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ABSTRACT

The performance of deep neural networks can be highly sensitive to the choice
of a variety of meta-parameters, such as optimizer parameters and model hy-
perparameters. Tuning these well, however, often requires extensive and costly
experimentation. Bayesian optimization (BO) is a principled approach to solve
such expensive hyperparameter tuning problems efficiently. Key to the performance
of BO is specifying and refining a distribution over functions, which is used to
reason about the optima of the underlying function being optimized. In this work,
we consider the scenario where we have data from similar functions that allows us
to specify a tighter distribution a priori. Specifically, we focus on the common but
potentially costly task of tuning optimizer parameters for training neural networks.
Building on the meta BO method from Wang et al. (2018b), we develop practi-
cal improvements that (a) boost its performance by leveraging tuning results on
multiple tasks without requiring observations for the same meta-parameter points
across all tasks, and (b) retain its regret bound for a special case of our method. As
a result, we provide a coherent BO solution for iterative optimization of continuous
optimizer parameters. To verify our approach in realistic model training setups,
we collected a large multi-task hyperparameter tuning dataset by training tens
of thousands of configurations of near-state-of-the-art models on popular image
and text datasets, as well as a protein sequence dataset. Our results show that on
average, our method is able to locate good hyperparameters at least 3 times more
efficiently than the best competing methods.

1 INTRODUCTION

The careful tuning of a variety of meta-parameters, such as optimizer parameters and model hy-
perparameters has become a basic necessity for deep learning (Bergstra et al., 2011; Feurer et al.,
2015). Such tuning requires extensive experimentation, retraining models repeatedly with different
configurations, and can be challenging at realistic budgets because the tuning landscape is typically
non-stationary, noisy and ill-behaved. Tuning has become sufficiently costly that finding more
efficient and effective tuning procedures has the potential to save a substantial amount of resources
or, alternatively, improve the accuracy of the final models at a given budget.

Some hyperparameters might be common across a large number of tuning problems, such as those
pertaining to an optimization algorithm. For example, Adam is used across many deep learning
applications and has four parameters that require careful tuning (Nado et al., 2021). Thus, if we
have access to the performance of different optimizer-specific hyperparameters on different model
training tasks, we may be able to transfer the knowledge among those tasks. This kind of meta-level
learning is common among practitioners themselves: when faced with a new tuning problem, one
might first try reusing hyperparameter settings that worked well on another problem. The underlying
assumption is that hyperparameters should perform similarly across tasks. In this work, we aim to
formalize this assumption and automate optimizer hyperparameter tuning by leveraging knowledge
from previous experiments. Although our experiments consider optimizer parameter tuning as a
practically important sub-problem of hyperparameter tuning for deep neural networks, our method
applies to any hyperparameters that are common across multiple tasks.
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Bayesian optimization (BO) has become a popular methodology for optimizing the hyperparameters
of machine learning models (Snoek et al., 2012; Bergstra et al., 2011) and represents the state-of-
the-art (Turner et al., 2021). BO involves specifying a probabilistic model over the function to be
optimized and using this to reason about the location of the optimum. The optimization proceeds
by iteratively updating the model with new data and using the posterior distribution to reason about
where to next evaluate, trading off exploration and exploitation. The model is typically specified
with only a-priori assumptions of smoothness, for example using a Gaussian process (GP) with a
smooth covariance function. Even if the model is well-specified, BO can be slow to converge due to
the generality of the prior assumptions. This would seem wasteful for problems that are repeated
often or share considerable structure with previous experiments.

One natural option is to cast our problem as meta Bayesian optimization, where the goal is to learn
to optimize a function by generalizing from past experience with other similar functions. Indeed,
several BO methods exist in the literature, but they are unsuitable for our scenario where we envision
potentially thousands of related tasks within e.g. the context of a hyperparameter tuning service.
Existing meta BO methods either scale cubically in the number of evaluations and tasks (Swersky
et al., 2013; Bardenet et al., 2013) (See §4.3 for more details), impose a restrictive set of assumptions
on the available data (Wang et al., 2018b; Swersky et al., 2013) to obtain efficient solutions, or
make assumptions on the availability of GP parameters (Volpp et al., 2020) or descriptive task-level
features (Brazdil et al., 1994; Bardenet et al., 2013; Yogatama & Mann, 2014).

To address these issues, we introduce HyperBO: a meta BO method that builds upon Wang et al.
(2018b) with a relatively simple assumption: all the related functions being optimized are samples
from the same GP prior distribution over functions. Concretely, HyperBO assumes the functions
are conditionally independent given the hyperparameters, mean and covariance function of the GP.
Compared to Wang et al. (2018b), HyperBO does not impose any strict conditions on data or model
structures, and a special case of HyperBO retains strong regret bounds. From a computational
perspective, HyperBO scales linearly in the number of tasks during training, and does not depend
on the number of tasks when deployed. By not imposing assumptions about the data collection
conditions, it can be used with large offline datasets or a few related optimization trajectories.

To evaluate HyperBO, we collected a large multi-task hyperparameter tuning dataset by training tens
of thousands of configurations of near-state-of-the-art models on popular image and text datasets,
as well as on a protein sequence dataset. We compare HyperBO to several hyperparameter tuning
baselines in the sequential BO setting. Our results show that optimizers that use hyperparameters
suggested by our method are able to obtain better performing models requiring at least 3 times fewer
function evaluations than other baselines.

Our main contributions are two-fold: (1) a practical meta BO approach that makes minimal assump-
tions; and (2) a large multi-task hyperparameter tuning dataset that not only benefits our method but
also serves as an ideal benchmark to test future multi-task or meta-learning BO methods.1

Related work There is a rich literature of innovative methodologies to improve the efficiency of
BO given related tasks or additional context. Here we discuss the most closely related work and
explain why these don’t solve the specific scenario which we envision. Specifically, our goal is
a methodology that is scalable enough to share information across thousands of tasks, each with
potentially hundreds of observations, such as in the context of a large BO service or library.

In this work we use the term meta-BO to refer to the class of BO methods that use data from existing
tasks to optimize a new task. Multi-task BO (Swersky et al., 2013; Poloczek et al., 2017; Yogatama
& Mann, 2014) and transfer learning BO using contextual GPs (Krause & Ong, 2011; Bardenet et al.,
2013; Poloczek et al., 2016) are both meta BO approaches. Some meta BO methods have also been
studied for hyperparameter tuning tasks in machine learning (Feurer et al., 2015).

HyperBO assumes all tasks are independent (after conditioning on the GP), whereas both multi-task
and contextual BO rely heavily on the assumption that tasks are related. Thus the latter approaches
typically scale cubically in both the number of tasks and observations in each task, meaning that they
cannot gracefully scale across both without heavy approximations. When assuming that all inputs
are equal across tasks, multi-task BO can be sped up using a Kronecker decomposition of the kernel

1We are working on open-sourcing the code base and dataset. The dataset is collected based on an open-
sourced code base (Gilmer et al., 2021).
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to a task kernel and an input kernel which can be inverted separately; a similar assumption is made
by Wang et al. (2018b). In comparison, HyperBO scales linearly in the number of tasks (see §B).

