilon)$ time.

In summary, Algorithm 7 takes time

$$\widetilde{O}(\epsilon^{-1}nd^{0.5}k^{0.5} + nk^{\omega - 1} + \epsilon^{-1.5}n^{0.5}k^{1.5} + \epsilon^{-2}d^{0.5}k^{1.5} + \epsilon^{-3}kd). \qquad \qquad \Box$$

D QUANTUM KERNEL LOW-RANK APPROXIMATION

Given a set of points $\{x_1,\ldots,x_n\}\subset\mathbb{R}^d$ and a positive definite kernel function $\mathsf{K}:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$, the kernel low-rank approximation problem asks to find a pair $M,N\in\mathbb{R}^{n\times k}$ such that $\|K-MN^\top\|_F^2\le (1+\epsilon)\cdot\|K-K_k\|_F^2$, where $K\in\mathbb{R}^{n\times n}$ is the kernel matrix induced by K , with $K_{i,j}=\mathsf{K}(x_i,x_j)$. Note that explicitly forming the matrix K takes $\Omega(n^2)$ evaluations of $\mathsf{K}(\cdot,\cdot)$, which is usually too expensive to be afforded. Since K is positive definite, there exists feature mapping $\phi:\mathbb{R}^d\to\mathbb{R}^m$ such that $K=\Phi\Phi^\top$ where $\Phi\in\mathbb{R}^{n\times m}$ with the i-th row being $\phi(x_i)$. Musco & Musco (2017) gives a low-rank approximation for Φ using $\widetilde{O}(\epsilon^{-2}nk)$ evaluations of $\mathsf{K}(\cdot,\cdot)$ and an additional $\widetilde{O}(\epsilon^{-2(\omega-1)}nk^{\omega-1})$ time. Musco & Woodruff (2017); Bakshi et al. (2020) show that the low-rank approximation guarantee can be achieved, albeit with $\widetilde{O}(\epsilon^{-1}nk)$ kernel evaluations and an additional $\widetilde{O}(\epsilon^{-(\omega-1)}nk^{\omega-1})$ time. In this section, we will present a quantum algorithm based on the techniques developed in Section B and C , that computes a low-rank approximation for the kernel matrix using sublinear number of kernel evaluations and additional operations.

Before diving into our main result, we introduce some notations. We will extensively use KD_1 or $D_2^{\top}KD_1$ to denote a weighted sampling of K, in particular,

- If $D \in \mathbb{R}^{n \times t}$, we use $D^{\top}K_i \in \mathbb{R}^t$ to denote the vector v with $v_j := D(j) \cdot \mathsf{K}(x_i, x_j)$, where $j \in D$ is the j-th sample of D, and D(j) is the corresponding weight;
- If $D \in \mathbb{R}^{n \times t}$, we use "KD in factored form" to denote a data structure that when i-th row is queried, compute $v \in \mathbb{R}^t$ where $v_i := D(j) \cdot \mathsf{K}(x_i, x_i)$ for $j \in D$.
- If $D_1 \in \mathbb{R}^{n \times t_1}$ and $D_2 \in \mathbb{R}^{n \times t_2}$, we use " $D_2^\top K D_1$ in factored form" to denote a data structure that supports queries to either row or column, where for i-th row, it computes a vector $v^{\text{row}} \in \mathbb{R}^{t_1}$ where $v^{\text{row}}_j := D_1(j)D_2(i) \cdot \mathsf{K}(x_i, x_j)$ for $j \in D_1$ and $i \in D_2$. Similarly the operation applies to the column.
- Sometimes given $KD \in \mathbb{R}^{n \times t_1}$ in factored form, we will compose it with another matrix $M \in \mathbb{R}^{t_1 \times t_2}$, we use "KDM in factored form" to denote a data structure that supports row queries, such that when the i-th row is queried, it returns Mv where $v_j := D(j) \cdot \mathsf{K}(x_i, x_j)$ for $j \in D$.

Theorem D.1. There exists a randomized algorithm (Algorithm 8) that given any set of points $\{x_1,\ldots,x_n\}\subset\mathbb{R}^d$ and a positive definite kernel function $\mathsf{K}:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ and any positive integer $k\leq n,\,\epsilon\in(0,1)$, runs in

$$\widetilde{O}(n^{0.75}k^{1.25}\epsilon^{-1.25}(\mathcal{T}_{\mathsf{K}}+k\epsilon^{-1})+n^{0.5}k^{1.5}\epsilon^{-2.5}(\mathcal{T}_{\mathsf{K}}+\epsilon^{-0.5})+n^{0.5}k^{\omega-0.5}\epsilon^{0.5-\omega}).$$

time, where \mathcal{T}_K is the time to evaluate K on any pair of points x_i, x_j , and returns a pair of rank-k matrices $M, N \in \mathbb{R}^{n \times k}$ (given implicitly in factor form) such that

$$||K - MN^{\top}||_F^2 \le (1 + \epsilon)||K - K_k||_F^2$$

holds with probability at least 0.99.

Proof. Our algorithm could be interpreted a quantum implemented of a generalization of Bakshi et al. (2020), where they only tackle the case where $K(x_i, x_j) = x_i^{\top} x_j$, and we are given directly the kernel matrix K. We also note several differences between ours and Bakshi et al. (2020):

 $^{^4}$ Note that Musco & Woodruff (2017); Bakshi et al. (2020) phrase their algorithm as a low-rank approximation for PSD matrix A, and their runtime is stated in terms of reads to A. Observe that a read to an entry of A could be translated to one kernel evaluation.

1820

1821

1823

1824

1825

1826 1827

1831

1834

```
1782
                Algorithm 8 Quantum kernel low-rank approximation.
1783
                  1: procedure QLowRankKernel(\{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n, K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, k, \epsilon, \delta)
1784
1785
                               t \leftarrow c\sqrt{\frac{nk}{\epsilon}}\log(n/\delta)
                  3:
1786
                                k' \leftarrow \widetilde{O}(k/\epsilon)
1787
                  4:
1788
                                D_1 \leftarrow \text{QNYSTR\"{O}MKERNEL}(\{x_1, \dots, x_n\}, \mathsf{K}, k', \delta/6) with each GRLS scaled by \sqrt{\frac{n}{\epsilon k}} \triangleright
1789
                         Algorithm 9, D_1 \in \mathbb{R}^{n \times t}, oversample columns.
1790
                                D_2 \leftarrow \mathsf{QNYSTR\"{O}MKERNEL}(x_1,\ldots,x_n\},\mathsf{K},k',\delta/6) with each GRLS scaled by \sqrt{\frac{n}{\epsilon k}}
1791
                         Algorithm 9, D_2 \in \mathbb{R}^{n \times t}, oversample rows.
1792
                                C \leftarrow KD_1 in factored form
                   7:
                                                                                                                                                                                         \triangleright R \in \mathbb{R}^{t \times t}
1793
                  8:
                                R \leftarrow D_2^{\perp} K D_1 in factored form
1794
                  9:
                                \epsilon_0 \leftarrow 0.01
                                                                                                                                      \triangleright Corollary C.2, \widetilde{R} \in \mathbb{R}^{t \times \epsilon^{-1} k \log(k/\delta)}.
                                R \leftarrow \mathsf{QLowRankCMM}(R, k/\epsilon, \epsilon_0, \delta/6)
1795
                 10:
                                                                                                                                                                                     \triangleright \, Z \in \mathbb{R}^{t \times k/\epsilon}
1796
                                Z \leftarrow \text{top-}k/\epsilon \text{ singular vectors of } R
                 11:
                                                                                                             \triangleright Solve the regression \min_{W \in \mathbb{R}^{n \times k/\epsilon}} \|C - WZ^{\top}\|.
1797
                 12:
                                Implement oracle for p_i = \min\{1, \sqrt{\frac{n}{\epsilon k}} \cdot ||z_i||_2^2\} where z_i is the i-th row of Z
1798
                 13:
1799
                 14:
                                                                                                                                                                                     \triangleright D_3 \in \mathbb{R}^{t \times k'}.
                                D_3 \leftarrow \mathsf{QSAMPLE}(p)
                                                                                             \triangleright Solve the surrogate regression \min_W \|CD_3 - WZ^{\top}D_3\|.
1800
                 15:
1801
                                                                                                                                    \triangleright W = K(D_1 D_3 (Z^{\top} D_3)^{\dagger}) \in \mathbb{R}^{n \times k/\epsilon}
                                W \leftarrow CD_3(Z^{\top}D_3)^{\dagger} in factored form
                 16:
                                                                                                \triangleright Solve the regression \min_{Y:\operatorname{rank}(Y) < k} \|K - WYW^{\top}\|_F^2.
                 17:
                                                                                                                                                   \triangleright D_4 \in \mathbb{R}^{n \times k'/\epsilon^2}, sample rows.
1803
                                D_4 \leftarrow \text{QLS}(W, k'/\epsilon^2, \delta/6)
                 18:
                               D_5 \leftarrow \operatorname{QLS}(W, k'/\epsilon^2, \delta/6) \qquad \qquad \triangleright D_5 \in \mathbb{R}^{n \times k'/\epsilon^2}, \text{ sample rows.} Compute D_4^\top W and W^\top D_5 \qquad \qquad \triangleright D_4^\top W \in \mathbb{R}^{k'/\epsilon^2 \times k/\epsilon}, W^\top D_5 \in \mathbb{R}^{k/\epsilon \times k'/\epsilon^2}. P_{D_4^\top W} \leftarrow D_4^\top W (W^\top D_4 D_4^\top W)^\dagger W^\top D_4, P_{W^\top D_5} \leftarrow W^\top D_5 (D_5^\top W W^\top D_5)^\dagger D_5^\top W
1804
                 19:
1805
                 20:
1806
                 21:
1807
                                                                                                                                                            \triangleright D_4^{\top} K D_5 \in \mathbb{R}^{k'/\epsilon^2 \times k'/\epsilon^2}
                                Compute D_4^{\top}KD_5
                 22:
1808
                                Compute [P_{D_{-}^{\top}W}(D_{4}^{\top}KD_{5})P_{W^{\top}D_{5}}]_{k} \rightarrow [P_{D_{-}^{\top}W}(D_{4}^{\top}AD_{5})P_{W^{\top}D_{5}}]_{k} \in \mathbb{R}^{k'/\epsilon^{2} \times k'/\epsilon^{2}} of
                 23:
1809
1810
                               Y_* \leftarrow (D_4^\top W)^\dagger [P_{D_4^\top W}(D_4^\top K D_5) P_{W^\top D_5}]_k (W^\top D_5)^\dagger \qquad \qquad \triangleright Y_* \in \mathbb{R}^{k/\epsilon \times k/\epsilon} \text{ of rank-} k.
                 24:
1811
                                                                                                                                                                                  \triangleright U_* \in \mathbb{R}^{k/\epsilon \times k}
                                U_* \leftarrow \text{top-}k \text{ singular vectors of } Y_*
1812
                25:
                                                                                           \qquad \qquad \triangleright \ D_6 \in \mathbb{R}^{n \times k / \epsilon}. \\ \triangleright \ \text{Solve the regression} \ \min_{N \in \mathbb{R}^{k \times n}} \| D_6^\top K - D_6^\top W U_* N \|_F^2. 
1813
                                D_6 \leftarrow \text{QLS}(WU_*, k/\epsilon, \delta/6)
                 26:
                 27:
1814
                                N \leftarrow (D_6^\top W U_*)^\dagger (D_6^\top K)
1815
                 28:
                                return WU_*, N in factored form
                 29:
1816
                 30: end procedure
1817
1818
```

- To compute the initial $t \times t$ matrix, we use quantum Nyström method to sample from the generalized ridge leverage score of $K^{1/2}$, then rescale;
- To compute the low-rank approximation of the t x t matrix, we use quantum low-rank approximation algorithm developed in preceding section;
- To solve the spectral regression $\min_{W \in \mathbb{R}^{n \times k/\epsilon}} \|C WZ^{\top}\|$, we use quantum sampling algorithm to sample from (rescaled) row norms of Z;
- The rank-constrained regression in Bakshi et al. (2020) is by first computing an orthonormal basis of W, denoted by Q, then solve the regression $\min_{X:\operatorname{rank}(X)\leq k}\|K-QXQ^\top\|_F^2$. To solve this regression, Bakshi et al. (2020) samples rows and columns of K according to column norms of Q, then solve the sketched regression after subsampling via these two matrices. Given the optimal solution X_* , Bakshi et al. (2020) finds an orthonormal basis of X_* as U_* , set M as QU_* and then sample rows of K according to row norms of M. In our case, we can't afford to form Q (because $W \in \mathbb{R}^{n \times k/\epsilon}$), but we could instead solve the regression $\min_{Y:\operatorname{rank}(Y)\leq k}\|K-WYW^\top\|_F^2$, then X could be recovered via $Y\mapsto TYT^\top$ where T is the change-of-basis matrix. We then solve all subsequent regression using Y instead of X.

1859 1860

1861

1862

1863

1864

1865

1866

1867

1868

1870

1871

1872

1873

1874 1875

1876

1877

1878 1879

1880

1881 1882

1883

1884 1885

Algorithm 9 Quantum generalized ridge leverage score sampling via recursive Nyström method.

```
1: procedure QNYSTRÖMKERNEL(\{x_1, \dots, x_n\} \in (\mathbb{R}^d)^n, K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^m, s, \delta)
1838
                                              2:
                                                                               c \leftarrow 100
                                              3:
                                                                               T \leftarrow O(\log(n/s))
1840
                                              4:
                                                                               Let S_0 \subset_{1/2} S_1 \subset_{1/2} \ldots \subset_{1/2} S_T = [n] \triangleright Starting from [n], uniformly sampling half of the
1841
                                                             indices.
                                                                               Set k to be the largest integer with ck \log(2k/\delta) \le s
                                              5:
1843
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \triangleright |S_0| = s.
                                                                               M_0 \leftarrow \{\mathsf{K}(x_i, x_j)\}_{(i,j) \in S_0 \times S_0}
                                              6:
1844
                                                                               Let D_0 \in \mathbb{R}^{n \times |S_0|} be the sampling matrix of S_0
                                              7:
1845
                                                                               for t=1 \to T do
                                              8:
1846
                                                                                                  \lambda \leftarrow \frac{1}{k} \sum_{i=k+1}^{s} \sigma_i(M_{t-1})
                                              9:
1847
                                                                                                 \begin{split} \widehat{M} &\leftarrow (M_{t-1} + \lambda I_s)^{-1} \\ & \triangleright \operatorname{Let} D_{t-1}^\top K_i := \{D_{t-1}(j) \cdot \mathsf{K}(x_i, x_j)\}_{j \in D_{t-1}} \in \mathbb{R}^s \text{ for } i \in S_t \text{ where } D_{t-1}(j) \text{ is the } I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{K}(i)\}_{t \in I_t} + \sum_{i \in I_t} I_t = \{D_{t-1}(i) \cdot \mathsf{
                                          10:
1848
1849
                                                              weight corresponding to x_i specified by D_{t-1}.
1850
                                                                                                Implement oracle for q_i \leftarrow \frac{5}{\lambda} \cdot (\mathsf{K}(x_i, x_i) - (D_{t-1}^\top K_i)^\top \widehat{M} D_{t-1}^\top K_i) for i \in S_t \triangleright p_i = \min\{1, 16q_i \log(2k/\delta)\}.
                                          12:
1851
                                          13:
                                                                                                  \widetilde{D}_t \leftarrow \mathsf{QSAMPLE}(p)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            \triangleright \widetilde{D}_t \in \mathbb{R}^{|S_t| \times s}.
                                          14:
                                                                                                \begin{aligned} &D_t \leftarrow D_{S_t} \cdot \widetilde{D}_t \\ &M_t \leftarrow \{D_t(i)D_t(j) \cdot \mathsf{K}(x_i, x_j)\}_{(i, j) \in D_t \times D_t} \end{aligned}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \triangleright D_t \in \mathbb{R}^{n \times s}.
\triangleright M_t \in \mathbb{R}^{s \times s}.
                                          15:
                                          16:
1855
                                          17:
                                                                               return D_T
                                          18:
1857
                                          19: end procedure
1858
```

To prove the correctness of the algorithm, we note that except for the above steps, all other steps are identical to the algorithm of Bakshi et al. (2020), so we just need to show our quantum implementation preserves key properties of Bakshi et al. (2020). For computing the sampling matrices D_1 and D_2 , the only difference is when computing the generalized ridge leverage scores of $K^{1/2}$, Bakshi et al. (2020) uses fast matrix multiplication to compute all scores while we use quantum sampling algorithm to do so, so the guarantees of the sampling probabilities remain unchanged. The next major difference is we use quantum low-rank approximation of Corollary C.2, that provides precisely the desired ϵ -coreset (and subsequently low-rank approximation). Forming the matrix D_3 is almost identical to that of Bakshi et al. (2020) except we use quantum sampling procedure to generate it.

