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Abstract
In the same way that unsupervised pre-training
has become the bedrock for computer vision and
NLP, goal-conditioned RL might provide a similar
strategy for making use of vast quantities of unla-
beled (reward-free) data. However, building effec-
tive algorithms for goal-conditioned RL, ones that
can learn directly from offline data, is challenging
because it is hard to accurately estimate the exact
state value of reaching faraway goals. Nonethe-
less, goal-reaching problems exhibit structure –
reaching a distant goal entails visiting some closer
states (or representations thereof) first. Impor-
tantly, it is easier to assess the effect of actions
on getting to these closer states. Based on this
idea, we propose a hierarchical algorithm for goal-
conditioned RL from offline data. Using one
action-free value function, we learn two policies
that allow us to exploit this structure: a high-level
policy that predicts (a representation of) a way-
point, and a low-level policy that predicts the ac-
tion for reaching this waypoint. Through analysis
and didactic examples, we show how this hierar-
chical decomposition makes our method robust
to noise in the estimated value function. We then
apply our method to offline goal-reaching bench-
marks, showing that our method can solve long-
horizon tasks that stymie prior methods, can scale
to high-dimensional image observations, and can
readily make use of action-free data.

1. Introduction
Many of the most successful machine learning systems for
computer vision (Chen et al., 2020; He et al., 2022) and
NLP (Devlin et al., 2019; Brown et al., 2020) leverage large
amounts of unlabeled or weakly-labeled data. In the rein-
forcement learning (RL) setting, offline goal-conditioned
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RL provides a way of making use of similar quantities of un-
labeled data; the offline setting (Lange et al., 2012; Levine
et al., 2020) means that we can learn from passively ob-
served data, and the goal-conditioned setting (Kaelbling,
1993; Schaul et al., 2015) means that we can learn from
reward-free data (no need for reward labels). However, goal-
conditioned RL poses major challenges. First, learning an
accurate goal-conditioned value function for any state and
goal pairs is challenging when considering very broad and
long-horizon goal-reaching tasks. This often results in a
noisy value function and thus potentially an erroneous pol-
icy. Second, while the offline setting unlocks the potential
for using previously collected data, it is not straightforward
to incorporate vast quantities of existing action-free, video
data into standard RL methods. In this work, we aim to
address these challenges by developing an effective offline,
goal-conditioned RL method that can also readily make use
of action-free data.

One straightforward approach to offline goal-conditioned
RL is to first train a goal-conditioned value function and then
learn a policy that leads to states with high values. However,
the learned value function can often provide poor signals
for selecting actions to reach distant goals. Intuitively, the
value function depends on how far away the goal will be
after taking a particular action. However, when the goal is
far away, the optimal action may be only slightly better than
suboptimal actions; for example, a move in the wrong direc-
tion can simply be corrected at the next time step, leading to
a small relative increase in distance. Thus, when the value
function is learned imperfectly and has small errors, these
errors can drown out the signal for distant goals, potentially
leading to an erroneous policy. This issue is further exacer-
bated with the offline RL setting, as erroneous predictions
from the value function are not corrected when those actions
are taken and their consequences observed.

To learn from noisy or inaccurate value functions, we will
separate policy extraction into two levels. We first train a
goal-conditioned value function from offline data with im-
plicit Q-learning (IQL) (Kostrikov et al., 2022) and then we
extract two-level policies from it. Our high-level policy pro-
duces intermediate waypoint states as temporally extended
actions. Because predicting high-dimensional states can be
challenging, we will propose a method that only requires
the high-level policy to product representations of the way-
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Offline Goal-Conditioned RL with Latent States as Actions

(a) Three components of HIQL.

Flat policy Hierarchical policy

(b) Hierarchical policies get clearer learning signals.

Figure 1. We train a value function parameterized as V (s, ϕ(g)) and use ϕ(g) as a representation function. The high-level policy predicts
the waypoint representation zt+k = ϕ(st+k), and the low-level policy takes the waypoint representation as input to produce actions. Both
policies are extracted from the same value function.

points, with the representations learned end-to-end from the
value function. Our low-level policy takes these waypoint
representations as input and produces actions to reach the
waypoint (Figure 1a). Although we extract both policies
from the same value function, this hierarchical decomposi-
tion enables the value function to provide clearer learning
signals for both policies (Figure 1b). For the high-level pol-
icy, the value difference between various waypoints is much
larger than that between different low-level actions. For
the low-level policy, the value difference between actions
becomes relatively larger because the low-level policy only
needs to reach nearby waypoints. Importantly, the value
function and high-level policy do not require action labels,
so this hierarchical scheme provides a way to leverage a po-
tentially large amount of passive, action-free data. Training
the low-level policy does require some data labeled with
actions.

To summarize, our main contribution in this paper is to
propose Hierarchical Implicit Q-Learning (HIQL), a hi-
erarchical method for offline goal-conditioned RL. HIQL
extracts all the necessary components—a representation
function, a high-level policy, and a low-level policy—from
a single goal-conditioned value function. Through our
experiments on four types of state-based and pixel-based
offline goal-conditioned RL benchmarks, we demonstrate
that HIQL significantly outperforms previous offline goal-
conditioned RL methods, especially in complex, long-
horizon tasks.

2. Related Work
Our method draws on concepts from offline RL (Lange et al.,
2012; Levine et al., 2020), goal-conditioned RL (Kaelbling,
1993; Schaul et al., 2015; Andrychowicz et al., 2017), and
hierarchical RL (Sutton et al., 1999; Stolle & Precup, 2002;
Bacon et al., 2017; Machado et al., 2017; Wulfmeier et al.,
2021; Salter et al., 2022), providing a way to effectively
train general-purpose goal-conditioned policies from previ-
ously collected offline data. Prior work on goal-conditioned

RL has introduced algorithms based on a variety of tech-
niques, such as hindsight relabeling (Andrychowicz et al.,
2017; Pong et al., 2018; Fang et al., 2019; Levy et al., 2019;
Li et al., 2020; Chebotar et al., 2021; Yang et al., 2022), con-
trastive learning (Eysenbach et al., 2021; Zhang et al., 2022;
Eysenbach et al., 2022), and state-occupancy matching (Ma
et al., 2022; Durugkar et al., 2021).

However, directly solving goal-reaching tasks is often chal-
lenging in complex, long-horizon environments (Nachum
et al., 2018; Levy et al., 2019; Gupta et al., 2019). To address
this issue, several goal-conditioned RL methods have been
proposed based on hierarchical RL (Schmidhuber, 1991;
Dayan & Hinton, 1992; Kulkarni et al., 2016; Vezhnevets
et al., 2017; Nachum et al., 2018; 2019; Levy et al., 2019;
Zhang et al., 2020; Chane-Sane et al., 2021) or graph-based
subgoal planning (Savinov et al., 2018; Eysenbach et al.,
2019; Huang et al., 2019; Nasiriany et al., 2019; Zhang
et al., 2021; Hoang et al., 2021; Kim et al., 2021; 2023).
Like these prior methods, our method will use higher-level
subgoals in a hierarchical policy structure, but we will focus
on solving goal-reaching tasks from offline data. We use a
value-based offline RL algorithm (Kostrikov et al., 2022) to
compute the shortest distances between any pairs of states
in the dataset, which allows us to simply extract the hier-
archical policies in a decoupled manner with no need for
complex graph-based planning procedures.