End-to-end learning (Chen et al., 2017; Volpp et al., 2020) is another popular meta BO approach for
hyperparameter tuning that learns a strategy to suggest new query points based on past history of
BO. One limitation of such approaches is that the total number of BO iterations must be determined
a-priori. Furthermore, by nature of using a highly parameterized model to train the strategy, we lose
the interpretability of intermediate steps that GPs and acquisition functions provide.

HyperBO builds upon Wang et al. (2018b) and Kim et al. (2017; 2019). We resolve their issues with
optimizing over a continuous space rather than a discrete set and limitations on using the same set of
inputs across tasks. Kim et al. (2017; 2019) estimated a multivariate Gaussian that models values for
search strategies in robot manipulation tasks, and thus only considered discrete inputs. Wang et al.
(2018b) provided regret bounds for Kim et al. (2017; 2019), which was identified as meta BO without
the knowledge of the GP prior. For both finite discrete search spaces and continuous ones, Wang et al.
(2018b) requires observations on the same set of inputs across tasks, which is an assumption that
is not required for HyperBO; HyperBO still inherits the same regret bound as Wang et al. (2018b)
for the special case where the same-inputs assumption is satisfied. Similar ideas also appeared in
Perrone et al. (2018), which can be viewed as a special case of HyperBO or Wang et al. (2018b).

2 PROBLEM FORMULATION

We consider the standard black-box function optimization scenario: given a real-valued function f
defined over a compact, hyper-rectangular space X ⊂ Rd and given observations of similar functions
f1, · · · , fN , we seek an x ∈ X optimizing f . We inherit our problem formulation from Wang et al.
(2018b), but we relax impractical assumptions on data availability (we do not require all observations
to be made on the same inputs across tasks) and model restrictions.
Assumptions and the goal. Concretely, we assume that there exists a Gaussian process GP(µ, k)
with unknown mean function µ : X→ R and kernel k : X× X→ R. Let N be the number of tasks
and let Mi be the number of observations we have for the ith task. Conditioned on independent
function samples fi ∼ GP(µ, k) and inputs x(i)j ∈ X, i ∈ [N ], j ∈ [Mi], we observe evaluations

y
(i)
j ∼ N (fi(x

(i)
j ), σ2) perturbed by i.i.d. additive Gaussian noise N (0, σ2). Taken together, the

collection of sub-datasets Dfi = {(x(i)j , y
(i)
j )}Mi

j=1 define a dataset DN = {Dfi}Ni=1. Finally, our
goal is to maximize a new function independently sampled from the same GP, f ∼ GP(µ, k); that is,
solve arg maxx∈X f(x) given dataset DN but unknown functions µ, k and unknown parameter σ2.
An example. In our optimizer hyperparameter tuning application, a task corresponds to finding
the best optimizer hyperparameters to train a given model on a particular dataset,2 e.g. training a
ResNet (He et al., 2016) on ImageNet (Russakovsky et al., 2015). Notice that we do not assume that
the mean function µ, kernel k and noise variance σ2 are given. This is consistent with the reality of
solving real-world black-box optimization problems including hyperparameter tuning. We must learn
those unknown functions and parameters from data. However, in practice, searching in functional
spaces to find the right mean µ or kernel k is a daunting task. Hence for practical concerns, a well
defined search space for functions is required. More details on this can be found at §3.1.
Metrics. For simplicity, throughout this paper, we focus on the setting where the target function f
can only be optimized by iteratively choosing where to evaluate, and defer batch evaluation setups to
Sec. F. As we run BO on the target function f for T iterations, we accumulate a set of observations
Df = {(xt, yt)}Tt=1, yt ∼ N (f(xt), σ

2). We evaluate the quality of the optimization using the
simple regret metric: RT = maxx∈X f(x)− f(x̂), where x̂ is the final recommendation at the end
of the optimization process. There are various ways of setting x̂ based on the observations Df ; we
use the input that achieved the best evaluation: x̂ = xτ ; τ = arg maxt∈[T ] yt.
Bayesian viewpoint. As mentioned above, the observed functions f1, · · · , fN and the evaluation
target f are assumed to be independent draws from the same GP. This assumption is consistent with a
hierarchical Bayes interpretation (Fig. 1), where all observed functions are independent conditioned
on the GP. Notice that for BO, each selected input x(i)j depends on all previous observations. But we
only describe the generative model of a hierarchical GP for simplicity.

2Technically, we also consider different batch sizes to be different tasks.
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Figure 1: Graphical model for a hi-
erarchical Gaussian process.
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More specifically, we assume that underlying functions of hy-
perparameter optimization tasks are defined by a parameter
θ ∼ p(θ;α); mean and kernel functions µ and k are defined
by deterministic functions parameterized by θ. The indepen-
dent function samples {fi}i∈[N ] are draws from GP(µ, k). We
then learn function f from observations DN on all other con-
ditionally i.i.d. function samples f1, · · · , fN . We forgo a fully
Bayesian approach that samples from the posterior over θ at
every BO iteration. Our method can be viewed as a type-II max-
imum likelihood approximation of such a Bayesian solution.
Notations. Let [n] denote {1, · · · , n},∀n ∈ Z+. For concise-
ness, we write the evaluation of a function f : X→ R on matrix
x = [xi]

n
i=1 ∈ Rn×d as µ(x) := [µ(xi)]

n
i=1. Similarly, for two matrices (i.e., the concatenation of

input vectors) x,x′, we write the corresponding kernel matrix as k(x,x′) := [k(xi, x
′
j)]i∈[n],j∈[n′],

and shorten k(x) := k(x,x). We denote a (multivariate) Gaussian distribution with mean u and
variance Σ by N (u,Σ), and a Gaussian process (GP) with mean function µ and covariance function
k by GP(µ, k). Let σ2 be the noise variance in observations. Given a set of observations D =
{(xt, yt)}Tt=1,yT = [yt]

T
t=1 ∼ N (f(xT ), σ2I),xT = [xt]

T
t=1 and f ∼ GP(µ, k), we denote the

corresponding conditional GP distribution as GP(µ, k | D). Let ψ(x) = k(x,xT )(k(xT ) + σ2I)−1.
Recall that the conditional distribution, GP(µ, k | D) = GP(µD, kD), is given for any x, x′ ∈ X as

µD(x) = µ(x) + ψ(x)(yT − µ(xT )), kD(x, x′) = k(x, x′)− ψ(x)k(xT , x
′). (1)

3 OUR METHOD

Algorithm 1 HyperBO with acquisition function α(·).

