
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Offline Goal-Conditioned RL with Latent States as Actions

Anonymous Authors1

Abstract
In the same way that unsupervised pre-training
has become the bedrock for computer vision and
NLP, goal-conditioned RL might provide a similar
strategy for making use of vast quantities of unla-
beled (reward-free) data. However, building effec-
tive algorithms for goal-conditioned RL, ones that
can learn directly from offline data, is challenging
because it is hard to accurately estimate the exact
state value of reaching faraway goals. Nonethe-
less, goal-reaching problems exhibit structure –
reaching a distant goal entails visiting some closer
states (or representations thereof) first. Impor-
tantly, it is easier to assess the effect of actions
on getting to these closer states. Based on this
idea, we propose a hierarchical algorithm for goal-
conditioned RL from offline data. Using one
action-free value function, we learn two policies
that allow us to exploit this structure: a high-level
policy that predicts (a representation of) a way-
point, and a low-level policy that predicts the ac-
tion for reaching this waypoint. Through analysis
and didactic examples, we show how this hierar-
chical decomposition makes our method robust
to noise in the estimated value function. We then
apply our method to offline goal-reaching bench-
marks, showing that our method can solve long-
horizon tasks that stymie prior methods, can scale
to high-dimensional image observations, and can
readily make use of action-free data.

1. Introduction
Many of the most successful machine learning systems for
computer vision (Chen et al., 2020; He et al., 2022) and
NLP (Devlin et al., 2019; Brown et al., 2020) leverage large
amounts of unlabeled or weakly-labeled data. In the rein-
forcement learning (RL) setting, offline goal-conditioned

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Workshop on New Fron-
tiers in Learning, Control, and Dynamical Systems at the Interna-
tional Conference on Machine Learning (ICML). Do not distribute.

RL provides a way of making use of similar quantities of un-
labeled data; the offline setting (Lange et al., 2012; Levine
et al., 2020) means that we can learn from passively ob-
served data, and the goal-conditioned setting (Kaelbling,
1993; Schaul et al., 2015) means that we can learn from
reward-free data (no need for reward labels). However, goal-
conditioned RL poses major challenges. First, learning an
accurate goal-conditioned value function for any state and
goal pairs is challenging when considering very broad and
long-horizon goal-reaching tasks. This often results in a
noisy value function and thus potentially an erroneous pol-
icy. Second, while the offline setting unlocks the potential
for using previously collected data, it is not straightforward
to incorporate vast quantities of existing action-free, video
data into standard RL methods. In this work, we aim to
address these challenges by developing an effective offline,
goal-conditioned RL method that can also readily make use
of action-free data.

One straightforward approach to offline goal-conditioned
RL is to first train a goal-conditioned value function and then
learn a policy that leads to states with high values. However,
the learned value function can often provide poor signals
for selecting actions to reach distant goals. Intuitively, the
value function depends on how far away the goal will be
after taking a particular action. However, when the goal is
far away, the optimal action may be only slightly better than
suboptimal actions; for example, a move in the wrong direc-
tion can simply be corrected at the next time step, leading to
a small relative increase in distance. Thus, when the value
function is learned imperfectly and has small errors, these
errors can drown out the signal for distant goals, potentially
leading to an erroneous policy. This issue is further exacer-
bated with the offline RL setting, as erroneous predictions
from the value function are not corrected when those actions
are taken and their consequences observed.

To learn from noisy or inaccurate value functions, we will
separate policy extraction into two levels. We first train a
goal-conditioned value function from offline data with im-
plicit Q-learning (IQL) (Kostrikov et al., 2022) and then we
extract two-level policies from it. Our high-level policy pro-
duces intermediate waypoint states as temporally extended
actions. Because predicting high-dimensional states can be
challenging, we will propose a method that only requires
the high-level policy to product representations of the way-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Offline Goal-Conditioned RL with Latent States as Actions

(a) Three components of HIQL.

Flat policy Hierarchical policy

(b) Hierarchical policies get clearer learning signals.

Figure 1. We train a value function parameterized as V (s, ϕ(g)) and use ϕ(g) as a representation function. The high-level policy predicts
the waypoint representation zt+k = ϕ(st+k), and the low-level policy takes the waypoint representation as input to produce actions. Both
policies are extracted from the same value function.

points, with the representations learned end-to-end from the
value function. Our low-level policy takes these waypoint
representations as input and produces actions to reach the
waypoint (Figure 1a). Although we extract both policies
from the same value function, this hierarchical decomposi-
tion enables the value function to provide clearer learning
signals for both policies (Figure 1b). For the high-level pol-
icy, the value difference between various waypoints is much
larger than that between different low-level actions. For
the low-level policy, the value difference between actions
becomes relatively larger because the low-level policy only
needs to reach nearby waypoints. Importantly, the value
function and high-level policy do not require action labels,
so this hierarchical scheme provides a way to leverage a po-
tentially large amount of passive, action-free data. Training
the low-level policy does require some data labeled with
actions.

To summarize, our main contribution in this paper is to
propose Hierarchical Implicit Q-Learning (HIQL), a hi-
erarchical method for offline goal-conditioned RL. HIQL
extracts all the necessary components—a representation
function, a high-level policy, and a low-level policy—from
a single goal-conditioned value function. Through our
experiments on four types of state-based and pixel-based
offline goal-conditioned RL benchmarks, we demonstrate
that HIQL significantly outperforms previous offline goal-
conditioned RL methods, especially in complex, long-
horizon tasks.

2. Related Work
Our method draws on concepts from offline RL (Lange et al.,
2012; Levine et al., 2020), goal-conditioned RL (Kaelbling,
1993; Schaul et al., 2015; Andrychowicz et al., 2017), and
hierarchical RL (Sutton et al., 1999; Stolle & Precup, 2002;
Bacon et al., 2017; Machado et al., 2017; Wulfmeier et al.,
2021; Salter et al., 2022), providing a way to effectively
train general-purpose goal-conditioned policies from previ-
ously collected offline data. Prior work on goal-conditioned

RL has introduced algorithms based on a variety of tech-
niques, such as hindsight relabeling (Andrychowicz et al.,
2017; Pong et al., 2018; Fang et al., 2019; Levy et al., 2019;
Li et al., 2020; Chebotar et al., 2021; Yang et al., 2022), con-
trastive learning (Eysenbach et al., 2021; Zhang et al., 2022;
Eysenbach et al., 2022), and state-occupancy matching (Ma
et al., 2022; Durugkar et al., 2021).

However, directly solving goal-reaching tasks is often chal-
lenging in complex, long-horizon environments (Nachum
et al., 2018; Levy et al., 2019; Gupta et al., 2019). To address
this issue, several goal-conditioned RL methods have been
proposed based on hierarchical RL (Schmidhuber, 1991;
Dayan & Hinton, 1992; Kulkarni et al., 2016; Vezhnevets
et al., 2017; Nachum et al., 2018; 2019; Levy et al., 2019;
Zhang et al., 2020; Chane-Sane et al., 2021) or graph-based
subgoal planning (Savinov et al., 2018; Eysenbach et al.,
2019; Huang et al., 2019; Nasiriany et al., 2019; Zhang
et al., 2021; Hoang et al., 2021; Kim et al., 2021; 2023).
Like these prior methods, our method will use higher-level
subgoals in a hierarchical policy structure, but we will focus
on solving goal-reaching tasks from offline data. We use a
value-based offline RL algorithm (Kostrikov et al., 2022) to
compute the shortest distances between any pairs of states
in the dataset, which allows us to simply extract the hier-
archical policies in a decoupled manner with no need for
complex graph-based planning procedures.

Our method is most closely related to previous works on
hierarchical offline skill extraction and hierarchical offline
(goal-conditioned) RL. Offline skill extraction methods (Kr-
ishnan et al., 2017; Pertsch et al., 2020; Ajay et al., 2021;
Shi et al., 2022; Jiang et al., 2023; Rosete-Beas et al., 2022)
encode trajectory segments into a latent skill space, and
learn to combine these skills to solve downstream tasks.
The primary challenge in this setting is deciding how trajec-
tories should be decomposed hierarchically, which can be
sidestepped in our goal-conditioned setting since subgoals
provide a natural decomposition. Amongst goal-conditioned
approaches, hierarchical imitation learning (Lynch et al.,

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Offline Goal-Conditioned RL with Latent States as Actions

2019; Gupta et al., 2019) jointly learns waypoints and low-
level controllers from optimal demonstrations. These meth-
ods have two drawbacks: they predict waypoints in the raw
observation space, and they require expert trajectories; our
observation is that a value function can alleviate both chal-
lenges, as it provides a way to use sub-optimal data and
stitch across trajectories, as well as providing a latent goal
representation in which waypoints may be predicted. An-
other class of methods plans through a graph or model to
generate subgoals (Shah et al., 2021; Fang et al., 2022a;b;
Li et al., 2022); our method simply extracts all levels of
the hierarchy from a single unified value function, avoiding
the high computational overhead of planning. Finally, our
method is similar to POR (Xu et al., 2022), which predicts
the immediate next state as a waypoint; this can be seen
as one extreme of our method without representations, al-
though we show that more long-horizon waypoint prediction
can be advantageous both in theory and practice.

3. Preliminaries
Problem setting. We consider the problem of offline goal-
conditioned RL, defined by a Markov decision process
M = (S,A, µ, p, r) and a dataset D, where S denotes
the state space, A denotes the action space, µ ∈ P(S) de-
notes an initial state distribution, p ∈ S × A → P(S)
denotes a transition dynamics distribution, and r(s, g) de-
notes a goal-conditioned reward function. The dataset
D consists of trajectories τ = (s0, a0, s1, a1, . . . , sT).
In some experiments, we assume that we have an addi-
tional action-free dataset DS that consists of state-only
trajectories τs = (s0, s1, . . . , sT). Unlike some prior
work (Andrychowicz et al., 2017; Nachum et al., 2018;
Huang et al., 2019; Zhang et al., 2021; Kim et al., 2023),
we assume that the goal space G is the same as the state
space (i.e., G = S). Our goal is to learn from D ∪ DS an
optimal goal-conditioned policy π(a|s, g) that maximizes
J(π) = Eg∼p(g),τ∼pπ(τ)[

∑T
t=0 γ

tr(st, g)] with pπ(τ) =

µ(s0)
∏T−1

t=0 π(at | st, g)p(st+1 | st, at), where γ is a dis-
count factor and p(g) is a goal distribution.