We will focus on solving the rank-constrained regression $\min_{Y:\operatorname{rank}(Y)\leq k}\|K-WYW^\top\|_F^2$, which is the major divergence of our approach and that of Bakshi et al. (2020). In Bakshi et al. (2020), since they could afford linear in n time, they compute an orthonormal basis for W denoted by Q, and instead solving the regression $\min_{X:\operatorname{rank}(X)\leq k}\|K-QXQ^\top\|_F^2$. Let $T\in\mathbb{R}^{k/\epsilon\times k/\epsilon}$ be the change-of-basis matrix such that QT=W, then we observe that X could be recovered via the following procedures:

• Solve

$$\min_{Y:\operatorname{rank}(Y)\leq k} \|K - WYW^{\top}\|_F^2 \tag{1}$$

, let Y_* denote the optimal solution of the above regression;

• Set $X_* := RY_*R^\top$.

To see X_* is the optimal to the rank-constrained regression against Q, note

$$QX_*Q^{\top} = QRY_*R^{\top}Q^{\top}$$
$$= WY_*W^{\top},$$

and if there exists a solution X' with lower cost, then

$$||K - WR^{\top} X' R W^{\top}||_F^2 = ||K - QX' Q^{\top}||_F^2$$
$$< ||K - QX_* Q^{\top}||_F^2$$

 $= \|K - WY_*W^\top\|_F^2,$

contradicting the definition of Y_* . Both Bakshi et al. (2020) and Algorithm 8 construct leverage score sampling matrices according to the leverage scores of W (in the context of Bakshi et al. (2020), they sample according to the row norms of Q, which are the leverage scores of W), then we solve the surrogate regression

$$\min_{Y: \text{rank}(Y) \le k} \|D_4^\top K D_5 - D_4^\top W Y W^\top D_5\|_F^2, \tag{2}$$

it suffices to show that the optimal solution of Eq. (2) is a good approximation to the optimal solution of Eq. (1). To prove this, note that both D_4 and D_5 sample k'/ϵ^2 rows and columns together with the fact $W \in \mathbb{R}^{n \times k'}$ implies that they are weak affine embeddings (Lemma A.12). However, $K - WYW^{\top}$ is not an affine subspace, so we could instead consider the matrix $H \in \mathbb{R}^{k' \times n}$ and let $H_* := \arg\min_{H \in \mathbb{R}^{k' \times n}} \|A - WH\|_F^2$ and $K_* = K - WH_*$. With probability at least $1 - \delta$, we have

$$\|D_4^\top K - D_4^\top W H\|_F^2 - \|D_4^\top K_*\|_F^2 = (1 \pm \epsilon) \cdot \|K - W H\|_F^2 - \|K_*\|_F^2,$$

for all $H \in \mathbb{R}^{k' \times n}$. Since it holds for all H, it in particular holds for all $H = YW^{\top}$, hence, with probability at least $1 - \delta$,

$$\|D_4^\top K - D_4^\top W Y W^\top\|_F^2 - \|D_4^\top K_*\|_F^2 = (1 \pm \epsilon) \cdot \|K - W Y W^\top\|_F^2 - \|K_*\|_F^2.$$

We could then run a symmetric argument on D_5 : consider the regression $\min_{Z\in \in \mathbb{R}^{k'/\epsilon^2\times k'}}\|D_4^\top K - ZW^\top\|_F^2$. Let $Z':=\arg\min_Z\|D_4^\top K - ZW^\top\|_F^2$ and $(D_4^\top K)':=D_4^\top K - Z'W^\top$. With probability at least $1-\delta$ and due to Lemma A.12,

$$||D_4^{\top}KD_5 - ZW^{\top}D_5||_F^2 - ||(D_4^{\top}K)'D_5||_F^2 = (1 \pm \epsilon) \cdot ||D_4^{\top}K - ZW^{\top}||_F^2 - ||(D_4^{\top}K)'||_F^2,$$

this holds for all $Z \in \mathbb{R}^{k'/\epsilon^2 \times k'}$ in particular $Z = D_4^\top WY$. Plug in such Z yields

$$||D_4^{\top} K D_5 - D_4^{\top} W Y W^{\top} D_5||_F^2 - ||(D_4^{\top} K)' D_5||$$

= $(1 \pm \epsilon)^2 \cdot (||K - W Y W^{\top}||_F^2 + ||D_4^{\top} K_*||_F^2 - ||K_*||_F^2) - ||(D_4^{\top} K)'||_F^2,$

holds with probability at least $1-2\delta$. Observe that the additive error is at most $\Delta:=(1+\epsilon)^2(\|D_4^\top K_*\|_F^2-\|K_*\|_F^2+\|(D_4^\top K)'D_5\|_F^2-\|(D_4^\top K)'\|_F^2)$, it is fixed and independence of Y. We will further show that the magnitude of Δ is small, let $\mathrm{OPT}:=\min_{Y:\mathrm{rank}(Y)\leq k}\|K-WYW^\top\|_F^2$, then $\Delta=O(\mathrm{OPT})$. To see this, we first observe that

$$||K_*||_F^2 = ||K - WH_*||_F^2$$

< OPT,

this is because H_* is the optimal solution to a regression problem with larger solution space. Next, we will show $\|D_4^\top K_*\|_F^2$ is a constant approximation to $\|K_*\|_F^2$ with constant probability, via Markov's inequality:

$$\begin{split} \mathbb{E}[\|D_4^\top K_*\|_F^2] &= \mathbb{E}[\text{tr}[K_*^\top D_4 D_4^\top K_*]] \\ &= \text{tr}[K_*^\top \mathbb{E}[D_4 D_4^\top] K_*] \\ &= \text{tr}[K_*^\top I_n K_*] \\ &= \|K_*\|_F^2, \end{split}$$

since D_4 is a leverage score sampling matrix. Hence, by Markov's inequality, with probability at least 1-1/300, $\|D_4^\top K_*\|_F^2 \leq 300\|K_*\|_F^2$. Hence, $\|D_4^\top K_*\|_F^2 - \|K_*\|_F^2 = O(\mathrm{OPT})$. Next, note that

$$\begin{split} \|(D^{\top}K)'\|_{F}^{2} &= \|D_{4}^{\top}K - Z'W^{\top}\|_{F}^{2} \\ &\leq \min_{Y: \mathrm{rank}(Y) \leq k} \|D_{4}^{\top}K - D_{4}^{\top}WYW^{\top}\|_{F}^{2} \\ &= O(\mathrm{OPT}), \end{split}$$

where the second step is again, by Z' is a solution to an optimization problem with larger solution space, and the last step is again, by Markov's inequality. By similar argument, we could conclude that $\|(D_4^\top K)'D_5\|_F^2 = O(\mathrm{OPT})$. Hence, we have shown that $\Delta = O(\mathrm{OPT})$.

Let $Y_* := \arg\min_{Y: \operatorname{rank}(Y) \leq k} \|D_4^\top K D_5 - D_4^\top W Y W^\top D_5\|_F^2$, and set $g(X) = \|D_4^\top K D_5 - D_4^\top W X W^\top D_5\|_F^2$ to be the cost of approximate regression, and $f(X) = \|K - W X W^\top\|_F^2$ to be the cost of the exact regression respectively, then we could conclude with the preceding argument that

$$g(Y_*) \ge (1 - \epsilon)f(Y_*) + \Delta,\tag{3}$$

on the other hand, if we let Y' be the solution to f, i.e., f(Y') = OPT, then it must be the case that $g(Y_*) \leq g(Y')$ and similarly

$$g(Y') \le (1+\epsilon)f(Y') + \Delta$$

= $(1+\epsilon) \cdot \text{OPT} + \Delta$ (4)

combining Eq. (3), (4) and the fact that $g(Y_*) \leq g(Y')$, we obtain

$$\begin{split} (1-\epsilon)f(Y_*) + \Delta &\leq (1+\epsilon) \cdot \mathrm{OPT} + \Delta, \\ f(Y_*) &\leq \frac{1+\epsilon}{1-\epsilon} \cdot \mathrm{OPT} + \frac{\epsilon}{1-\epsilon} \cdot \Delta \\ &\leq (1+\epsilon)^2 \cdot \mathrm{OPT} + O(\epsilon) \cdot \Delta \\ &= (1+\epsilon)^2 \cdot \mathrm{OPT} + O(\epsilon) \cdot \mathrm{OPT} \\ &= (1+O(\epsilon)) \cdot \mathrm{OPT}, \end{split}$$

as desired. This establishes that the optimal solution to Eq. (2) is a good approximation to Eq. (1), and the optimal solution of Eq. (2) admits a closed-form (see Theorem 4.15 of Bakshi et al. (2020)), which is precisely what has been computed on line 29 of Algorithm 8.

Observe that we already have a good (partial) low-rank approximation solution, as per the proof of Theorem 4.16 of Bakshi et al. (2020),

$$\min_{X: \text{rank}(X) \le k} \|K - QXQ^{\top}\|_F^2 \le (1 + \epsilon) \cdot \|K - K_k\|_F^2,$$

and we have established that the value of Eq. (1) is the same as the LHS of the above inequality, hence we already have a rank-k solution in factored form, which is $WY \in \mathbb{R}^{n \times k}$. Compute the top-k left vectors of Y_* , denoted as U_* , and write $Y_* = U_*V_*$. Plug in the decomposition into the regression, we get

$$||K - WU_*V_*W^\top||_F^2 \le (1 + \epsilon)||K - K_k||_F^2,$$

by setting $M := WU_*$ and the right low-rank factor could be found by solving

$$\min_{N \in \mathbb{R}^{n \times k}} \|K - MN^{\top}\|_F^2 \le \|K - WU_*V_*W^{\top}\|_F^2$$

$$\le (1 + \epsilon)\|K - K_k\|_F^2.$$

To solve the regression, we employ leverage score sampling on the rows of M, by Lemma A.13, it suffices to sample k/ϵ rows and the solution to the sketched regression

$$\min_{N \in \mathbb{R}^{n \times k}} \|D_6^\top K - D_6^\top M N^\top\|_F^2,$$

denoted by N_* , satisfies

$$||K - MN_*^\top||_F^2 \le (1 + \epsilon) \min_{N \in \mathbb{R}^{n \times k}} ||K - MN||_F^2$$

$$\le (1 + \epsilon)^2 ||K - K_k||_F^2.$$

Finally, by properly scaling ϵ , we conclude the proof of correctness.

Next, we analyze the runtime of Algorithm 8, item by item as follows:

• Form the generalized ridge leverage score sampling matrix D_1 and D_2 (Algorithm 9) involves selecting $O(k'^2)$ entries from K, which could be implemented by k'^2 evaluations to the kernel function. In the loop, we compute the SVD of an $k' \times k'$ matrix, takes $O(k'^\omega)$ time, and forming \widehat{M} also takes $O(k'^\omega)$ time. Next, we need to analyze the complexity of implementing the sampling oracle, for any fixed i, we form $D_{t-1}^{\top}K_i$ by forming a vector

of length k' through k' kernel evaluations and an extra k'^2 time for the quadratic form. To oversample t rows/columns, we could simply scale the sampling probability, this yields a larger sum of all p_i 's:

$$\sum_{i=1}^{n} p_i = \widetilde{O}(\sqrt{nk/\epsilon}),$$

thus, the overall runtime of this part is

$$\begin{split} &\widetilde{O}(\sqrt{n\sum_{i}p_{i}})\cdot(k'\mathcal{T}_{\mathsf{K}}+k'^{2})+k'^{2}\mathcal{T}_{\mathsf{K}}+k'^{\omega}\\ &=\widetilde{O}(n^{0.75}k^{1.25}\epsilon^{-1.25}(\mathcal{T}_{\mathsf{K}}+k\epsilon^{-1}))+k^{2}\epsilon^{-2}(\mathcal{T}_{\mathsf{K}}+k^{\omega-2}\epsilon^{2-\omega}). \end{split}$$

- \bullet For matrices C and R, we do not explicit compute the data structure for them.
- Form the low-rank approximation \widetilde{R} of matrix R, we need to show that the generic quantum sampling algorithm could be implemented even though the input is given in factor form. Observe that the algorithm requires uniformly sampling columns of the input matrix, which is oblivious to the input. To form the initial coreset C_0 , we need to query a total of $\widetilde{O}(\sqrt{nk/\epsilon}) \times \widetilde{O}(k/\epsilon)$ entries of K, which can be done in $\widetilde{O}(n^{0.5}k^{1.5}\epsilon^{-1.5})$ kernel evaluations. Then we compute the SVD of this matrix, in time $\widetilde{O}(n^{0.5}k^{0.5}\epsilon^{-1.5})$. Subsequently we need to impelement the classical ridge leverage score data structure (Algorithm 6), which can be done in time $\widetilde{O}(n^{0.5}k^{0.5}\epsilon^{0.5-\omega})$ and then apply the random Gaussian matrix takes $\widetilde{O}(n^{0.5}k^{1.5}\epsilon^{-1.5})$ time. To implement each query, we can form the query vector by $\widetilde{O}(n^{0.5}k^{0.5}\epsilon^{-0.5})$ kernel evaluations and an additional $\widetilde{O}(n^{0.5}k^{0.5}\epsilon^{-0.5})$ time. The total runtime is

$$\widetilde{O}(n^{0.75}k^{1.25}\epsilon^{-1.25} + n^{0.5}k^{1.5}\epsilon^{-1.5}) \cdot \mathcal{T}_{\mathsf{K}}.$$