1: function HYPERBO (f,DN )
2: GP(µ̂, k̂)← TRAINGP(DN )
3: Df ← ∅
4: for t = 1, · · · , T do
5: xt ← arg max

x∈X
α
(
x;GP(µ̂, k̂ | Df )

)
6: yt ← OBSERVE(f(xt))
7: Df ← Df ∪ {(xt, yt)}
8: end for
9: return Df

10: end function

As shown in Alg. 1, our approach trains the
GP hyperparameters on a representative set
of datasets and fixes them for the duration
of the optimization procedure; we refer to
this approach as HyperBO. HyperBO runs
in two steps. First, we learn a GP model
GP(µ̂, k̂) to approximate the ground-truth
(unknown) GP that generated the dataset
DN . Then, we do standard BO to opti-
mize a new function f with the learned
GP GP(µ̂, k̂). The initial learning process
(line 2) is the critical difference between
HyperBO and standard BO algorithms, as
well as the key contribution of this paper.

Based on the Bayesian graphical model interpretation (Fig. 1), our goal is to obtain a point estimate θ̂
for the parameter θ. Given this estimate, we can then estimate the mean function µ̂ and the kernel
k̂, which defines our learned model GP(µ̂, k̂). During the BO iterations (Alg. 1, lines 4-8), we
update the conditional GP, but do not re-estimate the GP mean and kernel. By separating the data for
the conditional GP update and GP parameter training, we minimize the computational cost while
still maintaining good performance both theoretically and empirically. Moreover, we avoid the BO
chicken-and-egg dilemma (Wang et al., 2018b) where the search strategy is trained on data collected
in the BO process and the data points are selected by the search strategy.

Next, we introduce our GP training strategy based on two types of objectives: marginal data likelihood
(§ 3.1) and distance between estimates and model predictions (§ 3.2). In the appendix, §B reveals the
complexity of HyperBO that is linear in the number of tasks and § 3.3 shows that a special case of
HyperBO retains strong regret bounds (Wang et al., 2018b).

3.1 MARGINAL LIKELIHOOD

A straightforward way to train a GP is by optimizing the log marginal likelihood over the GP’s
hyperparameters. This is also known as type II maximum likelihood approximation (Rasmussen
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& Williams, 2006). In our case, we derive the data likelihood for the observations from multiple
functions that are assumed to be given, which is a key difference to regular GP or BO setups. The log
marginal likelihood for our method is

log p(DN | µ, k, σ2) =
∑N

i=1

(
−1

2
ȳ>(i)K

−1ȳ(i) −
1

2
log |K| − Mi

2
log 2π

)
, (2)

where ȳ(i) = y(i) − µ
(
x(i)

)
, K = k

(
x(i)

)
+ σ2I , x(i) = [x

(i)
j ]Mi

j=1 and y(i) = [y
(i)
j ]Mi

j=1.

Our solution to the choice of mean function, kernel function and noise variance then becomes

µ̂, k̂, σ̂2 = arg maxµ,k,σ2 log p(DN | µ, k, σ2). (3)

For mean function µ and kernel k, this optimization is done in functional space. While methods exist to
search for functional structures (Kemp & Tenenbaum, 2008; Malkomes & Garnett, 2018), one may opt
for a simple search strategy within a group of functional structures (e.g. mean µ ∈ {linear, constant}
and kernel k ∈ {exponentiated quadratic,Matérn}). For all combinations of mean/kernel structures
or functional classes, we then optimize the parameterization of them and noise variance σ2 to
eventually solve Eq. 3. Details of how we defined the search space can be found in §4.

3.2 DISTANCE BETWEEN ESTIMATES AND MODEL PREDICTIONS

Although the marginal likelihood is a straightforward objective to optimize, it may not be straightfor-
ward to interpret how high of a likelihood is high enough for us to stop our search for a decent model.
Nevertheless, we may be able to directly estimate the sample mean and covariance, and the distance
between those estimates and model predictions could be a good indicator of how good the model is.
We will show in §3.3 that a distance objective may lead us to better theoretical properties.

Here we consider a special case of dataset DN where part of it has matching inputs across some
sampled functions. More formally, suppose we have a matching dataset D′N = {(xj ,yj)}Mj=1 where

M is a positive integer, xj ∈ X,yj = [y
(i)
j ]Ni=1 ∈ RN and y(i)j ∼ N (f(xj), σ

2). Empirically, dataset
D′N can be constructed by querying a set of functions f1, · · · , fN at the same set of input locations
x = [xj ]

M
j=1 ∈ RM×d to obtain an observation matrix y = [yj ]

M
j=1 ∈ RM×N .

By definition of a GP, the vector of all function queries f(x) is distributed according to a multivariate
Gaussian distribution N (µ(x), k(x)). With our observation model, we get the distribution for
observations y ∼ N (µ(x), k(x) + Iσ2) for some unknown mean function µ and kernel k.

However, given that we have access to all observations y, we can estimate the mean on inputs x
as µ̃ = 1

N y1N ∈ RM and estimated covariance as K̃ = 1
N (y − µ̃1>N )(y − µ̃1>N )> ∈ RM×M ;

here 1N is a column vector of size N filled with 1s. We use a biased estimate of covariance to be
consistent with the corresponding maximum likelihood estimator in Eq. 3. 3 Notice that the estimated
covariance includes in diagonal terms the variance of the observation noise.

For any distance function between the estimateN (µ̃, K̃) and model predictionN (µ(x), k(x)+Iσ2),
we obtain an objective to minimize, D

(
N (µ̃, K̃),N (µ(x), k(x) + Iσ2)

)
. While there are different

measures of distributional discrepancy, we adopt the KL divergence. Let µ = µ(x) and K =
k(x) + Iσ2. The KL divergence is defined as

DKL

(
N (µ̃, K̃),N (µ,K)

)
=

1

2

(
tr(K−1K̃) + (µ− µ̃)>K−1(µ− µ̃) + ln

|K|
|K̃|
−M

)
, (4)

and we can estimate the mean, kernel and noise variance by minimizing DKL. While it is difficult to
gauge how much a probability density is enough to obtain a good model, Eq. 4 is a “distance” that
goes to 0 as the difference between two distributions reduces. One may choose to do early stopping
or model selection based on how close Eq. 4 is to 0. Through information theory, we also know that
the KL divergence in Eq. 4 describes the number of extra bits (or nats) to encode the multivariate
normalN (µ̃, K̃). Overall we found the KL divergence in Eq. 4 relatively more interpretable than the
marginal likelihood in Eq. 3.

3One may choose to re-scale learned kernel by N
N−1

to be unbiased.
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The KL divergence in Eq. 4 introduces a different optimization landscape than the marginal likelihood
in Eq. 3. The KL divergence also makes use of the matching dataset D′N in a way that the marginal
likelihood cannot. In fact, all matching inputs in the marginal likelihood in Eq. 3 are implicit: all
inputs are passed in to mean/kernel functions, and so there is no way that Eq. 3 can be informed that
some inputs are the same across tasks. As shown in §4, the KL divergence in Eq. 4 interestingly led
to better results in our experiments.