Implicit Q-learning (IQL). One of the main challenges
with offline RL is to prevent exploitation of out-of-
distribution actions (Levine et al., 2020), as we cannot cor-
rect erroneous policies and values via environment interac-
tions, unlike in online RL. To tackle this issue, Kostrikov
et al. (2022) proposed implicit Q-learning (IQL), which
avoids querying out-of-sample actions by converting the
max operator in the Bellman optimal equation into expectile
regression. Specifically, IQL trains an action-value function
QθQ(s, a) and a state-value function VθV (s) with

LV (θV) = E[Lτ
2(Qθ̄Q(s, a)− VθV (s))], (1)

LQ(θQ) = E[(rtask(s, a) + γVθV (s
′)−QθQ(s, a))

2],
(2)

where rtask(s, a) denotes the task reward function, θ̄Q
denotes the parameters of the target Q network (Mnih
et al., 2013), and Lτ

2 is the expectile loss with a param-
eter τ ∈ [0.5, 1): Lτ

2(x) = |τ − 1(x < 0)|x2. Intuitively,
expectile regression can be interpreted as an asymmetric
square loss that penalizes positive values more than neg-
ative ones. As a result, when τ tends to 1, VθV (s) gets
closer to maxa Qθ̄Q(s, a) (Equation (1)). Thus, we can use
the value function to estimate the TD target (rtask(s, a) +
γmaxa′ Qθ̄Q(s

′, a′)) as (rtask(s, a) + γVθV (s
′)) without

having to sample actions a′.

After training the value function with Equations (1) and (2),
IQL extracts the policy with advantage-weighted regression
(AWR) (Peters & Schaal, 2007; Neumann & Peters, 2008;
Peters et al., 2010; Peng et al., 2019; Nair et al., 2020; Wang
et al., 2020):

Jπ(θπ) = E[exp(β · (Qθ̄Q(s, a)− VθV (s))) log πθπ (a | s)],
(3)

where β ∈ R+
0 denotes an inverse temperature parameter.

Intuitively, Equation (3) encourages the policy to select
actions that lead to large Q values while not deviating far
from the data collection policy (Peng et al., 2019).

Action-free goal-conditioned IQL. The original IQL
method described above requires both reward and action
labels in the offline data to train the value functions by Equa-
tions (1) and (2). However, in real-world scenarios, offline
data might not contain task information or action labels, as
in the case of task-agnostic demonstrations or videos. As
such, we focus on the setting of offline goal-conditioned
RL, which does not require task rewards, and provides us
with a way to incorporate state-only trajectories into value
learning. We can use the following action-free variant (Xu
et al., 2022; Ghosh et al., 2023) of IQL to learn an offline
goal-conditioned value function VθV (s, g):

LV (θV) = E[Lτ
2(r(s, g) + γVθ̄V (s

′, g)− VθV (s, g))].
(4)

Unlike Equations (1) and (2), this objective does not require
actions when fitting the value function, as it directly takes
backups from the values of the next states.

Action-labeled data is only needed when extracting the pol-
icy. With the goal-conditioned value function learned by
Equation (4), we can extract the policy with the following
variant of AWR:

Jπ(θπ) = E[exp(β ·A(s, a, g)) log πθπ (a | s, g)], (5)

where we approximate A(s, a, g) as γVθV (s
′, g)+r(s, g)−

VθV (s, g). Intuitively, Equation (5) encourages the policy to
select the actions that lead to the states having high values.
With this action-free variant of IQL, we can train an optimal

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Offline Goal-Conditioned RL with Latent States as Actions

goal-conditioned value function only using action-free data
and extract the policy from action-labeled data that may be
different from the passive dataset.

We note that this action-free variant of IQL is unbiased
when the environment dynamics are deterministic (Ghosh
et al., 2023), but it may overestimate values in stochastic
environments. This deterministic environment assumption
is inevitable for learning an unbiased value function solely
from state trajectories. The reason is subtle but important:
in stochastic environments, it is impossible to tell whether
a good outcome was caused by taking a good action or be-
cause of noise in the environment. As a result, applying
action-free IQL to stochastic environments will typically
result in overestimating the value function, implicitly as-
suming that all noise is controllable. While we will build
our method upon Equation (4) in this work for simplicity,
in line with many prior works on offline RL that employ
similar assumptions (Ghosh et al., 2021; Chen et al., 2021;
Janner et al., 2021; 2022; Xu et al., 2022; Wang et al., 2023;
Ghosh et al., 2023), we believe correctly handling stochastic
environments with advanced techniques (e.g., by identifying
controllable parts of the environment (Yang et al., 2023;
Villaflor et al., 2022)) is an interesting direction for future
work.

4. Hierarchical policy structure for offline
goal-conditioned RL

Goal-conditioned offline RL provides a general frame-
work for learning flexible policies from data, but the goal-
conditioned setting also presents an especially difficult
multi-task learning problem for RL algorithms, particularly
for long-horizon tasks where the goal is far away. In Sec-
tion 4.1, we discuss some possible reasons for this difficulty,
from the perspective of the “signal-to-noise” ratio in the
learned goal-conditioned value function. We then propose
hierarchical policy extraction as a solution (Section 4.2) and
compare the performances of hierarchical and flat policies
in a didactic environment, based on our theoretical analysis
(Section 4.3).

4.1. Motivation: why non-hierarchical policies might
struggle

One common strategy in offline RL is to first fit a value
function and then extract a policy that points in the di-
rection of high values (Fujimoto et al., 2019; Peng et al.,
2019; Wu et al., 2019; Kumar et al., 2019; Nair et al., 2020;
Ghasemipour et al., 2021; Brandfonbrener et al., 2021; An
et al., 2021; Kostrikov et al., 2022; Yang et al., 2022; Xu
et al., 2022; Garg et al., 2023; Xu et al., 2023). This strategy
can be directly applied to offline goal-conditioned RL by
learning a goal-conditioned policy π(a | st, g) that aims
to maximize the learned goal-conditioned value function
V (st+1, g), as in Equation (5). However, when the goal g

is far away from the state s, the learned goal-conditioned
value function may not provide clear signals for the flat,
non-hierarchical policy. There are two reasons for this fail-
ure. First, the differences between the values of different
next states (V (st+1, g)) may be small, as incorrect primi-
tive actions may be fixed in subsequent steps, causing only
relatively minor costs. Second, these small differences can
be further overshadowed by the noise present in the learned
value function, especially when the goal is distant from
the current state, in which case the magnitude of the goal-
conditioned value (and thus its noise) is large. In other
words, the “signal-to-noise” ratio in the very next values
V (st+1, g) can be small, not providing sufficiently clear
learning signals for the flat policy. Figure 2 illustrates this
problem. Figure 2a shows the ground-truth optimal value
function V ∗(s, g) for a given goal at each state, which can
guide the agent to reach the goal. However, when noise is
present in the learned value function V̂ (s, g) (Figure 2b),
the flat policy π(a | s, g) becomes erroneous, especially in
states far from the goal (Figure 2c).

4.2. Our hierarchical policy structure
To address this issue, our main idea in this work, which
we present fully in Section 5, is to separate policy extrac-
tion into two levels. Instead of directly learning a sin-
gle, flat, goal-conditioned policy π(a | st, g) that aims to
maximize V (st+1, g), we extract both a high-level policy
πh(st+k | st, g) and a low-level policy πℓ(a | st, st+k),
each with its own maximization objective: V (st+k, g) and
V (st+1, st+k), respectively. Here, st+k can be viewed as
the waypoint or subgoal. The high-level policy outputs
intermediate waypoint states that are k steps away from
s, while the low-level policy produces primitive actions to
reach these waypoints. Although we extract both policies
from the same learned value function in this way, this hier-
archical scheme provides clearer learning signals for both
policies. Intuitively, the high-level policy receives more
reliable learning signals because different waypoints lead to
more dissimilar values than primitive actions. The low-level
policy also gets relatively clear signals since it queries the
value function with only nearby states, for which the value
function is relatively accurate (Figure 1b). As a result, the
overall hierarchical policy can be more robust to the noise
and thus can improve the accuracy (Figure 2d).

4.3. Didactic example: our hierarchical policy mitigates
the signal-to-noise ratio challenge

To further understand the benefits of hierarchical policies,
we study a toy example with one-dimensional state space
(Figure 3). In this environment, the agent can move one unit
to the left or right at each time step. The agent gets a reward
of 0 when it reaches the goal; otherwise, it always gets −1.
The optimal goal-conditioned value function is hence given
as V ∗(s, g) = −|s − g|. We assume that the noise in the

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Offline Goal-Conditioned RL with Latent States as Actions

(a) Optimal value function (b) Noisy value function

°25

°20

°15

°10

°5

0

(c) Flat policy (d) Hierarchical policy

Goal

Figure 2. Hierarchies allow us to better make use of noisy value estimates. (a) In this gridworld environment, the optimal value
function predicts higher values for states s that are closer to the goal g (•). (b, c) However, a noisy value function results in selecting
incorrect actions (→). (d) Our method uses this same noisy value function to first predict an intermediate waypoint, and then select an
action for reaching this waypoint. Actions selected in this way correctly lead to the goal.

Figure 3. 1-D toy environment.

learned value function V̂ (s, g) is proportional to the optimal
value: i.e., V̂ (s, g) = V ∗(s, g)+σzs,gV

∗(s, g), where zs,g
is sampled independently from the standard normal distribu-
tion and σ is its standard deviation. This indicates that as the
goal becomes more distant, the noise generally increases, a
trend we observed in our experiments (see Figure 6).