Our method is most closely related to previous works on
hierarchical offline skill extraction and hierarchical offline
(goal-conditioned) RL. Offline skill extraction methods (Kr-
ishnan et al., 2017; Pertsch et al., 2020; Ajay et al., 2021;
Shi et al., 2022; Jiang et al., 2023; Rosete-Beas et al., 2022)
encode trajectory segments into a latent skill space, and
learn to combine these skills to solve downstream tasks.
The primary challenge in this setting is deciding how trajec-
tories should be decomposed hierarchically, which can be
sidestepped in our goal-conditioned setting since subgoals
provide a natural decomposition. Amongst goal-conditioned
approaches, hierarchical imitation learning (Lynch et al.,
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2019; Gupta et al., 2019) jointly learns waypoints and low-
level controllers from optimal demonstrations. These meth-
ods have two drawbacks: they predict waypoints in the raw
observation space, and they require expert trajectories; our
observation is that a value function can alleviate both chal-
lenges, as it provides a way to use sub-optimal data and
stitch across trajectories, as well as providing a latent goal
representation in which waypoints may be predicted. An-
other class of methods plans through a graph or model to
generate subgoals (Shah et al., 2021; Fang et al., 2022a;b;
Li et al., 2022); our method simply extracts all levels of
the hierarchy from a single unified value function, avoiding
the high computational overhead of planning. Finally, our
method is similar to POR (Xu et al., 2022), which predicts
the immediate next state as a waypoint; this can be seen
as one extreme of our method without representations, al-
though we show that more long-horizon waypoint prediction
can be advantageous both in theory and practice.

3. Preliminaries
Problem setting. We consider the problem of offline goal-
conditioned RL, defined by a Markov decision process
M = (S,A, µ, p, r) and a dataset D, where S denotes
the state space, A denotes the action space, µ ∈ P(S) de-
notes an initial state distribution, p ∈ S × A → P(S)
denotes a transition dynamics distribution, and r(s, g) de-
notes a goal-conditioned reward function. The dataset
D consists of trajectories τ = (s0, a0, s1, a1, . . . , sT ).
In some experiments, we assume that we have an addi-
tional action-free dataset DS that consists of state-only
trajectories τs = (s0, s1, . . . , sT ). Unlike some prior
work (Andrychowicz et al., 2017; Nachum et al., 2018;
Huang et al., 2019; Zhang et al., 2021; Kim et al., 2023),
we assume that the goal space G is the same as the state
space (i.e., G = S). Our goal is to learn from D ∪ DS an
optimal goal-conditioned policy π(a|s, g) that maximizes
J(π) = Eg∼p(g),τ∼pπ(τ)[

∑T
t=0 γ

tr(st, g)] with pπ(τ) =

µ(s0)
∏T−1

t=0 π(at | st, g)p(st+1 | st, at), where γ is a dis-
count factor and p(g) is a goal distribution.

Implicit Q-learning (IQL). One of the main challenges
with offline RL is to prevent exploitation of out-of-
distribution actions (Levine et al., 2020), as we cannot cor-
rect erroneous policies and values via environment interac-
tions, unlike in online RL. To tackle this issue, Kostrikov
et al. (2022) proposed implicit Q-learning (IQL), which
avoids querying out-of-sample actions by converting the
max operator in the Bellman optimal equation into expectile
regression. Specifically, IQL trains an action-value function
QθQ(s, a) and a state-value function VθV (s) with

LV (θV ) = E[Lτ
2(Qθ̄Q(s, a)− VθV (s))], (1)

LQ(θQ) = E[(rtask(s, a) + γVθV (s
′)−QθQ(s, a))

2],
(2)

where rtask(s, a) denotes the task reward function, θ̄Q
denotes the parameters of the target Q network (Mnih
et al., 2013), and Lτ

2 is the expectile loss with a param-
eter τ ∈ [0.5, 1): Lτ

2(x) = |τ − 1(x < 0)|x2. Intuitively,
expectile regression can be interpreted as an asymmetric
square loss that penalizes positive values more than neg-
ative ones. As a result, when τ tends to 1, VθV (s) gets
closer to maxa Qθ̄Q(s, a) (Equation (1)). Thus, we can use
the value function to estimate the TD target (rtask(s, a) +
γmaxa′ Qθ̄Q(s

′, a′)) as (rtask(s, a) + γVθV (s
′)) without

having to sample actions a′.

After training the value function with Equations (1) and (2),
IQL extracts the policy with advantage-weighted regression
(AWR) (Peters & Schaal, 2007; Neumann & Peters, 2008;
Peters et al., 2010; Peng et al., 2019; Nair et al., 2020; Wang
et al., 2020):

Jπ(θπ) = E[exp(β · (Qθ̄Q(s, a)− VθV (s))) log πθπ (a | s)],
(3)

where β ∈ R+
0 denotes an inverse temperature parameter.

Intuitively, Equation (3) encourages the policy to select
actions that lead to large Q values while not deviating far
from the data collection policy (Peng et al., 2019).

Action-free goal-conditioned IQL. The original IQL
method described above requires both reward and action
labels in the offline data to train the value functions by Equa-
tions (1) and (2). However, in real-world scenarios, offline
data might not contain task information or action labels, as
in the case of task-agnostic demonstrations or videos. As
such, we focus on the setting of offline goal-conditioned
RL, which does not require task rewards, and provides us
with a way to incorporate state-only trajectories into value
learning. We can use the following action-free variant (Xu
et al., 2022; Ghosh et al., 2023) of IQL to learn an offline
goal-conditioned value function VθV (s, g):

LV (θV ) = E[Lτ
2(r(s, g) + γVθ̄V (s

′, g)− VθV (s, g))].
(4)

Unlike Equations (1) and (2), this objective does not require
actions when fitting the value function, as it directly takes
backups from the values of the next states.

Action-labeled data is only needed when extracting the pol-
icy. With the goal-conditioned value function learned by
Equation (4), we can extract the policy with the following
variant of AWR:

Jπ(θπ) = E[exp(β ·A(s, a, g)) log πθπ (a | s, g)], (5)

where we approximate A(s, a, g) as γVθV (s
′, g)+r(s, g)−

VθV (s, g). Intuitively, Equation (5) encourages the policy to
select the actions that lead to the states having high values.
With this action-free variant of IQL, we can train an optimal
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goal-conditioned value function only using action-free data
and extract the policy from action-labeled data that may be
different from the passive dataset.

We note that this action-free variant of IQL is unbiased
when the environment dynamics are deterministic (Ghosh
et al., 2023), but it may overestimate values in stochastic
environments. This deterministic environment assumption
is inevitable for learning an unbiased value function solely
from state trajectories. The reason is subtle but important:
in stochastic environments, it is impossible to tell whether
a good outcome was caused by taking a good action or be-
cause of noise in the environment. As a result, applying
action-free IQL to stochastic environments will typically
result in overestimating the value function, implicitly as-
suming that all noise is controllable. While we will build
our method upon Equation (4) in this work for simplicity,
in line with many prior works on offline RL that employ
similar assumptions (Ghosh et al., 2021; Chen et al., 2021;
Janner et al., 2021; 2022; Xu et al., 2022; Wang et al., 2023;
Ghosh et al., 2023), we believe correctly handling stochastic
environments with advanced techniques (e.g., by identifying
controllable parts of the environment (Yang et al., 2023;
Villaflor et al., 2022)) is an interesting direction for future
work.