3.3 THEORETICAL ANALYSES

While it is nontrivial to prove regret bounds for general scenarios without strict assumptions, it is
straightforward to show a regret bound for our method with objective DKL of Eq. 4 in the matching
dataset case where BO is running on a finite set of inputs (Wang et al., 2018b).
Theorem 1. Let N ≥ 4 log 6

δ + T + 2. With probability at least 1− δ, simple regret in T iterations
of Alg. 1 with special cases of either GP-UCB or PI satisfies

RT < O

(√
1

N − T
+

√
log

1

δ

)
O

(
1

2T
max

A⊂X,|A|=T
log |I + σ−2k(A)|+ σ

)
. (5)

More details can be found at §D. Theorem 1 shows that the regret bound has a linear dependency on
the observation noise σ. This is expected because in practice, we select the best observation rather
than best function value (before observing a noisy version of it) to compute the simple regret. Another
reason is that we learn the noise parameter σ jointly with the kernel, as shown by Eq. 4. Hence when
computing acquisition functions, the noise σ is always included in the predicted variance.

Intuitively, the more sub-datasets we have in the dataset, the larger N is, the better we are able to
estimate the GP model, and the closer the regret bound is to the case where the GP model is assumed
known. Interestingly, the number of BO iterations T makes the regret smaller in the second term
but larger in the first term in Eq. 5. Usually as we get more observations, we get more information
about the maximizer, and we are able to optimize the function better. However, as we get more
observations on the new function, GP conditional predictions have more freedom to deviate from the
ground truth (see Lemma 1 of Wang et al. (2018b)). As a result, we get less and less confident about
our predictions, which is eventually reflected in a looser regret upper bound.

It is tempting to prove similar bounds for more general settings where inputs are not the same across
all sub-datasets and BO happens in continuous space. Though the only prerequisite is to show
that the difference between the learned mean/kernel and the ground truth mean/kernel is small, this
prerequisite is as difficult as showing we can find a model that has bounded generalization error across
the entire continuous input space of an arbitrary function. Instead of making unrealistic assumptions
just to satisfy such prerequisite, we leave the regret bound for general settings as an open question.

4 EXPERIMENTS

Our goal in this paper is to provide a practical approach for hyperparameter optimization when we
are given data on a range of tasks over the same search space. To analyze the effectiveness of our
proposal, we take the optimizer hyperparameter tuning problem in deep learning as a case study. Our
implementation of HyperBO is based on JAX (Bradbury et al., 2018).4

To reduce ambiguity, we distinguish between datasets that individual neural networks are trained
on and the dataset we collected that includes optimizer hyperparameter points with their validation
errors (and other metrics). We will call the former (e.g. MNIST, CIFAR10) task datasets and call the
latter the tuning dataset. The tuning dataset is what we described as dataset DN in §2.

4.1 HYPERPARAMETER TUNING DATASET

In order to collect our hyperparameter tuning dataset, the PD1 Neural Net Tuning Dataset, we
defined a set of 24 neural network tuning tasks5 and a single, broad search space for Nesterov

4We are working on open-sourcing our code as well as trained GP models.
5The batch size 1024 ResNet50 ImageNet task only has 100 hyperparameter points because we abandoned it

when scaling up data collection in order to save compute resources. It is used in training, but not evaluation.
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momentum. Each task is defined by a task dataset (e.g. ImageNet), a specific neural network model
(e.g. ResNet50), and a batch size. Tab. 1 shows all the tasks that we consider in the tuning dataset. We
used an existing code base (Gilmer et al., 2021) for neural network model training. The dataset used
roughly 12,000 machine-days of computation for approximately 50,000 hyperparameter evaluations.

For each task, we trained the model on the task dataset repeatedly using Nesterov momentum
(Nesterov, 1983; Sutskever et al., 2013), with the task’s minibatch size, with different hyperparameter
settings drawn from the 4-dimensional search space detailed in Tab. 2. We tuned the base learning
rate, η, on a log scale, the momentum, β, with 1− β on a log scale, and the polynomial learning rate
decay schedule power p and decay steps fraction λ. We used a polynomial decay schedule with the

following form: ητ = η
1000 +

(
η − η

1000

) (
1− min(τ,λT )

λT

)p
, where τ is the training step and T is

the total number of training steps for the task.
Table 1: Tasks

Task Dataset Model Batch Sizes
CIFAR10 Wide ResNet {256, 2048}
CIFAR100 Wide ResNet {256, 2048}
Fashion MNIST Max pool CNN ReLU {256, 2048}
Fashion MNIST Max pool CNN tanh {256, 2048}
Fashion MNIST Simple CNN {256, 2048}
ImageNet ResNet50 {512, 1024, 2048}
LM1B Transformer {2048}
MNIST Max pool CNN relu {256, 2048}
MNIST Max pool CNN tanh {256, 2048}
MNIST Simple CNN {256, 2048}
SVHN (no extra) Wide ResNet {256, 1024}
WMT15 German-English xformer {64}
uniref50 Transformer {128}

Table 2: 4-dimensional input search
space (see text for more details)

Hyperparameter Range Scaling
η [10−5, 10] Log
p [0.1, 2.0] Linear

1− β [10−3, 1.0] Log
λ [0.01, 0.99] Linear

We collected two types of data: matched and unmatched data. Matched data used the same set of
uniformly-sampled hyperparameter points across all tasks and unmatched data sampled new points
for each task. All other training pipeline hyperparameters were fixed to hand-selected, task-specific
default values. All of our tasks are classification problems, so they all used the same training
loss, although occasionally task-specific regularization terms were added. For each trial (training
run for a single hyperparameter point), we recorded validation error (both cross entropy error and
misclassification rate). In many cases, poor optimizer hyperparameter choices can cause training to
diverge. We detected divergent training when the training cost became NaN and then marked the
trial but did not discard it. Please see the Appendix, supplementary material, and code (Onomous,
2021) for additional details about the tasks and training procedure. The different tuning tasks vary
in difficulty and numbers of data points, but generally there are roughly 500 matched datapoints
and 1500 unmatched datapoints per tuning task. For unmatched data only, we attempted to generate
roughly similar numbers of non-divergent points across tasks, so tasks with a higher probability of
sampling a hyperparameter point that causes training to diverge will tend to have more trials.