- Form matrix Z by computing SVD of \widetilde{R} , since $\widetilde{R} \in \mathbb{R}^{\sqrt{nk/\epsilon} \times k/\epsilon}$, this step could be done in time $O(\epsilon^{0.5-\omega} n^{0.5} k^{\omega-0.5})$.
- Form the sampling matrix D_3 involves sampling according to a rescaled row norm of Z, where each oracle call could be implemented in time $O(k/\epsilon)$ time, and the sum of p_i 's is

$$\sum_{i} p_{i} = \sqrt{\frac{n}{\epsilon k}} \cdot \sum_{i} ||z_{i}||_{2}^{2}$$
$$= \sqrt{\frac{n}{\epsilon k}} \cdot ||Z||_{F}^{2}$$
$$= \sqrt{\frac{nk}{\epsilon^{3}}}$$

because Z has orthonormal columns. Thus, the overall runtime of this step is

$$\widetilde{O}(\sqrt{nk/\epsilon^4} \cdot k/\epsilon) = \widetilde{O}(n^{0.5}k^{1.5}\epsilon^{-3}).$$

- Form matrix W, we only need to explicitly compute $(Z^{\top}D_3)^{\dagger}$, which is a small matrix and could be computed in time $\widetilde{O}(k^{\omega}/\epsilon^{\omega})$. Note that again, we won't explicit compute the data structure for W.
- Form the leverage score sampling matrix D_4 and D_5 with respect to W and sample k'/ϵ^2 rows/columns. The argument is similar to forming that of \widetilde{R} , except we use Algorithm 4 and the size of matrix C is $\widetilde{O}(k/\epsilon^2) \times k/\epsilon$. Since we need to oversample $k'/\epsilon^2 = \widetilde{O}(k/\epsilon^3)$ rows and columns, we could scale the scores accordingly and make the sum of probabilities be at most $\widetilde{O}(k/\epsilon^3)$. To implement the oracle call, note that we need to make $\widetilde{O}(k^2\epsilon^{-3})$ kernel evaluations to form the initial matrix C_0 , and subsequent operations such as SVD

and applying an JL matrix takes time $\widetilde{O}(k^{\omega}\epsilon^{-\omega-1})$. Then the query can be implemented by forming each row of W using $k\epsilon^{-1}$ kernel evaluations with an additional $\widetilde{O}(k\epsilon^{-1})$ time. Thus, the total runtime is

$$\widetilde{O}(n^{0.5}k^{1.5}\epsilon^{-2.5})\cdot\mathcal{T}_{\mathsf{K}}.$$

- Form matrix $D_4^\top W$ and $W^\top D_5$ could be done via selecting entries, in time $\widetilde{O}(k^2 \epsilon^{-4}) \cdot \mathcal{T}_K$.
- Form the projection matrices $P_{D_4^\top W}$ and $P_{W^\top D_5}$ takes time $\mathrm{poly}(k/\epsilon).$
- Form the matrix $D_4^{\top}KD_5$ is again selecting $\operatorname{poly}(k/\epsilon)$ entries from K, in time $\operatorname{poly}(k/\epsilon) \cdot \mathcal{T}_{\mathsf{K}}$.
- Compute $[P_{D_4^\top W}(D_4^\top W D_5) P_{W^\top D_5}]_k$ involves multiplying a sequence of $poly(k/\epsilon)$ size matrices, and computing an SVD, which takes $poly(k/\epsilon)$ time.
- Form the matrix Y_* involves computing the pseudoinverse of $\operatorname{poly}(k/\epsilon)$ size matrices and multiplying them together, which takes $\operatorname{poly}(k/\epsilon)$ time. Computing the top-k singular vectors of Y_* also takes $\operatorname{poly}(k/\epsilon)$ time.
- Form the sampling matrix D_6 involves performing leverage score sampling according to matrix $WU_* \in \mathbb{R}^{n \times k}$ with a smaller target row count k/ϵ , so the runtime is subsumed by the time to form D_4 and D_5 .
- Finally, forming the matrix N only requires computing $(D_6^\top W U_*)^\dagger$, which takes $\operatorname{poly}(k/\epsilon) \cdot \mathcal{T}_{\mathsf{K}}$ time.

Hence, the overall running time of Algorithm 8 is

$$\widetilde{O}(n^{0.75}k^{1.25}\epsilon^{-1.25}(\mathcal{T}_{\mathsf{K}}+k\epsilon^{-1})+n^{0.5}k^{1.5}\epsilon^{-2.5}(\mathcal{T}_{\mathsf{K}}+\epsilon^{-0.5})+n^{0.5}k^{\omega-0.5}\epsilon^{0.5-\omega}). \qquad \Box$$

E QUANTUM (k, p)-Subspace Approximation

In this section, we consider a generalized version of the k-subspace cost studied in Section B.3, for which we call the (k,p)-subspace cost (Woodruff & Yasuda, 2025): let \mathcal{F}_k be the space of all k-dimensional subspace, then

$$cost(A, x) = \left(\sum_{i=1}^{n} \|a_i^{\top} (I - P_x)\|_2^p\right)^{1/p}.$$

By defining the matrix (p, 2)-norm as

$$||Y||_{p,2} = \left(\sum_{i=1}^{n} ||e_i^{\top} Y||_2^p\right)^{1/p},$$

then we could alternatively write the cost function as

$$cost(A, F) = ||A(I - P_x)||_{p,2}.$$

The k-subspace cost function we studied in Section B.3 is just the (k, 2)-subspace cost, and Woodruff & Yasuda (2025) has shown that, similar to the k-subspace cost, one could sample according to the powers of the ridge leverage score. We recall their main result in the following.

Lemma E.1 (Theorem 3.9 and 3.11 of Woodruff & Yasuda (2025)). Let $A \in \mathbb{R}^{n \times d}$ and $\epsilon \in (0,1)$, let S be the sampling matrix that samples according to the distribution $\{p_i\}_{i=1}^n$ where

$$p_i = \begin{cases} \min\{1, n^{p/2-1}\overline{\tau}_i(A, \lambda_{A_s})^{p/2}/\alpha\}, & \text{if } p \geq 2, \\ \min\{1, \overline{\tau}_i(A, \lambda_{A_s})^{p/2}/\alpha\}, & \text{if } 1 \leq p < 2. \end{cases}$$

Then, $||SA(I-P_x)||_{p,2} = (1 \pm \epsilon)||A(I-P_x)||_{p,2}$ for all $x \in \mathcal{F}_k$. Moreover,

- For $p \ge 2$, $\alpha = O(\epsilon^2)/\log^3 n$ and $s = O(k/\epsilon^p)$, and S samples $O(k^{p/2}/\epsilon^{O(p^2)} \cdot \log^{O(p)} n)$ rows:
- For $1 \le p < 2$, $\alpha = O(\epsilon^2)/\log^3 n$ and $s = O(k/\epsilon^2)$, and S samples $O(k/\epsilon^{O(1)} \cdot \log^{O(1)} n)$ rows.

Finally, the algorithm runs in $\widetilde{O}(\operatorname{nnz}(A) + d^{\omega})$ time.

To speed up their algorithm, we note that the dominating runtime part is to sample from the rescaled leverage score distribution, and we could use Theorem B.23 with an inflated sample size.

Theorem E.2. There exists a quantum algorithm that achieves the same guarantee as Lemma E.1 while runs in time $\widetilde{O}(n^{1-1/p}dk^{0.5}/\epsilon^{p/2}+d^{\omega})$ for $p \geq 2$ and $\widetilde{O}(n^{1-p/4}dk^{p/4}/\epsilon+d^{\omega})$ for $p \in [1,2)$.

Proof. By Theorem 3.9 and Theorem 3.11 of Woodruff & Yasuda (2025), we know that the sum of sampling probabilities could be upper bounded by $O(sn^{1-2/p})$ for $p \geq 2$ and $O(s^{p/2}n^{1-p/2})$ for $p \in [1,2)$, meaning that for $p \geq 2$, we obtain a total number of queries being $\widetilde{O}(k^{0.5}n^{1-1/p}/\epsilon^{p/2})$ with per query cost d, plus the preprocessing time of d^{ω} gives the result. For $p \in [1,2)$, this bound becomes $\widetilde{O}(k^{p/4}n^{1-p/4}/\epsilon)$.

F QUANTUM TENSOR LOW-RANK APPROXIMATION

In this section, we provide a quantum algorithm for computing the Frobenius norm low-rank approximation of a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$. The goal is to find a rank-k tensor $B := \sum_{i=1}^k u_i \otimes v_i \otimes w_i$ for $u_i, v_i, w_i \in \mathbb{R}^n$, such that $\|A - B\|_F^2 \leq (1 + \epsilon) \cdot \text{OPT}$ where $\text{OPT} := \inf_{B: \text{rank}(B) = k} \|A - B\|_F^2$. The first caveat is that such an optimal rank-k solution might not even exist. We provide algorithms with $1 + \epsilon$ relative error when optimal rank-k solution exists, and an additive error solution when it does not (in such case, OPT = 0 so one has to allow small additive errors). We will then generalize the result for q-th order tensor where $q \geq 3$.

F.1 PRELIMINARY

Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, we define the rank of A as the smallest integer k such that $A = \sum_{i=1}^k u_i \otimes v_i \otimes w_i$ where $u_i, v_i, w_i \in \mathbb{R}^n$. We use \otimes to denote the Kronecker product of two matrices,

i.e., for
$$A \in \mathbb{R}^{a \times b}, B \in \mathbb{R}^{c \times d}, A \otimes B \in \mathbb{R}^{ac \times bd}$$
 and $A \otimes B = \begin{bmatrix} A_{1,1}B & A_{1,2}B & \dots & A_{1,b}B \\ \vdots & \vdots & \dots & \vdots \\ A_{a,1}B & A_{a,2}B & \dots & A_{a,b}B \end{bmatrix}$.

We use \odot to denote a product of two matrices defined as for $A \in \mathbb{R}^{a \times b}, B \in \mathbb{R}^{a \times d}, A \odot B \in$

we use
$$\odot$$
 to denote a product of two matrices defined as for $A \in \mathbb{R}^{a \times b}$, $B \in \mathbb{R}^{a \times b}$, $A \odot B \in \mathbb{R}^{a \times b}$ where $A \odot B = \begin{bmatrix} A_{1,*} \otimes B_{1,*} \\ A_{2,*} \otimes B_{2,*} \\ \vdots \\ A_{a,*} \otimes B_{a,*} \end{bmatrix}$, i.e., the matrix formed by computing tensor product

between corresponding rows of A and B. Given a tensor $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and three matrices $B_1 \in \mathbb{R}^{n_1 \times d_1}, B_2 \in \mathbb{R}^{n_2 \times d_2}$ and $B_3 \in \mathbb{R}^{n_3 \times d_3}$, we define the (\cdot, \cdot, \cdot) operator as

$$A(B_1, B_2, B_3)_{i,j,l} = \sum_{i'=1}^{n_1} \sum_{j'=1}^{n_2} \sum_{l'=1}^{n_3} A_{i',j',l'}(B_1)_{i',i}(B_2)_{j',j}(B_3)_{l',l}, \forall (i,j,l) \in [d_1] \times [d_2] \times [d_3],$$

subsequently, $A(B_1,B_2,B_3) \in \mathbb{R}^{d_1 \times d_2 \times d_3}$. One could also set any of the B_i 's as I_{n_i} and for example, $A(B_1,I_{n_2},I_{n_3}) \in \mathbb{R}^{d_1 \times n_2 \times n_3}$. When the dimension of the identity matrix is clear from context, we abbreviate it as I for notational simplicity. For $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, we use $A_1 \in \mathbb{R}^{n_1 \times n_2 n_3}, A_2 \in \mathbb{R}^{n_2 \times n_1 n_3}$ and $A_3 \in \mathbb{R}^{n_3 \times n_1 n_2}$ to denote the three matrices such that the $[3] \setminus \{i\}$ dimensions are flattened.

We also state an algorithm due to Song et al. (2019) for sampling according to leverage scores of $U \odot V$:

Lemma F.1. Given two matrices $U \in \mathbb{R}^{k \times n_1}$ and $V \in \mathbb{R}^{k \times n_2}$, there exists an algorithm

TENSORLEVERAGESCORE $(U, V, n_1, n_2, k, \epsilon, R_{\text{sample}})$

that takes

$$O((n_1 + n_2) \cdot \text{poly}(\log(n_1 n_2), k, \epsilon^{-1}) \cdot R_{\text{sample}})$$

time to generate a weighted sampling matrix $D \in \mathbb{R}^{n_1 n_2 \times R_{\text{sample}}}$ according to the leverage score distribution of the columns of $U \odot V$.

To obtain our fixed-parameter tractable algorithm for rank-k tensor low-rank approximation, we require the following result from Song et al. (2019):

Lemma F.2. Let $\max\{t_i, d_i\} \leq n$, given a $t_1 \times t_2 \times t_3$ tensor A and three matrices: $T_1 \in \mathbb{R}^{t_1 \times d_1}, T_2 \in \mathbb{R}^{t_2 \times d_2}$ and $T_3 \in \mathbb{R}^{t_3 \times d_3}$, if for any $\delta > 0$ there exist a solution to

$$\min_{X_1, X_2, X_3} \| \sum_{i=1}^k (T_1 X_1)_i \otimes (T_2 X_2)_i \otimes (T_3 X_3)_i - A \|_F^2 := \text{OPT},$$

and each entry of X_i could be expressed with $O(n^\delta)$ bits, then there exists an algorithm that takes $n^{O(\delta)} \cdot 2^{O(d_1k+d_2k+d_3k)}$ time and outputs three matrices $\widehat{X}_1, \widehat{X}_2$ and \widehat{X}_3 such that $\|\sum_{i=1}^k (T_1\widehat{X}_1)_i \otimes (T_2\widehat{X}_2)_i \otimes (T_3\widehat{X}_3)_i - A\|_F^2 = \text{OPT}$.

F.2 APPROXIMATE REGRESSION VIA SAMPLING RESPONSES

The key we will be utilizing is the following lemma that, to solve a regression up to $(2+\epsilon)$ factor, it is sufficient to sample the response matrix. As a consequence, we obtain a slew of tensor low-rank approximation algorithms with a $(4+\epsilon)$ -approximation ratio. This is worse than what is achieved in Song et al. (2019), but we would like to point out this is inherent due to all prior algorithms rely on oblivious subspace embedding. In fact, their algorithms utilize OSEs to show an existence argument: consider any rank-k regression $\min_X \|XA - B\|_F^2$ where we do not have access to the design matrix A but access to the target matrix B. One could still apply an OSE S on the right of A and solve the sketched regression $\min_X \|XAS^\top - BS^\top\|_F^2$ and argue the solution to the sketched regression is a good approximation. However, if one is only allowed to perform sampling procedures, then it is instructive to sample according to the structure of the unknown matrix A. In the following, we show that it is in fact enough to sample from B, this would not lead to a $1+\epsilon$ approximate solution to the original regression problem, but we still manage to prove this is a $2+\epsilon$ approximate solution. This is surprising — as an adversary could set B so that the resulting sampling procedure misses all important entries of A. Hence, we devise an approach that utilizes the low-rank approximation of the sampled matrix B to provide a good solution to the regression.