4. Hierarchical policy structure for offline
goal-conditioned RL

Goal-conditioned offline RL provides a general frame-
work for learning flexible policies from data, but the goal-
conditioned setting also presents an especially difficult
multi-task learning problem for RL algorithms, particularly
for long-horizon tasks where the goal is far away. In Sec-
tion 4.1, we discuss some possible reasons for this difficulty,
from the perspective of the “signal-to-noise” ratio in the
learned goal-conditioned value function. We then propose
hierarchical policy extraction as a solution (Section 4.2) and
compare the performances of hierarchical and flat policies
in a didactic environment, based on our theoretical analysis
(Section 4.3).

4.1. Motivation: why non-hierarchical policies might
struggle

One common strategy in offline RL is to first fit a value
function and then extract a policy that points in the di-
rection of high values (Fujimoto et al., 2019; Peng et al.,
2019; Wu et al., 2019; Kumar et al., 2019; Nair et al., 2020;
Ghasemipour et al., 2021; Brandfonbrener et al., 2021; An
et al., 2021; Kostrikov et al., 2022; Yang et al., 2022; Xu
et al., 2022; Garg et al., 2023; Xu et al., 2023). This strategy
can be directly applied to offline goal-conditioned RL by
learning a goal-conditioned policy π(a | st, g) that aims
to maximize the learned goal-conditioned value function
V (st+1, g), as in Equation (5). However, when the goal g

is far away from the state s, the learned goal-conditioned
value function may not provide clear signals for the flat,
non-hierarchical policy. There are two reasons for this fail-
ure. First, the differences between the values of different
next states (V (st+1, g)) may be small, as incorrect primi-
tive actions may be fixed in subsequent steps, causing only
relatively minor costs. Second, these small differences can
be further overshadowed by the noise present in the learned
value function, especially when the goal is distant from
the current state, in which case the magnitude of the goal-
conditioned value (and thus its noise) is large. In other
words, the “signal-to-noise” ratio in the very next values
V (st+1, g) can be small, not providing sufficiently clear
learning signals for the flat policy. Figure 2 illustrates this
problem. Figure 2a shows the ground-truth optimal value
function V ∗(s, g) for a given goal at each state, which can
guide the agent to reach the goal. However, when noise is
present in the learned value function V̂ (s, g) (Figure 2b),
the flat policy π(a | s, g) becomes erroneous, especially in
states far from the goal (Figure 2c).

4.2. Our hierarchical policy structure
To address this issue, our main idea in this work, which
we present fully in Section 5, is to separate policy extrac-
tion into two levels. Instead of directly learning a sin-
gle, flat, goal-conditioned policy π(a | st, g) that aims to
maximize V (st+1, g), we extract both a high-level policy
πh(st+k | st, g) and a low-level policy πℓ(a | st, st+k),
each with its own maximization objective: V (st+k, g) and
V (st+1, st+k), respectively. Here, st+k can be viewed as
the waypoint or subgoal. The high-level policy outputs
intermediate waypoint states that are k steps away from
s, while the low-level policy produces primitive actions to
reach these waypoints. Although we extract both policies
from the same learned value function in this way, this hier-
archical scheme provides clearer learning signals for both
policies. Intuitively, the high-level policy receives more
reliable learning signals because different waypoints lead to
more dissimilar values than primitive actions. The low-level
policy also gets relatively clear signals since it queries the
value function with only nearby states, for which the value
function is relatively accurate (Figure 1b). As a result, the
overall hierarchical policy can be more robust to the noise
and thus can improve the accuracy (Figure 2d).

4.3. Didactic example: our hierarchical policy mitigates
the signal-to-noise ratio challenge

To further understand the benefits of hierarchical policies,
we study a toy example with one-dimensional state space
(Figure 3). In this environment, the agent can move one unit
to the left or right at each time step. The agent gets a reward
of 0 when it reaches the goal; otherwise, it always gets −1.
The optimal goal-conditioned value function is hence given
as V ∗(s, g) = −|s − g|. We assume that the noise in the
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(a) Optimal value function (b) Noisy value function
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(c) Flat policy (d) Hierarchical policy

Goal

Figure 2. Hierarchies allow us to better make use of noisy value estimates. (a) In this gridworld environment, the optimal value
function predicts higher values for states s that are closer to the goal g (•). (b, c) However, a noisy value function results in selecting
incorrect actions (→). (d) Our method uses this same noisy value function to first predict an intermediate waypoint, and then select an
action for reaching this waypoint. Actions selected in this way correctly lead to the goal.

Figure 3. 1-D toy environment.

learned value function V̂ (s, g) is proportional to the optimal
value: i.e., V̂ (s, g) = V ∗(s, g)+σzs,gV

∗(s, g), where zs,g
is sampled independently from the standard normal distribu-
tion and σ is its standard deviation. This indicates that as the
goal becomes more distant, the noise generally increases, a
trend we observed in our experiments (see Figure 6).

In this scenario, we compare the probabilities of choosing
incorrect actions under the flat and hierarchical policies.
We assume that the distance between s and g is T (i.e.,
g = s + T and T > 1). Both the flat policy and the
low-level policy of the hierarchical approach consider the
goal-conditioned values at s ± 1. The high-level policy
evaluates the values at s± k, using k-step away waypoints.
For the hierarchical approach, we query both the high- and
low-level policies at every step. Given these settings, we can
bound the error probabilities of both approaches as follows:

Proposition 4.1. In the environment described in Fig-
ure 3, the probability of the flat policy π selecting an in-
correct action is given as E(π) = Φ

(
−

√
2

σ
√
T 2+1

)
and

the probability of the hierarchical policy πℓ ◦ πh select-
ing an incorrect action is bounded as E(πℓ ◦ πh) ≤
Φ

(
−

√
2

σ
√

(T/k)2+1

)
+Φ

(
−

√
2

σ
√
k2+1

)
, where Φ denotes the

cumulative distribution function of the standard normal dis-
tribution, Φ(x) = P[z ≤ x] = 1√

2π

∫ x

−∞ e−t2/2dt.

The proof can be found in Appendix. We first note that
each of the error terms in the hierarchical policy bound is
always no larger than the error in the flat policy, implying
that both the high- and low-level policies are more accurate
than the flat policy. To compare the total errors, E(π) and
E(πℓ◦πh), we perform a numerical analysis. Figure 4 shows
the hierarchical policy’s error bound for varying waypoint
steps in five different (T, σ) settings. The results indicate
that the flat policy’s error can be significantly reduced by
employing a hierarchical policy with an appropriate choice
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Figure 4. Comparison of policy errors in flat vs. hierarchical
policies in didactic environments. The hierarchical policy, with
an appropriate waypoint step, often yields significantly lower errors
than the flat policy.

of k, suggesting that splitting policy extraction into two
levels can be beneficial.

5. Hierarchical Implicit Q-Learning (HIQL)
Based on the hierarchical policy structure in Section 4, we
now present a practical algorithm, which we call Hierarchi-
cal Implicit Q-Learning (HIQL), to extract hierarchical
policies that are robust to the noise present in the learned
goal-conditioned value function. We first explain how to
train a waypoint policy (Section 5.1) and then extend this
policy to predict representations (learned via the value func-
tion), which will enable HIQL to scale to image-based envi-
ronments (Section 5.2).