In this scenario, we compare the probabilities of choosing
incorrect actions under the flat and hierarchical policies.
We assume that the distance between s and g is T (i.e.,
g = s + T and T > 1). Both the flat policy and the
low-level policy of the hierarchical approach consider the
goal-conditioned values at s ± 1. The high-level policy
evaluates the values at s± k, using k-step away waypoints.
For the hierarchical approach, we query both the high- and
low-level policies at every step. Given these settings, we can
bound the error probabilities of both approaches as follows:

Proposition 4.1. In the environment described in Fig-
ure 3, the probability of the flat policy π selecting an in-
correct action is given as E(π) = Φ

(
−

√
2

σ
√
T 2+1

)
and

the probability of the hierarchical policy πℓ ◦ πh select-
ing an incorrect action is bounded as E(πℓ ◦ πh) ≤
Φ

(
−

√
2

σ
√

(T/k)2+1

)
+Φ

(
−

√
2

σ
√
k2+1

)
, where Φ denotes the

cumulative distribution function of the standard normal dis-
tribution, Φ(x) = P[z ≤ x] = 1√

2π

∫ x

−∞ e−t2/2dt.

The proof can be found in Appendix. We first note that
each of the error terms in the hierarchical policy bound is
always no larger than the error in the flat policy, implying
that both the high- and low-level policies are more accurate
than the flat policy. To compare the total errors, E(π) and
E(πℓ◦πh), we perform a numerical analysis. Figure 4 shows
the hierarchical policy’s error bound for varying waypoint
steps in five different (T, σ) settings. The results indicate
that the flat policy’s error can be significantly reduced by
employing a hierarchical policy with an appropriate choice

0 20 40

Waypoint steps k

0.00

0.05

0.10

0.15

P
ol

ic
y

er
ro

r
b

ou
n

d T = 50, σ = 0.03

0 20 40

Waypoint steps k

0.1

0.2

0.3

0.4
T = 50, σ = 0.1

0 500 1000

Waypoint steps k

0.0

0.2

0.4

T = 1000, σ = 0.01

0 500 1000

Waypoint steps k

0.2

0.3

0.4

T = 1000, σ = 0.03

Figure 4. Comparison of policy errors in flat vs. hierarchical
policies in didactic environments. The hierarchical policy, with
an appropriate waypoint step, often yields significantly lower errors
than the flat policy.

of k, suggesting that splitting policy extraction into two
levels can be beneficial.

5. Hierarchical Implicit Q-Learning (HIQL)
Based on the hierarchical policy structure in Section 4, we
now present a practical algorithm, which we call Hierarchi-
cal Implicit Q-Learning (HIQL), to extract hierarchical
policies that are robust to the noise present in the learned
goal-conditioned value function. We first explain how to
train a waypoint policy (Section 5.1) and then extend this
policy to predict representations (learned via the value func-
tion), which will enable HIQL to scale to image-based envi-
ronments (Section 5.2).

5.1. Hierarchical policy extraction
As motivated in Section 4.2, we split policy learning into
two levels, with a high-level policy generating intermedi-
ate waypoints and a low-level policy producing primitive
actions to reach the waypoints. In this way, the learned
goal-conditioned value function can provide clearer signals
for both policies, effectively reducing the total policy error.
Our method, HIQL, extracts the hierarchical policies from
the same value function learned by action-free IQL (Equa-
tion (4)) using AWR-style objectives. Specifically, HIQL
trains both a high-level policy πh

θh
(st+k | st, g), which pro-

duces optimal k-step waypoints st+k, and a low-level policy
πℓ
θℓ
(a | st, st+k), which outputs primitive actions, with

Jπh(θh) = E[exp(β · Ãh(st, st+k, g)) log π
h
θh
(st+k | st, g)],

(6)

Jπℓ(θℓ) = E[exp(β · Ãℓ(st, at, g)) log π
ℓ
θℓ
(at | st, st+k)],

(7)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Offline Goal-Conditioned RL with Latent States as Actions

where β denotes the inverse temperature hyperparameter
and we approximate Ãh(st, st+k, g) as VθV (st+k, g) −
VθV (st, g) and Ãℓ(st, at, st+k) as VθV (st+1, st+k) −
VθV (st, st+k). We do not include discount factors and re-
wards in these advantage estimates for simplicity, as they
can be ignored or subsumed into the temperature β given
our goal-sampling strategy described in Appendix (see Ap-
pendix for further discussion). Similarly to vanilla AWR
(Equation (5)), our high-level objective (Equation (6)) per-
forms a weighted regression over waypoints to reach the
goal, and the low-level objective (Equation (7)) carries out
a weighted regression over primitive actions to reach the
waypoints.

We note that Equation (6) and Equation (7) are completely
separated from one another, and only the low-level objective
requires action labels. As a result, we can leverage action-
free data for both the value function and high-level policy
of HIQL, by further training them with a potentially large
amount of additional passive data. Moreover, the low-level
policy is relatively easy to learn compared to the other com-
ponents, as it only needs to reach local waypoints without
the need for learning the complete global structure. This
enables HIQL to work well even with a limited amount of
action information, as we will demonstrate in Section 6.4.

5.2. Representations for waypoints
In high-dimensional domains, such as pixel-based environ-
ments, directly predicting waypoint states can be prohibitive
or infeasible for the high-level policy. To resolve this issue,
we incorporate representation learning into HIQL, letting
the high-level policy produce more compact representations
of waypoints. While one can employ existing action-free
representation learning methods (Seo et al., 2022; Nair et al.,
2022; Ma et al., 2023; Ghosh et al., 2023) to learn state rep-
resentations, HIQL simply uses an intermediate layer of the
value function as a goal representation, which can be proven
to be sufficient for control. Specifically, we parameterize the
goal-conditioned value function V (s, g) with V (s, ϕ(g)),
and use ϕ(g) as the representation of the goal. Using this
representation, the high-level policy πh(zt+k | st+k, g) pro-
duces zt+k = ϕ(st+k) instead of st+k, which the low-level
policy πℓ(a | st, zt+k) takes as input to output actions (Fig-
ure 1a). In this way, we can simply learn compact goal
representations that are sufficient for control with no sep-
arate training objectives or components. We provide the
algorithm pseudocode and full implementation details in
Appendix and present the sufficiency result below (see Ap-
pendix for the proof).

Proposition 5.1 (Goal representations from the value func-
tion are sufficient for action selection). Let V ∗(s, g) be the
value function for the optimal reward-maximizing policy
π∗(a | s, g) in a deterministic MDP. Let a representation
function ϕ(g) be given. If this same value function can be

(a) AntMaze-Medium (b) AntMaze-Large (c) AntMaze-Ultra

(d) Kitchen (e) CALVIN (f) Procgen Maze

Figure 5. Benchmark environments.

represented in terms of goal representations ϕ(g), then the
reward-maximizing policy can also be represented in terms
of goal representations ϕ(g):

∃ Vϕ(s, ϕ(g)) s.t. Vϕ(s, ϕ(g)) = V ∗(s, g) for all s, g =⇒
∃ πϕ(a | s, ϕ(g)) s.t. πϕ(a | s, ϕ(g)) = π∗(a | s, g) for all s, g.

6. Experiments
Our experiments will use six offline goal-conditioned tasks,
aiming to answer the following questions:

1. How well does HIQL perform on a variety of goal-
conditioned tasks, compared to prior methods?

2. Can HIQL solve image-based tasks, and are goal repre-
sentations important for good performance?

3. Can HIQL utilize action-free data to accelerate learning?

4. Does HIQL mitigate policy errors caused by noisy and
imperfect value functions in practice?

6.1. Experimental setup
We first describe our evaluation environments, shown in
Figure 5. AntMaze (Todorov et al., 2012; Brockman et al.,
2016) is a class of challenging long-horizon navigation tasks,
where the goal is to control an 8-DoF Ant robot to reach a
given goal location from the initial position. We use the four
medium and large maze datasets from the original D4RL
benchmark (Fu et al., 2020). While the large mazes already
present a significant challenge for long-horizon reasoning,
we also include two even larger mazes (AntMaze-Ultra) pro-
posed by Jiang et al. (2023). Kitchen (Gupta et al., 2019)
is a long-horizon manipulation domain, in which the goal
is to complete four subtasks (e.g., open the microwave or
move the kettle) with a 9-DoF Franka robot. We employ
two undirected datasets (‘-partial’ and ‘-mixed’) from the
D4RL benchmark (Fu et al., 2020). CALVIN (Mees et al.,
2022), another long-horizon manipulation environment, also
features four target subtasks similar to Kitchen. However,
the dataset accompanying CALVIN (Shi et al., 2022) con-
sists of a much larger number of task-agnostic trajectories

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Offline Goal-Conditioned RL with Latent States as Actions

Table 1. Evaluating HIQL on offline goal-conditioned RL. HIQL mostly outperforms six baselines on a variety of benchmark tasks,
including on different types of data. ‘gc-’ denotes goal-conditioned variants. We show the standard deviations across 8 random seeds and
refer to Appendix for the full training curves. Baselines: GCBC (Ghosh et al., 2021), HGCBC (Gupta et al., 2019), IQL (Kostrikov et al.,
2022), POR (Xu et al., 2022), TAP (Jiang et al., 2023), TT (Janner et al., 2021).