4.2 DESCRIPTION OF ALL COMPARED METHODS

Our method HyperBO has several variants including using different acquisition functions and different
objectives. In §4, unless otherwise mentioned, we used a thresholded probability of improvement

(PI) as the acquisition function. We set PI in line 5 of Alg. 1 as
µ̂Df (x)−maxt(yt+0.1)

σ̂Df (x)
. We empirically

evaluated a variety of acquisition functions, but found PI thresholded at 0.1 to be surprisingly
effective. Because we model the observations as log error rate, this actually trades off exploration
and exploitation - i.e. with larger error rates this seeks relatively more substantial improvements than
with small error rates. The list of 5 different acquisition functions we tested is as follows: PI with 0.1
threshold, expected improvement and UCB with 2, 3, 4 coefficients. See their comparisons at §E.5.

We use H* NLL to denote HyperBO with negative log marginal likelihood as the objective and
H* KL to denote HyperBO with KL divergence on matching datapoints as objective. Both ob-
jectives are optimized via L-BFGS (Nocedal, 1980) with µ(x) = θ>0 tanh(θ>1 x), k(x, x′) =
Matérn32(tanh(θ>1 x), tanh(θ>1 x

′)), θ1 ∈ R4×8. These two settings of HyperBO are relatively
representative of the performance of variants of HyperBO. See comparisons over objectives at §E.4.

Our baselines include (a) Rand: Random search in the corresponding scaled space in Tab. 2. (b) STBO:
Single-task BO where in every BO iteration, STBO optimizes the GP hyperparameters via marginal
likelihood on data of the test task. This implementation corresponds to the basic off-the-shelf BO
setups. (c) STBOH: Single-task GP-UCB with a hand-tuned prior on hyper-parameters including

7
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Figure 2: (a) The performance profile for outperforming the median of best error rates at the 100th
BO iteration. (b) BO convergence of all methods: the median and 20/80 percentiles of the regrets on
error rates over 115 BO runs: 23 tasks and each with 5 repeats of different random seeds. (c) A violin
plot on the vertical slices of (b) at the 100th iteration; the white dot is the median and the black line is
the 20/80 percentile. Overall, HyperBO methods H* NLL and H* KL are able to achieve the lowest
regret on error rate on the majority of tasks with fewer iterations.

UCB coefficient. (d) MIMO: Multi-task BO with GP bases as an ensemble of feedforward neural
networks with shared subnetworks (Havasi et al., 2020). (e) RFGP: Multi-task BO with GP bases as
random features. More details can be found at §E.1.

4.3 RESULTS ON OFFLINE OPTIMIZER HYPERPARAMETER TUNING TASKS

Many tasks in §4.1 can use up a lot of compute resources and time, which makes it infeasible to
perform a wide variety of experiments to analyze the characteristics of BO methods. Hence we adopt
an offline approximation, which runs BO only on the finite set of points that each tuning sub-dataset
contains. More details and analyses are available in Appendix E.2.
Holding out relevant tasks. Fig. 2 (a) shows the performance profiles, the fraction of all test tasks
that each method from §4.2 is able to outperform a baseline criterion at each BO iteration. We can
see that MIMO is able to outperform other methods in the beginning 20 BO iterations, but its leading
position soon gets surpassed by HyperBO (H* NLL and H* KL). Fig. 2 (b,c) illustrates the BO
convergence curves of all competing methods, together with the vertical slice at the 100th iterations.
RFGP and STBO are both falling much behind Rand. STBO trains the GP on the data that the GP
suggests to query. Optimizing the marginal data likelihood on at most 100 datapoints in fact may
not lead to a better model than random initialization (see Tab. 5 in §F). Surprisingly, the contextual
information learned by RFGP did not generalize to a new task. On the other hand, MIMO is able to
obtain a slightly better error rate than STBOH. Overall, learning the GP prior through data as with
HyperBO outperforms other meta BO methods, and is a more principled and effective way to obtain
the GP prior when compared with hand-tuning.

Figure 3: Medians and 20/80 per-
centiles of regrets on best valida-
tion error rates for methods that
uses models trained on 3 to 23
training tasks.

Effect of number of training tasks. We now investigate the
impact of the number of training tasks on the performance of
meta BO methods. In Fig 3 we show the BO simple regrets on
tasks from Table 1 (except ImageNet ResNet50 2048) that use
meta BO models trained on different number of training tasks.
To analyze the performance of all methods on less-related tasks,
we first remove training tasks that have the same task dataset as
our current tuning task for testing, and then remove randomly
selected training datasets from the rest.

HyperBO variants reduced the simple regret as more training
tasks are given. Interestingly, H* NLL and H* KL are already
slightly better than Rand and STBOH when they started off with
only 3 training tasks. There are reasonable fluctuations in the
results but overall the trend of regret is going down as the number
of training tasks increases. MIMO also reduced regret when the
number of tasks increased from 8 to 18. RFGP, however, fails to
learn from training tasks possibly because it did not learn good
task embeddings for GP regression models.

8
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Figure 5: Results of running BO methods in the online setting on 3 different tasks. The image based
tasks use best validation error rate as objective while the text based ones including Uniref50 use best
validation CE loss. In all 3 tasks, HyperBO methods achieved better results.

Figure 4: Medians and 20/80
percentiles of simple regrets for
methods that uses models trained
on 0.2% to 90% of data in each
task.

Effect of number of data points in training tasks. One re-
maining question is, how does Mi in §2, the number of data
points in each training tasks, affect the performance of meta
BO methods. We analyze the impact of Mi by removing
a portion of all data that we have access to for each task.
In particular, we set the percentage of remaining data to be
0.2%, 0.5%, 1%, 3%, 5%, 10%, 30%, 50%, 70%, 90%. Remain-
ing datapoints are selected uniformly randomly, which breaks the
structure of matching data. Hence we do not include H* KL in
this comparison, as H* KL only makes use of matching data.

Fig. 4 shows how the simple regret changes as the fraction of
training data grows. Below 10% training data, we observe clear
trend that more data lead to lower regret for both H* NLL and
MIMO, and relatively no change for RFGP. We also found that
the performance of HyperBO (H* NLL) does not change much as
the fraction of training data increases from 5% to 90%. However,
MIMO and RFGP suffers significantly from more data as the
fraction of training data increases from 5% to 50%. It is not
entirely clear why MIMO and RFGP have such behaviors. One
conjecture is that neural network based Bayesian linear regression models may get too confident once
the amount of data reaches a certain threshold. This means much less exploration if those models are
used for BO.

4.4 RESULTS ON ONLINE OPTIMIZER HYPERPARAMETER TUNING TASKS

We now evaluate HyperBO methods, H* NLL and H* NLLKL (NLL plus KL divergence on matching
datapoints as the objective), in the online setting, where we optimize over the full hypercube and
some hyperparameters may be infeasible to evaluate. See full results at §E.3. Fig. 5 shows that it can
be difficult for STBO or MIMO to recover from a “bad” datapoint, but HyperBO methods are robust
and performed the best among all methods being compared.