5.1. Hierarchical policy extraction
As motivated in Section 4.2, we split policy learning into
two levels, with a high-level policy generating intermedi-
ate waypoints and a low-level policy producing primitive
actions to reach the waypoints. In this way, the learned
goal-conditioned value function can provide clearer signals
for both policies, effectively reducing the total policy error.
Our method, HIQL, extracts the hierarchical policies from
the same value function learned by action-free IQL (Equa-
tion (4)) using AWR-style objectives. Specifically, HIQL
trains both a high-level policy πh

θh
(st+k | st, g), which pro-

duces optimal k-step waypoints st+k, and a low-level policy
πℓ
θℓ
(a | st, st+k), which outputs primitive actions, with

Jπh(θh) = E[exp(β · Ãh(st, st+k, g)) log π
h
θh
(st+k | st, g)],

(6)

Jπℓ(θℓ) = E[exp(β · Ãℓ(st, at, g)) log π
ℓ
θℓ
(at | st, st+k)],

(7)
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where β denotes the inverse temperature hyperparameter
and we approximate Ãh(st, st+k, g) as VθV (st+k, g) −
VθV (st, g) and Ãℓ(st, at, st+k) as VθV (st+1, st+k) −
VθV (st, st+k). We do not include discount factors and re-
wards in these advantage estimates for simplicity, as they
can be ignored or subsumed into the temperature β given
our goal-sampling strategy described in Appendix (see Ap-
pendix for further discussion). Similarly to vanilla AWR
(Equation (5)), our high-level objective (Equation (6)) per-
forms a weighted regression over waypoints to reach the
goal, and the low-level objective (Equation (7)) carries out
a weighted regression over primitive actions to reach the
waypoints.

We note that Equation (6) and Equation (7) are completely
separated from one another, and only the low-level objective
requires action labels. As a result, we can leverage action-
free data for both the value function and high-level policy
of HIQL, by further training them with a potentially large
amount of additional passive data. Moreover, the low-level
policy is relatively easy to learn compared to the other com-
ponents, as it only needs to reach local waypoints without
the need for learning the complete global structure. This
enables HIQL to work well even with a limited amount of
action information, as we will demonstrate in Section 6.4.

5.2. Representations for waypoints
In high-dimensional domains, such as pixel-based environ-
ments, directly predicting waypoint states can be prohibitive
or infeasible for the high-level policy. To resolve this issue,
we incorporate representation learning into HIQL, letting
the high-level policy produce more compact representations
of waypoints. While one can employ existing action-free
representation learning methods (Seo et al., 2022; Nair et al.,
2022; Ma et al., 2023; Ghosh et al., 2023) to learn state rep-
resentations, HIQL simply uses an intermediate layer of the
value function as a goal representation, which can be proven
to be sufficient for control. Specifically, we parameterize the
goal-conditioned value function V (s, g) with V (s, ϕ(g)),
and use ϕ(g) as the representation of the goal. Using this
representation, the high-level policy πh(zt+k | st+k, g) pro-
duces zt+k = ϕ(st+k) instead of st+k, which the low-level
policy πℓ(a | st, zt+k) takes as input to output actions (Fig-
ure 1a). In this way, we can simply learn compact goal
representations that are sufficient for control with no sep-
arate training objectives or components. We provide the
algorithm pseudocode and full implementation details in
Appendix and present the sufficiency result below (see Ap-
pendix for the proof).

Proposition 5.1 (Goal representations from the value func-
tion are sufficient for action selection). Let V ∗(s, g) be the
value function for the optimal reward-maximizing policy
π∗(a | s, g) in a deterministic MDP. Let a representation
function ϕ(g) be given. If this same value function can be

(a) AntMaze-Medium (b) AntMaze-Large (c) AntMaze-Ultra

(d) Kitchen (e) CALVIN (f) Procgen Maze

Figure 5. Benchmark environments.

represented in terms of goal representations ϕ(g), then the
reward-maximizing policy can also be represented in terms
of goal representations ϕ(g):

∃ Vϕ(s, ϕ(g)) s.t. Vϕ(s, ϕ(g)) = V ∗(s, g) for all s, g =⇒
∃ πϕ(a | s, ϕ(g)) s.t. πϕ(a | s, ϕ(g)) = π∗(a | s, g) for all s, g.

6. Experiments
Our experiments will use six offline goal-conditioned tasks,
aiming to answer the following questions:

1. How well does HIQL perform on a variety of goal-
conditioned tasks, compared to prior methods?

2. Can HIQL solve image-based tasks, and are goal repre-
sentations important for good performance?

3. Can HIQL utilize action-free data to accelerate learning?

4. Does HIQL mitigate policy errors caused by noisy and
imperfect value functions in practice?

6.1. Experimental setup
We first describe our evaluation environments, shown in
Figure 5. AntMaze (Todorov et al., 2012; Brockman et al.,
2016) is a class of challenging long-horizon navigation tasks,
where the goal is to control an 8-DoF Ant robot to reach a
given goal location from the initial position. We use the four
medium and large maze datasets from the original D4RL
benchmark (Fu et al., 2020). While the large mazes already
present a significant challenge for long-horizon reasoning,
we also include two even larger mazes (AntMaze-Ultra) pro-
posed by Jiang et al. (2023). Kitchen (Gupta et al., 2019)
is a long-horizon manipulation domain, in which the goal
is to complete four subtasks (e.g., open the microwave or
move the kettle) with a 9-DoF Franka robot. We employ
two undirected datasets (‘-partial’ and ‘-mixed’) from the
D4RL benchmark (Fu et al., 2020). CALVIN (Mees et al.,
2022), another long-horizon manipulation environment, also
features four target subtasks similar to Kitchen. However,
the dataset accompanying CALVIN (Shi et al., 2022) con-
sists of a much larger number of task-agnostic trajectories



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Offline Goal-Conditioned RL with Latent States as Actions

Table 1. Evaluating HIQL on offline goal-conditioned RL. HIQL mostly outperforms six baselines on a variety of benchmark tasks,
including on different types of data. ‘gc-’ denotes goal-conditioned variants. We show the standard deviations across 8 random seeds and
refer to Appendix for the full training curves. Baselines: GCBC (Ghosh et al., 2021), HGCBC (Gupta et al., 2019), IQL (Kostrikov et al.,
2022), POR (Xu et al., 2022), TAP (Jiang et al., 2023), TT (Janner et al., 2021).