Lemma F.3. Let $A \in \mathbb{R}^{k \times n}$, $B \in \mathbb{R}^{n \times d}$ and $\epsilon \in (0,1)$, consider the following rank-constrained regression problem:

$$\min_{X:\operatorname{rank}(X) \le k} \|XA - B\|_F^2,\tag{5}$$

for $r = k/\epsilon^2$, let $S \in \mathbb{R}^{r \times n}$ be the ridge leverage score sampling matrix of B, then there exists a solution X' in the column span of BS^{\top} , such that

$$||X'A - B||_F^2 \le (2 + \epsilon) \min_{X: \text{rank}(X) \le k} ||XA - B||_F^2.$$

Proof. Throughout the proof, let $OPT := \min_{X: rank(X) \le k} \|XA - B\|_F^2$. We first note that if we sample columns of B according its ridge leverage scores with r columns, then we obtain an ϵ -coreset of B as for all rank-k projection matrix Q,

$$(1 - \epsilon) \cdot \|B - QB\|_F^2 \le \|BS^\top - QBS^\top\|_F^2 \le (1 + \epsilon) \cdot \|B - QB\|_F^2$$

in particular, let Q_* be the projection onto the top-k principal components of B, then the above suggests that

$$||BS^{\top} - Q_*BS^{\top}||_F^2 \le (1 + \epsilon) \cdot ||B - B_k||_F^2$$

2217 2218

2219 2220

2221 2222

2223 2224

2225 2226

2227

22282229

2230

2231

2232

2233 2234

2235

2236

2237 2238

2239

2240

2241

2242

2243

2244

2245

2246

2247 2248

2249

2251

2252

2253

2214
$$\leq (1+\epsilon) \cdot \text{OPT},$$

because B_k is the optimal rank-k solution. On the other hand, let Q' be the projection onto the top-k principal components of BS^{\top} , then

$$||B - Q'B||_F^2 \le \frac{1}{1 - \epsilon} ||BS^\top - Q'BS^\top||_F^2$$
$$\le \frac{1}{1 - \epsilon} ||BS^\top - Q_*BS^\top||_F^2$$
$$\le \frac{1 + \epsilon}{1 - \epsilon} \cdot \text{OPT},$$

by scaling ϵ , we get the cost is at most $1 + \epsilon$ factor of OPT. We will set $X' := Q'BA^{\dagger}$, we obtain

$$||X'A - B||_F^2 = ||Q'BA^{\dagger}A - B||_F^2$$

$$= ||(Q'B - B)A^{\dagger}A + B(A^{\dagger}A - I)||_F^2$$

$$= ||Q'B - B||_F^2 + ||B(I - A^{\dagger}A)||_F^2$$

$$\leq (1 + \epsilon) \cdot \text{OPT} + ||BA^{\dagger}A - B||_F^2$$

$$\leq (1 + \epsilon) \cdot \text{OPT} + \text{OPT}$$

$$= (2 + \epsilon) \cdot \text{OPT}$$

where we use Pythagorean theorem and the fact that BA^{\dagger} is the optimal solution to the regression. Write $BS^{\top} = U\Sigma V^{\top}$, then $Q' = U_k U_k^{\top}$, so X' lies in the column span of U_k which in turn, is a subset of the column span of BS^{\top} .

Remark F.4. One might wonder whether the bound obtained in Lemma F.3 is loose, we provide an instance where sampling according to B would necessarily give a 2-approximation, hence showing the tightness of Lemma F.3. Consider both A and B are n-dimensional column vectors (hence k=1), where $A=e_i+e_n$ for i randomly chosen from [n-1], and $B=e_n$. It is not hard to see that the optimal solution to the regression $\min_{x\in\mathbb{R}}\|Ax-B\|_2^2$ is given by $x=\frac{1}{2}$, with the cost $\frac{1}{2}$. On the other hand, if we perform any variant of importance sampling on B would, with high probability, only hits the last entry of B since all the mass is on the last entry, while missing the i-th entry for which A is nonzero. Conditioning on this event, then the subsampled regression becomes $\min_{x\in\mathbb{R}}\|e_nx-e_n\|_2^2$ with an optimal solution x'=1. Plug in x' to the original regression would give a cost of I, which is only a 2-approximation to the optimal cost.

F.3 QUANTUM BICRITERIA TENSOR LOW-RANK APPROXIMATION

We design a quantum bicriteria tensor low-rank approximation algorithm that outputs a rank- k^2/ϵ^4 tensor that approximates rank-k low-rank approximation of A.

Algorithm 10 Quantum bicriteria rank- k^2/ϵ^4 tensor low-rank approximation algorithm.

```
2254
                 1: procedure QBICRITERIATENSORLOWRANK(A \in \mathbb{R}^{n \times n \times n}, k, \epsilon)
2255
                 2:
                             s_1, s_2 \leftarrow O(k/\epsilon^2)
2256
                 3:
                             C_1 \leftarrow \mathsf{QLowRankCMM}(A_1, k, \epsilon, 0.001)
                                                                                                                                                                    \triangleright C_1 \in \mathbb{R}^{n \times s_1}.
\triangleright C_2 \in \mathbb{R}^{n \times s_2}.
2257
                             C_2 \leftarrow \text{QLowRankCMM}(A_2, k, \epsilon, 0.001)
                 4:
2258
                                                                                                                                                                   \triangleright \widehat{U} \in \mathbb{R}^{n \times s_1 s_2}.
                             Form \hat{U} by repeating each column of C_1 by s_2 times
                 5:
2259
                                                                                                                                                                   \triangleright \widehat{V} \in \mathbb{R}^{n \times s_1 s_2}
                             Form \hat{V} by repeating each column of C_2 by s_1 times
2260
                 7:
                             s_3 \leftarrow O(s_1 s_2 \log(s_1 s_2) + s_1 s_2/\epsilon)
2261
                 8:
                             \epsilon_0 \leftarrow 0.0001
2262
                                                                                                                                                                  \triangleright D_3 \in \mathbb{R}^{n^2 \times s_3}
                             D_3 \leftarrow \text{TENSORLEVERAGESCORE}(\widehat{U}^\top, \widehat{V}^\top, n, n, s_1 s_2, \epsilon_0, s_3)
                 9:
2263
                                                                                                                                                                  \triangleright B \in \mathbb{R}^{s_1 s_2 \times s_3}
                             B \leftarrow (\widehat{U}^{\top} \odot \widehat{V}^{\top})D_3
               10:
2264
                             \widehat{W} \leftarrow A_3 D_3 B^{\dagger}
               11:
2265
               12:
                             return \hat{U}, \hat{V}, \hat{W}
2266
               13: end procedure
2267
```

Theorem F.5. Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ and a positive integer $k \leq n$, $\epsilon \in (0,0.1)$, there exists an algorithm (Algorithm 10) which takes $\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon))$ time and outputs three matrices $U, V, W \in \mathbb{R}^{n \times r}$ with $r = \widetilde{O}(k^2/\epsilon^4)$ such that

$$\|\sum_{i=1}^{r} U_{i} \otimes V_{i} \otimes W_{i} - A\|_{F}^{2} \leq (4 + \epsilon) \cdot \min_{\text{rank} - k} \|A - A_{k}\|_{F}^{2}$$

with probability 0.99.

Proof. The proof will be similar to that of Theorem F.9. Let U^*, V^*, W^* be the optimal rank-k factor, set $Z_1 \in \mathbb{R}^{k \times n^2}$ to be the matrix where i-th row is $V_i^* \otimes W_i^*$, then clearly

$$\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2 = \text{OPT}$$

where OPT is the optimal cost and the cost is achieved by picking U as U^* . By Lemma F.3, there exists a solution $\overline{U} = C_1 X_1$ in the column span of C_1 such that

$$\|\overline{U}Z_1 - A_1\|_F^2 \le (2 + \epsilon) \cdot \text{OPT},\tag{6}$$

we setup $Z_2 \in \mathbb{R}^{k \times n^2}$ where the *i*-th row of Z_2 is $\overline{U}_i \otimes W_i^*$, and consider the regression

$$\min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A_2\|_F^2,$$

if we pick V as V^* , then it degenerates to Eq. (6), so the optimal cost of the above regression is at most $(2+\epsilon)\cdot \mathrm{OPT}$. By Lemma F.3, we could find a solution $\overline{V}=C_2X_2$ with

$$\|\overline{V}Z_2 - A_2\|_F^2 \le (2+\epsilon)^2 \cdot \text{OPT}.$$

Finally, set $Z_3 \in \mathbb{R}^{k \times n^2}$ with the *i*-th row being $\overline{U}_i \otimes \overline{V}_i$, and we know that

$$\min_{W \in \mathbb{R}^{n \times k}} \|WZ_3 - A_3\|_F^2 \le (2 + \epsilon)^2 \cdot \text{OPT},$$

similar to the proof of Theorem F.9, we create $Z_3' \in \mathbb{R}^{s_1 s_2 \times n^2}$ such that $(Z_3')_{(i,j)} = (C_1)_i \otimes (C_2)_j$ hence $Z_3' = \widehat{U}^\top \odot \widehat{V}^\top$ for \widehat{U}, \widehat{V} defined in Algorithm 10. As Z_3 is in the row span of Z_3' , we could alternatively consider

$$\min_{W \in \mathbb{R}^{n \times s_1 s_2}} \|W Z_3' - A_3\|_F^2$$

where one could solve up to $1+\epsilon$ approximation by using leverage score sampling of matrix Z_3' , and the optimal solution is indeed given by $A_3D_3(Z_3'D_3)^\dagger$, which is precisely the matrix \widehat{W} we have computed. Therefore, we end up with an approximate solution whose cost is at most $(2+\epsilon)^2(1+\epsilon)\cdot \mathrm{OPT}=(4+O(\epsilon))\cdot \mathrm{OPT}$. The rank of these matrices is $s_1s_2=\widetilde{O}(k^2/\epsilon^4)$ as advertised.

Finally, for the running time, computing C_1 and C_2 takes $O(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon))$ time, and computing the leverage score sampling matrix D_3 takes $O(n\operatorname{poly}(k/\epsilon))$ by Lemma F.1. Forming the matrix B naïvely would take $O(n^2k)$ time, but we could compute entries of B on demand: the sampling matrix D_3 tells us which entries among the n^2 need to be computed, and one only needs to compute $s_3 = \operatorname{poly}(k/\epsilon)$ of them. Further, computing each entry takes O(1) time, so the overall time to form B is $\operatorname{poly}(k/\epsilon)$. Computing A_3D_3 could be done via selecting a total of $n\operatorname{poly}(k/\epsilon)$ entries, so the overall runtime is

$$\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon)).$$

F.4 QUANTUM TENSOR LOW-RANK APPROXIMATION: FIXED-PARAMETER TRACTABLE ALGORITHM

The main result of this subsection is the following:

Theorem F.6. Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ such that each entry could be written with $O(n^{\delta})$ bits for $\delta > 0$. Define OPT := $\inf_{\operatorname{rank} - k} \|A - A_k\|_F^2$, for any $k \ge 1$ and $\epsilon \in (0, 1)$, define $n^{\delta'} = O(n^{\delta} 2^{O(k^2/\epsilon)})$.

2324

23262327

2328

2329 2330

2331

2332

23332334

2335

2336

23372338

2340 2341

23422343

2344

2345

2346 2347

2348

23492350

23512352

2353

2355

2356

2357

2359

2360

2361

2362

2363

2364

2365

2366

2367 2368

2369

2370

2371 2372

237323742375

• If OPT > 0, and there exists a tensor $A_k = U^* \otimes V^* \otimes W^*$ with $\|A - A_k\|_F^2 = \text{OPT}$, and $\max\{\|U^*\|_F, \|V^*\|_F, \|W^*\|_F\} \leq 2^{O(n^{\delta'})}$, then there exists an algorithm that takes $(n^2k^{0.5}/\epsilon + n\operatorname{poly}(k/\epsilon) + 2^{O(k^2/\epsilon)})n^{\delta}$ time in the unit cost RAM model with word size $O(\log n)$ bits and outputs $n \times k$ matrices U, V, W such that

$$||U \otimes V \otimes W||_F^2 \le (4 + \epsilon) \text{ OPT} \tag{7}$$

with probability at least 0.99 and entries of U, V, W fit in $n^{\delta'}$ bits;

- If OPT > 0 and A_k does not exist, and there exists $U', V', W' \in \mathbb{R}^{n \times k}$ with $\max\{\|U'\|_F, \|V'\|_F, \|W'\|_F\} \le 2^{O(n^{\delta'})}$ with $\|U' \otimes V' \otimes W' A\|_F^2 \le (1 + \epsilon/4)$ OPT, then we can find U, V, W with Eq. (7) holds;
- If OPT = 0 and A_k does not exist and there exists a solution U^*, V^*, W^* with each entry in $n^{O(\delta')}$ bits, then Eq. (7) holds;
- If OPT = 0 and there exists three $n \times k$ matrices U, V, W such that $\max\{\|U\|_F, \|V\|_F, \|W\|_F\} < 2^{O(n^{\delta'})}$ and

$$||U \otimes V \otimes W - A||_F^2 \le (4 + \epsilon) \text{OPT} + 2^{-\Omega(n^{\delta'})} = 2^{-\Omega(n^{\delta'})},$$

then we can output U, V, W with the above guarantee.

Further, if A_k exists, we can output a number Z such that $OPT \le Z \le (4 + \epsilon)OPT$. For all the cases above, the algorithm runs in the same time as the first case, and succeeds with probability at least 0.999.

The proof will be a consequence of Theorem F.7 and Lemma F.8, which we will discuss in the following sections.

F.4.1 META ALGORITHM AND BOUNDED ENTRY ASSUMPTION

Algorithm 11 Quantum FPT rank-k low-rank approximation.

```
1: procedure QFPTLOWRANK(A, k, \epsilon)
                                                                                                                  ▶ Theorem F.7
          s_1 \leftarrow s_2 \leftarrow O(k/\epsilon^2)
          C_1 \leftarrow \text{QLowRankCMM}(A_1, k, \epsilon, 0.0001)
                                                                                                                  \triangleright C_1 \in \mathbb{R}^{n \times s_1}.
                                                                                                                  \triangleright C_2 \in \mathbb{R}^{n \times s_2}.
 4:
          C_2 \leftarrow \text{QLowRankCMM}(A_2, k, \epsilon, 0.0001)
          Form B_1 by consecutively repeating each column of C_1 by s_2 times
 5:
          Form B_2 by consecutively repeating each column of C_2 by s_1 times
          d_3 \leftarrow O(s_1 s_2 \log(s_1 s_2) + s_1 s_2/\epsilon)
          D_3 \leftarrow \text{TENSORLEVERAGESCORE}(B_1^\top, B_2^\top, n, n, s_1 s_2, \epsilon_0, d_3)
 8:
 9:
          M_3 \leftarrow A_3 D_3
          Y_1, Y_2, Y_3, C \leftarrow \mathsf{QSublinearReduction}(A, A_1S_1, A_2S_2, A_3S_3, n, s_1, s_2, d_3, k, \epsilon).
10:
     Algorithm 12
          Create variables for X_i \in \mathbb{R}^{s_i \times k}, \forall i \in [3]
11:
          Run polynomial system verifier for \|(Y_1X_1)\otimes(Y_2X_2)\otimes(Y_3X_3)-C\|_F^2
12:
          return C_1X_1, C_2X_2, and M_3X_3
```

Theorem F.7. Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, for any $k \ge 1$, $\epsilon \in (0,1)$ and $\delta > 0$, there is a quantum algorithm which takes $n^2 k^{0.5}/\epsilon + n^{O(\delta)} 2^{O(k^2/\epsilon)}$ time where δ is defined as in Lemma F.2 and outputs three matrices $U \in \mathbb{R}^{n \times k}$, $V \in \mathbb{R}^{n \times k}$, $W \in \mathbb{R}^{n \times k}$ such that

$$\left\| \sum_{i=1}^{k} U_i \otimes V_i \otimes W_i - A \right\|_F^2 \le (4 + \epsilon) \min_{\text{rank} - k} \|A_k - A\|_F^2$$

holds with probability 0.99.