Task GCBC HGCBC IQL POR TAP TT HIQL (ours) HIQL (w/o repr.)

gc-antmaze-medium-diverse 67.3 ±10.1 71.6 ±8.9 63.5 ±14.6 74.8 ±11.9 85.0 100.0 86.8 ±4.6 89.9 ±3.5

gc-antmaze-medium-play 71.9 ±16.2 66.3 ±9.2 70.9 ±11.2 71.4 ±10.9 78.0 93.3 84.1 ±10.8 87.0 ±8.4

gc-antmaze-large-diverse 20.2 ±9.1 63.9 ±10.4 50.7 ±18.8 49.0 ±17.2 82.0 60.0 88.2 ±5.3 87.3 ±3.7

gc-antmaze-large-play 23.1 ±15.6 64.7 ±14.5 56.5 ±14.4 63.2 ±16.1 74.0 66.7 86.1 ±7.5 81.2 ±6.6

gc-antmaze-ultra-diverse 14.4 ±9.7 39.4 ±20.6 21.6 ±15.2 29.8 ±13.6 26.0 33.3 52.9 ±17.4 52.6 ±8.7

gc-antmaze-ultra-play 20.7 ±9.7 38.2 ±18.1 29.8 ±12.4 31.0 ±19.4 22.0 20.0 39.2 ±14.8 56.0 ±12.4

gc-kitchen-partial 38.5 ±11.8 32.0 ±16.7 39.2 ±13.5 18.4 ±14.3 - - 65.0 ±9.2 46.3 ±8.6

gc-kitchen-mixed 46.7 ±20.1 46.8 ±17.6 51.3 ±12.8 27.9 ±17.9 - - 67.7 ±6.8 36.8 ±20.1

gc-calvin 17.3 ±14.8 3.1 ±8.8 7.8 ±17.6 12.4 ±18.6 - - 43.8 ±39.5 23.4 ±27.1

from 34 different subtasks, which makes it challenging for
the agent to learn relevant behaviors for the goal. Procgen
Maze (Cobbe et al., 2020) is an image-based maze navi-
gation environment. We train agents on an offline dataset
consisting of 500 or 1000 different maze levels with a vari-
ety of sizes, colors, and difficulties, and test them on both
the same and different sets of levels to evaluate their general-
ization capabilities. To make these benchmark environments
goal-conditioned, during training, we replace the original
rewards with a sparse goal-conditioned reward function,
r(s, g) = 0 (if s = g), −1 (otherwise).

We compare the performance of HIQL with six previous
behavioral cloning and offline RL methods. For behav-
ioral cloning methods, we consider flat goal-conditioned
behavioral cloning (GCBC) (Ding et al., 2019; Ghosh et al.,
2021) and hierarchical goal-conditioned behavioral cloning
(HGCBC) with two-level policies (Lynch et al., 2019; Gupta
et al., 2019). For offline goal-conditioned RL methods, we
evaluate a goal-conditioned variant of IQL (Kostrikov et al.,
2022) (Section 3), which does not use hierarchy, and POR
(Xu et al., 2022), which uses hierarchy but does not use
temporal abstraction (i.e., similar to k = 1 in HIQL) nor
representation learning. In AntMaze, we additionally com-
pare HIQL with two model-based approaches that studied
this domain in prior work: Trajectory Transformer (TT)
(Janner et al., 2021), which models entire trajectories with a
Transformer (Vaswani et al., 2017), and TAP (Jiang et al.,
2023), which encodes trajectory segments with VQ-VAE
(van den Oord et al., 2017) and performs model-based plan-
ning over latent vectors in a hierarchical manner. We use the
performance reported by Jiang et al. (2023) for comparisons
with TT and TAP. In our experiments, we use 8 random
seeds and represent 95% confidence intervals with shaded
regions (in figures) or standard deviations (in tables), unless
otherwise stated. We provide full details of environments
and baselines in Appendix.

Table 2. Evaluating HIQL on pixel-based Procgen Maze. HIQL
scales to high-dimensional pixel-based environments by using
latent waypoint representations. HIQL achieves the best perfor-
mance on both train and test maze levels. We refer to Appendix
for the full training curves.

Task GCBC HGCBC (+ repr.) IQL POR (+ repr.) HIQL (ours)

gc-procgen-500-train 16.8 ±2.8 14.3 ±4.1 72.5 ±10.0 75.8 ±12.1 82.5 ±6.0

gc-procgen-500-test 14.5 ±5.0 11.2 ±3.7 49.5 ±9.8 53.8 ±14.5 64.5 ±13.2

gc-procgen-1000-train 27.2 ±8.9 15.0 ±5.7 78.2 ±7.2 82.0 ±6.5 87.0 ±13.9

gc-procgen-1000-test 12.0 ±5.9 14.5 ±5.0 60.0 ±10.6 69.8 ±7.4 78.2 ±17.9

6.2. Results on state-based environments
We first evaluate HIQL in the five state-based environments
(AntMaze-{Medium, Large, Ultra}, Kitchen, and CALVIN)
using nine offline datasets. We periodically evaluate the
performance of the learned policies by commanding them
with the evaluation goal state g (i.e., the benchmark task
target position in AntMaze, or the state that corresponds
to completing all four subtasks in Kitchen and CALVIN),
and measuring the average return with respect to the origi-
nal benchmark task reward function. We test two versions
of HIQL (without and with representations) in state-based
environments. Table 1 shows the results on the nine of-
fline datasets, indicating that HIQL mostly achieves the best
performance in our experiments. Notably, HIQL attains
an 88% success rate on gc-antmaze-large-diverse and 53%
on gc-antmaze-ultra-diverse, which is, to the best of our
knowledge, better than any previously reported result on
these datasets.1 In manipulation domains, we find that hav-
ing latent waypoint representations in HIQL is important
for enabling good performance. In CALVIN, while other
methods often fail to achieve any of the subtasks due to the
high diversity in the data, HIQL completes approximately

1We note that we use goal-conditioned variants of AntMaze,
which differ from the original tasks. These variants could poten-
tially be more difficult as the policy needs to learn to reach any
goal from any state, but they might also be potentially easier given
that the states contain goal information. We note that the prior
work (Jiang et al., 2023), from which we take the results of TT
and TAP, also provides the goal information in the state. As the
performance of IQL in Table 1 is similar to that of the original
paper (Kostrikov et al., 2022), we believe these goal-conditioned
variants have similar level of difficulties to the original ones.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Offline Goal-Conditioned RL with Latent States as Actions

Table 3. HIQL can leverage passive, action-free data. Since
our method requires action information only for the low-level
policy, which is relatively easier to learn, HIQL mostly achieves
comparable performance with just 25% of action-labeled data,
outperforming even baselines trained on full datasets.

Task IQL (full) POR (full) HIQL (full) HIQL (action-limited)

gc-antmaze-large-diverse 50.7 ±18.8 49.0 ±17.2 88.2 ±5.3 88.9 ±6.4

gc-antmaze-ultra-diverse 21.6 ±15.2 29.8 ±13.6 52.9 ±17.4 38.2 ±15.4

gc-kitchen-mixed 51.3 ±12.8 27.9 ±17.9 67.7 ±6.8 59.1 ±9.6

gc-calvin 7.8 ±17.6 12.4 ±18.6 43.8 ±39.5 35.8 ±30.7

gc-procgen-500-train 72.5 ±10.0 75.8 ±12.1 82.5 ±6.0 77.0 ±12.5

gc-procgen-500-test 49.5 ±9.8 53.8 ±14.5 64.5 ±13.2 65.5 ±16.4

two subtasks on average.

6.3. Results on pixel-based environments
Next, to verify whether HIQL can scale to high-dimensional
environments using goal representations, we evaluate our
method on the Procgen Maze environment with 64× 64× 3
image observations. We train HIQL and previous ap-
proaches using an offline dataset collected from either 500 or
1000 maze levels with varying difficulties, and assess them
on both the training and test sets consisting of challenging
levels (see Appendix for full details). We use a sparse goal-
conditioned reward function as in previous experiments. For
the prior hierarchical approaches that generate raw states
(HGCBC and POR), we apply HIQL’s representation learn-
ing scheme to enable them to handle the high-dimensional
observation space. Table 2 presents the results, showing
that our hierarchical policy extraction scheme, combined
with representation learning, improves performance in these
image-based environments as well. Notably, HIQL has
larger gaps compared to the previous methods on the test
sets. This is likely because the high-level policy can gen-
eralize better than the flat policy, as it can focus on the
long-term direction toward the goal rather than the maze’s
detailed layout.

6.4. Results with action-free data
As mentioned in Section 5.1, one of the advantages of HIQL
is its ability to leverage a potentially large amount of passive
(action-free) data. To empirically verify this capability, we
train HIQL on action-limited datasets, where we provide ac-
tion labels for just 25% of the trajectories and use state-only
trajectories for the remaining 75%. Table 3 shows the results
from six different tasks, demonstrating that HIQL, even with
a limited amount of action information, can mostly main-
tain its original performance. Notably, action-limited HIQL
still outperforms previous offline RL methods (IQL and
POR) trained with the full action-labeled data. We believe
this is because HIQL learns a majority of the knowledge
through hierarchical waypoint prediction from state-only
trajectories.

6.5. Analysis
Does HIQL mitigate policy errors caused by noisy value
functions in practice? To empirically verify whether our

0 20 40 60
Distance between s and g

0

5

10

S
td

of
V̂

(s
,g

)

Policy accuracy metric IQL POR (+ repr.) HIQL (ours)

All goals (train) 61.9 ±1.9 64.5 ±2.7 66.6 ±2.1 (+2.1)
All goals (test) 60.3 ±2.8 63.6 ±3.2 68.0 ±4.1 (+4.4)
Distant goals (train) 49.3 ±3.3 48.1 ±4.5 56.8 ±8.9 (+7.5)
Distant goals (test) 47.5 ±8.6 47.2 ±3.7 59.9 ±10.4 (+12.4)

Figure 6. Value and policy errors in Procgen Maze: (top left) As
the distance between the state and the goal increases, the learned
value function becomes noisier. (top right) We measure the accura-
cies of learned policies. (bottom) Thanks to our hierarchical policy
extraction scheme (Section 4.2), HIQL exhibits the best policy
accuracy, especially when the goal is far away from the state. The
blue numbers denote the accuracy differences between HIQL and
the second-best methods.

two-level policy architecture is more robust to errors in the
learned value function (i.e., the “signal-to-noise” ratio argu-
ment in Section 4), we compare the policy accuracies of IQL
(flat policy), POR (hierarchy without temporal abstraction),
and HIQL (ours) in Procgen Maze, by evaluating the ratio
at which the ground-truth actions match the learned actions.
We also measure the noisiness (i.e., standard deviation) of
the learned value function with respect to the ground-truth
distance between the state and the goal. Figure 6 shows
the results. We first observe that the noise in the value
function generally becomes larger as the state-goal distance
increases. Consequently, HIQL achieves the best policy ac-
curacy, especially for distant goals (dist(s, g) ≥ 50), as its
hierarchical policy extraction scheme provides the policies
with clearer learning signals (Section 4.2). We refer to the
supplementary materials for further analyses, including way-
point visualizations and an ablation study on waypoint
steps and design choices for representations.

