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ABSTRACT

Global modelling-based image restoration frameworks (e.g., transformer-like ar-
chitecture) have gained popularity. Despite the remarkable advancement, their
success may be at the cost of model parameters and FLOPs while the intrinsic
characteristics (e.g., the task-specific degradation) are ignored. The objective of
our work is orthogonal to previous studies and tailors a simple yet effective and
efficient global modelling paradigm for image restoration. The key insights which
motivate our study are two-fold: 1) Fourier transform is capable of disentangling
image degradation and content component, serving as the image degradation prior
embedded into image restoration framework; 2) Fourier domain innately embraces
global property where each pixel of Fourier space is involved with all spatial pix-
els. We obey the de facto global modeling rule “spatial interaction + channel evo-
lution” of previous studies. Differently, we customize the core designs: Fourier
spatial interaction modeling and Fourier channel evolution. Equipped with the
above-mentioned designs, our image restoration paradigm is verified on main-
stream image restoration tasks including image de-raining, image enhancement,
image de-hazing, and guided image super-resolution. Extensive experiments sug-
gest that our paradigm achieves the competitive performance with fewer computa-
tional resources. Our main focus is not to beat previous frameworks but provide an
alternative global modeling-based customized image restoration framework with
efficient structure. Code will be publicly available.

1 INTRODUCTION

Image restoration aims to recover the latent clear image from its given degraded version. It is a
highly ill-posed and challenging issue as there exists infinite feasible results for single degraded
image. The representative image restoration tasks include image de-raining, image de-hazing, low-
light enhancement, guided image super-resolution, etc.

In the past decades, a mount of research efforts have been devoted to solving the single image
restoration problem, which can be classified into two categories: traditional optimization methods
and deep learning-based methods (Zhang et al., 2018; Ren et al., 2018; Zhang et al., 2018; Ren
et al., 2016b; Fu et al., 2021; Zhang et al., 2020; Liu et al., 2021a). In terms of traditional image
restoration methods, they formulate the image restoration process as an optimization problem and
develop various image priors of the expected latent clear image to constrain the solution space, e.g.,
dark channel prior for image de-hazing (Dark, 2009), histogram distribution prior for underwater
image enhancement (Li et al., 2016), non-local mean prior for image de-noising (Dixit & Phadke,
2013), sparse image prior for guided image super-resolution (Kim & Kwon, 2010) as well as the
commonly-used local and non-local smooth prior (Chen et al., 2013), low-rank prior (Ren et al.,
2016a). However, aforementioned image priors are difficult to develop and these traditional methods
involve the iteration optimization, thus consuming the huge computational resources and further
hindering their usage. In a word, the common sense is to explore the potential image prior to relieve
the optimization difficulty of the ill-posed image restoration.

On the line of deep learning-based methods, convolutional neural networks (CNNs) have received
widespread attention and achieved promising improvement in image restoration tasks over tradi-
tional methods (Liu et al., 2020; Ma et al., 2021; Zhang et al., 2021a; Zhou et al., 2021; 2022b).
More recently, transformer and multi-layer perceptrons (MLPs)-based global modeling paradigms
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Figure 1: Motivations. Analysis of discrete Fourier transform (DFT) over mainstream image restora-
tion tasks. In (a) and (d), we respectively swap the amplitude component and phase component of
a degraded image and its clear version. It can be observed that the degradation effect is transferred,
thus indicating that Fourier transform is capable of disentangling image degradation and content
component and the degradation mainly lies in the amplitude component. To further verify our ob-
servation, we also swap the amplitude component and phase component of a degraded image and an
irrelevant image in (b). The degradation is still mainly related to the amplitude component, such as
the darkness for image enhancement. Similarly, a low-resolution image and its high-resolution coun-
terpart are different in the amplitude component in (c). These observation motivates us to leverage
the Fourier transform as the image degradation prior embedded into image restoration framework.
More analysis and results can be found in the Appendix.

have struck the image restoration field and significantly surpassed the CNN-based methods. Despite
the remarkable advancement, they are arbitrarily used for image restoration tasks while ignoring the
intrinsic characteristics of specific image restoration task. The success may be owing to the huge
cost of computational resources, limiting their practical applications, especially on resource-limited
devices. We therefore wonder “Can we provide a customized global modeling image restoration
paradigm in a simple but effective and efficient manner?”