Task GCBC HGCBC IQL POR TAP TT HIQL (ours) HIQL (w/o repr.)

gc-antmaze-medium-diverse 67.3 ±10.1 71.6 ±8.9 63.5 ±14.6 74.8 ±11.9 85.0 100.0 86.8 ±4.6 89.9 ±3.5

gc-antmaze-medium-play 71.9 ±16.2 66.3 ±9.2 70.9 ±11.2 71.4 ±10.9 78.0 93.3 84.1 ±10.8 87.0 ±8.4

gc-antmaze-large-diverse 20.2 ±9.1 63.9 ±10.4 50.7 ±18.8 49.0 ±17.2 82.0 60.0 88.2 ±5.3 87.3 ±3.7

gc-antmaze-large-play 23.1 ±15.6 64.7 ±14.5 56.5 ±14.4 63.2 ±16.1 74.0 66.7 86.1 ±7.5 81.2 ±6.6

gc-antmaze-ultra-diverse 14.4 ±9.7 39.4 ±20.6 21.6 ±15.2 29.8 ±13.6 26.0 33.3 52.9 ±17.4 52.6 ±8.7

gc-antmaze-ultra-play 20.7 ±9.7 38.2 ±18.1 29.8 ±12.4 31.0 ±19.4 22.0 20.0 39.2 ±14.8 56.0 ±12.4

gc-kitchen-partial 38.5 ±11.8 32.0 ±16.7 39.2 ±13.5 18.4 ±14.3 - - 65.0 ±9.2 46.3 ±8.6

gc-kitchen-mixed 46.7 ±20.1 46.8 ±17.6 51.3 ±12.8 27.9 ±17.9 - - 67.7 ±6.8 36.8 ±20.1

gc-calvin 17.3 ±14.8 3.1 ±8.8 7.8 ±17.6 12.4 ±18.6 - - 43.8 ±39.5 23.4 ±27.1

from 34 different subtasks, which makes it challenging for
the agent to learn relevant behaviors for the goal. Procgen
Maze (Cobbe et al., 2020) is an image-based maze navi-
gation environment. We train agents on an offline dataset
consisting of 500 or 1000 different maze levels with a vari-
ety of sizes, colors, and difficulties, and test them on both
the same and different sets of levels to evaluate their general-
ization capabilities. To make these benchmark environments
goal-conditioned, during training, we replace the original
rewards with a sparse goal-conditioned reward function,
r(s, g) = 0 (if s = g), −1 (otherwise).

We compare the performance of HIQL with six previous
behavioral cloning and offline RL methods. For behav-
ioral cloning methods, we consider flat goal-conditioned
behavioral cloning (GCBC) (Ding et al., 2019; Ghosh et al.,
2021) and hierarchical goal-conditioned behavioral cloning
(HGCBC) with two-level policies (Lynch et al., 2019; Gupta
et al., 2019). For offline goal-conditioned RL methods, we
evaluate a goal-conditioned variant of IQL (Kostrikov et al.,
2022) (Section 3), which does not use hierarchy, and POR
(Xu et al., 2022), which uses hierarchy but does not use
temporal abstraction (i.e., similar to k = 1 in HIQL) nor
representation learning. In AntMaze, we additionally com-
pare HIQL with two model-based approaches that studied
this domain in prior work: Trajectory Transformer (TT)
(Janner et al., 2021), which models entire trajectories with a
Transformer (Vaswani et al., 2017), and TAP (Jiang et al.,
2023), which encodes trajectory segments with VQ-VAE
(van den Oord et al., 2017) and performs model-based plan-
ning over latent vectors in a hierarchical manner. We use the
performance reported by Jiang et al. (2023) for comparisons
with TT and TAP. In our experiments, we use 8 random
seeds and represent 95% confidence intervals with shaded
regions (in figures) or standard deviations (in tables), unless
otherwise stated. We provide full details of environments
and baselines in Appendix.

Table 2. Evaluating HIQL on pixel-based Procgen Maze. HIQL
scales to high-dimensional pixel-based environments by using
latent waypoint representations. HIQL achieves the best perfor-
mance on both train and test maze levels. We refer to Appendix
for the full training curves.

Task GCBC HGCBC (+ repr.) IQL POR (+ repr.) HIQL (ours)

gc-procgen-500-train 16.8 ±2.8 14.3 ±4.1 72.5 ±10.0 75.8 ±12.1 82.5 ±6.0

gc-procgen-500-test 14.5 ±5.0 11.2 ±3.7 49.5 ±9.8 53.8 ±14.5 64.5 ±13.2

gc-procgen-1000-train 27.2 ±8.9 15.0 ±5.7 78.2 ±7.2 82.0 ±6.5 87.0 ±13.9

gc-procgen-1000-test 12.0 ±5.9 14.5 ±5.0 60.0 ±10.6 69.8 ±7.4 78.2 ±17.9

6.2. Results on state-based environments
We first evaluate HIQL in the five state-based environments
(AntMaze-{Medium, Large, Ultra}, Kitchen, and CALVIN)
using nine offline datasets. We periodically evaluate the
performance of the learned policies by commanding them
with the evaluation goal state g (i.e., the benchmark task
target position in AntMaze, or the state that corresponds
to completing all four subtasks in Kitchen and CALVIN),
and measuring the average return with respect to the origi-
nal benchmark task reward function. We test two versions
of HIQL (without and with representations) in state-based
environments. Table 1 shows the results on the nine of-
fline datasets, indicating that HIQL mostly achieves the best
performance in our experiments. Notably, HIQL attains
an 88% success rate on gc-antmaze-large-diverse and 53%
on gc-antmaze-ultra-diverse, which is, to the best of our
knowledge, better than any previously reported result on
these datasets.1 In manipulation domains, we find that hav-
ing latent waypoint representations in HIQL is important
for enabling good performance. In CALVIN, while other
methods often fail to achieve any of the subtasks due to the
high diversity in the data, HIQL completes approximately

1We note that we use goal-conditioned variants of AntMaze,
which differ from the original tasks. These variants could poten-
tially be more difficult as the policy needs to learn to reach any
goal from any state, but they might also be potentially easier given
that the states contain goal information. We note that the prior
work (Jiang et al., 2023), from which we take the results of TT
and TAP, also provides the goal information in the state. As the
performance of IQL in Table 1 is similar to that of the original
paper (Kostrikov et al., 2022), we believe these goal-conditioned
variants have similar level of difficulties to the original ones.
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Table 3. HIQL can leverage passive, action-free data. Since
our method requires action information only for the low-level
policy, which is relatively easier to learn, HIQL mostly achieves
comparable performance with just 25% of action-labeled data,
outperforming even baselines trained on full datasets.

Task IQL (full) POR (full) HIQL (full) HIQL (action-limited)

gc-antmaze-large-diverse 50.7 ±18.8 49.0 ±17.2 88.2 ±5.3 88.9 ±6.4

gc-antmaze-ultra-diverse 21.6 ±15.2 29.8 ±13.6 52.9 ±17.4 38.2 ±15.4

gc-kitchen-mixed 51.3 ±12.8 27.9 ±17.9 67.7 ±6.8 59.1 ±9.6

gc-calvin 7.8 ±17.6 12.4 ±18.6 43.8 ±39.5 35.8 ±30.7

gc-procgen-500-train 72.5 ±10.0 75.8 ±12.1 82.5 ±6.0 77.0 ±12.5

gc-procgen-500-test 49.5 ±9.8 53.8 ±14.5 64.5 ±13.2 65.5 ±16.4

two subtasks on average.

6.3. Results on pixel-based environments
Next, to verify whether HIQL can scale to high-dimensional
environments using goal representations, we evaluate our
method on the Procgen Maze environment with 64× 64× 3
image observations. We train HIQL and previous ap-
proaches using an offline dataset collected from either 500 or
1000 maze levels with varying difficulties, and assess them
on both the training and test sets consisting of challenging
levels (see Appendix for full details). We use a sparse goal-
conditioned reward function as in previous experiments. For
the prior hierarchical approaches that generate raw states
(HGCBC and POR), we apply HIQL’s representation learn-
ing scheme to enable them to handle the high-dimensional
observation space. Table 2 presents the results, showing
that our hierarchical policy extraction scheme, combined
with representation learning, improves performance in these
image-based environments as well. Notably, HIQL has
larger gaps compared to the previous methods on the test
sets. This is likely because the high-level policy can gen-
eralize better than the flat policy, as it can focus on the
long-term direction toward the goal rather than the maze’s
detailed layout.