14: end procedure

Proof. We define OPT as

$$OPT = \min_{\text{rank} - k} ||A' - A||_F^2.$$

Suppose the optimal $A_k = U^* \otimes V^* \otimes W^*$. We fix $V^* \in \mathbb{R}^{n \times k}$ and $W^* \in \mathbb{R}^{n \times k}$. We use $V_1^*, V_2^*, \cdots, V_k^*$ to denote the columns of V^* and $W_1^*, W_2^*, \cdots, W_k^*$ to denote the columns of W^* .

We consider the following optimization problem,

$$\min_{U_1, \dots, U_k \in \mathbb{R}^n} \left\| \sum_{i=1}^k U_i \otimes V_i^* \otimes W_i^* - A \right\|_F^2,$$

which is equivalent to

$$\min_{U_1, \dots, U_k \in \mathbb{R}^n} \left\| \begin{bmatrix} U_1 & U_2 & \dots & U_k \end{bmatrix} \begin{bmatrix} V_1^* \otimes W_1^* \\ V_2^* \otimes W_2^* \\ \dots \\ V_k^* \otimes W_k^* \end{bmatrix} - A \right\|_F^2.$$

We use matrix Z_1 to denote $\begin{bmatrix} \operatorname{vec}(V_1^* \otimes W_1^*) \\ \operatorname{vec}(V_2^* \otimes W_2^*) \\ \dots \\ \operatorname{vec}(V_k^* \otimes W_k^*) \end{bmatrix} \in \mathbb{R}^{k \times n^2} \text{ and matrix } U \text{ to denote }$

 $[U_1 \quad U_2 \quad \cdots \quad U_k]$. Then we can obtain the following equivalent objective function,

$$\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2.$$

Notice that $\min_{U\in\mathbb{R}^{n\times k}}\|UZ_1-A_1\|_F^2=\mathrm{OPT}$, since $A_k=U^*Z_1$. By Lemma F.3, we know that if we sample columns of A_1 according to its ridge leverage score distribution with $\widetilde{O}(k/\epsilon^2)$ columns and let C_1 denote the resulting matrix, then there exists a solution $\widehat{U}=C_1X_1$ in the column span of C_1 , such that

$$\|\widehat{U}Z_1 - A_1\|_F^2 \le (2 + \epsilon) \min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2$$

= $(2 + \epsilon) \cdot \text{OPT},$

which implies

$$\left\| \sum_{i=1}^{k} \widehat{U}_{i} \otimes V_{i}^{*} \otimes W_{i}^{*} - A \right\|_{F}^{2} \leq (2 + \epsilon) \cdot \text{OPT}.$$

To write down $\widehat{U}_1, \dots, \widehat{U}_k$, we use the given matrix A_1 , and we create $s_1 \times k$ variables for matrix X_1 .

As our second step, we fix $\widehat{U} \in \mathbb{R}^{n \times k}$ and $W^* \in \mathbb{R}^{n \times k}$, and we convert tensor A into matrix A_2 . Let

matrix
$$Z_2$$
 denote $\begin{bmatrix} \operatorname{vec}(\widehat{U}_1 \otimes W_1^*) \\ \operatorname{vec}(\widehat{U}_2 \otimes W_2^*) \\ \dots \\ \operatorname{vec}(\widehat{U}_k \otimes W_k^*) \end{bmatrix}$. We consider the following objective function,

$$\min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A_2\|_F^2,$$

for which the optimal cost is at most $(2 + \epsilon) \cdot \text{OPT}$.

By playing a similar argument and utilizing Lemma F.3, we could obtain matrix C_2 with $O(k/\epsilon^2)$ rescaled columns of A_2 , such that there exists a solution $\widehat{V} = C_2 X_2$ with

$$\|\widehat{V}Z_2 - A_2\|_F^2 \le (2 + \epsilon) \min_{V \in \mathbb{R}^{n \times k}} \|VZ_2 - A_2\|_F^2 \le (2 + \epsilon)^2 \cdot \text{OPT},$$

which implies

$$\left\| \sum_{i=1}^k \widehat{U}_i \otimes \widehat{V}_i \otimes W_i^* - A \right\|_F^2 \le (2+\epsilon)^2 \cdot \text{OPT}.$$

To write down $\hat{V}_1, \dots, \hat{V}_k$, we need to use the given matrix A_2 , and we need to create $s_2 \times k$ variables for matrix X_2 .

As our third step, we fix the matrices $\widehat{U}\in\mathbb{R}^{n\times k}$ and $\widehat{V}\in\mathbb{R}^{n\times k}$. Let matrix Z_3 denote

$$\begin{bmatrix} \operatorname{vec}(\widehat{U}_1 \otimes \widehat{V}_1) \\ \operatorname{vec}(\widehat{U}_2 \otimes \widehat{V}_2) \\ \dots \\ \operatorname{vec}(\widehat{U}_k \otimes \widehat{V}_k) \end{bmatrix}.$$
 We convert tensor $A \in \mathbb{R}^{n \times n \times n}$ into matrix $A_3 \in \mathbb{R}^{n \times n^2}$. Since $\widehat{U} = C_1 X_1$

and $\widehat{V} = C_2 X_2$, define the matrix $Z_3' \in \mathbb{R}^{d_3 \times n^2}$ where, if we use (i,j) to index rows of Z_3' , then $(Z_3')_{(i,j)} = (C_1)_i \otimes (C_2)_j$, and a key observation is there exists a matrix $Y \in \mathbb{R}^{k \times d_3}$ with $Z_3 = Y Z_3'$. To form Z_3' , we take the approach of forming B_1 and B_2 by repeating columns a fixed number of times, for example, B_1 is defined as

$$[(C_1)_1 \quad (C_1)_1 \quad \dots \quad (C_1)_1 \quad \dots \quad (C_1)_k \quad \dots \quad (C_1)_k]$$

where each column is repeated for s_2 times, and one could verify that $Z_3' = B_1 \odot B_2$.

We consider the following objective function,

$$\min_{W \in \mathbb{R}^{n \times k}} \|WZ_3 - A_3\|_F^2,$$

which is equivalent to

$$\min_{W \in \mathbb{R}^{n \times k}, Y \in \mathbb{R}^{k \times d_3}} \|WYZ_3' - A_3\|_F^2,$$

if we employ leverage score sampling on the columns of Z_3' , then by Lemma A.13, we could find a pair of matrices \widehat{W}, \widehat{Y} with

$$\begin{split} \|\widehat{W}\widehat{Y}Z_{3}' - A_{3}\|_{F}^{2} &\leq (1 + \epsilon) \min_{W \in \mathbb{R}^{n \times k}, Y \in \mathbb{R}^{k \times d_{3}}} \|WYZ_{3}' - A_{3}\|_{F}^{2} \\ &= (1 + \epsilon) \min_{W \in \mathbb{R}^{n \times k}} \|WZ_{3} - A_{3}\|_{F}^{2} \\ &\leq (1 + \epsilon)(2 + \epsilon)^{2} \cdot \text{OPT} \,. \end{split}$$

We briefly explain how to obtain the factorization of \widehat{W},\widehat{Y} , consider solving the regression

$$\min_{T \in \mathbb{R}^{n \times d_3}} \|TZ_3'D_3 - A_3D_3\|_F^2$$

where $D_3 \in \mathbb{R}^{n^2 \times d_3}$ is the leverage score sampling matrix of Z_3' , then $T = A_3 D_3 (Z_3' D_3)^\dagger$ and we could take the top-k left singular vectors as \widehat{W} and the remaining part as \widehat{Y} . All we have shown is that \widehat{W} is in the column span of $A_3 D_3$ with a cost at most $(1+\epsilon)(2+\epsilon)^2$ of the optimal cost, as $\widehat{W} = T P_k = A_3 D_3 (Z_3' D_3)^\dagger P_k$ where P_k is the projection onto the top-k left singular vectors of T.

Thus, we have established that

$$\min_{X_1, X_2, X_3} \left\| \sum_{i=1}^k (C_1 X_1)_i \otimes (C_2 X_2)_i \otimes (A_3 D_3 X_3)_i - A \right\|_F^2 \le (1+\epsilon)(2+\epsilon)^2 \cdot \text{OPT}.$$

Let $V_1=C_1, V_2=C_2, V_3=A_3D_3$, we then apply Lemma F.8, and we obtain $\widehat{V}_1, \widehat{V}_2, \widehat{V}_3, C$. We then apply Lemma F.2. Correctness follows by rescaling ϵ by a constant factor and note that $(1+\epsilon)(2+\epsilon)^2=4+O(\epsilon)$.

Running time. Regarding the running time, computing C_1 and C_2 takes $\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon))$ time, and computing D_3 takes $\widetilde{O}(n\operatorname{poly}(k/\epsilon))$ time. To create matrices Y_1, Y_2, Y_3 and C, by Lemma F.8, it takes $\widetilde{O}(n^{0.5}\operatorname{poly}(k/\epsilon))$ time, and the runtime of the polynomial system verifier is due to Lemma F.2.

Algorithm 12 Input size reduction via leverage score sampling.

```
2485
               1: procedure QSUBLINEARREDUCTION(A, V_1, V_2, V_3, n, b_1, b_2, b_3, k, \epsilon)
                                                                                                                                                     ⊳ Lemma F.8
2486
                          c_1 \leftarrow c_2 \leftarrow c_3 \leftarrow \text{poly}(k/\epsilon)
2487
                          T_1 \leftarrow \text{QLS}(V_1, c_1, 0.0001)
2488
                          T_2 \leftarrow \text{QLS}(V_2, c_2, 0.0001)
2489
                          T_3 \leftarrow \text{QLS}(V_3, c_3, 0.0001)
2490
                          \hat{V}_i \leftarrow T_i V_i \in \mathbb{R}^{c_i \times b_i}, \forall i \in [3].
2491
                          C \leftarrow A(T_1, T_2, T_3) \in \mathbb{R}^{c_1 \times c_2 \times c_3}
2492
                          return \hat{V}_1, \hat{V}_2, \hat{V}_3 and C
               8:
2493
               9: end procedure
2494
```

F.4.2 INPUT SIZE REDUCTION IN SUBLINEAR TIME

Lemma F.8. Let $\operatorname{poly}(k/\epsilon) \geq b_1b_2b_3 \geq k$. Given a tensor $A \in \mathbb{R}^{n \times n \times n}$ and three matrices $V_1 \in \mathbb{R}^{n \times b_1}$, $V_2 \in \mathbb{R}^{n \times b_2}$, and $V_3 \in \mathbb{R}^{n \times b_3}$, there exists an algorithm that takes $n^{0.5} \cdot \operatorname{poly}(k/\epsilon)$ time and outputs a tensor $C \in \mathbb{R}^{c_1 \times c_2 \times c_3}$ and three matrices $\widehat{V}_1 \in \mathbb{R}^{c_1 \times b_1}$, $\widehat{V}_2 \in \mathbb{R}^{c_2 \times b_2}$ and $\widehat{V}_3 \in \mathbb{R}^{c_3 \times b_3}$ with $c_1 = c_2 = c_3 = \operatorname{poly}(k/\epsilon)$, such that with probability at least 0.99, for all $\alpha > 0, X_1, X_1' \in \mathbb{R}^{b_1 \times k}, X_2, X_2' \in \mathbb{R}^{b_2 \times k}, X_3, X_3' \in \mathbb{R}^{b_3 \times k}$ satisfy that,

$$\left\| \sum_{i=1}^k (\widehat{V}_1 X_1')_i \otimes (\widehat{V}_2 X_2')_i \otimes (\widehat{V}_3 X_3')_i - C \right\|_F^2 \le \alpha \left\| \sum_{i=1}^k (\widehat{V}_1 X_1)_i \otimes (\widehat{V}_2 X_2)_i \otimes (\widehat{V}_3 X_3)_i - C \right\|_F^2,$$

then,

$$\left\| \sum_{i=1}^{k} (V_1 X_1')_i \otimes (V_2 X_2')_i \otimes (V_3 X_3')_i - A \right\|_F^2 \le (1+\epsilon)\alpha \left\| \sum_{i=1}^{k} (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2.$$

Proof. Let $X_1 \in \mathbb{R}^{b_1 \times k}, X_2 \in \mathbb{R}^{b_2 \times k}, X_3 \in \mathbb{R}^{b_3 \times k}$. Define OPT := $\|\sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A\|_F^2$. First, we define $Z_1 = ((V_2 X_2)^\top \odot (V_3 X_3)^\top) \in \mathbb{R}^{k \times n^2}$. (Note that, for each $i \in [k]$, the i-th row of matrix Z_1 is $\text{vec}((V_2 X_2)_i \otimes (V_3 X_3)_i)$.) Then, by flattening we have

$$\left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 = \|V_1 X_1 \cdot Z_1 - A_1\|_F^2.$$

We choose a sparse diagonal sampling matrix $T_1 \in \mathbb{R}^{c_1 \times n}$ with $c_1 = \operatorname{poly}(k, 1/\epsilon)$ rows. Let $Y_1 := \arg\min_{Y \in b_1 \times n^2} \|V_1 Y - A_1\|_F^2$ and $A_1^* := V_1 Y_1 - A_1$. Since V_1 has $b_1 \leq \operatorname{poly}(k/\epsilon)$ columns, according to Lemma A.12 with probability 0.999, for all $X_1 \in \mathbb{R}^{b_1 \times k}$, $Z \in \mathbb{R}^{k \times n^2}$,

$$(1 - \epsilon) \|V_1 X_1 Z - A_1\|_F^2 - \|A_1^*\|_F^2 \le \|T_1 V_1 X_1 Z - T_1 A_1\|_F^2 - \|T_1 A_1^*\|_F^2$$

$$< (1 + \epsilon) \|V_1 X_1 Z - A_1\|_F^2 - \|A_1^*\|_F^2.$$

Therefore, we have

$$||T_1V_1X_1 \cdot Z_1 - T_1A_1||_F^2$$

$$= (1 \pm \epsilon) \left\| \sum_{i=1}^k (V_1X_1)_i \otimes (V_2X_2)_i \otimes (V_3X_3)_i - A \right\|_F^2 + \underbrace{||T_1A_1^*||_F^2 - ||A_1^*||_F^2}_{\Lambda}.$$

Second, we unflatten matrix $T_1A_1 \in \mathbb{R}^{c_1 \times n^2}$ to obtain a tensor $A' \in \mathbb{R}^{c_1 \times n \times n}$. Then we flatten A' along the second direction to obtain $A_2 \in \mathbb{R}^{n \times c_1 n}$. We define $Z_2 = (T_1V_1X_1)^{\top} \odot (V_3X_3)^{\top} \in \mathbb{R}^{k \times c_1 n}$. Then, by flattening,

$$||V_2X_2 \cdot Z_2 - A_2||_F^2 = ||T_1V_1X_1 \cdot Z_1 - T_1A_1||_F^2$$

$$= (1 \pm \epsilon) \left\| \sum_{i=1}^k (V_1X_1)_i \otimes (V_2X_2)_i \otimes (V_3X_3)_i - A \right\|_F^2 + \Delta_1.$$