To this end, motivated by our observations on Fourier transformation for image restoration tasks
in Figure 1, we tailor a simple yet effective and efficient global modelling paradigm, which is or-
thogonal to previous studies and customized for image restoration. The core insights of our work
are two-folder: 1) general image restoration prior: Fourier transform is capable of disentangling
image degradation and content component, serving as the image degradation prior embedded into
image restoration framework; 2) global modeling: Fourier domain innately embraces global prop-
erty where each pixel of Fourier space is involved with all spatial pixels. As shown in Figure 2,
the existing global modeling paradigm (e.g., transformer and MLP-Mixer) follow the the de-facto
global modeling rule “spatial interaction + channel evolution”. Similarly, we obey the rule and cus-
tomize the core designs: Fourier spatial interaction and Fourier channel evolution. Such designs
are different from previous works and provide new insights on global modeling network structures
for image restoration. Equipped with the above-mentioned designs, our image restoration paradigm
tailed for image restoration is described in Figure 3. Extensive experiments are conducted on main-
stream image restoration tasks including image de-raining, image enhancement, image de-hazing,
and guided image super-resolution. Experimental results suggest that our paradigm achieves the
competitive performance with fewer computational resources. To emphasize, our main focus is not
to beat previous frameworks but provide an alternative global modelling-based customized image
restoration framework with efficient structure.

Our contributions are summarized as follows: (1) We contribute the first global modeling paradigm
for image restoration in a simple but effective and efficient manner. (2) We implicitly embed the
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Fourier-based general image degradation prior into our core structures: Fourier spatial modeling
and Fourier channel evolution, which provides new insights on the designs of global modeling-
based image restoration network. (3) Our proposed paradigm achieves the competitive performance
on several mainstream image restoration tasks with fewer computational resources.

2 RELATED WORK

Figure 2: The underlying rule of existing global
model paradigm: spatial interaction + channel evo-
lution.

Image restoration. Image restoration aims to
restore an image degraded by degradation fac-
tors (e.g. rain, haze, noise, lowlight) to a clear
counterpart, which has been studied for a long
time. Traditional image restoration methods
are usually designed as an optimization prob-
lem, which incorporate specific priors of latent
clear image to constrain the solution space (Dark,
2009; Li et al., 2016; Dixit & Phadke, 2013;
Kim & Kwon, 2010). For example, dark chan-
nel prior (Dark, 2009) is proposed for image
dehazing and histogram distribution prior (Li
et al., 2016) is developed for underwater im-
age enhancement. These methods involve it-
eration optimization, thus consuming the huge
computational resources and limiting their appli-
cation. Recently, deep learning-based methods
have achieved impressive performance in a data-
driven manner. Among them, most algorithms are
designed with CNN-based architectures. Early
works stack deep convolution layers for improv-
ing model representation ability, such as VDSR (Kim et al., 2016), DnCNN (Zhang et al., 2017),
and ARCNN (Dong et al., 2015). Based on them, advanced methods have adopted more power-
ful architecture designs, such as residual block (Tai et al., 2017; Ehrlich & Davis, 2019) and dense
block (Zhang et al., 2020; Dong et al., 2020). Besides, attention mechanisms (Zhang et al., 2018;
2021c) and multi-stage mechanism (Zamir et al., 2021; Chen et al., 2021c) have brought into image
restoration algorithms that elevate the performance. However, the locality property of convolution
operation limits the perception of global information that is critical for image restoration (Dixit &
Phadke, 2013; Berman et al., 2016).

Global modeling. In recent years, global modeling techniques have gained much popularity in the
computer vision community. A line of these methods is based on transformer (Vaswani et al., 2017),
which has been adapted in numerous vision tasks such as vision recognition (Liu et al., 2021b;
Xia et al., 2022) and segmentation (Chen et al., 2021b; Cao et al., 2021). Different from CNN-
based architectures, transformer learns long-range dependencies between image patch sequences for
global-aware modeling (Dosovitskiy et al., 2020). Due to its characteristic, various image restora-
tion algorithms based on transformer have been proposed in recent years, which achieve superior
performance in restoration tasks such as image image dehazing (Chun-Le Guo, 2022), image de-
raining (Xiao et al., 2022) and low-light image enhancement (Xu et al., 2022). Among them, a
pioneer work IPT directly applies vanilla transformers to image patches (Chen et al., 2021a), while
Uformer (Wang et al., 2022b) and SwinIR (Liang et al., 2021) apply efficient window-based local
attention models on several image restoration tasks. However, the huge computation cost and pa-
rameters of transformer framework limit practical application. As another line of global modeling
paradigm, multi-layer perceptrons (MLPs)-based methods have attracted attention in vision prob-
lems (Tolstikhin et al., 2021). To adapt this architecture for image restoration problems, MAXIM
adopts a multi-axis MLP based mechanism to perceive information with global receptive field (Tu
et al., 2022b). Nevertheless, it still costs enormous computation resources and is thus hard to apply
in compact devices. In total, all above architectures are not fully to explore priors that are specific
for image restoration tasks, which is important to lift performance. Recently, Fourier transforma-
tion has presented its effectiveness for global modeling (Chi et al., 2019; 2020). Instead of further
exploring the efficacy of Fourier as global modeling in high-level tasks such as image classification,
video action classification, human keypoint detection in (Chi et al., 2019), our work is the first to
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focus on the customized image restoration framework designs. The work proposed in (Chi et al.,
2019) pays more attention to the global property while our framework further explores the intrinsic
prior tailored for image restoration. In addition, different from existing Fourier techniques Chi et al.
(2020) that emphasize the micro basic operator with the global receptive field, our work aims to
focus on the macro framework design. In our work, we pay more attention to the customized image
restoration global modeling framework. In this work, we investigate to incorporate restoration prior
with Fourier transformation to conduct effective global modeling, which is efficient for practical
application.