6.4. Results with action-free data
As mentioned in Section 5.1, one of the advantages of HIQL
is its ability to leverage a potentially large amount of passive
(action-free) data. To empirically verify this capability, we
train HIQL on action-limited datasets, where we provide ac-
tion labels for just 25% of the trajectories and use state-only
trajectories for the remaining 75%. Table 3 shows the results
from six different tasks, demonstrating that HIQL, even with
a limited amount of action information, can mostly main-
tain its original performance. Notably, action-limited HIQL
still outperforms previous offline RL methods (IQL and
POR) trained with the full action-labeled data. We believe
this is because HIQL learns a majority of the knowledge
through hierarchical waypoint prediction from state-only
trajectories.

6.5. Analysis
Does HIQL mitigate policy errors caused by noisy value
functions in practice? To empirically verify whether our
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Policy accuracy metric IQL POR (+ repr.) HIQL (ours)

All goals (train) 61.9 ±1.9 64.5 ±2.7 66.6 ±2.1 (+2.1)
All goals (test) 60.3 ±2.8 63.6 ±3.2 68.0 ±4.1 (+4.4)
Distant goals (train) 49.3 ±3.3 48.1 ±4.5 56.8 ±8.9 (+7.5)
Distant goals (test) 47.5 ±8.6 47.2 ±3.7 59.9 ±10.4 (+12.4)

Figure 6. Value and policy errors in Procgen Maze: (top left) As
the distance between the state and the goal increases, the learned
value function becomes noisier. (top right) We measure the accura-
cies of learned policies. (bottom) Thanks to our hierarchical policy
extraction scheme (Section 4.2), HIQL exhibits the best policy
accuracy, especially when the goal is far away from the state. The
blue numbers denote the accuracy differences between HIQL and
the second-best methods.

two-level policy architecture is more robust to errors in the
learned value function (i.e., the “signal-to-noise” ratio argu-
ment in Section 4), we compare the policy accuracies of IQL
(flat policy), POR (hierarchy without temporal abstraction),
and HIQL (ours) in Procgen Maze, by evaluating the ratio
at which the ground-truth actions match the learned actions.
We also measure the noisiness (i.e., standard deviation) of
the learned value function with respect to the ground-truth
distance between the state and the goal. Figure 6 shows
the results. We first observe that the noise in the value
function generally becomes larger as the state-goal distance
increases. Consequently, HIQL achieves the best policy ac-
curacy, especially for distant goals (dist(s, g) ≥ 50), as its
hierarchical policy extraction scheme provides the policies
with clearer learning signals (Section 4.2). We refer to the
supplementary materials for further analyses, including way-
point visualizations and an ablation study on waypoint
steps and design choices for representations.

7. Conclusion
We proposed HIQL as a simple yet effective hierarchical
algorithm for offline goal-conditioned RL. While hierar-
chical RL methods tend to be complex, involving many
different components and objectives, HIQL shows that it is
possible to build a method where a single value function
simultaneously drives the learning of the low-level policy,
the high-level policy, and the representations in a relatively
simple and easy-to-train framework. We showed that HIQL
not only exhibits strong performance in various challenging
goal-conditioned tasks, but also can leverage action-free
data and enjoy the benefits of built-in representation learn-
ing for image-based tasks. Due to space constraints, we
further discuss limitations and future work in Appendix.
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Algorithm 1 Hierarchical Implicit Q-Learning (HIQL)

1: Input: offline dataset D, action-free dataset DS (optional, DS = D otherwise)
2: Initialize value function VθV (s, ϕ(g)) with built-in representation ϕ(g), high-level policy πh

θh
(zt+k|st+k, g), low-level

policy πℓ
θℓ
(a|st, zt+k), learning rates λV , λh, λℓ

3: while not converged do
4: θV ← θV − λV∇θV LV (θV ) with (st, st+1, g) ∼ DS # Train value function, Equation (4)
5: end while
6: while not converged do
7: θh ← θh + λh∇θhJπh(θh) with (st, st+k̃, g) ∼ DS # Extract high-level policy, Equation (6)
8: end while
9: while not converged do

10: θℓ ← θℓ + λℓ∇θℓJπℓ(θℓ) with (st, at, st+1, s̃t+k) ∼ D # Extract low-level policy, Equation (7)
11: end while

A. Limitations
One limitation of HIQL is that the objective for its action-free value function (Equation (4)) is unbiased only when the
environment dynamics are deterministic. As discussed in Section 3, HIQL (and other prior methods that use action-free
videos) may overestimate the value function in partially observed or stochastic settings. To mitigate the optimism bias of
HIQL in stochastic environments, we believe disentangling controllable parts from uncontrollable parts of the environment
can be one possible solution (Villaflor et al., 2022; Yang et al., 2023), which we leave for future work.

B. Training details

Goal distributions. We train our goal-conditioned value function, high-level policy, and low-level policy respectively
with Equations (4), (6) and (7), using different goal-sampling distributions. For the value function (Equation (4)), we sample
the goals from either random states, futures states, or the current state with probabilities of 0.3, 0.5, and 0.2, respectively,
following Ghosh et al. (2023). We use Geom(1− γ) for the future state distribution and the uniform distribution over the
offline dataset for sampling random states. For the hierarchical policies, we mostly follow the sampling strategy of Gupta
et al. (2019). We first sample a trajectory (s0, s1, . . . , st, . . . , sT ) from the dataset DS and a state st from the trajectory. For
the high-level policy (Equation (6)), we either (i) sample g uniformly from the future states stg (tg > t) in the trajectory and
set the target waypoint to smin(t+k,tg) or (ii) sample g uniformly from the dataset and set the target waypoint to smin(t+k,T ).
For the low-level policy (Equation (7)), we first sample a state st from D, and set the input waypoint to smin(t+k,T ) in the
same trajectory.

Advantage estimates. In principle, the advantage estimates for Equations (6) and (7) are respectively given as

Ah(st, st+k̃, g) = γk̃VθV (st+k̃, g) +

k̃−1∑
t′=t

r(st′ , g)− VθV (st, g), (8)

Aℓ(st, at, s̃t+k) = γVθV (st+1, s̃t+k) + r(st, s̃t+k)− VθV (st, s̃t+k), (9)

where we use the notations k̃ and s̃t+k to incorporate the edge cases discussed in the previous paragraph (i.e., k̃ =
min(k, tg − t) when we sample g from future states, k̃ = min(k, T − t) when we sample g from random states, and
s̃t+k = smin(t+k,T )). Here, we note that st′ ̸= g and st ̸= s̃t+k always hold except for those edge cases. Thus, the reward
terms in Equations (8) and (9) are mostly constants, as are the third terms (with respect to the policy inputs). As such, we
practically ignore these terms for simplicity, and this simplification further enables us to subsume the discount factors in the
first terms into the temperature hyperparameter β. We hence use the following simplified advantage estimates, which we
empirically found to lead to almost identical performances in our experiments:

Ãh(st, st+k̃, g) = VθV (st+k̃, g)− VθV (st, g), (10)

Ãℓ(st, at, s̃t+k) = VθV (st+1, s̃t+k)− VθV (st, s̃t+k). (11)
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Figure 7. Training curves for the results with state-based environments (Table 1). Shaded regions denote the 95% confidence intervals
across 8 random seeds.
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Figure 8. Training curves for the results with pixel-based Procgen Maze environments (Table 2). Shaded regions denote the 95%
confidence intervals across 8 random seeds.