5 DISCUSSION AND CONCLUSION

While we focused on obtaining a better prior in BO in this work, the following directions are orthogo-
nal to what we studied: different search spaces across tasks, batch evaluation, high-dimensional or
large scale data, etc. However, it should be straightforward to combine their solutions with HyperBO.
Please find more discussions at §F together with implications of our assumptions.

HyperBO is a novel meta BO approach that supports practical applications that involve continuous
inputs queried at possibly non-aligned locations across tasks. HyperBO uses a simple yet effective
idea that is easy to implement and efficient to run. We evaluated HyperBO on real-world big model
optimizer tuning tasks, and the results demonstrated its superior performance over state-of-the-art
competing methods.
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A HIERARCHICAL GP, A BAYESIAN PERSPECTIVE

In Bayesian viewpoint of §2, we assume that the overall setting of the hyperparameter optimization
task is defined by a parameter θ ∼ p(θ;α); mean and kernel functions µ and k are drawn from
p(µ, k | θ). The independent function samples {fi}i∈[N ] are themselves draws from GP(µ, k). The
generative story is as follows:

• Draw GP parameter θ from p(θ;α) and observation noise parameter σ from p(σ;α).
• Draw mean function µ and kernel function k from p(µ, k | θ).
• For each task i from 1 to N ,

– Draw a function fi from GP(µ, k).
– For each data point j from 1 to Mi,
∗ Given input x(i)j , we draw the observation y(i)j ∼ N (fi(x

(i)
j ), σ2).

We simplify this hierarchical setting by defining p(µ, k | θ) to be a sum of Dirac delta functions: both
mean function µ and kernel k are deterministic functions parameterized by θ. Thus, we can infer GP
parameter θ and noise σ from their posterior p(θ, σ | DN ∪Df ;α) and obtain an informed prediction
for the target function

p(f | DN ∪Df ) =

∫
θ

p(f | θ)p(θ | DN ∪Df ;α)

=

∫
θ

p(f | θ)
∫
σ

p(θ, σ | DN ∪Df ;α)

In other words, we learn function f from observations on all other conditionally i.i.d. function
samples f1, · · · , fN . We forgo a fully Bayesian approach that samples from the posterior over θ at
every BO iteration, although our method, HyperBO, can be viewed as a type-II maximum likelihood
approximation of such a Bayesian solution.

B COMPUTATIONAL COMPLEXITY

The marginal likelihood in Eq. 2 naturally decomposes into a sum of GP data likelihood terms on
each sub-dataset Dfi . The time complexity to compute Eq. 2 is O(M3N), where N is the number
of sub-datasets and M = maxNi=1Mi is the maximum number of data points for these sub-datasets.
Notice that our method scales linearly in the number of tasks, N , in contrast to the cubic O(M3N3)
scaling of multi-task or contextual BO methods (Swersky et al., 2013; Bardenet et al., 2013; Poloczek
et al., 2016; Yogatama & Mann, 2014). The only cubic cost of HyperBO is on the number of data
points in sub-datasets.

To train a GP with K optimization steps on Eq. 2, the time complexity is O(M3NK). The distance
regularizers introduced in §3.2 requires estimating mean and covariance, which takes O(M2N) for
matrix multiplication. The KL divergence in Eq. 4 has complexity O(M3) to compute and O(M3K)
to optimize.

If there is any better probabilistic model than a GP to fit the data with less compute time, we can easily
swap it in and reduce the O(M3) complexity that the GP contributed to the O(M3N) complexity
of Eq. 2. For example, if we approximate a GP with a linear model on V random features (Rahimi
et al., 2007), the complexity of Eq. 2 becomes O(V 3N). Another example is to train Eq. 2 with
stochastic optimization methods, where the complexity of Eq. 2 on the full dataset can be reduced
to O(B2MN), where B is the mini-batch size. Running stochastic optimization will then take
O(B2MNK), where K is the number of optimization epochs.
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C OBJECTIVE FUNCTIONS

In §3, we presented NLL and KL divergence as objectives. Below we derive the KL divergence
between a regular multivariate Gaussian and a degenerate multivariate Gaussian, which is the case
for most of our matching data settings in §4.1: the number of matching data points is greater than the
number of training tasks. In the end of this section, we introduce a new objective function, combining
NLL and KL, interpreted as MAP with a data-dependent prior.

KL divergence for a degenerate multivariate Gaussian Eq. 4 of §3.2 gives the KL divergence
between two Gaussians in the non-degenerate case. In practice, when we minimize Eq. 4, we can
simply remove the constants and do the following

µ̂, k̂, σ̂2 = arg minµ,k,σ2DKL

(
N (µ̃, K̃),N (µ,K)

)
= arg minµ,k,σ2

1

2

(
tr(K−1K̃) + (µ− µ̃)>K−1(µ− µ̃) + ln

|K|
|K̃|
−M

)
= arg minµ,k,σ2 tr(K−1K̃) + (µ− µ̃)>K−1(µ− µ̃) + ln |K|. (6)

Here the variables we care about, µ, k, σ2, only appear in mean vector µ and covariance matrix K
over the matching data. Even if the sample mean and covariance estimate N (µ̃, K̃) is degenerate,
the optimization objective stays the same as reflected by the derivation below.

If N (µ̃, K̃) is degenerate, its base measure is at most N -dimensional rather than M -dimensional,
given that there exists a full rank matrix A ∈ RM×R such that K̃ = AA> (R ≤ N ). Note that M is
the number of matching data points, N the number of training tasks and R is the rank of matrix A and
K̃. The KL divergence DKL

(
N (µ̃, K̃),N (µ,K)

)
is not well-defined because the base measure of

N (µ̃, K̃) is different from the base measure of N (µ,K), given K is full-rank. However, it is still
possible to derive a pseudo KL divergence D∗KL

(
N (µ̃, K̃),N (µ,K)

)
as below.

Let the degenerate Gaussian be p(x) = N (µ̃, K̃) = |2πK̃|−
1
2
∗ exp

(
− 1

2 (x− µ̃)K̃+(x− µ̃)>
)

and

the non-degenerate one be q(x) = N (µ,K), where | · |∗ is the pseudo-determinant and K̃+ the
peudo-inverse of K̃. We define the support of distribution p as S(p) = {µ̃+ K̃

1
2 v | v ∈ RM}. The

pseudo KL divergence between p(x) and q(x) now becomes

D∗KL

(
N (µ̃, K̃),N (µ, K)

)
=

∫
S(p)

p(x) (ln p(x)− ln q(x))

= −
1

2

∫
S(p)

p(x)
(
ln |2πK̃|∗ − ln |2πK|+ (x− µ̃)>K̃+

(x− µ̃)− (x− µ)>K−1
(x− µ)

)
=

1

2

(
(M − R) ln 2π + ln

|K|
|A>A|

− Ep[tr(K̃+
(x− µ̃)(x− µ̃)>) + tr(K−1

(x− µ)(x− µ)>)]
)