Different from existing transformer-based Wang et al. (2022a); Zamir et al. (2022) and MLP-based
methods Tu et al. (2022a) that do not contain the intrinsic knowledge about image restoration tasks
and only roughly focus on the global operator designs, our proposed framework is the first to explore
the customized image restoration global modeling paradigm. Unlike these works that only consider
global modeling, our work with efficient structure also meets the requirement of image restoration
on edge devices with limited computation sources. In a word, our proposed framework incorporates
both advantages of the global modeling mechanism and general image degradation prior that are
introduced by Fourier transformation, thus achieving better performance.

3 METHOD

In this section, we first revisit the properties of Fourier transformation for image and then present an
overview of the proposed global modeling paradigm, as illustrated in Figure 3. We further provide
details of the fundamental building block of our method. Finally, we deep into the new loss functions
proposed in our work.

3.1 PRELIMINARY OF FOURIER TRANSFORMATION FOR IMAGE

As recognized, the Fourier transform is widely used to analyze the frequency content of images.
For the images of multiple color channels, the Fourier transform is calculated and performed for
each channel separately. For simplicity, we eliminate the notation of channels in formulas. Given
an image x ∈ RH×W×C , the Fourier transform F converts it to Fourier space as the complex
component F(x), which is expressed as:

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v), (1)

F−1(x) defines the inverse Fourier transform accordingly. Both the Fourier transform and its inverse
procedure can be efficiently implemented by FFT/IFFT algorithms (Frigo & Johnson, 1998). The
amplitude component A(x)(u, v) and phase component P(x)(u, v) are expressed as:

A(x)(u, v)) =
√
R2(x)(u, v)) + I2(x)(u, v)),

P(x)(u, v)) = arctan[
I(x)(u, v))

R(x)(u, v))
],

(2)

where R(x) and I(x) represent the real and imaginary part respectively. Note that the Fourier
transformation and inverse procedure are computed independently on each channel of feature maps.

Targeting at image restoration, we employ Fourier transformation to conduct the detailed frequency
analysis by revisiting the properties of phase and amplitude components, as shown in Figure 1. It
can be observed that the degradation effect is transferred (mainly in the amplitude component) when
swapping the amplitude component and phase component of a degraded image and its clear version.
The phenomenon indicates that Fourier transform is capable of disentangling image degradation
and content component and the degradation mainly lies in the amplitude component. This motivates
us to leverage Fourier transform as the image degradation prior embedded into image restoration
framework.

3.2 FRAMEWORK

Structure flow. Our main goal is to develop a simple but effective and efficient global modeling
paradigm for image restoration in a U-shaped hierarchical architecture, detailed in Figure 3. Given a
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Figure 3: Overview of the proposed customized global modeling paradigm for image restoration.

degraded image I ∈ RH×W×Cin , the proposed paradigm first applies the convolution layer to project
I into shallow feature embedding X0 ∈ RH×W×C. Next, following the U-shaped network designs,
the obtained shallow embedding is passed through N encoder stages where each stage consists of a
stack of the proposed core building module dubbed as Fourier Prior embedded Block and one down-
sampling layer. The Fourier Prior embedded Block takes advantage of the inborn global modeling
property of Fourier transform, and obeys the underlying global modeling rule “spatial interaction
+ channel evolution” to customize the Fourier spatial and channel information interaction. In the
downsampling layer, we downsample the 2D spatial feature maps using 3 × 3 convolution with
stride 2. Similarly, in decoder stages, we employ the stack of the proposed Fourier Prior embedded
Block and one upsampling layer for feature reconstruction in each stage. To assist the recovery
process, each stage takes the high-level decoder features concatenated with the same stage low-level
encoder features via skip connections as input. It is beneficial in preserving the fine structural and
textural details in the restored images. Finally, a convolution layer is applied to the refined features
to generate residual image I ∈ RH×W×Cin to which degraded image is added to obtain the final
restored image HO.