State representations. We model the output of the representation function ϕ(g) in V (s, ϕ(g)) with a 10-dimensional
latent vector and normalize the outputs of ϕ(g) (Kumar et al., 2022). Empirically, we found that concatenating s to the input
(i.e., using ϕ([g, s]) instead of ϕ(g)), similarly to Hong et al. (2022), improves performance in our experiments. While
this might lose the sufficiency property of the representations (i.e., Proposition 5.1), we found that the representations
obtained in this way generally lead to better performance in practice, indicating that they still mostly preserve the goal
information for control. We believe this is due to the imposed bottleneck on ϕ by constraining its effective dimensionality to
9 (by using normalized 10-dimensional vectors), which enforces ϕ to retain bits regarding g and to reference s only when
necessary. Additionally, in pixel-based environments, we found that allowing gradient flows from the low-level policy loss
(Equation (7)) to ϕ further improves performance. We ablate these choices and report the results in Appendix D.

We provide a pseudocode for HIQL in Algorithm 1. We note that the high- and low-level policies can be jointly trained with
the value function as well.

C. Additional Plots
We include the training curves for Tables 1 to 3 in Figures 7 to 9, respectively. We include the full Rliable (Agarwal et al.,
2021) plots in Figures 10 and 11.
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Figure 9. Training curves for the results with action-free data (Table 3). Shaded regions denote the 95% confidence intervals across 8
random seeds.
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D. Ablation Study
Waypoint steps. To understand how the waypoint steps k affect performance, we evaluate HIQL with six different
k ∈ {1, 5, 15, 25, 50, 100} on AntMaze, Kitchen, and CALVIN. On AntMaze, we test both HIQL with and without
representations (Section 5.2). Figure 12 shows the results, suggesting that HIQL generally achieves the best performance
with k between 25 and 50. Also, HIQL still maintains reasonable performance even when k is not within this optimal range,
unless k is too small.

Representation parameterizations. We evaluate four different choices of the representation function ϕ in HIQL: ϕ([g, s]),
ϕ(g − s), ϕ(g), and without ϕ. Figure 13 shows the results, indicating that passing g and s together to ϕ generally improves
performance. We hypothesize that this is because ϕ, when given both g and s, can capture contextualized information about
the goals (or waypoints) with respect to the current state, which is often easier to deal with for the low-level policy. For
example, in AntMaze, the agent only needs to know the relative position of the waypoint with respect to the current position.
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denote the 95% confidence intervals across 8 random seeds.
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Figure 13. Ablation study of different parameterizations of the representation function. Passing s and g together to ϕ improves performance
in general. Shaded regions denote the 95% confidence intervals across 8 random seeds.
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Figure 14. Ablation study of the auxiliary gradient flow from the low-level policy loss to ϕ on pixel-based ProcGen Maze. This auxiliary
gradient flow helps maintain goal information in the representations. Shaded regions denote the 95% confidence intervals across 8 random
seeds.

Auxiliary gradient flows for representations. We found that in Procgen Maze, allowing gradient flows from the low-level
policy loss to the representation function enhances performance (Figure 14). We believe this is because the additional
gradients from the policy loss further help maintain the information necessary for control. We also (informally) found that
this additional gradient flow occasionally slightly improves performances in the other environments as well, but we do not
enable this feature in the other domains to keep our method as simple as possible.



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Offline Goal-Conditioned RL with Latent States as Actions

E. Implementation details
We implement HIQL based on JaxRL Minimal (Ghosh, 2023). Our implementation is available at the following anonymized
repository: https://github.com/hiqlauthors/hiql. We run our experiments on an internal GPU cluster composed
of TITAN RTX and A5000 GPUs. Each experiment on state-based environments takes no more than 8 hours and each
experiment on pixel-based environments takes no more than 16 hours.

E.1. Environments

AntMaze (Todorov et al., 2012; Brockman et al., 2016) We use the antmaze-medium-diverse-v2, antmaze-medium-
play-v2, antmaze-large-diverse-v2, and antmaze-large-play-v2 datasets from the D4RL benchmark (Fu et al., 2020). For
AntMaze-Ultra, we use the antmaze-ultra-diverse-v0 and antmaze-ultra-play-v0 datasets proposed by Jiang et al. (2023).
The maze in the AntMaze-Ultra task is twice the size of the largest maze in the original D4RL dataset. Each dataset consists
of 999 length-1000 trajectories, in which the Ant agent navigates from an arbitrary start location to another goal location,
which does not necessarily correspond to the target evaluation goal. At test time, to specify a goal g for the policy, we set
the first two state dimensions (which correspond to the x-y coordinates) to the target goal given by the environment and the
remaining proprioceptive state dimensions to those of the first observation in the dataset. At evaluation, the agent gets a
reward of 1 when it reaches the goal.

Kitchen (Gupta et al., 2019). We use the kitchen-partial-v0 and kitchen-mixed-v0 datasets from the D4RL benchmark (Fu
et al., 2020). Each dataset consists of 136950 transitions with varying trajectory lengths (approximately 227 steps per
trajectory on average). In the kitchen-partial-v0 task, the goal is to achieve the four subtasks of opening the microwave,
moving the kettle, turning on the light switch, and sliding the cabinet door. The dataset contains a small number of successful
trajectories that achieve the four subtasks. In the kitchen-mixed-v0 task, the goal is to achieve the four subtasks of opening
the microwave, moving the kettle, turning on the light switch, and turning on the bottom left burner. The dataset does not
contain any successful demonstrations, only providing trajectories that achieve some subset of the four subtasks. At test
time, to specify a goal g for the policy, we set the proprioceptive state dimensions to those of the first observation in the
dataset and the other dimensions to the target kitchen configuration given by the environment. At evaluation, the agent gets
a reward of 1 whenever it achieves a subtask.

CALVIN (Mees et al., 2022). We use the offline dataset provided by Shi et al. (2022), which is based on the teleoperated
demonstrations from Mees et al. (2022). The task is to achieve the four subtasks of opening the drawer, turning on the
lightbulb, sliding the door to the left, and turning on the LED. The dataset consists of 1204 length-499 trajectories. In each
trajectory, the agent achieves some of the 34 subtasks in an arbitrary order, which makes the dataset highly task-agnostic
(Shi et al., 2022). At test time, to specify a goal g for the policy, we set the proprioceptive state dimensions to those of the
first observation in the dataset and the other dimensions to the target configuration. At evaluation, the agent gets a reward of
1 whenever it achieves a subtask.

Procgen Maze (Cobbe et al., 2020). We collect an offline dataset of goal-reaching behavior on the Procgen Maze suite.
For each maze level, we pre-compute the optimal goal-reaching policy using an oracle, and collect a trajectory of 1000
transitions by commanding a goal, using the goal-reaching policy to reach this goal, then commanding a new goal and
repeating henceforth. The procgen-maze-500 dataset consists of 500000 transitions collected over the first 500 levels
and procgen-maze-1000 consists of 1000000 transitions over the first 1000 levels. At test time, we evaluate the agent on
“challenging” levels that contain at least 20 leaf goal states (i.e., states that have only one adjacent state in the maze). We use
50 such levels and goals for each evaluation, where they are randomly sampled either between Level 0 and Level 499 for the
“-train” tasks or between Level 5000 and Level 5499 for the “-test” tasks. The agent gets a reward of 1 when it reaches the
goal.