7. Conclusion
We proposed HIQL as a simple yet effective hierarchical
algorithm for offline goal-conditioned RL. While hierar-
chical RL methods tend to be complex, involving many
different components and objectives, HIQL shows that it is
possible to build a method where a single value function
simultaneously drives the learning of the low-level policy,
the high-level policy, and the representations in a relatively
simple and easy-to-train framework. We showed that HIQL
not only exhibits strong performance in various challenging
goal-conditioned tasks, but also can leverage action-free
data and enjoy the benefits of built-in representation learn-
ing for image-based tasks. Due to space constraints, we
further discuss limitations and future work in Appendix.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Offline Goal-Conditioned RL with Latent States as Actions

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. G. Deep reinforcement learning at the
edge of the statistical precipice. In Neural Information
Processing Systems (NeurIPS), 2021.

Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum,
O. Opal: Offline primitive discovery for accelerating of-
fline reinforcement learning. In International Conference
on Learning Representations (ICLR), 2021.

An, G., Moon, S., Kim, J.-H., and Song, H. O. Uncertainty-
based offline reinforcement learning with diversified q-
ensemble. In Neural Information Processing Systems
(NeurIPS), 2021.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. In Neural
Information Processing Systems (NeurIPS), 2017.

Ba, J., Kiros, J. R., and Hinton, G. E. Layer normalization.
ArXiv, abs/1607.06450, 2016.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In AAAI Conference on Artificial Intelligence
(AAAI), 2017.

Brandfonbrener, D., Whitney, W. F., Ranganath, R., and
Bruna, J. Offline rl without off-policy evaluation. In
Neural Information Processing Systems (NeurIPS), 2021.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
ArXiv, abs/1606.01540, 2016.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T. J., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Neural Information
Processing Systems (NeurIPS), 2020.

Chane-Sane, E., Schmid, C., and Laptev, I. Goal-
conditioned reinforcement learning with imagined sub-
goals. In International Conference on Machine Learning
(ICML), 2021.

Chebotar, Y., Hausman, K., Lu, Y., Xiao, T., Kalashnikov,
D., Varley, J., Irpan, A., Eysenbach, B., Julian, R. C.,
Finn, C., and Levine, S. Actionable models: Unsuper-
vised offline reinforcement learning of robotic skills. In
International Conference on Machine Learning (ICML),
2021.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In Neural Information Processing Systems
(NeurIPS), 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E.
A simple framework for contrastive learning of visual
representations. In International Conference on Machine
Learning (ICML), 2020.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In International Conference on Machine Learn-
ing (ICML), 2020.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In Neural Information Processing Systems (NeurIPS),
1992.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-HLT),
2019.

Ding, Y., Florensa, C., Phielipp, M., and Abbeel, P. Goal-
conditioned imitation learning. In Neural Information
Processing Systems (NeurIPS), 2019.

Durugkar, I., Tec, M., Niekum, S., and Stone, P. Adversarial
intrinsic motivation for reinforcement learning. In Neural
Information Processing Systems (NeurIPS), 2021.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., Legg, S., and Kavukcuoglu, K. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures. In International Conference on Machine
Learning (ICML), 2018.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Neural Information Processing Systems
(NeurIPS), 2019.

Eysenbach, B., Salakhutdinov, R., and Levine, S. C-
learning: Learning to achieve goals via recursive clas-
sification. In International Conference on Learning Rep-
resentations (ICLR), 2021.

Eysenbach, B., Zhang, T., Salakhutdinov, R., and Levine,
S. Contrastive learning as goal-conditioned reinforce-
ment learning. In Neural Information Processing Systems
(NeurIPS), 2022.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Offline Goal-Conditioned RL with Latent States as Actions

Fang, K., Yin, P., Nair, A., and Levine, S. Planning to
practice: Efficient online fine-tuning by composing goals
in latent space. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022a.

Fang, K., Yin, P., Nair, A., Walke, H., Yan, G., and Levine, S.
Generalization with lossy affordances: Leveraging broad
offline data for learning visuomotor tasks. In Conference
on Robot Learning (CoRL), 2022b.

Fang, M., Zhou, C., Shi, B., Gong, B., Xu, J., and Zhang, T.
Dher: Hindsight experience replay for dynamic goals. In
International Conference on Learning Representations
(ICLR), 2019.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. ArXiv, abs/2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning (ICML), 2019.

Garg, D., Hejna, J., Geist, M., and Ermon, S. Extreme
q-learning: Maxent rl without entropy. In International
Conference on Learning Representations (ICLR), 2023.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. Emaq:
Expected-max q-learning operator for simple yet effective
offline and online rl. In International Conference on
Machine Learning (ICML), 2021.

Ghosh, D. dibyaghosh/jaxrl m, 2023. URL https://
github.com/dibyaghosh/jaxrl_m.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Ey-
senbach, B., and Levine, S. Learning to reach goals via
iterated supervised learning. In International Conference
on Learning Representations (ICLR), 2021.

Ghosh, D., Bhateja, C., and Levine, S. Reinforcement
learning from passive data via latent intentions. In In-
ternational Conference on Machine Learning (ICML),
2023.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks via
imitation and reinforcement learning. In Conference on
Robot Learning (CoRL), 2019.

He, K., Chen, X., Xie, S., Li, Y., Doll’ar, P., and Girshick,
R. B. Masked autoencoders are scalable vision learners.
In IEEE/CVF Computer Vision and Pattern Recognition
Conference (CVPR), 2022.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). ArXiv, abs/1606.08415, 2016.

Hoang, C., Sohn, S., Choi, J., Carvalho, W., and Lee,
H. Successor feature landmarks for long-horizon goal-
conditioned reinforcement learning. In Neural Informa-
tion Processing Systems (NeurIPS), 2021.

Hong, Z.-W., Yang, G., and Agrawal, P. Bilinear value
networks. In International Conference on Learning Rep-
resentations (ICLR), 2022.

Huang, Z., Liu, F., and Su, H. Mapping state space us-
ing landmarks for universal goal reaching. In Neural
Information Processing Systems (NeurIPS), 2019.

Janner, M., Li, Q., and Levine, S. Reinforcement learn-
ing as one big sequence modeling problem. In Neural
Information Processing Systems (NeurIPS), 2021.

Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. In
International Conference on Machine Learning (ICML),
2022.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktaschel, T.,
Grefenstette, E., and Tian, Y. Efficient planning in a
compact latent action space. In International Conference
on Learning Representations (ICLR), 2023.

Kaelbling, L. P. Learning to achieve goals. In International
Joint Conference on Artificial Intelligence (IJCAI), 1993.

Kim, J., Seo, Y., and Shin, J. Landmark-guided subgoal
generation in hierarchical reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2021.

Kim, J., Seo, Y., Ahn, S., Son, K., and Shin, J. Imitating
graph-based planning with goal-conditioned policies. In
International Conference on Learning Representations
(ICLR), 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. In International
Conference on Learning Representations (ICLR), 2022.

Krishnan, S., Fox, R., Stoica, I., and Goldberg, K. Ddco:
Discovery of deep continuous options for robot learning
from demonstrations. In Conference on Robot Learning
(CoRL), 2017.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. B. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation.
In Neural Information Processing Systems (NeurIPS),
2016.

https://github.com/dibyaghosh/jaxrl_m
https://github.com/dibyaghosh/jaxrl_m

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Offline Goal-Conditioned RL with Latent States as Actions

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative q-learning for offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2019.

Kumar, A., Agarwal, R., Ma, T., Courville, A. C., Tucker,
G., and Levine, S. Dr3: Value-based deep reinforcement
learning requires explicit regularization. In International
Conference on Learning Representations (ICLR), 2022.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning: State-of-the-
art, pp. 45–73. Springer, 2012.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. ArXiv, abs/2005.01643, 2020.

Levy, A., Konidaris, G. D., Platt, R. W., and Saenko, K.
Learning multi-level hierarchies with hindsight. In Inter-
national Conference on Learning Representations (ICLR),
2019.

Li, A. C., Pinto, L., and Abbeel, P. Generalized hindsight for
reinforcement learning. In Neural Information Processing
Systems (NeurIPS), 2020.

Li, J., Tang, C., Tomizuka, M., and Zhan, W. Hierarchical
planning through goal-conditioned offline reinforcement
learning. IEEE Robotics and Automation Letters (RA-L),
7(4):10216–10223, 2022.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J.,
Levine, S., and Sermanet, P. Learning latent plans from
play. In Conference on Robot Learning (CoRL), 2019.

Ma, Y. J., Yan, J., Jayaraman, D., and Bastani, O. How
far i’ll go: Offline goal-conditioned reinforcement learn-
ing via f-advantage regression. In Neural Information
Processing Systems (NeurIPS), 2022.

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar,
V., and Zhang, A. Vip: Towards universal visual reward
and representation via value-implicit pre-training. In
International Conference on Learning Representations
(ICLR), 2023.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
laplacian framework for option discovery in reinforce-
ment learning. In International Conference on Machine
Learning (ICML), 2017.