Optimization flow. Besides the network designs for image restoration, we also introduce a new loss
function to enable the network for better optimization, thus reconstructing the more pleasing results
in both spatial and frequency domains. In detail, it consists of two parts: spatial domain loss and fre-
quency domain loss. In contrast to existing methods that usually adopt pixel-level losses with local
guidance in the spatial domain, we additionally propose the frequency domain supervision loss via
Fourier transformation that is calculated on the global frequency components. Motivated by spectral
convolution theorem, direct emphasis on the frequency content is capable of better reconstructing
the global information, thus improving the restoration performance.

Let HO and GT denote the network output and the corresponding ground truth respectively. We pro-
pose a joint spatial-frequency domain loss for supervising the network training. In spatial domain,
we adopt L1 loss

Lspa = ∥HO −GT∥1 . (3)
In frequency domain, we first employ DFT to convert HO and GT into Fourier space where the
amplitude and phase components are calculated. Then, the L1-norm of amplitude difference and
phase difference between HO and GT are summed to produce the total frequency loss

Lfre = ∥A(HO)−A(GT )∥1 + ∥P(HO)− P(GT )∥1 . (4)

Finally, the overall loss function is formulated as follows

L = Lspa + λLfre, (5)
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Figure 4: Details of the Fourier Prior Embedded Block. Our block follows the global modeling
rule “spatial interaction + channel evolution” but is with new designs: Fourier spatial interaction
modeling and Fourier channel evolution.

where λ is weight factor and set to 0.1 empirically.

3.3 FOURIER PRIOR EMBEDDED BLOCK

As shown in Figure 4, the fundamental building block dubbed as Fourier prior embedded block
contains two key elements: (a) Fourier spatial interaction, (b) Fourier channel evolution.

Fourier spatial interaction. In terms of the multi-channel feature maps, Fourier transformation is
performed independently over each channel. Fourier prior embedded block takes the feature maps
as input and then performs Fourier transformation to convert the spatial features into the real and
imagery components. Suppose that the features denote as X ∈ RH×W×B, the corresponding Fourier
transformation is expressed as

X
(b)
I ,X

(b)
R = F(X(b)), (6)

where b = 1, . . . ,B, X(b)
I and X

(b)
R indicate the real and imagery respectively. Then we employ the

spatial interaction by a stack of depth-wise convolution with kernel size of 3×3 and ReLU function.
Specifically, X(b)

I and X
(b)
R share the common depth-wise operator while different channels are

independently performed. The spatial interaction can be written as follows:

S
(b)
I = σDW(b)(X

(b)
I ), (7)

S
(b)
R = σDW(b)(X

(b)
R ), (8)

where σ and DW indicate the ReLU function and depth-wise convolution respectively. Next, we
apply the inverse DFT to transform the filtered frequency components of S

(b)
I and S

(b)
R back to

spatial domain
Xb

S = F−1(S
(b)
I , S

(b)
R ). (9)

According to spectral convolution theorem in Fourier theory, processing information in Fourier
space is capable of capturing the global frequency representation in frequency domain. Finally,
we merge the Fourier spatial interacted feature XS by concatenating each component Xb

S with the
spatial ones processed by the half-instance normalization block, thus generating the output SX .

Fourier channel evolution. Followed by the spatial interaction, Fourier channel evolution aims to
perform the point-wise channel interaction. Similarly, we first transform the previous step output
SX into the real and imagery components as CR and CI and then employ a stack of convolution
operator with kernel size of 1× 1 and ReLU function for channel interaction where each position in
frequency space is shared. The channel interaction can be written as follows:

CXI = σconv(cat[C1
I , . . . , C

B
I ]), (10)

CXR = σconv(cat[C1
R, . . . , C

B
R ]), (11)

where conv indicates the convolution with kernel size of 1 × 1. Next, we apply the inverse DFT to
transform the filtered frequency components of CX

(b)
I and CX

(b)
I back to spatial domain as

Cb
S = F−1(CX

(b)
I , CX

(b)
R ). (12)

Finally, we perform the similar merging process with the first step, thus achieving the global mod-
eling for both spatial and channel dimensions.
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4 EXPERIMENT

To demonstrate the efficacy of our proposed customized image restoration paradigm, we conduct
extensive experiments on multiple computer vision tasks, including image de-raining, image en-
hancement, image dehazing, and guided image super-resolution. More results can be found in the
Appendix.

4.1 EXPERIMENTAL SETTINGS

Low-light image enhancement. We evaluate our paradigm on two popular benchmarks, includ-
ing LOL (Chen Wei, 2018) and Huawei (Hai et al., 2021). LOL dataset consists of 500 low-
/normal- light image pairs, and we split 485 for training and 15 for testing. Huawei dataset con-
tains 2480 paired images, and we split 2200 for training and 280 for testing. Further, we com-
pared our paradigm with the following 13 state-of-the-art low-light image enhancement methods:
SRIE (Fu et al., 2016), RetinexNet (Chen Wei, 2018), MBLLEN (Lv et al., 2018), Enlighten-
GAN (Jiang et al., 2021), GLADNet (Wang et al., 2018), Xu et al. (Xu et al., 2020), TBEFN (Lu
& Zhang, 2020), KinD (Zhang et al., 2019), Zero-DCE++ (Li et al., 2021), DRBN (Yang et al.,
2020), RetinexDIP (Zhao et al., 2021), RUAS (Liu et al., 2021a), KinD++ (Zhang et al., 2021b) and
URetinex (Wu et al., 2022).