We choose a diagonal sampling matrix $T_2 \in \mathbb{R}^{c_2 \times n}$ with $c_2 = \operatorname{poly}(k, 1/\epsilon)$ rows. Then according to Lemma A.12 with probability 0.999, for all $X_2 \in \mathbb{R}^{b_2 \times k}$, $Z \in \mathbb{R}^{k \times c_1 n}$,

$$(1 - \epsilon) \|V_2 X_2 Z - A_2\|_F^2 - \|A_2^*\|_F^2 \le \|T_2 V_2 X_2 Z - T_2 A_2\|_F^2 - \|T_2 A_2^*\|_F^2$$

$$\le (1 + \epsilon) \|V_2 X_2 Z - A_2\|_F^2 - \|A_2^*\|_F^2,$$

for A_2^* defined similarly as A_1^* . Define $\Delta_2 = \|T_2A_2^*\|_F^2 - \|A_2^*\|_F^2$, we have

$$||T_2V_2X_2 \cdot Z_2 - T_2A_2||_F^2$$

$$= (1 \pm \epsilon)||V_2X_2 \cdot Z_2 - A_2||_F^2$$

$$= (1 \pm \epsilon)^2 \left\| \sum_{i=1}^k (V_1X_1)_i \otimes (V_2X_2)_i \otimes (V_3X_3)_i - A \right\|_F^2 + (1 \pm \epsilon)\Delta_1 + \Delta_2.$$

Third, we unflatten matrix $T_2A_2 \in \mathbb{R}^{c_2 \times c_1 n}$ to obtain a tensor $A''(=A(T_1,T_2,I)) \in \mathbb{R}^{c_1 \times c_2 \times n}$. Then we flatten tensor A'' along the last direction (the third direction) to obtain matrix $A_3 \in \mathbb{R}^{n \times c_1 c_2}$. We define $Z_3 = (T_1V_1X_1)^\top \odot (T_2V_2X_2)^\top \in \mathbb{R}^{k \times c_1 c_2}$. Then, by flattening, we have

$$||V_3X_3 \cdot Z_3 - A_3||_F^2 = ||T_2V_2X_2 \cdot Z_2 - T_2A_2||_F^2$$

$$= (1 \pm \epsilon)^2 \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + (1 \pm \epsilon) \Delta_1 + \Delta_2.$$

We choose a diagonal sampling matrix $T_3 \in \mathbb{R}^{c_3 \times n}$ with $c_3 = \text{poly}(k, 1/\epsilon)$ rows. Then according to Lemma A.12 with probability 0.999, for all $X_3 \in \mathbb{R}^{b_3 \times k}$, $Z \in \mathbb{R}^{k \times c_1 c_2}$,

$$(1-\epsilon)\|V_3X_3Z - A_3\|_F^2 + \Delta_3 \le \|T_3V_3X_3Z - T_3A_3\|_F^2 \le (1+\epsilon)\|V_3X_3Z - A_3\|_F^2 + \Delta_3$$
 for $\Delta_3 := \|A_3^*\|_F^2 - \|T_3A_3^*\|_F^2$. Therefore, we have

$$||T_3V_3X_3\cdot Z_3-T_3A_3||_F^2$$

$$= (1 \pm \epsilon)^3 \left\| \sum_{i=1}^k (V_1 X_1)_i \otimes (V_2 X_2)_i \otimes (V_3 X_3)_i - A \right\|_F^2 + (1 \pm \epsilon)^2 \Delta_1 + (1 \pm \epsilon) \Delta_2 + \Delta_3.$$

We will argue the additive error terms are small. Examine the term Δ_1 , in particular $\|A_1 - V_1 Y_1\|_F^2$ it is not hard to see that $\|A_1 - V_1 Y_1\|_F^2 \leq \mathrm{OPT}$ as one could simply realize the cost by choosing Y_1 according to $V_2 X_2$ and $V_3 X_3$. By Markov's inequality and the leverage score sampling matrix T_1 is an unbiased estimator for the matrix Frobenious norm squared, we could conclude the term $\|T_1 A_1^*\|_F^2 = O(\mathrm{OPT})$ holds with constant probability. Similarly, for $\|A_2^*\|_F^2$, we see that $\|V_2 Y_2 - A_2\|_F^2 \leq \mathrm{OPT}$ by choosing Y_2 according to the other two factors. One could conclude analogously that Δ_2 , $\Delta_3 = O(\mathrm{OPT})$. Let Δ be the sum of all additive error terms, and we have $\Delta = O(\mathrm{OPT})$.

Let \widehat{V}_i denote T_iV_i for all $i \in [3]$ and $C \in \mathbb{R}^{c_1 \times c_2 \times c_3}$, and for $\alpha > 1$, if we have

$$\left\| \sum_{i=1}^{k} (\widehat{V}_{1}X'_{1})_{i} \otimes (\widehat{V}_{2}X'_{2})_{i} \otimes (\widehat{V}_{3}X'_{3})_{i} - C \right\|_{F}^{2} \leq \alpha \left\| \sum_{i=1}^{k} (\widehat{V}_{1}X_{1})_{i} \otimes (\widehat{V}_{2}X_{2})_{i} \otimes (\widehat{V}_{3}X_{3})_{i} - C \right\|_{F}^{2},$$

and we further define $f(X_1,X_3,X_3) = \|\sum_{i=1}^k (V_1X_1)_i \otimes (V_2X_2)_i \otimes (V_3X_3)_i - A\|$ and $g(X_1,X_2,X_3) = \|\sum_{i=1}^k (\widehat{V}_1X_1)_i \otimes (\widehat{V}_2X_2)_i \otimes (\widehat{V}_3X_3)_i - C\|$, by above derivations we could conclude

$$(1-\epsilon)f(X_1,X_2,X_3)+(1-\epsilon)\Delta\leq g(X_1,X_2,X_3)\leq (1+\epsilon)f(X_1,X_2,X_3)+(1+\epsilon)\Delta$$
 by properly scaling ϵ , then

$$(1 - \epsilon)f(X'_1, X'_2, X'_3) + (1 - \epsilon)\Delta \le g(X'_1, X'_2, X'_3)$$

$$\le \alpha \cdot g(X_1, X_2, X_3)$$

$$\le \alpha \cdot ((1 + \epsilon)f(X_1, X_2, X_3) + (1 + \epsilon)\Delta),$$

thus

$$f(X_1', X_2', X_3') \le \alpha \cdot (1 + \epsilon) f(X_1, X_2, X_3) + O(\epsilon) \cdot \text{OPT}$$

= $\alpha \cdot (1 + O(\epsilon)) \cdot \text{OPT}$,

the proof is completed by recalling the definition of OPT and rescaling ϵ .

2593

2594

2595

2596

2597

2598

2599 2600

2601

2602

2603

2604 2605

2606

2629

2630

2631

2632

2633

2634 2635

263626372638

2639 2640

2641

2642

2643

2644

2645

Running time. Since all V_1, V_2 and V_3 have n rows and $\operatorname{poly}(k/\epsilon)$ columns, computing the quantum leverage score sampler takes time $\widetilde{O}(n^{0.5}\operatorname{poly}(k/\epsilon))$. To compute the matrix C, we note that since T_1, T_2 and T_3 are sampling matrices, each of them has only $\operatorname{poly}(k/\epsilon)$ entries. On the other hand, by the definition of $A(T_1, T_2, T_3)$, we note an entry of A needs to be examined and computed if and only if all corresponding entries of T_1, T_2 and T_3 are nonzero. As these three sampling matrices have at most $\operatorname{poly}(k/\epsilon)$ overlaps on nonzero entries, computing $A(T_1, T_2, T_3)$ amounts to select a subset of $\operatorname{poly}(k/\epsilon)$ entries from A and rescale, hence could be done in $\operatorname{poly}(k/\epsilon)$ time.

F.5 QUANTUM TENSOR COLUMN, ROW AND TUBE SUBSET SELECTION APPROXIMATION

In this section, we design a quantum algorithm for selecting a subset of columns, rows and tubes of a tensor so that there exists a tensor U of rank-poly (k/ϵ) , together with these subsets, gives a good low-rank approximation to A.

Algorithm 13 Quantum tensor CRT subset selection.

```
1: procedure QCRTSELECTION(A \in \mathbb{R}^{n \times n \times n}, k, \epsilon)
2607
2608
              2:
                        s_1, s_2 \leftarrow O(k/\epsilon^2)
              3:
                        \epsilon_0 \leftarrow 0.001
                                                                                                                                        \triangleright C_1 \in \mathbb{R}^{n \times s_1}.
\triangleright C_2 \in \mathbb{R}^{n \times s_2}.
              4:
                        C_1 \leftarrow \text{QLowRankCMM}(A_1, k, \epsilon, 0.0001)
2610
              5:
                        C_2 \leftarrow \mathsf{QLowRankCMM}(A_2, k, \epsilon, 0.0001)
2611
                                                                                                                                      \triangleright B_1 \in \mathbb{R}^{n \times s_1 s_2}.
                        Form B_1 by consecutively repeating each column of C_1 by s_2 times
2612
                                                                                                                                      \triangleright B_2 \in \mathbb{R}^{n \times s_1 s_2}
              7:
                        Form B_2 by consecutively repeating each column of C_2 by s_1 times
2613
              8:
                        d_3 \leftarrow O(s_1 s_2 \log(s_1 s_2) + s_1 s_2/\epsilon)
2614
                        D_3 \leftarrow \text{TENSORLEVERAGESCORE}(B_1^\top, B_2^\top, n, n, s_1 s_2, \epsilon_0, d_3)
                                                                                                                                       \triangleright D_3 \in \mathbb{R}^{n^2 \times d_3}.
              9:
2615
                                                                                                                                        \triangleright M_3 \in \mathbb{R}^{n \times d_3}.
                        M_3 \leftarrow A_3 D_3
             10:
2616
                        Form B_1 by consecutively repeating each column of C_1 by d_3 times \triangleright Note B_1 is formed by
             11:
2617
                   repeating a different number of columns.
2618
             12:
                        Form B_3 by consecutively repeating each column of M_3 by s_1 times
2619
             13:
                        d_2 \leftarrow O(s_1 d_3 \log(s_1 d_3) + s_1 d_3/\epsilon)
2620
                                                                                                                                      \triangleright D_2 \in \mathbb{R}^{n^2 \times d_2}.
\triangleright M_2 \in \mathbb{R}^{n \times d_2}.
                        D_2 \leftarrow \text{TENSORLEVERAGESCORE}(B_1^{\top}, B_3^{\top}, n, n, s_1 d_3, \epsilon_0, d_2)
             14:
2621
             15:
2622
                        Form B_2 by consecutively repeating each column of M_2 by d_3 times
             16:
2623
             17:
                        Form B_3 by consecutively repeating each column of M_3 by d_2 times
             18:
                        d_1 \leftarrow O(d_2d_3\log(d_2d_3) + d_2d_3/\epsilon)
                        D_3 \leftarrow \text{TENSORLEVERAGESCORE}(B_2^\top, B_3^\top, n, n, d_2d_3, \epsilon_0, d_1)
2625
             19:
             20:
                        C \leftarrow A_1D_1, R \leftarrow A_2D_2, T \leftarrow A_3D_3
             21:
                        return C, R, T
2627
             22: end procedure
2628
```

Theorem F.9. Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ and a positive integer $k \leq n$, $\epsilon \in (0,0.1)$, there exists an algorithm (Algorithm 13) which takes $\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon))$ time and outputs three matrices $C \in \mathbb{R}^{n \times c}$, a subset of columns of A; $R \in \mathbb{R}^{n \times r}$, a subset of rows of A; and $T \in \mathbb{R}^{n \times t}$, a subset of tubes of A where C, C, C, C and there exists a tensor $C \in \mathbb{R}^{c \times r \times t}$ such that

$$\|\sum_{i=1}^{c}\sum_{j=1}^{r}\sum_{l=1}^{t}U_{i,j,l}\cdot C_{i}\otimes R_{j}\otimes T_{l}-A\|_{F}^{2}\leq (4+\epsilon)\cdot \min_{\mathsf{rank}\cdot k}\|A-A_{k}\|_{F}^{2}$$

holds with probability 0.99.

Proof. Throughout the proof, let OPT := $\min_{\text{rank-}k} A_k \|A - A_k\|_F^2$. Suppose the optimal low-rank factor $A_k = U^* \otimes V^* \otimes W^*$ where $U^*, V^*, W^* \in \mathbb{R}^{n \times k}$. Define a matrix $Z_1 \in \mathbb{R}^{k \times n^2}$, where the i-th row of Z_1 is $V_i^* \otimes W_i^*$. Note that we do not know V^* and W^* , nor can we form the matrix Z_1 . Consider the following regression problem:

$$\min_{U \in \mathbb{R}^{n \times k}} \|UZ_1 - A_1\|_F^2,\tag{8}$$

clearly, if we set U as U^* , then

$$U^*Z_1 = \begin{bmatrix} U_1^* & U_2^* & \dots & U_k^* \end{bmatrix} \begin{bmatrix} \operatorname{vec}(V_1^* \otimes W_1^*)^\top \\ \operatorname{vec}(V_2^* \otimes W_2^*)^\top \\ \vdots \\ \operatorname{vec}(V_k^* \otimes W_k^*)^\top \end{bmatrix}$$
$$= (U^* \otimes V^* \otimes W^*)_1.$$

i.e., the optimal A_k flattens along the first dimension. Hence, the optimal cost of Eq. (8) would give OPT. To solve Eq. (8), we compute a projection-cost preserving of A_1 (Theorem C.2), and according to Lemma F.3, there exists a solution \widehat{U} in the column span of C_1 , i.e., $\widehat{U} = C_1 X_1$, and it has cost

$$\|\widehat{U}Z_1 - A_1\|_F^2 \le (2 + \epsilon) \cdot \text{OPT}.$$

We can then form $Z_2 \in \mathbb{R}^{k \times n^2}$ where the *i*-th row is $\widehat{U}_i \otimes W_i^*$, then we know that

$$\min_{V \subset \mathbb{P}^n \times k} \|VZ_2 - A_2\|_F^2 \tag{9}$$

is at most $(2 + \epsilon) \cdot \text{OPT}$ as we could choose V as V^* . We approximately solve the regression of Eq. (9) against C_2 , and again by Lemma F.3, we know that there exists a solution $\widehat{V} = C_2 X_2$ such that

$$\|\widehat{V}Z_2 - A_2\|_F^2 \le (2 + \epsilon) \cdot \text{OPT}$$

 $\le (2 + \epsilon)^2 \cdot \text{OPT}.$

We then define $Z_3 \in \mathbb{R}^{k \times n^2}$ where the i-th row is $\widehat{U}_i \otimes \widehat{V}_i$, note that Z_3 is no longer intractable to us, because we know \widehat{U} and \widehat{V} are in the column span of C_1, C_2 respectively. Define $Z_3' \in \mathbb{R}^{d_3 \times n^2}$ such that, if we index the row of Z_3' as (i,j), then $(Z_3')_{(i,j)}$ is $(C_1)_i \otimes (C_2)_j$. Note that Z_3' let us to express the column span of C_1 and C_2 , consequently there exists some X such that $Z_3 = XZ_3'$ (note that due to the property of \otimes , column span of C_1 and C_2 are formed by multiplying on the left instead of on the right). Consequently, consider the following optimization problem