Mees, O., Hermann, L., Rosete-Beas, E., and Burgard, W.
Calvin: A benchmark for language-conditioned policy
learning for long-horizon robot manipulation tasks. IEEE
Robotics and Automation Letters (RA-L), 7(3):7327–7334,
2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. ArXiv,
abs/1312.5602, 2013.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Neural
Information Processing Systems (NeurIPS), 2018.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Near-
optimal representation learning for hierarchical reinforce-
ment learning. In International Conference on Learning
Representations (ICLR), 2019.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating
online reinforcement learning with offline datasets. ArXiv,
abs/2006.09359, 2020.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation. In Conference on Robot Learning (CoRL),
2022.

Nasiriany, S., Pong, V. H., Lin, S., and Levine, S. Planning
with goal-conditioned policies. In Neural Information
Processing Systems (NeurIPS), 2019.

Neumann, G. and Peters, J. Fitted q-iteration by advantage
weighted regression. In Neural Information Processing
Systems (NeurIPS), 2008.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable off-
policy reinforcement learning. ArXiv, abs/1910.00177,
2019.

Pertsch, K., Lee, Y., and Lim, J. J. Accelerating reinforce-
ment learning with learned skill priors. In Conference on
Robot Learning (CoRL), 2020.

Peters, J. and Schaal, S. Reinforcement learning by reward-
weighted regression for operational space control. In
International Conference on Machine Learning (ICML),
2007.

Peters, J., Muelling, K., and Altun, Y. Relative entropy pol-
icy search. In AAAI Conference on Artificial Intelligence
(AAAI), 2010.

Pong, V. H., Gu, S. S., Dalal, M., and Levine, S. Temporal
difference models: Model-free deep rl for model-based
control. In International Conference on Learning Repre-
sentations (ICLR), 2018.

Rosete-Beas, E., Mees, O., Kalweit, G., Boedecker, J., and
Burgard, W. Latent plans for task-agnostic offline rein-
forcement learning. In Conference on Robot Learning
(CoRL), 2022.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Offline Goal-Conditioned RL with Latent States as Actions

Salter, S., Wulfmeier, M., Tirumala, D., Heess, N. M. O.,
Riedmiller, M. A., Hadsell, R., and Rao, D. Mo2: Model-
based offline options. In Conference on Lifelong Learning
Agents (CoLLAs), 2022.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-
parametric topological memory for navigation. In Interna-
tional Conference on Learning Representations (ICLR),
2018.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Uni-
versal value function approximators. In International
Conference on Machine Learning (ICML), 2015.

Schmidhuber, J. Learning to generate sub-goals for action
sequences. In Artificial neural networks, 1991.

Seo, Y., Lee, K., James, S., and Abbeel, P. Reinforcement
learning with action-free pre-training from videos. In
International Conference on Machine Learning (ICML),
2022.

Shah, D., Eysenbach, B., Kahn, G., Rhinehart, N., and
Levine, S. Recon: Rapid exploration for open-world
navigation with latent goal models. In Conference on
Robot Learning (CoRL), 2021.

Shi, L., Lim, J. J., and Lee, Y. Skill-based model-based
reinforcement learning. In Conference on Robot Learning
(CoRL), 2022.

Stolle, M. and Precup, D. Learning options in reinforcement
learning. In Symposium on Abstraction, Reformulation
and Approximation, 2002.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2012.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural
discrete representation learning. In Neural Information
Processing Systems (NeurIPS), 2017.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In Neural Information Process-
ing Systems (NeurIPS), 2017.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N. M. O.,
Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feudal
networks for hierarchical reinforcement learning. In In-
ternational Conference on Machine Learning (ICML),
2017.

Villaflor, A. R., Huang, Z., Pande, S., Dolan, J. M., and
Schneider, J. G. Addressing optimism bias in sequence
modeling for reinforcement learning. In International
Conference on Machine Learning (ICML), 2022.

Wang, T., Torralba, A., Isola, P., and Zhang, A. Opti-
mal goal-reaching reinforcement learning via quasimetric
learning. In International Conference on Machine Learn-
ing (ICML), 2023.

Wang, Z., Novikov, A., Zolna, K., Springenberg, J. T., Reed,
S. E., Shahriari, B., Siegel, N., Merel, J., Gulcehre, C.,
Heess, N. M. O., and de Freitas, N. Critic regularized
regression. In Neural Information Processing Systems
(NeurIPS), 2020.

Wu, Y., Tucker, G., and Nachum, O. Behavior regularized
offline reinforcement learning. ArXiv, abs/1911.11361,
2019.

Wulfmeier, M., Rao, D., Hafner, R., Lampe, T., Abdol-
maleki, A., Hertweck, T., Neunert, M., Tirumala, D.,
Siegel, N., Heess, N. M. O., and Riedmiller, M. A. Data-
efficient hindsight off-policy option learning. In Interna-
tional Conference on Machine Learning (ICML), 2021.

Xu, H., Jiang, L., Li, J., and Zhan, X. A policy-guided
imitation approach for offline reinforcement learning. In
Neural Information Processing Systems (NeurIPS), 2022.

Xu, H., Jiang, L., Li, J., Yang, Z., Wang, Z., Chan, V.,
and Zhan, X. Offline rl with no ood actions: In-sample
learning via implicit value regularization. In International
Conference on Learning Representations (ICLR), 2023.

Yang, M., Schuurmans, D., Abbeel, P., and Nachum, O.
Dichotomy of control: Separating what you can control
from what you cannot. In International Conference on
Learning Representations (ICLR), 2023.

Yang, R., Lu, Y., Li, W., Sun, H., Fang, M., Du, Y., Li,
X., Han, L., and Zhang, C. Rethinking goal-conditioned
supervised learning and its connection to offline rl. In
International Conference on Learning Representations
(ICLR), 2022.

Zhang, L., Yang, G., and Stadie, B. C. World model as
a graph: Learning latent landmarks for planning. In
International Conference on Machine Learning (ICML),
2021.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. Generating
adjacency-constrained subgoals in hierarchical reinforce-
ment learning. In Neural Information Processing Systems
(NeurIPS), 2020.

Zhang, T., Eysenbach, B., Salakhutdinov, R., Levine, S., and
Gonzalez, J. C-planning: An automatic curriculum for

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Offline Goal-Conditioned RL with Latent States as Actions

learning goal-reaching tasks. In International Conference
on Learning Representations (ICLR), 2022.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Offline Goal-Conditioned RL with Latent States as Actions

Algorithm 1 Hierarchical Implicit Q-Learning (HIQL)

1: Input: offline dataset D, action-free dataset DS (optional, DS = D otherwise)
2: Initialize value function VθV (s, ϕ(g)) with built-in representation ϕ(g), high-level policy πh

θh
(zt+k|st+k, g), low-level

policy πℓ
θℓ
(a|st, zt+k), learning rates λV , λh, λℓ

3: while not converged do
4: θV ← θV − λV∇θV LV (θV) with (st, st+1, g) ∼ DS # Train value function, Equation (4)
5: end while
6: while not converged do
7: θh ← θh + λh∇θhJπh(θh) with (st, st+k̃, g) ∼ DS # Extract high-level policy, Equation (6)
8: end while
9: while not converged do

10: θℓ ← θℓ + λℓ∇θℓJπℓ(θℓ) with (st, at, st+1, s̃t+k) ∼ D # Extract low-level policy, Equation (7)
11: end while

A. Limitations
One limitation of HIQL is that the objective for its action-free value function (Equation (4)) is unbiased only when the
environment dynamics are deterministic. As discussed in Section 3, HIQL (and other prior methods that use action-free
videos) may overestimate the value function in partially observed or stochastic settings. To mitigate the optimism bias of
HIQL in stochastic environments, we believe disentangling controllable parts from uncontrollable parts of the environment
can be one possible solution (Villaflor et al., 2022; Yang et al., 2023), which we leave for future work.

B. Training details

Goal distributions. We train our goal-conditioned value function, high-level policy, and low-level policy respectively
with Equations (4), (6) and (7), using different goal-sampling distributions. For the value function (Equation (4)), we sample
the goals from either random states, futures states, or the current state with probabilities of 0.3, 0.5, and 0.2, respectively,
following Ghosh et al. (2023). We use Geom(1− γ) for the future state distribution and the uniform distribution over the
offline dataset for sampling random states. For the hierarchical policies, we mostly follow the sampling strategy of Gupta
et al. (2019). We first sample a trajectory (s0, s1, . . . , st, . . . , sT) from the dataset DS and a state st from the trajectory. For
the high-level policy (Equation (6)), we either (i) sample g uniformly from the future states stg (tg > t) in the trajectory and
set the target waypoint to smin(t+k,tg) or (ii) sample g uniformly from the dataset and set the target waypoint to smin(t+k,T).
For the low-level policy (Equation (7)), we first sample a state st from D, and set the input waypoint to smin(t+k,T) in the
same trajectory.

Advantage estimates. In principle, the advantage estimates for Equations (6) and (7) are respectively given as

Ah(st, st+k̃, g) = γk̃VθV (st+k̃, g) +

k̃−1∑
t′=t

r(st′ , g)− VθV (st, g), (8)

Aℓ(st, at, s̃t+k) = γVθV (st+1, s̃t+k) + r(st, s̃t+k)− VθV (st, s̃t+k), (9)

where we use the notations k̃ and s̃t+k to incorporate the edge cases discussed in the previous paragraph (i.e., k̃ =
min(k, tg − t) when we sample g from future states, k̃ = min(k, T − t) when we sample g from random states, and
s̃t+k = smin(t+k,T)). Here, we note that st′ ̸= g and st ̸= s̃t+k always hold except for those edge cases. Thus, the reward
terms in Equations (8) and (9) are mostly constants, as are the third terms (with respect to the policy inputs). As such, we
practically ignore these terms for simplicity, and this simplification further enables us to subsume the discount factors in the
first terms into the temperature hyperparameter β. We hence use the following simplified advantage estimates, which we
empirically found to lead to almost identical performances in our experiments:

Ãh(st, st+k̃, g) = VθV (st+k̃, g)− VθV (st, g), (10)

Ãℓ(st, at, s̃t+k) = VθV (st+1, s̃t+k)− VθV (st, s̃t+k). (11)

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Offline Goal-Conditioned RL with Latent States as Actions

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

HIQL

HIQL (w/o repr.)