Image De-raining. Following the work (Zamir et al., 2021), our proposed paradigm is evaluated
over 13,712 clean-rain image pairs, gathered from multiple synthetic datasets. With this single
trained model, we perform evaluation on Rain100H and Rain100L. Further, we report the per-
formance comparison between our designed paradigm and several representative state-of-the-art
methods: DerainNet (Yang et al., 2017b), SEMI (Wei et al., 2019), DIDMDN (Zhang & Patel,
2018), UMRL (Yasarla & Patel, 2019), RESCAN (Li et al., 2018b), PReNet (Ren et al., 2019),
MSPFN (Jiang et al., 2020), MPRNet (Zamir et al., 2021), HINet (Chen et al., 2021c).

Image Dehazing. We evaluate the proposed method on synthetic and real-world datasets. For
synthetic scenes, we employ RESIDE (Li et al., 2018a) dataset. The subset Indoor Training Set
(ITS) of RESIDE contains a total of 13990 hazy indoor images, generated from 1399 clear images.
The subset Synthetic Objective Testing Set (SOTS) of RESIDE consists of 500 indoor hazy images
and 500 outdoor ones. In addition, we adopt two real-world datasets: Dense-Haze (Ancuti et al.,
2019) and NH-HAZE (Ancuti et al., 2020) to evaluate the generalization. Both of the two datasets
consist of 55 paired images. We compare our paradigm with the promising methods: DCP (He
et al., 2010) and DehazeNet (Cai et al., 2016), AOD-Net (Li et al., 2017), GridDehazeNet (Liu et al.,
2019), FFA-Net (Qin et al., 2020), MSBDN (Dong et al., 2020) and AECR-Net (Wu et al., 2021).

Guided Image Super-resolution. Following (Zhou et al., 2022a; Yan et al., 2022), we adopt
the pan-sharpening, the representative task of guided image super-resolution for evaluations. The
WorldView II, WorldView III, and GaoFen2 in (Zhou et al., 2022a; Yan et al., 2022) are used. To
verify the effectiveness of our paradigm, we choose the following representative pansharpening
methods for comparison: 1) six state-of-the-art deep-learning based methods, including PNN (Masi
et al., 2016), PANNET (Yang et al., 2017a), MSDCNN (Yuan et al., 2018), SRPPNN (Cai & Huang,
2021), GPPNN (Xu et al., 2021b) and INNformer(Zhou et al., 2022a); 2) five promising traditional
methods, namely SFIM (Liu., 2000), Brovey (Gillespie et al., 1987), GS (Laben & Brower, 2000),
IHS (Haydn et al., 1982), GFPCA (Liao et al., 2017).

Several widely-used image quality assessment (IQA) metrics are employed to evaluate the perfor-
mance, including the relative dimensionless global error in synthesis (ERGAS) (Alparone et al.,
2007), the peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM), and the spectral
angle mapper (SAM) (J. R. H. Yuhas & Boardman, 1992).

4.2 COMPARISON AND ANALYSIS

We perform quantitative performance comparison on the mainstream image restoration tasks in Ta-
ble 1, Table 2, Table 3, and Table 4, where the best results are highlighted in bold. From the results,
it can observed that our proposed paradigm achieves the competitively promising performance with
fewer computational burden against the the baselines across all testing datasets on mainstream tasks,
suggesting the effectiveness of our designs. For example, for the pan-sharpening, our paradigm
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obtains 0.17dB, 0.18dB, and 0.06dB PSNR gains than state-of-art method on the WorldView-II,
WorldView-III and GaoFen2 datasets, respectively. In addition, in terms of image enhancement,
our paradigm achieves the comparable results with the transformer-based SNRformer with the huge
reduce of model parameters and FLOPs. The consistent conclusion can be found in other tasks.

Table 1: Quantitative comparison of image de-hazing.