=
1

2

(
(M − R) ln 2π + ln

|K|
|A>A|

− tr(K̃+
K̃) + Ep[tr(K−1

(x− µ)(x− µ)>)]
)

=
1

2

(
(M − R) ln 2π + ln

|K|
|A>A|

− tr(AA+
) + Ep[tr(K−1

(x− µ̃)(x− µ̃)> +K
−1

(2xµ̃
> − 2xµ

> − µ̃µ̃> + µµ
>
))]

)
=

1

2

(
(M − R) ln 2π + ln

|K|
|A>A|

− R + tr(K−1
K̃ +K

−1
(µ̃− µ)(µ̃− µ)>)

)
=

1

2

(
tr(K−1

K̃) + (µ− µ̃)>K−1
(µ− µ̃) + ln |K| − ln |A>A| − R + (M − R) ln 2π

)
. (7)

If the covariance matrix K̃ is in fact full rank, i.e. R = M , pseudo KL in Eq. 7 then recovers the
KL divergence DKL

(
N (µ̃, K̃),N (µ,K)

)
in Eq. 4 for non-degenerate Gaussians. If we were to

minimize this pseudo KL divergenceD∗KL

(
N (µ̃, K̃),N (µ,K)

)
, we still would get the minimization

task in Eq. 6. However, pseudo KL divergence D∗KL does not satisfy properties including non-
negativity. In practice, we may also choose to add small epsilon values to the diagonal terms of both
K and K̃ to make K̃ “less degenerate” and enable the existence of DKL

(
N (µ̃, K̃),N (µ,K)

)
.
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Combining marginal likelihood and distance metrics It is also possible to additively combine
the KL divergence with the negative log marginal likelihood objective, and treat this distance as a
regularizer. In the case of KL divergence, it is equivalent to adding a data-dependent prior on the GP
itself: µ,K ∼ exp(−λDKL(N (µ̃,K̃),N (µ,K)))/Z for some normalization constant Z, and the posterior is

p(µ, k, σ2 | DN ; µ̃, K̃) ∝ p(DN | µ, k, σ2) exp(−λDKL

(
N (µ̃, K̃),N (µ,K)

)
). (8)

We can then obtain an MAP estimation for the unknown functions and variables µ, k, σ2.

D DETAILS OF REGRET BOUNDS

Theorem 1 is a direct result of Theorem 16 in Wang et al. (2018b). The only subtle difference is that
we adopted a biased estimate of the covariance matrix, a factor of N

N−1 different from the unbiased
estimate. But this can be corrected in the acquisition functions. We provide more details below.
Proposition 2. For any M,d,N ∈ Z+,x ∈ RM×d,µ ∈ RM , V ∈ RN×M and K = V >V , there
exists a Gaussian process GP(µ̂, k̂) such that DKL

(
N (µ,K),N (µ̂(x), k̂(x))

)
≡ 0.

Proposition 2 is easy to show. We can train a simple memory based model for mean function µ̂ and
kernel k̂. The model stores each element of vector µ and matrix K at the corresponding locations in
input x. When making a prediction on a new input x′ ∈ Rd, the model simply retrieves the values of
the closest element in x. Given Proposition 2, a regret bound follows (Wang et al., 2018b).

By Proposition 2, we are able to obtain a GP(µ, k) where µ(x) and k(x) are equal to the sample
mean and covariance on a matching dataset (x,y), following the notations in §3.2. Hence, our
problem setup is consistent with the case with discrete input space in Wang et al. (2018b). The
following theorem is a rewrite of Theorem 16 in Wang et al. (2018b), taking into account our biased
estimators.
Theorem 3. Assume there exist constant c ≥ maxx∈X k(x) and a training dataset is available whose
size is N ≥ 4 log 6

δ + T + 2. Define

ιt−1 =

√√√√6
(
N − 3 + t+ 2

√
t log 6

δ + 2 log 6
δ

)
δN(N − t− 1)

, bt−1 =
1

N − t
log

6

δ
, for any t ∈ [T ],

and ρT = max
A∈X,|A|=T

1
2 log |I + σ−2k(A)|. Then, with probability at least 1 − δ, the best-sample

simple regret in T iterations of meta BO with GP-UCB that uses

ζt =

(
6N(N − 3 + t+ 2

√
t log 6

δ + 2 log 6
δ )/(δN(N − t− 1))

) 1
2

+ (2N log( 3
δ ))

1
2(

(N − 1)(1− 2( 1
N−t log 6

δ )
1
2 )
) 1

2

(9)

as its hyperparameter in αGP-UCB
t−1 (x) = µ̂t−1(x) + ζtk̂t−1(x)

1
2 satisfies

rGP-UCB
T ≤ ηGP-UCB

√
2cρT

T log(1 + cσ−2)
+ σ2 −

(2 log(3
δ ))

1
2σ2

√
c+ σ2

,

where ηGP-UCB = (
ιT−1+(2 log( 3

δ ))
1
2√

1−2
√
bT−1

√
1 + 2

√
bT−1 + 2bT−1 + ιT−1 + (2 log( 3

δ ))
1
2 ).

With probability at least 1− δ, the best-sample simple regret in T iterations of meta BO with PI that
uses f̂∗ ≥ maxx∈X f(x) as its target value satisfies

rPI
T < ηPI

√
2cρT

T log(1 + cσ−2)
+ σ2 −

(2 log( 3
2δ ))

1
2σ2

2
√
c+ σ2

,

where ηPI = ( f̂∗−µτ−1(x∗)√
kτ−1(x∗)+σ2

+ ιτ−1)

√
1+2b

1
2
τ−1+2bτ−1

1−2b
1
2
τ−1

+ ιτ−1 + (2 log( 3
2δ ))

1
2 , τ =

arg mint∈[T ] kt−1(xt).
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The proof can be found in Wang et al. (2018b). Theorem 1 is a condensed version of Theorem 3.

While Theorem 3 provides us with some understanding of HyperBO in a specific setting, in practice,
we need to query in a continuous input space that goes beyond the finite set of points present in the
training dataset. It may or may not be possible to obtain data on a wide range of tasks to ensure
N ≥ 4 log 6

δ + T + 2. In fact, in all of our experiment, this criterion on number of tasks is not
satisfied. However, we still obtained good performance.

E EXPERIMENT DETAILS AND MORE RESULTS

In this section, we provide more detailed setups and empirical results on the impact of objective
functions and acquisition functions in HyperBO. All experiment setups are the same as §E.2.1: offline
and holding out related tasks.