In Tables 1 to 3, we report the normalized scores with a multiplier of 100 (AntMaze and Procgen Maze) or 25 (Kitchen and
CALVIN).

E.2. Hyperparameters

We present the hyperparameters used in our experiments in Table 4, where we mostly follow the network architectures
and hyperparameters used by Ghosh et al. (2023). We use layer normalization (Ba et al., 2016) for all MLP layers. For

https://github.com/hiqlauthors/hiql
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Table 4. Hyperparameters.

Hyperparameter Value

# gradient steps 1000000 (AntMaze), 500000 (others)
Batch size 1024 (state-based), 256 (pixel-based)
Policy MLP dimensions (256, 256)
Value MLP dimensions (512, 512, 512)
Representation MLP dimensions (state-based) (512, 512, 512)
Representation architecture (pixel-based) Impala CNN (Espeholt et al., 2018)
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 0.0003
Target network smoothing coefficient 0.005

pixel-based environments, we use the Impala CNN architecture (Espeholt et al., 2018) to handle image inputs, mostly with
512-dimensional output features, but we use normalized 10-dimensional output features for the goal encoder of HIQL’s
value function to make them easily predictable by the high-level policy, as discussed in Appendix B. During training, we
periodically evaluate the performance of the learned policy at every 100K (state-based) or 50K (pixel-based) steps, using
522 (state-based) or 50 (pixel-based) rollouts. At evaluation, we use the argmax actions for environments with continuous
action spaces and ϵ-greedy actions with ϵ = 0.05 for environments with discrete action spaces (i.e., Procgen Maze).

To ensure fair comparisons, we use the same architecture for HIQL and all the baselines implemented in this work (i.e.,
GCBC, HGCBC, IQL, and POR). The discount factor γ is chosen from {0.99, 0.995}, the AWR temperature β from
{1, 3, 10}, the IQL expectile τ from {0.7, 0.9} for each method.

For HIQL, we set (γ, β, τ) = (0.99, 1, 0.7) across all environments. For IQL and POR, we use (γ, β, τ) = (0.99, 3, 0.9)
(AntMaze-Medium and AntMaze-Large), (γ, β, τ) = (0.995, 1, 0.7) (AntMaze-Ultra), or (γ, β, τ) = (0.99, 1, 0.7) (others).
For the waypoint steps k in HIQL, we use k = 50 (AntMaze-Ultra), k = 3 (Procgen Maze), or k = 25 (others). HGCBC
uses the same waypoint steps as HIQL for each environment, with the exception of AntMaze-Ultra, where we find it
performs slightly better with k = 25. In state-based environments, we sample goals for high-level or flat policies from either
the future states in the same trajectory (with probability 0.7) or the random states in the dataset (with probability 0.3). We
sample high-level goals only from the future states when training HGCBC or GCBC or when using Procgen Maze.

F. Proofs
F.1. Proof of Proposition 4.1

For simplicity, we assume that T/k is an integer and k ≤ T .

Proof. Defining z1 := z1,T and z2 := z−1,T , the probability of the flat policy π selecting an incorrect action can be
computed as follows:

E(π) = P[V̂ (s+ 1, g) ≤ V̂ (s− 1, g)] (12)

= P[V̂ (1, T ) ≤ V̂ (−1, T )] (13)
= P[−(T − 1)(1 + σz1) ≤ −(T + 1)(1 + σz2)] (14)
= P[z1σ(T − 1)− z2σ(T + 1) ≤ −2] (15)

= P[zσ
√

T 2 + 1 ≤ −
√
2] (16)

= Φ

(
−

√
2

σ
√
T 2 + 1

)
, (17)

where z is a standard Gaussian random variable, and we use the fact that the sum of two independent Gaussian random

2This includes two additional rollouts for video logging.
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variables with standard deviations of σ1 and σ2 follows a normal distribution with a standard deviation of
√
σ2
1 + σ2

2 .

Similarly, the probability of the hierarchical policy πℓ ◦ πh selecting an incorrect action is bounded using a union bound as

E(πℓ ◦ πh) ≤ E(πh) + E(πℓ) (18)

= P[V̂ (s+ k, g) ≤ V̂ (s− k, g)] + P[V̂ (s+ 1, s+ k) ≤ V̂ (s− 1, s+ k)] (19)

= P[V̂ (k, T ) ≤ V̂ (−k, T )] + P[V̂ (1, k) ≤ V̂ (−1, k)] (20)

= Φ

(
−

√
2

σ
√
(T/k)2 + 1

)
+Φ

(
−

√
2

σ
√
k2 + 1

)
. (21)

F.2. Proof of Proposition 5.1

We first formally define some notations. For s ∈ S, a ∈ A, g ∈ S, and a representation function ϕ : S → Z , we denote
the goal-conditioned state-value function as V (s, g), the action-value function as Q(s, a, g), the parameterized state-value
function as Vϕ(s, z) with z = ϕ(g), and the parameterized action-value function as Qϕ(s, a, z). We assume that the
environment dynamics are deterministic, and denote the deterministic transition kernel as p(s, a) = s′. Accordingly, we
have Q(s, a, g) = V (p(s, a), g) = V (s′, g) and Qϕ(s, a, z) = Vϕ(p(s, a), z) = Vϕ(s

′, z). We denote the optimal value
functions with the superscript “∗”, e.g., V ∗(s, g). We assume that there exists a parameterized value function, which we
denote V ∗

ϕ (s, ϕ(g)), that is the same as the true optimal value function, i.e., V ∗(s, g) = V ∗
ϕ (s, ϕ(g)) for all s ∈ S and

g ∈ S.

Proof. For π∗, we have

π∗(a | s, g) = argmax
a∈A

Q∗(s, a, g) (22)

= argmax
s′∈Ns

V ∗(s′, g) (23)

= argmax
s′∈Ns

V ∗
ϕ (s

′, z), (24)

where Ns denotes the neighborhood sets of s, i.e., Ns = {s′ | ∃a, p(s, a) = s′}. For π∗
ϕ, we have

π∗
ϕ(a | s, z) = argmax

a∈A
Q∗

ϕ(s, a, z) (25)

= argmax
s′∈Ns

V ∗
ϕ (s

′, z). (26)

By comparing Equation (24) and Equation (26), we can see that they have the same argmax action sets for all s and g.

G. Waypoint Visualizations
We visualize learned waypoints in Figures 15 and 16 (videos are available at https://sites.google.com/view/hiql/).
For AntMaze-Large, we train HIQL without representations and plot the x-y coordinates of waypoints. For Procgen Maze,
we train HIQL with 10-dimensional representations and find the maze positions that have the closest representations (with
respect to the Euclidean distance) to the waypoints produced by the high-level policy. The results show that HIQL learns
appropriate k-step waypoints that lead to the target goal.

https://sites.google.com/view/hiql/
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Figure 15. Waypoint visualization in AntMaze-Large. The red circles denote the target goal and the blue circles denote the learned
waypoints. Videos are available at https://sites.google.com/view/hiql/.

https://sites.google.com/view/hiql/
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Figure 16. Waypoint visualization in Procgen Maze. The red circles denote the target goal, the blue circles denote the learned waypoints,
and the white blobs denote the agent. Videos are available at https://sites.google.com/view/hiql/.

https://sites.google.com/view/hiql/