Method
SOTS Dense-Haze NH-HAZE

Param (M) GFLOPs
PSNR SSIM PSNR SSIM PSNR SSIM

DCP 15.09 0.7649 10.06 0.3856 10.57 0.5196 - -
DehazeNet 20.64 0.7995 13.84 0.4252 16.62 0.5238 0.01M -
AOD-Net 19.82 0.8178 13.14 0.4144 15.40 0.5693 0.002M 0.1

GridDehazeNet 32.16 0.9836 13.31 0.3681 13.80 0.5370 0.96M 21.5
FFA-Net 36.39 0.9886 14.39 0.4524 19.87 0.6915 4.68M 288.1
MSBDN 33.79 0.9840 15.37 0.4858 19.23 0.7056 31.35M 41.5
KDDN 34.72 0.9845 14.28 0.4074 17.39 0.5897 5.99M -

AECR-Net 37.17 0.9901 15.80 0.4660 19.88 0.7173 2.61M 43.0
Ours 37.32 0.9901 15.95 0.4917 19.91 0.7214 1.29M 20.6

Table 2: Quantitative comparison of image de-raining.
Test100 Rain100H Rain100L Test1200

Param (M) GFLOPs
Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DerainNet 22.77 0.810 14.92 0.592 27.03 0.884 23.38 0.835 0.058M 1.453
SEMI 22.35 0.788 16.56 0.486 25.03 0.842 26.05 0.822 - -
DIDMDN 22.56 0.818 17.35 0.524 25.23 0.741 29.65 0.901 0.373M 1.686
UMRL 24.41 0.829 26.01 0.832 29.18 0.923 30.55 0.910 0.98M -
RESCAN 25.00 0.835 26.36 0.786 29.80 0.881 30.51 0.882 1.04M 20.361
PReNet 24.81 0.851 26.77 0.858 32.44 0.950 31.36 0.911 0.17M 73.021
MSPFN 27.50 0.876 28.66 0.860 32.40 0.933 32.39 0.916 13.22M 604.70
MPRNet 30.27 0.897 30.41 0.890 36.40 0.965 32.91 0.916 3.64M 141.28
HINet 30.29 0.906 30.65 0.894 37.28 0.970 33.05 0.919 3.72M 170.71
Ours 30.54 0.911 30.76 0.896 37.47 0.970 33.05 0.921 0.4M 16.753

Table 3: Quantitative comparison of image enhancement.

Method
LOL Huawei

Param (M) GFLOPs
PSNR SSIM PSNR SSIM

SRIE 12.28 0.596 13.04 0.477 - -
RobustRetinex 13.88 0.664 14.60 0.559 - -

RetinexNet 16.77 0.425 16.65 0.485 0.84M 148.54
MBLLEN 17.56 0.729 16.63 0.526 0.45M 21.37
EnGAN 17.48 0.674 17.03 0.514 8.37M 72.61

GLADNet 19.72 0.680 17.76 0.521 1.13M 275.32
Xu 16.78 0.766 16.12 0.586 8.62M 68.45

TBEFN 17.35 0.781 16.88 0.575 0.49M 24.11
KinD 20.86 0.802 16.48 0.540 8.54M 36.57

ZeroDCE 15.29 0.518 12.46 0.407 0.08M 20.24
DRBN 20.13 0.801 18.46 0.635 0.58M 42.41
RUAS 16.41 0.500 13.76 0.516 0.003M 0.86

KinD++ 21.30 0.822 15.78 0.452 8.28M 2970.50
URetinex 21.32 0.835 18.79 0.607 1.23M 68.37

Ours 23.57 0.832 19.17 0.621 0.08M 5.03

4.3 ABLATION STUDIES

To investigate the contribution of the key components, we have conducted comprehensive ablation
studies on the WorldView-II satellite dataset of the Pan-sharpening task in terms of the number of
network architecture stages and the frequency loss function. More ablated studies can be found in
the Appendix.

Impact of the hierarchical number. To explore the impact of hierarchical number, i.e., the dom-
sampling stages in our U-shape network, we experiment the proposed network with varying num-
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Table 4: Quantitative comparison of guided image super-resolution.
c

Method
worldview II GaoFen2 worldview III

Param (M) GFLOPs
PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449 36.9060 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.9730 - -

Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.372 22.5060 0.5466 0.1159 8.2331 - -

GS 35.6376 0.9176 0.0423 1.8774 37.2260 0.9034 0.0309 1.6736 22.5608 0.5470 0.1217 8.2433 - -

IHS 35.2962 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616 - -

GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964 - -

PNN 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528 29.9418 0.9121 0.0824 3.3206 0.689M 1.1289

PANNET 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.6840 0.9072 0.0851 3.4263 0.688M 1.1275

MSDCNN 41.3355 0.9664 0.0242 0.9940 45.6874 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884 2.39M 3.9158

SRPPNN 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.0770 3.1553 17.114M 21.1059

GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2593 1.198M 1.3967

INNformer 41.6903 0.9704 0.0227 0.9514 47.3528 0.9893 0.0102 0.5479 30.5365 0.9225 0.0747 3.0997 0.706M 1.3907

Ours 41.8325 0.9731 0.0219 0.9506 47.5334 0.9912 0.0102 0.5448 30.5987 0.9241 0.0738 3.0763 0.715M 1.386

Table 5: Ablation studies for hierarchical
number.