POR

IQL

HGCBC

GCBC

TAP

TT

0.0 0.5 1.0
Steps £106

0.0

0.5

1.0
R

et
u
rn

antmaze-medium-diverse

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-medium-play

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-diverse

0.0 0.5 1.0
Steps £106

0.0

0.5

R
et

u
rn

antmaze-large-play

0.0 0.5 1.0
Steps £106

0.00

0.25

0.50

antmaze-ultra-diverse

0.0 0.5 1.0
Steps £106

0.00

0.25

0.50

antmaze-ultra-play

0 2 4
Steps £105

0

2

R
et

u
rn

kitchen-partial

0 2 4
Steps £105

0

2

kitchen-mixed

0 2 4
Steps £105

0

2

calvin

Figure 7. Training curves for the results with state-based environments (Table 1). Shaded regions denote the 95% confidence intervals
across 8 random seeds.

0 2 4
Steps £105

0.0

0.2

0.4

0.6

0.8

R
et

u
rn

procgen-maze-500-train

0 2 4
Steps £105

0.0

0.2

0.4

0.6

procgen-maze-500-test

0 2 4
Steps £105

0.00

0.25

0.50

0.75

procgen-maze-1000-train

0 2 4
Steps £105

0.0

0.2

0.4

0.6

0.8

procgen-maze-1000-test

0 100000 200000 300000 400000 500000
step

0.0

0.2

0.4

0.6

0.8

re
tu

rn

HIQL

POR (+ repr.)

IQL

HGCBC (+ repr.)

GCBC

Figure 8. Training curves for the results with pixel-based Procgen Maze environments (Table 2). Shaded regions denote the 95%
confidence intervals across 8 random seeds.

State representations. We model the output of the representation function ϕ(g) in V (s, ϕ(g)) with a 10-dimensional
latent vector and normalize the outputs of ϕ(g) (Kumar et al., 2022). Empirically, we found that concatenating s to the input
(i.e., using ϕ([g, s]) instead of ϕ(g)), similarly to Hong et al. (2022), improves performance in our experiments. While
this might lose the sufficiency property of the representations (i.e., Proposition 5.1), we found that the representations
obtained in this way generally lead to better performance in practice, indicating that they still mostly preserve the goal
information for control. We believe this is due to the imposed bottleneck on ϕ by constraining its effective dimensionality to
9 (by using normalized 10-dimensional vectors), which enforces ϕ to retain bits regarding g and to reference s only when
necessary. Additionally, in pixel-based environments, we found that allowing gradient flows from the low-level policy loss
(Equation (7)) to ϕ further improves performance. We ablate these choices and report the results in Appendix D.

We provide a pseudocode for HIQL in Algorithm 1. We note that the high- and low-level policies can be jointly trained with
the value function as well.

C. Additional Plots
We include the training curves for Tables 1 to 3 in Figures 7 to 9, respectively. We include the full Rliable (Agarwal et al.,
2021) plots in Figures 10 and 11.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Offline Goal-Conditioned RL with Latent States as Actions

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

HIQL (action-limited)

HIQL (full)

POR (full)

IQL (full)
0.0 0.5 1.0

Steps £106

0.0

0.5

R
et

u
rn

antmaze-large-diverse

0.0 0.5 1.0
Steps £106

0.0

0.2

0.4

0.6

antmaze-ultra-diverse

0 2 4
Steps £105

0

1

2

3

kitchen-mixed

0 2 4
Steps £105

0

1

2

3

R
et

u
rn

calvin

0 2 4
Steps £105

0.00

0.25

0.50

0.75

procgen-maze-500-train

0 2 4
Steps £105

0.0

0.2

0.4

0.6

procgen-maze-500-test

Figure 9. Training curves for the results with action-free data (Table 3). Shaded regions denote the 95% confidence intervals across 8
random seeds.

0.30 0.45 0.60 0.75

GCBC
HGCBC

IQL
POR

HIQL (w/o repr.)
HIQL

Median

0.30 0.45 0.60 0.75

IQM

0.45 0.60

Mean

0.30 0.45 0.60

Optimality Gap

Normalized Score

Figure 10. Rliable plots for state-based environments.

0.2 0.4 0.6 0.8

GCBC
HGCBC (w/ repr.)

IQL
POR (w/ repr.)

HIQL
Median

0.2 0.4 0.6 0.8

IQM

0.2 0.4 0.6 0.8

Mean

0.2 0.4 0.6 0.8

Optimality Gap

Normalized Score

Figure 11. Rliable plots for pixel-based environments.

D. Ablation Study
Waypoint steps. To understand how the waypoint steps k affect performance, we evaluate HIQL with six different
k ∈ {1, 5, 15, 25, 50, 100} on AntMaze, Kitchen, and CALVIN. On AntMaze, we test both HIQL with and without
representations (Section 5.2). Figure 12 shows the results, suggesting that HIQL generally achieves the best performance
with k between 25 and 50. Also, HIQL still maintains reasonable performance even when k is not within this optimal range,
unless k is too small.

Representation parameterizations. We evaluate four different choices of the representation function ϕ in HIQL: ϕ([g, s]),
ϕ(g − s), ϕ(g), and without ϕ. Figure 13 shows the results, indicating that passing g and s together to ϕ generally improves
performance. We hypothesize that this is because ϕ, when given both g and s, can capture contextualized information about
the goals (or waypoints) with respect to the current state, which is often easier to deal with for the low-level policy. For
example, in AntMaze, the agent only needs to know the relative position of the waypoint with respect to the current position.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Offline Goal-Conditioned RL with Latent States as Actions

0.0 0.5 1.0
Steps £106

0.0

0.5

R
et

u
rn

antmaze-large-diverse (w/o repr.)

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-play (w/o repr.)

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-diverse (w/ repr.)

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-play (w/ repr.)

0 2 4
Steps £105

0

1

2

R
et

u
rn

kitchen-partial (w/ repr.)

0 2 4
Steps £105

0

1

2

3
kitchen-mixed (w/ repr.)

0 2 4
Steps £105

0

1

2

3

calvin (w/ repr.)

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

Waypoint steps

1

5

15

25

50

100

Figure 12. Ablation study of the waypoint steps k. HIQL generally achieves the best performances when k is between 25 and 50. Even
when k is not within this range, HIQL mostly maintains reasonably good performance unless k is too small (i.e., ≤ 5). Shaded regions
denote the 95% confidence intervals across 8 random seeds.

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

¡([g, s])

¡(g ° s)

¡(g)

w/o repr.
0.0 0.5 1.0

Steps £106

0.00

0.25

0.50

0.75

R
et

u
rn

antmaze-large-diverse

0 2 4
Steps £105

0

1

2

kitchen-partial

0 2 4
Steps £105

0

1

2

3

calvin

Figure 13. Ablation study of different parameterizations of the representation function. Passing s and g together to ϕ improves performance
in general. Shaded regions denote the 95% confidence intervals across 8 random seeds.

0 100000 200000 300000 400000 500000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
tu

rn

w/ policy grad.

w/o policy grad.

0 2 4
Steps £105

0.0

0.2

0.4

0.6

0.8

R
et

u
rn

procgen-maze-500-train

0 2 4
Steps £105

0.0

0.2

0.4

0.6

procgen-maze-500-test

Figure 14. Ablation study of the auxiliary gradient flow from the low-level policy loss to ϕ on pixel-based ProcGen Maze. This auxiliary
gradient flow helps maintain goal information in the representations. Shaded regions denote the 95% confidence intervals across 8 random
seeds.

Auxiliary gradient flows for representations. We found that in Procgen Maze, allowing gradient flows from the low-level
policy loss to the representation function enhances performance (Figure 14). We believe this is because the additional
gradients from the policy loss further help maintain the information necessary for control. We also (informally) found that
this additional gradient flow occasionally slightly improves performances in the other environments as well, but we do not
enable this feature in the other domains to keep our method as simple as possible.

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Offline Goal-Conditioned RL with Latent States as Actions

E. Implementation details
We implement HIQL based on JaxRL Minimal (Ghosh, 2023). Our implementation is available at the following anonymized
repository: https://github.com/hiqlauthors/hiql. We run our experiments on an internal GPU cluster composed
of TITAN RTX and A5000 GPUs. Each experiment on state-based environments takes no more than 8 hours and each
experiment on pixel-based environments takes no more than 16 hours.

E.1. Environments

AntMaze (Todorov et al., 2012; Brockman et al., 2016) We use the antmaze-medium-diverse-v2, antmaze-medium-
play-v2, antmaze-large-diverse-v2, and antmaze-large-play-v2 datasets from the D4RL benchmark (Fu et al., 2020). For
AntMaze-Ultra, we use the antmaze-ultra-diverse-v0 and antmaze-ultra-play-v0 datasets proposed by Jiang et al. (2023).
The maze in the AntMaze-Ultra task is twice the size of the largest maze in the original D4RL dataset. Each dataset consists
of 999 length-1000 trajectories, in which the Ant agent navigates from an arbitrary start location to another goal location,
which does not necessarily correspond to the target evaluation goal. At test time, to specify a goal g for the policy, we set
the first two state dimensions (which correspond to the x-y coordinates) to the target goal given by the environment and the
remaining proprioceptive state dimensions to those of the first observation in the dataset. At evaluation, the agent gets a
reward of 1 when it reaches the goal.