$$\min_{W \in \mathbb{R}^{n \times k}, X \in \mathbb{R}^{k \times d_3}} \|WXZ_3' - A_3\|_F^2, \tag{10}$$

as one could set X so that $Z_3 = XZ_3'$, we have the cost of Eq. (10) is at most $(2 + \epsilon)^2 \cdot \text{OPT}$. Computing the leverage score sampling of Z_3' using TensorLeverageScore and by Lemma A.13, we have that if we solve the following regression

$$\min_{Y \in \mathbb{R}^{n \times d_3}} \|Y Z_3' D_3 - A_3 D_3\|_F^2,$$

with optimal being $Y' = A_3 D_3 (Z_3' D_3)^{\dagger}$, then

$$||A_3 D_3 (Z_3' D_3)^{\dagger} Z_3' - A_3||_F^2 \le (1 + \epsilon) \cdot \min_{Y \in \mathbb{R}^{n \times z_3}} ||Y Z_3' - A_3||_F^2$$

$$\le (1 + \epsilon)(2 + \epsilon)^2 \cdot \text{OPT},$$

this suggests we could consider the regression

$$\min_{X \in k \times d_3} ||A_3 D_3 X Z_3' - A_3||_F^2 \tag{11}$$

as $X=(Z_3'D_3)^\dagger$ is a good solution. Letting $W':=A_3D_3\in\mathbb{R}^{n\times d_3}$, define $Z_2'\in\mathbb{R}^{d_2\times n^2}$ with \widehat{U} and W' such that $(Z_2')_{(i,j)}=(C_1)_i\otimes (W')_j$, note that Z_2' contains the column span of C_1 and W', and although Z_2 is not in the row span of Z_2' as in the case of Z_3 , the W' component of Z_2' gives good approximation to W^* as we have shown above. Hence, if we consider

$$\min_{V \in \mathbb{R}^{n \times k}, X \in \mathbb{R}^{k \times d_2}} \|VXZ_2' - A_2\|_F^2,$$

its cost is upper bounded by Eq. (11) as we could choose V as \widehat{V} and flatten A alongside the third direction to recover the same regression. Employing a similar argument, if we sample according to the leverage score Z_2' and consider

$$\min_{Y \in \mathbb{R}^{n \times d_2}} \|Y Z_2' D_2 - A_2 D_2\|_F^2,$$

2701

2702

27032704

2705

2706

2707

2708

2709

27102711

2712

2713

27142715

2716

2717

27182719

2720

2721

2722

2723 2724

27252726

2727

2744

2745

2746

2747

2748

2749 2750

275127522753

the optimal solution is in the column span of A_2D_2 and it blows up the cost by a factor at most $1+\epsilon$, which gives us the following:

$$\min_{X \in \mathbb{R}^{k \times d_2}} \|A_2 D_2 X Z_2' - A_2\|_F^2, \tag{12}$$

and the cost of Eq. (12) is at most $(1+\epsilon)^2(2+\epsilon)^2 \cdot \text{OPT}$. Set $V' := A_2D_2$ and repeat the construction of Z_1' with V', W', then we end up with

$$\min_{X \in \mathbb{R}^{k \times d_1}} \|A_1 D_1 X Z_1' - A_1\|_F^2 \tag{13}$$

whose cost is at most $(1+\epsilon)^3(2+\epsilon)^2\cdot \mathrm{OPT}=(4+O(\epsilon))\cdot \mathrm{OPT}$ after properly scaling ϵ . Setting $U':=A_1D_1$, and unwrap Z'_1 , we see Eq. (13) in fact gives our desired result, as U',V',W' are weighted subset of columns, rows and tubes of A, we could craft the desired C,R,T by removing the weights, and completing U by solving the regression Eq. (13), incorporating the solution to the weights. Since our statement only states the existence of such U, we do not consider the problem of finding it.

We complete the proof by analyzing its runtime. The most time consuming step is to compute C_1 and C_2 , since we are sampling columns as in the case of Theorem C.2, the runtime of these steps is $\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon))$, and it is not hard to see that all subsequent steps take $O(n\operatorname{poly}(k/\epsilon))$ time as we either perform operations that run in nearly linear time in n on matrices of size $n \times \operatorname{poly}(k/\epsilon)$, or we select $\operatorname{poly}(k/\epsilon)$ columns from an $n \times n^2$ matrix.

Note that Theorem F.9 only gives a column, row and tube subset selection, but not with the weights tensor U. To output the tensor U, we first provide quantum bicriteria tensor low-rank approximation algorithm.

F.6 TENSOR CURT DECOMPOSITION: FIXED-PARAMETER TRACTABLE AND BICRITERIA

Algorithm 14 Converting a tensor low-rank approximation to a CURT decomposition.

```
2728
                     1: procedure FROMLOWRANKTOCURT(A, U_B, V_B, W_B, n, k, \epsilon)
                                                                                                                                                                                                        ⊳ Lemma F.10
2729
                                   d_1 \leftarrow d_2 \leftarrow d_3 \leftarrow O(k \log k + k/\epsilon).
2730
                                   \epsilon_0 \leftarrow 0.01.
                     3:
                                   Form B_1 = V_B^{\top} \odot W_B^{\top} \in \mathbb{R}^{k \times n^2}
2731
                     4:
                                   D_1 \leftarrow \texttt{TENSORLEVERAGESCORE}(V_B^\top, W_B^\top, n, n, k, \epsilon_0, d_1)
2733
                                   Form \widehat{U} = A_1 D_1 (B_1 D_1)^{\dagger} \in \mathbb{R}^{n \times k}.
2734
                                   Form B_2 = \widehat{U}^\top \odot W_B^\top \in \mathbb{R}^{k \times n^2}
                     7:
2735
                                   D_2 \leftarrow \texttt{TENSORLEVERAGESCORE}(\widehat{U}^\top, W_B^\top, n, n, k, \epsilon_0, d_2). Form \widehat{V} = A_2 D_2 (B_2 D_2)^\dagger \in \mathbb{R}^{n \times k}
                     8:
                     9:
2737
                                   Form B_3 = \widehat{U}^\top \odot \widehat{V}^\top \in \mathbb{R}^{k \times n^2}
                   10:
2738
                                   \begin{array}{l} D_3 \leftarrow \text{TensorLeverageScore}(\widehat{U}^\top, \widehat{V}^\top, n, n, k, \epsilon_0, d_3) \\ C \leftarrow A_1D_1, R \leftarrow A_2D_2, T \leftarrow A_3D_3 \\ U \leftarrow \sum_{i=1}^k ((B_1D_1)^\dagger)_i \otimes ((B_2D_2)^\dagger)_i \otimes ((B_3D_3)^\dagger)_i \\ \text{\textbf{return }} C, R, T \text{ and } U \end{array}
                   11:
2739
                   12:
2740
                   13:
2741
2742
                   15: end procedure
2743
```

Theorem F.10 (A modification of Theorem C.40 in Song et al. (2019)). Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$, let $k \geq 1$, and let $U_B, V_B, W_B \in \mathbb{R}^{n \times k}$ denote a rank-k, α -approximation to A. Then there is a classical algorithm (Algorithm 14) which takes $O(n \operatorname{poly}(k/\epsilon))$ time and outputs three matrices $C \in \mathbb{R}^{n \times c}$ with columns from A, $R \in \mathbb{R}^{n \times r}$ with rows from A, $T \in \mathbb{R}^{n \times t}$ with tubes from A, and a tensor $U \in \mathbb{R}^{c \times r \times t}$ with $\operatorname{rank}(U) = k$ such that $c = r = t = O(k \log k + k/\epsilon)$, and

$$\left\| \sum_{i=1}^{c} \sum_{j=1}^{r} \sum_{l=1}^{t} U_{i,j,l} \cdot C_{i} \otimes R_{j} \otimes T_{l} - A \right\|_{F}^{2} \leq (1+\epsilon) \alpha \min_{\text{rank } -k \ A'} \|A' - A\|_{F}^{2}$$

holds with probability 9/10.

Theorem F.11 (Bicriteria Tensor CURT Decomposition). Given a 3rd order tensor $A \in \mathbb{R}^{n \times n \times n}$ and a positive integer $k \leq n$, $\epsilon \in (0,0.1)$, there exists an algorithm which takes $\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon))$ time and outputs three matrices $C, R, T \in \mathbb{R}^{n \times r}$ with $r = \widetilde{O}(k^2/\epsilon^4)$ and $U \in \mathbb{R}^{r \times r \times r}$ such that

$$\left\| \sum_{i=1}^{c} \sum_{j=1}^{r} \sum_{l=1}^{t} U_{i,j,l} \cdot C_{i} \otimes R_{j} \otimes T_{l} - A \right\|_{F}^{2} \leq (4 + \epsilon) \cdot \min_{\text{rank} - k} \|A - A_{k}\|_{F}^{2}$$

with probability 0.99.

Proof. It directly follows from combining Theorem F.5 and Lemma F.10.

Theorem F.12 (Fixed-Parameter Tractable Tensor CURT Decomposition). Given a tensor $A \in \mathbb{R}^{n \times n \times n}$, we could obtain a tensor CURT decomposition with the guarantee of Theorem F.6, in time $\widetilde{O}(\epsilon^{-1}n^2k^{0.5} + n\operatorname{poly}(k/\epsilon) + 2^{O(k^2/\epsilon)})n^{\delta}$.

G IMPROVED QUANTUM CORESET ALGORITHM FOR (k,p)-Clustering and Application

In this section, we give an improved quantum coreset construction for (k,p)-clustering. We observe that the coreset obtained in prior work (1) The size scales linearly with d, this causes an additional $d^{0.5}$ factor in their final runtime; (2) The coreset consists of points not from A and the weights for these points could be negative, therefore it might pose challenges if one wants to compose it with algorithm that induces optimal-sized coreset.

We begin by recalling the (k,p)-clustering problem in \mathbb{R}^d : let $A=\{a_1,\ldots,a_n\}\subset\mathbb{R}^d,\,X=(\mathbb{R}^d)^k$ and $\cot(a_i,x)=\min_{j\in[k]}\|a_i-x_j\|_2^p$, where $p\geq 1$ is the power of the distance, and x_j is one of the centers in x. When p=1, this is the well-studied k-median problem, and when p=2, this captures the k-means problem. To construct a coreset, a popular approach is through sensitivity sampling. Here, we demonstrate how to implement the sensitivity sampling framework in quantum sublinear time.

We need the following quantum algorithm, due to Xue et al. (2023), that computes a set of (α, β) -bicriteria approximation.

Definition G.1 (Bicriteria Approximation). Let $A \subset \mathbb{R}^d$, assume OPT is the optimal cost of the (k,p)-clustering problem for A, we say a set $x \in \mathbb{R}^d$ is an (α,β) -bicriteria approximation if $|x| \leq \alpha k$ and $\cos(A,x) \leq \beta$ OPT.

Lemma G.2 (Lemma 3.7 of Xue et al. (2023)). Let $A \subset \mathbb{R}^d$, there exists a quantum algorithm that outputs an $(O(\log^2 n), 2^{O(p)})$ -bicriteria approximation x, to the (k, p)-clustering problem for A, with probability at least 99/100. The algorithm uses $\widetilde{O}(\sqrt{nk})$ queries to A, $\widetilde{O}(\sqrt{nk}d)$ time and poly $(k \log n)$ additional preprocessing time.

We also need a quantum approximate nearest neighbor oracle, which would be crucial to approximately find the center a point belongs to.

Lemma G.3 (Lemma 3.4 of Xue et al. (2023)). Let $A \subset \mathbb{R}^d$ and $x \subset \mathbb{R}^d$ wth |x| = m, given two parameters $\delta > 0$, $c_{\tau} \in [2.5, 3)$, there exists a quantum oracle that give $a_i \in A$, returns $\tau(a_i) \in x$, using $\operatorname{poly}(m \log(n/\delta))$ preprocessing time. With probability at least $1 - \delta$, $\tau : A \to x$ is a mapping such that

$$||a_i - \tau(a_i)||_2^p \le c_\tau \cdot \cot(a_i, x).$$

Each query to τ takes $O(d \operatorname{poly} \log(mn/\delta))$ time.

Note that τ is also a partition oracle, as we could assign a_i to $\tau(a_i)$, which is one of the m clusters.

We need two other ingredients: one being estimate $cost(A, x) = \sum_{i=1}^{n} cost(a_i, x)$ and the other being estimating the number of points falls in each cluster.

2809

2810

2811 2812

2813

2814

2815

2816 2817

2818

2819

2821

2825

2827

2829

2830

2831

2832

2833

2834

2836

2837

2838

2839

2841

2842

2843

2844 2845

2846

2847

2848

2849

2850

2851

2852 2853

2855

2856 2857

2859

Lemma G.4 (Lemma 6 of Li et al. (2019)). Let $C = \{c_1, \ldots, c_n\}$ be a collection of nonnegative numbers, let $c = \sum_{i=1}^n c_i$, there exists a quantum algorithm such that given $\delta > 0$, it outputs an approximation \widetilde{c} where $\widetilde{c} = (1 \pm \epsilon) \cdot c$ with probability at least $1 - \delta$, using $\widetilde{O}(\sqrt{n} \log(1/\delta)/\epsilon)$ queries to C.

Lemma G.5 (Theorem 4.4 of Xue et al. (2023)). Let $A \in (\mathbb{R}^d)^n$, $x \in (\mathbb{R}^d)^m$ and $\tau : A \to x$, let $C_j = \{a \in A : \tau(a) = x_j\}$, let $\epsilon \in (0, 1/3), \delta > 0$, then there exists a quantum algorithm that with probability at least $1 - \delta$, outputs a list of estimates \widetilde{n}_j for all $j \in [m]$ where $\widetilde{n}_j = (1 \pm \epsilon) \cdot |C_j|$, using $\widetilde{O}(\sqrt{nm/\epsilon} \log(1/\delta))$ queries to τ and an additional $\widetilde{O}((\sqrt{nm/\epsilon} + m/\epsilon) \log(n/\delta))$ time.

The algorithm we will be using is based on Huang & Vishnoi (2020), in particular, we use the first stage of their algorithm, as it has two main advantages: (1) It computes a coreset with points only from A; (2) The weights are relatively easy to compute. After computing the coreset, we can compose it with the optimal-sized coreset construction algorithm to obtain the final result (Huang et al., 2024).