K PSNR↑ SSIM↑ SAM↓ ERGAS↓
1 41.1827 0.9646 0.0255 1.0209
2 41.3324 0.9655 0.0249 1.0125
3 41.5331 0.9682 0.0240 0.9839
4 41.6867 0.9703 0.0235 0.9527

Table 6: Ablation studies for frequency
loss.

Config PSNR↑ SSIM↑ SAM↓ ERGAS↓
# 41.7840 0.9725 0.0221 0.9508

! 41.8325 0.9731 0.0219 0.9506

bers. The corresponding quantitative number K comparison from 1 to 4 is reported in Table 5.
Observing the results from Table 5, it shows that the model performance can obtain considerable
improvements at cost of computation (i.e., large hierarchical number)s. To balance the performance
and computational complexity, we set K = 4 as default setting for pan-sharpening in this paper.

Effectiveness of the frequency loss. The new frequency loss aims to directly emphasize the global
frequency information optimization. In Table 6, we remove it to examine its effectiveness. The
results in Table 6 demonstrate that removing it severally degrades all metrics dramatically, indicating
its significant role in our network.

5 LIMITATIONS

First, the more comprehensive experiments on broader computer vision tasks (e.g., image de-noising
and image de-blurring) have not been explored. Second, our proposed global modeling paradigm
still follows the underlying rule “spatial interaction + channel evolution” of previous transformer-
based or MLP-like architectures for general vision tasks. The de facto global modeling rule may
be suboptimal for image restoration and it thus needs to be further investigated. In addition, our
proposed paradigm has not achieved the best performance. Note that, the objective of our work is
orthogonal to previous studies and we thus tailor a simple yet effective and efficient global modelling
paradigm for image restoration. This work will spark further research to the realms of the customized
global modeling image restoration framework, thus promoting practical application.

6 CONCLUSION

In this paper, we first propose a theoretically feasible global modeling paradigm for image restora-
tion. We revisit the existing global modeling paradigm for general vision tasks and find the un-
derlying design rule “spatial interaction + channel evolution”. In addition, we revisit the inborn
characteristics of Fourier prior for image restoration and find its prevailed decomposed property of
image degradation and content component. Based on the above analysis, we customize the core
designs: Fourier spatial modeling and Fourier channel evolution. Equipped with above designs,
our image restoration paradigm is verified on mainstream image restoration tasks and achieves the
competitive performance with fewer computational resources.
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Appendix

In this appendix, we provide additional details and results. In Sec. A, we present further discussion
on our motivation. In Sec. B, we present the discussion on the reason of our effectiveness. In Sec. C,
we show more comparison results between our method and existing methods on multiple image
restoration tasks.

A MOTIVATION

Referring to the previous works. As pointed out in Oppenheim et al. (1979), the motivation comes
from a well-known property of the Fourier transformation: the Fourier phase spectrum preserves
high-level semantics, while the amplitude spectrum contains low-level features. From Xu et al.
(2021a), the amplitude and phase components of Fourier space correspond to the style and semantic
information of an image.

Motivation on image enhancement. From Xu et al. (2021a), the amplitude and phase components
of Fourier space correspond to the style and semantic information of an image. This property can
be extended in exposure correction: the amplitude component of an image reflects the lightness
representation while the phase component corresponds to structures and is less related to lightness.
As shown in Fig. 5, we first swap the amplitude and phase components of different exposures of
the same context. More visual clues can refer to Fig. 6 The recombined result of the amplitude of
underexposure and the phase of over-exposure has similar lightness appearance with underexposure,
while the other behaves conversely. This implies that the swapped amplitude contains most light-
ness information while the phase component corresponds to the structure representation and is less
affected by lightness.

Underexposure

Overexposure Phase Amplitude

FFT

Swap
UnderAmp-Overpha

OverAmp-UnderphaPhase Amplitude

FFT iFFT

iFFT

(a) (b)

Figure 5: (a) We swap the amplitude and phase components of different exposures of the
same context. The recombined result of the amplitude of underexposure and the phase of over-
exposure (UnderAmp-Overpha) has similar lightness appearance with underexposure, while the
recombined result of the amplitude of overexposure and the phase of underexposure (OverAmp-
Underpha) has similar lightness appearance with overexposure. (b) The t-SNE for images of over-
exposure, underexposure, UnderAmp-Overpha, and OverAmp-Underpha. The distributions of
images in UnderAmp-Overpha and Underexposure are matched, while the distributions of images
in OverAmp-Underpha and Overexposure are matched. (b) indicates that the swapped amplitude
contains most lightness information.