Kitchen (Gupta et al., 2019). We use the kitchen-partial-v0 and kitchen-mixed-v0 datasets from the D4RL benchmark (Fu
et al., 2020). Each dataset consists of 136950 transitions with varying trajectory lengths (approximately 227 steps per
trajectory on average). In the kitchen-partial-v0 task, the goal is to achieve the four subtasks of opening the microwave,
moving the kettle, turning on the light switch, and sliding the cabinet door. The dataset contains a small number of successful
trajectories that achieve the four subtasks. In the kitchen-mixed-v0 task, the goal is to achieve the four subtasks of opening
the microwave, moving the kettle, turning on the light switch, and turning on the bottom left burner. The dataset does not
contain any successful demonstrations, only providing trajectories that achieve some subset of the four subtasks. At test
time, to specify a goal g for the policy, we set the proprioceptive state dimensions to those of the first observation in the
dataset and the other dimensions to the target kitchen configuration given by the environment. At evaluation, the agent gets
a reward of 1 whenever it achieves a subtask.

CALVIN (Mees et al., 2022). We use the offline dataset provided by Shi et al. (2022), which is based on the teleoperated
demonstrations from Mees et al. (2022). The task is to achieve the four subtasks of opening the drawer, turning on the
lightbulb, sliding the door to the left, and turning on the LED. The dataset consists of 1204 length-499 trajectories. In each
trajectory, the agent achieves some of the 34 subtasks in an arbitrary order, which makes the dataset highly task-agnostic
(Shi et al., 2022). At test time, to specify a goal g for the policy, we set the proprioceptive state dimensions to those of the
first observation in the dataset and the other dimensions to the target configuration. At evaluation, the agent gets a reward of
1 whenever it achieves a subtask.

Procgen Maze (Cobbe et al., 2020). We collect an offline dataset of goal-reaching behavior on the Procgen Maze suite.
For each maze level, we pre-compute the optimal goal-reaching policy using an oracle, and collect a trajectory of 1000
transitions by commanding a goal, using the goal-reaching policy to reach this goal, then commanding a new goal and
repeating henceforth. The procgen-maze-500 dataset consists of 500000 transitions collected over the first 500 levels
and procgen-maze-1000 consists of 1000000 transitions over the first 1000 levels. At test time, we evaluate the agent on
“challenging” levels that contain at least 20 leaf goal states (i.e., states that have only one adjacent state in the maze). We use
50 such levels and goals for each evaluation, where they are randomly sampled either between Level 0 and Level 499 for the
“-train” tasks or between Level 5000 and Level 5499 for the “-test” tasks. The agent gets a reward of 1 when it reaches the
goal.

In Tables 1 to 3, we report the normalized scores with a multiplier of 100 (AntMaze and Procgen Maze) or 25 (Kitchen and
CALVIN).

E.2. Hyperparameters

We present the hyperparameters used in our experiments in Table 4, where we mostly follow the network architectures
and hyperparameters used by Ghosh et al. (2023). We use layer normalization (Ba et al., 2016) for all MLP layers. For

https://github.com/hiqlauthors/hiql

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Offline Goal-Conditioned RL with Latent States as Actions

Table 4. Hyperparameters.

Hyperparameter Value

gradient steps 1000000 (AntMaze), 500000 (others)
Batch size 1024 (state-based), 256 (pixel-based)
Policy MLP dimensions (256, 256)
Value MLP dimensions (512, 512, 512)
Representation MLP dimensions (state-based) (512, 512, 512)
Representation architecture (pixel-based) Impala CNN (Espeholt et al., 2018)
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 0.0003
Target network smoothing coefficient 0.005

pixel-based environments, we use the Impala CNN architecture (Espeholt et al., 2018) to handle image inputs, mostly with
512-dimensional output features, but we use normalized 10-dimensional output features for the goal encoder of HIQL’s
value function to make them easily predictable by the high-level policy, as discussed in Appendix B. During training, we
periodically evaluate the performance of the learned policy at every 100K (state-based) or 50K (pixel-based) steps, using
522 (state-based) or 50 (pixel-based) rollouts. At evaluation, we use the argmax actions for environments with continuous
action spaces and ϵ-greedy actions with ϵ = 0.05 for environments with discrete action spaces (i.e., Procgen Maze).

To ensure fair comparisons, we use the same architecture for HIQL and all the baselines implemented in this work (i.e.,
GCBC, HGCBC, IQL, and POR). The discount factor γ is chosen from {0.99, 0.995}, the AWR temperature β from
{1, 3, 10}, the IQL expectile τ from {0.7, 0.9} for each method.

For HIQL, we set (γ, β, τ) = (0.99, 1, 0.7) across all environments. For IQL and POR, we use (γ, β, τ) = (0.99, 3, 0.9)
(AntMaze-Medium and AntMaze-Large), (γ, β, τ) = (0.995, 1, 0.7) (AntMaze-Ultra), or (γ, β, τ) = (0.99, 1, 0.7) (others).
For the waypoint steps k in HIQL, we use k = 50 (AntMaze-Ultra), k = 3 (Procgen Maze), or k = 25 (others). HGCBC
uses the same waypoint steps as HIQL for each environment, with the exception of AntMaze-Ultra, where we find it
performs slightly better with k = 25. In state-based environments, we sample goals for high-level or flat policies from either
the future states in the same trajectory (with probability 0.7) or the random states in the dataset (with probability 0.3). We
sample high-level goals only from the future states when training HGCBC or GCBC or when using Procgen Maze.

F. Proofs
F.1. Proof of Proposition 4.1

For simplicity, we assume that T/k is an integer and k ≤ T .

Proof. Defining z1 := z1,T and z2 := z−1,T , the probability of the flat policy π selecting an incorrect action can be
computed as follows:

E(π) = P[V̂ (s+ 1, g) ≤ V̂ (s− 1, g)] (12)

= P[V̂ (1, T) ≤ V̂ (−1, T)] (13)
= P[−(T − 1)(1 + σz1) ≤ −(T + 1)(1 + σz2)] (14)
= P[z1σ(T − 1)− z2σ(T + 1) ≤ −2] (15)

= P[zσ
√

T 2 + 1 ≤ −
√
2] (16)

= Φ

(
−

√
2

σ
√
T 2 + 1

)
, (17)

where z is a standard Gaussian random variable, and we use the fact that the sum of two independent Gaussian random

2This includes two additional rollouts for video logging.

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Offline Goal-Conditioned RL with Latent States as Actions

variables with standard deviations of σ1 and σ2 follows a normal distribution with a standard deviation of
√
σ2
1 + σ2

2 .

Similarly, the probability of the hierarchical policy πℓ ◦ πh selecting an incorrect action is bounded using a union bound as

E(πℓ ◦ πh) ≤ E(πh) + E(πℓ) (18)

= P[V̂ (s+ k, g) ≤ V̂ (s− k, g)] + P[V̂ (s+ 1, s+ k) ≤ V̂ (s− 1, s+ k)] (19)

= P[V̂ (k, T) ≤ V̂ (−k, T)] + P[V̂ (1, k) ≤ V̂ (−1, k)] (20)

= Φ

(
−

√
2

σ
√
(T/k)2 + 1

)
+Φ

(
−

√
2

σ
√
k2 + 1

)
. (21)

F.2. Proof of Proposition 5.1

We first formally define some notations. For s ∈ S, a ∈ A, g ∈ S, and a representation function ϕ : S → Z , we denote
the goal-conditioned state-value function as V (s, g), the action-value function as Q(s, a, g), the parameterized state-value
function as Vϕ(s, z) with z = ϕ(g), and the parameterized action-value function as Qϕ(s, a, z). We assume that the
environment dynamics are deterministic, and denote the deterministic transition kernel as p(s, a) = s′. Accordingly, we
have Q(s, a, g) = V (p(s, a), g) = V (s′, g) and Qϕ(s, a, z) = Vϕ(p(s, a), z) = Vϕ(s

′, z). We denote the optimal value
functions with the superscript “∗”, e.g., V ∗(s, g). We assume that there exists a parameterized value function, which we
denote V ∗

ϕ (s, ϕ(g)), that is the same as the true optimal value function, i.e., V ∗(s, g) = V ∗
ϕ (s, ϕ(g)) for all s ∈ S and

g ∈ S.

Proof. For π∗, we have

π∗(a | s, g) = argmax
a∈A

Q∗(s, a, g) (22)

= argmax
s′∈Ns

V ∗(s′, g) (23)

= argmax
s′∈Ns

V ∗
ϕ (s

′, z), (24)

where Ns denotes the neighborhood sets of s, i.e., Ns = {s′ | ∃a, p(s, a) = s′}. For π∗
ϕ, we have

π∗
ϕ(a | s, z) = argmax

a∈A
Q∗

ϕ(s, a, z) (25)

= argmax
s′∈Ns

V ∗
ϕ (s

′, z). (26)

By comparing Equation (24) and Equation (26), we can see that they have the same argmax action sets for all s and g.

G. Waypoint Visualizations
We visualize learned waypoints in Figures 15 and 16 (videos are available at https://sites.google.com/view/hiql/).
For AntMaze-Large, we train HIQL without representations and plot the x-y coordinates of waypoints. For Procgen Maze,
we train HIQL with 10-dimensional representations and find the maze positions that have the closest representations (with
respect to the Euclidean distance) to the waypoints produced by the high-level policy. The results show that HIQL learns
appropriate k-step waypoints that lead to the target goal.

https://sites.google.com/view/hiql/

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Offline Goal-Conditioned RL with Latent States as Actions

Figure 15. Waypoint visualization in AntMaze-Large. The red circles denote the target goal and the blue circles denote the learned
waypoints. Videos are available at https://sites.google.com/view/hiql/.

https://sites.google.com/view/hiql/

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Offline Goal-Conditioned RL with Latent States as Actions

Figure 16. Waypoint visualization in Procgen Maze. The red circles denote the target goal, the blue circles denote the learned waypoints,
and the white blobs denote the agent. Videos are available at https://sites.google.com/view/hiql/.

https://sites.google.com/view/hiql/