Algorithm 15 Quantum coreset algorithm for (k, p)-clustering: no dependence on d (Huang & Vishnoi, 2020).

```
1: procedure OCLUSTER(A \in \mathbb{R}^{n \times d}, \epsilon \in (0,1))
            m \leftarrow O(k \log^2 n)
            s \leftarrow O((168p)^{10p} \epsilon^{-5p-15} k^5 \log k)
 3:
 4:
            \epsilon' \leftarrow 0.01
            Generate x' \in (\mathbb{R}^d)^m via Lemma G.2
 5:
            Generate \tau on A, x' via Lemma G.3
 6:
 7:
            Let C_j = \{a \in A : \tau(a) = x_j'\} and n_j = |C_j|
            Generate \widetilde{n}_1, \ldots \widetilde{n}_m via Lemma G.5 using \tau with accuracy \epsilon'
 8:
 9:
            Generate cost(A, x') via Lemma G.4 with accuracy \epsilon'
10:
            Implement an oracle for any a_i \in A as follows
               x^*(a_i) \leftarrow \tau(a_i)
\widetilde{s}_i \leftarrow 2^{4p+2} \cdot \left(\frac{\|a_i - x^*(a_i)\|_2^p}{\operatorname{cost}(A, x')} + \frac{1}{\widetilde{n}_{i(j)}}\right) \qquad \triangleright \text{Let } i(j) \text{ denote the index of } x^*(a_i) \text{ among } x'
11:
12:
13:
            D \leftarrow \mathsf{QSAMPLE}(p)
                                                                                                                                       |D|_0 = s
14:
15: end procedure
```

Lemma G.6 (Theorem 5.2 of Huang & Vishnoi (2020)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$, $X = (\mathbb{R}^d)^k$, and define $\operatorname{cost}: \mathbb{R}^d \times X \to \mathbb{R}_{\geq 0}$ as $\operatorname{cost}(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. Given $\epsilon, \delta \in (0, 1), p \geq 1$, suppose quantities in Algorithm 15 are computed exactly except for the bicriteria approximation, then the weights in D give rise to an ϵ -coreset of size $s = \widetilde{O}_p(\epsilon^{-5p-15}k^5)$.

While the quantities in Algorithm 15 are computed approximately, they are all two-sided constant factor approximation, therefore we still get desired guarantees. We present the main result in the following.

Theorem G.7. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d, X = (\mathbb{R}^d)^k, p \geq 1, \epsilon \in (0, 1),$ define $\cos(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. There exists a quantum algorithm (Algorithm 15) such that, with probability at least 0.99, constructs an ϵ -coreset of A with size $\widetilde{O}_p(\epsilon^{-5p-15}k^5)$ in time

$$\widetilde{O}_p(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5}d).$$

Proof. We first prove that it indeed constructs a coreset. There are three main differences between Algorithm 15 and stage 1 of Huang & Vishnoi (2020):

- We use bicriteria approximation while Huang & Vishnoi (2020) computes k-approximate centers:
- We have to use approximate nearest neighbor to find the approximate center for each a_i ;
- We approximately compute cost(A, x') and $\frac{1}{|C_i|}$.

For the first and second item, one could easily see that Lemma 5.5 and Claim 5.6 of Huang & Vishnoi (2020) do not require exactly k-approximate centers, as they only need to use the cost of these approximate centers as a proxy, hence, an (α, β) -bicriteria approximation is sufficient. Moreover, their proof relies on a simple generalized triangle inequality argument, so as long as the approximate cluster we assign a_i is a constant factor approximation to the optimal distance, we are fine. For the third item, note that by Lemma G.4, we have $\widehat{\cot}(A,x')=(1\pm\epsilon')\cdot \cot(A,x')$ and by Lemma G.5, $\widehat{n}_{i(j)}=(1\pm\epsilon')\cdot |C_{i(j)}|$, therefore the sampling probability \widetilde{s}_i is a constant factor approximation if we set to the approximate sensitivity σ_1 used in Huang & Vishnoi (2020). Thus, if we oversample by a constant factor, we could indeed get the desired coreset property according to Lemma G.6. It remains to analyze the runtime.

To generate x', by Lemma G.2, it takes $O(\sqrt{nk}d)$ time, and oracle τ takes $\operatorname{poly}(k)$ time to preprocess, and each oracle call to τ takes $\widetilde{O}(d)$ time due to Lemma G.3. Generate the estimates \widetilde{n}_j for all $j \in [m]$ takes $\widetilde{O}(\sqrt{nm}d) = \widetilde{O}(\sqrt{nk}d)$ time, and $\widetilde{\operatorname{cost}}(A,x')$ takes $\widetilde{O}(\sqrt{nd})$ time owing to Lemma G.4. Finally, note that each \widetilde{s}_i can be computed in $\widetilde{O}(d)$ time, by Lemma A.14, the sample and weights D can be generated in $\widetilde{O}(\sqrt{ns}d) = \widetilde{O}_n(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5}d)$ time, as desired.

Remark G.8. While the coreset size of Theorem G.7 is not optimal, it produces coreset of size $\widetilde{O}_p(\epsilon^{-5p-15}k^5)$. This is sufficient as we could run any refinement to obtain the optimal size, as demonstrated by composing our coreset with the following result due to Huang et al. (2024).

Lemma G.9 (Theorem B.1 of Huang et al. (2024)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and $X = (\mathbb{R}^d)^k$, $p \geq 1$, $\epsilon, \delta \in (0,1)$, and define $\cot(a_i,x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. There exists a randomized algorithm that with probability at least $1 - \delta$ constructs an ϵ -strong coreset of size $\widetilde{O}_p(\epsilon^{-2}k^{\frac{2p+2}{p+2}})$, in time $\widetilde{O}(ndk)$.

Corollary G.10. Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and $X = (\mathbb{R}^d)^k$, $p \geq 1$, $\epsilon, \delta \in (0, 1)$, and define $\cos(a_i, x) = \min_{j \in [k]} \|a_i - x_j\|_2^p$. There exists a quantum algorithm that with probability at least 0.99 constructs: an ϵ -coreset of size $\widetilde{O}_p(\epsilon^{-2}k^{\frac{2p+2}{p+2}})$, in time

$$\widetilde{O}_p(\epsilon^{-2.5p-7.5}n^{0.5}k^{2.5}d).$$

Proof. The proof is by composing Theorem G.7 with Lemma G.9.

G.1 QUANTUM ALGORITHM FOR DATA SELECTION

As an application, we study the *data selection pipeline* in machine learning, where the goal is to select a weighted subset of data points that can be used for training or fine-tuning the model, while preserving desirable properties. In this model, data are given as d-dimensional embeddings, and a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ is used to grade the quality of the embedding. ℓ can be expensive to evaluate, such as a deep neural network. Axiotis et al. (2024) provides a principled way for data selection using the coreset of (k,p)-clustering, under some mild assumptions on ℓ .

Assumption G.11. Let $\Lambda = (\Lambda_1, \dots, \Lambda_k) \in \mathbb{R}^k_{\geq 0}$, $x \in (\mathbb{R}^d)^k$ and let $E \subseteq \mathbb{R}^d$ be a set of embeddings, we say the loss function is (p, Λ) -well-behaved with respect to E and x if for any $x_j \in x$ and let $C_j = \{e \in E : \arg\min_{x_i \in x} \|x_i - e\|_p^p = x_j\}$, then for any $e \in C_j$,

$$|\ell(e) - \ell(x_i)| \leq \Lambda_i ||e - c_i||_2^p$$

Define the weighed cost as $\text{cost}^{\Lambda}(a_i,x) = \Lambda_{i(j)} \cot(a_i,x)$ where we use i(j) to denote the index of the cluster assigned to a_i , and similarly $\cot^{\Lambda}(A,x) = \sum_{i=1}^n \cot^{\Lambda}(a_i,x) = \sum_{i=1}^k \Lambda_i \sum_{a_j \in C_i} \|a_j - x_i\|_2^p$. Axiotis et al. (2024) essentially proves that under Assumption G.11, one could perform weighted sampling according to $\cot^{\Lambda}(a_i,x)$. In addition, the expensive loss function only needs to be evaluated on the centers. For convenience, we state an approximate k-centers algorithm below.

Lemma G.12 (Mettu & Plaxton (2004)). Let $A = \{a_1, \ldots, a_n\} \subset \mathbb{R}^d$ and $X = (\mathbb{R}^d)^k$, let $\delta \in (0, 1)$. Then, there exists an algorithm that computes a solution $x' \in X$ such that

$$\mathrm{cost}(A,x') \leq 2^{O(p)} \cdot \min_{x \in X} \mathrm{cost}(A,x),$$

2919 2920

2921 2922

2941

2942

2943

2944

2945 2946

2947 2948 2949

2950

2951

2953

2954 2955

2956

2957

2958

2959

2960

2961

29622963

2964 2965 2966

2967

2968

2969

holds with probability at least $1 - \delta$. Moreover, x' can be computed in time

$$O(ndk + nd\log(n/\delta) + k^2\log^2 n + \log^2(1/\delta)\log^2 n) = \widetilde{O}(ndk).$$

We know state a quantum implementation of the adaptive sampling due to Axiotis et al. (2024).

Algorithm 16 Quantum one-round adaptive sampling for data selection.

```
2923
                1: procedure QDATASELECTION(A \in \mathbb{R}^{n \times d}, x \in (\mathbb{R}^d)^k, \ell : \mathbb{R}^d \to \mathbb{R}_{\geq 0}, \epsilon \in (0, 1))
2924
                           s \leftarrow O(\epsilon^{-2}), \epsilon' \leftarrow 0.01
2925
                           Let \tau: A \to x be that \tau(a_i) = \arg\min_{x_i \in x} \|a_i - x_i\|_2^p
                3:
2926
                           Generate \widetilde{\operatorname{cost}}^\Lambda(A,x') via Lemma G.4 with accuracy \epsilon'
2927
                4:
                           Let C_i = \{a \in A : \tau(a) = x_i\} and n_i = |C_i|
2928
                5:
                           Generate \tilde{n}_1, \ldots, \tilde{n}_k via Lemma G.5 using \tau with accuracy \epsilon'
                6:
2929
                           Compute \ell(x_1), \dots, \ell(x_k)
sum \leftarrow \sum_{j=1}^k \widetilde{n}_j \cdot \ell(x_j)
                7:
2930
                8:
2931
                           Implement an oracle for each a_i \in A as follows:
                9:
2932
2933
              10:
                                 \ell(a_i) \leftarrow \ell(\tau(a_i)), v(a_i) \leftarrow ||a_i - \tau(a_i)||_2^p
                                 q_i \leftarrow \frac{\widehat{\ell}(a_i) + v(a_i)}{\widetilde{\cot}^{\Lambda}(A, x) + \text{sum}}
2934
              11:
2935
                           p_i \leftarrow \min\{1, q_i\}D' \leftarrow \mathsf{QSAMPLE}(p)
              12:
2936
              13:
2937
                           return D'
              14:
2938
              15: end procedure
2939
```

We then prove Algorithm 16 implements the data selection procedure in sublinear time.

Theorem G.13. Let $\epsilon \in (0,1), p \geq 1, \Lambda \in \mathbb{R}^k$, $A \in (\mathbb{R}^d)^n$ and ℓ be a loss function that is (p,Λ) -well-behaved with respect to A and a clustering $x \in (\mathbb{R}^d)^k$. Then, there exists a quantum algorithm (Algorithm 16) that outputs a weight vector $w \in \mathbb{R}^n_{>0}$ with $\|w\|_0 = O(\epsilon^{-2})$, such that

$$\left|\sum_{i=1}^{n} \ell(a_i) - \sum_{i=1}^{n} w_i \ell(a_i)\right| \le \epsilon \cdot \left(\sum_{i=1}^{n} \ell(a_i) + 2 \operatorname{cost}^{\Lambda}(A, x)\right)$$

holds with probability at least 0.99. Moreover, the algorithm makes at most k queries to the loss function ℓ , and use an additional $\widetilde{O}(n^{0.5}kd(\epsilon^{-1}+k^{0.5}))$ time.

Proof. We first note that the only difference between Algorithm 16 and Theorem 2 of Axiotis et al. (2024) is that we approximately compute the quantity $\widehat{\cot}^{\Lambda}(A,x')$ and $\sum_{i=1}^n \widehat{\ell}(a_i)$, by a similar argument as Theorem G.7, these quantities are estimated within a constant factor, therefore the sampling probability p_i is at most a constant factor of the sampling probability used in Axiotis et al. (2024), we can obtain the same guarantee via oversampling by a constant factor.

To analyze the runtime, note that the oracle τ can be queried in O(kd) time, and $\widetilde{\cos}^\Lambda(A,x)$ can be computed in $\widetilde{O}(\sqrt{n}kd)$ time by Lemma G.4. $\widetilde{n}_1,\ldots,\widetilde{n}_k$ can be estimated in $\widetilde{O}(\sqrt{n}k^{1.5}d)$ time. Finally, each sampling probability can be computed in O(kd) time, so the time for the final sampling is $\widetilde{O}(\epsilon^{-1}n^{0.5}kd)$ time. Thus, the overall runtime is

$$\widetilde{O}(n^{0.5}kd(\epsilon^{-1}+k^{0.5})).$$

Note that compute the weights classically would take O(ndk) time, so ours is the first to achieve this goal in sublinear in n time. To compute a set of approximate k-centers, one could either directly use the bicriteria approximation due to Lemma G.2 and use these centers as a proxy instead, or first compute an ϵ -coreset using Theorem G.7 then apply Lemma G.12 to find the approximate k-centers using the coreset.

LOWER BOUND

In this section, we provide a quantum query lower bound on computing a rank-k, 1/2-additivemultiplicative spectral approximation to a matrix $A \in \mathbb{R}^{n \times d}$. We show that $\Omega(\sqrt{dk})$ queries to the columns of A are needed.

Theorem H.1. For any positive integers n, d, and $k \leq d$, there is a family of matrices $A \in \mathbb{R}^{n \times d}$ for which finding a constant factor additive-multiplicative spectral approximation of rank-k requires $\Omega(\sqrt{dk})$ column queries to A.

Proof. Without loss of generality let k divide d, let $z_1, \ldots, z_k \in \{0,1\}^{d/k}$ be a collection of bit strings, we construct A similar to the construction of Apers & Gribling (2024) but padding extra 0's: we start a matrix $\overline{A} \in \mathbb{R}^{k \times d}$, consists of k blocks of $k \times d/k$: for the j-th block, it contains z_i as its j-th row, and zero elsewhere. We then pad n-k rows of zeros to form the $n \times d$ matrix A, one could visualize A as follows:

$$A = \begin{bmatrix} z_1^\top & 0 & \dots & 0 \\ 0 & z_2^\top & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & z_k^\top \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

where 0 is the zero vector of size d/k. Note that A is rank-k, hence $A_k = A$. Consequently,

$$AA^{\top} = \begin{bmatrix} \|z_1\|_0 & 0 & \dots & 0 & \dots & 0 \\ 0 & \|z_2\|_0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \|z_k\|_0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \dots & 0 \end{bmatrix}, \text{ i.e., its top-}k \text{ diagonal entries are the number of }$$

nonzeros in each of z_i 's. Note that a rank-k additive-multiplicative spectral approximation has the guarantee that

$$0.5CC^{\top} - 0.5 \frac{\|A - A_k\|_F^2}{k} I_n \leq AA^{\top} \leq 1.5CC^{\top} + 0.5 \frac{\|A - A_k\|_F^2}{k} I_n$$

since A is rank-k, we have $||A - A_k||_F^2 = 0$ and therefore, the approximation C has the property that

$$0.5CC^{\top} \leq AA^{\top} \leq 1.5CC^{\top},$$

since AA^{\top} is diagonal, we must have the nonzero diagonals of CC^{\top} is a 0.5-approximation to the nonzero diagonals of AA^{\perp} . This allows us to compute $(OR(z_1), \dots, OR(z_k))$ where OR(x) = $x_1 \vee x_2 \vee \ldots \vee x_{d/k}$. By a similar argument as Apers & Gribling (2024), this would require $\Omega(k\sqrt{d/k}) = \Omega(\sqrt{dk})$ quantum queries to the bit strings z_1, \ldots, z_k . Finally, note that a column query to A can be simulated by a query access to one of the z_i 's. This completes the proof.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not contribute to idea creation or writing, and the authors take full responsibility for this paper's content.