To further validate our observation, as shown in Fig. 7, we apply the inverse Fast Fourier Transform
(iFFT) to the phase and amplitude components to visualize them in spatial domain. The appearance
of the phase representation is more similar with the structure representation, and the distribution of
the phase component is less affected by lightness. To this end, the phase component is more related
to structures that are less affected by lightness in spatial domain.

Motivation on image de-raining. Fourier transformation: the Fourier phase spectrum preserves
high-level semantics, while the amplitude spectrum contains low-level features Oppenheim et al.
(1979). Fig. 8 shows the results of swapping the Fourier amplitude and phase spectrum of
rainy/clean images. For the images with or without same content, most rain streaks information
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Figure 6: Analysis of discrete Fourier transform (DFT) for low-light image enhancement task. In
detail, we swap the amplitude and phase components of the degraded image and a clear version
with same or different contents. It can be observed that the degradation effect is transferred with
the swapping of amplitude component, indicating that Fourier transform is capable of disentangling
image degradation and content component and the degradation mainly lies in the amplitude compo-
nent. This motivates us to leverage Fourier transform as the image degradation prior embedded into
image restoration framework.

Underexposure

Overexposure

Phase Representation

Phase RepresentationAmplitude Representation

Amplitude Representation

(a) (b)

Figure 7: (a) Visualization of the amplitude and phase components of an image with the same
context but different exposures. We apply the iFFT to the phase and amplitude to compare the
phase and amplitude in spatial domain. The amplitude representation significantly differs between
different exposures, while the phase representation is very similar across exposures and represents
structure representation. (b) The t-SNE of amplitude and phase of different exposures. The
distributions of phase representations across different exposures are matched, while distributions of
amplitude representations across different exposures vary greatly. It means the phase component
contains most structure information and is less affected by lightness.

is preserved in the amplitude spectrum of rainy images. This indicates that the phase of rainy im-

17



Under review as a conference paper at ICLR 2023

Figure 8: Analysis of discrete Fourier transform (DFT) for image de-raining task. In detail, we swap
the amplitude and phase components of the degraded image and the clear version with or without
same content. It can be observed that the degradation effect is transferred with the swapping of am-
plitude component, indicating that Fourier transform is capable of disentangling image degradation
and content component and the degradation mainly lies in the amplitude component.

ages keeps the similar background structures as the ground truth. In this way, the Fourier prior is
achieved by learning the transformation of the amplitude and phase spectrum separately.

B DISCUSSION ON THE REASON OF OUR EFFECTIVENESS

Image restoration is essentially an ill-posed optimization problem. For traditional image restoration
algorithms, the common sense is to explore the intrinsic knowledge and image prior to constraint
the solution space and thus obtain good solution. Besides, the effectiveness of global modeling
for image restoration has been demonstrated in existing works. In our work, our proposed frame-
work incorporates both advantages of global modeling and general image degradation prior that are
introduced by Fourier transformation, thus achieving better performance.

Some recent works Dai et al. (2022); Yu et al. (2022) have confirmed that the “spatial interaction +
channel evolution” is the core contribution of effectiveness within transformer. Our work stands on
the principle with new designs in Fourier space, thus achieving better results.

Image restoration aims to remove the degradation effect and restore clear image. It can be treated
as image filtering process. In our work, we conduct extensive analysis in Fourier space and infer
that Fourier transform is capable of disentangling image degradation and content component and the
degradation mainly lies in the amplitude component. To this end, our method first transforms the
spatial representation in Fourier space with amplitude and phase and then employs the convolution
to perform the filtering function over the amplitude and phase, thus achieving the clear reconstruc-
tion. The Fourier prior is embedded in above procedure and follows the consistent principle of
the frequency filtering that is common in digital image processing. Therefore, it further achieves
performance gains.
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Figure 9: The visual comparison on image de-hazing task.

Figure 10: The visual comparison on guided image super-resolution task.

The proposed general image degradation prior is capable of achieving the degradation and content
disentanglement, which alleviates the difficulty in network optimization.

C MORE COMPARISONS

In this section, we provide more visual comparisons with state-of-the-art methods over the reported
tasks. As can be seen in Fig. 9, Fig. 10, Fig. 13, Fig. 14, Fig. 11 and Fig. 12, our proposed method
achieves the best performance against other state-of-the-art algorithms.
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Figure 11: The visual comparison on low-light image enhancement task (LOL dataset).

Figure 12: The visual comparison over low-light image enhancement task (LOL dataset).
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Figure 13: The visual comparison over low-light image enhancement task (Huawei dataset).

Figure 14: The visual comparison over low-light image enhancement task (Huawei dataset).

21


	Introduction
	Related Work
	Method
	Preliminary of Fourier transformation for image
	Framework
	Fourier prior embedded block

	Experiment
	Experimental Settings
	Comparison and Analysis
	Ablation studies

	Limitations
	Conclusion
	Motivation
	Discussion on the reason of our effectiveness
	More Comparisons