E.1 BASELINES

Our first set of baselines include those that do not use information from training tasks:

• Rand: Random search in the corresponding scaled space in Tab. 2.
• STBO: Single task BO with a constant mean function, Matern32 kernel and PI acquisition

function (same as above). Every BO iteration, STBO optimizes the GP hyperparameters via
marginal likelihood on data of the test task. This implementation corresponds to the basic
off-the-shelf BO setups.
• STBOH: Single task GP-UCB (coefficient=1.8) with constant mean, Matern52 kernel and

hand-tuned prior on hyper-parameters including UCB coefficient. Specifically, log amplitude
follows Normal(-1, 1), log length scale (one per input parameter) follows Normal(0,1), and
log observation noise variance follows Normal(-6, 3). The hyperparameters are post-
processed by tensorflow-probability’s SoftClip bijector to constrain the values between
1-st and 99-th quantiles. These prior distributions were manually tuned to obtain reasonable
convergence rates on 24 analytic functions in COCO (Hansen et al., 2021). The GP
parameters are then optimized via maximum marginal likelihood every BO iteration.

For multi-task BO baselines, we included scalable methods that replace the GP with a regression
model that can be trained using SGD and thus scales linearly in the number of observations. Following
the multi-task setup of Springenberg et al. (2016), we jointly trained a 5-dimensional embedding of
each task, which was then added to the input of the following two models.

• MIMO: We trained an ensemble of feedforward neural networks with shared subnetworks
(Havasi et al., 2020). We used 1 shared dense layer of size 10 and 2 unshared layers of
size 10. We used tanh activation based on (Snoek et al., 2015, Figure 2). The network
has one output unit with linear activation and another with softmax(10−4, 1) activation,
corresponding respectively to the mean and standard deviation parameters of a normal
distribution. We trained for 1000 epochs using the Adam optimizer with learning rate 10−4

and batch size 64.
• RFGP: We used the open-source implementation of approximate GP by Liu et al. (2020).

We trained for 1000 epochs using the Adam optimizer with learning rate 10−3 and batch
size 64.

All methods share the same input and output warping. The input warping is done according to the
scaling function in Tab. 2: η ← log η, 1− β ← log(1− β). The output warping is done for the best
validation error rate r ← − log(r + 10−10).

E.2 OFFLINE BO EXPERIMENTS

In all offline experiments, we ran offline BO on the data from the test task starting from zero initial
data from this task. Each method was repeated 5 times with different random seeds to initialize its
model. We ran all methods without de-duplication to best simulate online BO. We evaluate on regret
on error rate which denotes the simple regret on the finite set of data points in each tuning sub-dataset.
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Figure 6: Performance profiles for outperforming the median of best error rates at the (a) 25th BO
iteration, (b) 50th BO iteration and (c) 100th BO iteration.

Figure 7: The left most is a summary of the BO convergence of all methods: the median and 20/80
percentiles of the regrets on error rates over 115 BO runs: 23 tasks and each with 5 repeats of different
random seeds. We also show violin plots on its two vertical slices at 50th and 100th iteration, where
the white dot is the median and the black line is the 20/80 percentile. Overall, HyperBO methods H*
NLL and H* KL are able to achieve the lowest regret on error rate on the majority of tasks.

E.2.1 HOLDING OUT RELEVANT TASKS

We first conducted experiments in a setting where a new task dataset is presented, and a BO method
is trying to tune the optimizer hyperparameters for a selected model on that task dataset. A training
dataset for meta BO is composed of at most 18 tuning sub-datasets on training tasks that do not
involve the same task dataset as the test task. All methods then proceed to solve the test task on
the new task dataset. Fig. 6 shows performance profiles of the BO methods described in §4.2. The
performance profiles show the fraction of all test tasks that each method is able to outperform a
baseline criterion at each BO iteration.6 We chose the criterion to be the median of best error rates
achieved by all methods at 3 different BO iterations: 25th, 50th or 100th. The larger the fraction of
tasks at each BO iteration, the better the method is. From all 3 criteria, we can see that MIMO is able
to outperform other methods in the beginning 10 to 20 BO iterations, but its leading position soon gets
surpassed by HyperBO (H* NLL and H* KL) and STBOH. HyperBO methods are gaining a similar
if not larger fraction than the best alternative, STBOH, throughout BO iterations. Fig. 6 (c) has the
most stringent performance criterion, and it shows that HyperBO with the KL objective outperforms
HyperBO with the NLL objective in this set of experiments with a small margin. And both methods
in HyperBO are doing considerably better than others.

Fig. 7 illustrates the BO convergence curves of all competing methods, together with the vertical
slices at the 50th and 100th iterations. RFGP and STBO are both falling much behind Random search.
STBO trains the GP on the data that the GP suggests to query, which creates a loop that could be
harmful for data acquisition. Optimizing the marginal data likelihood on at most 100 datapoints in
fact may not lead to a better model than random initialization (see Tab. 5 in §F). Surprisingly, RFGP,
though equipped with the tuning dataset and initially reached some good values, performed similarly
to STBO in the end. Clearly, the contextual information learned by RFGP did not generalize to a new
task. On the other hand, MIMO is able to obtain a slightly better error rate than STBOH.

Fig. 6 and Fig. 7 both show that learning the GP prior through data like what HyperBO does is
performing much better than other meta BO methods, and it is a more principled and effective

6We show performance relative to a baseline because of varying scales across tasks.
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approach to obtain the GP prior than hand-tuning. As a reference, we include Tab. 3 which shows the
task-wise best validation error rates obtained by the top 5 methods in 100 BO iterations.
Table 3: The mean and standard error of best validation error rates (%) for each test task in the offline
optimizer hyperparameter tuning experiments. Meta BO methods including MIMO and HyperBO
variants (H* NLL and H* KL) have access to training tasks that do not share the same task dataset as
the test task. We show results of the top 5 methods, and we highlight the lowest error rates in bold.

Rand STBOH MIMO H* NLL H* KL
WMT XFormer 64 34.27± 0.16 34.15± 0.15 34.29± 0.16 33.94 ± 0.01 33.99± 0.03
Uniref50 Transformer 128 79.06± 0.04 78.92± 0.12 78.93± 0.11 78.64 ± 0.00 78.74± 0.09
LM1B Transformer 2048 61.96± 0.03 61.95± 0.04 61.95± 0.01 61.83 ± 0.01 61.82 ± 0.01
SVHN WRN 1024 3.99± 0.04 4.05± 0.10 3.82 ± 0.04 4.11± 0.04 4.06± 0.02
SVHN WRN 256 3.71± 0.01 3.72± 0.02 3.62 ± 0.02 3.79± 0.01 3.77± 0.02
ImageNet ResNet50 256 23.03± 0.07 22.66± 0.07 22.69± 0.06 22.57± 0.02 22.55 ± 0.02
ImageNet ResNet50 512 23.02± 0.11 22.74± 0.05 22.99± 0.05 22.65 ± 0.02 22.75± 0.03
MNIST CNNPoolTanh 2048 0.55± 0.01 0.53 ± 0.01 0.52 ± 0.01 0.53 ± 0.01 0.54± 0.01
MNIST CNNPoolTanh 256 0.51± 0.01 0.48± 0.01 0.46 ± 0.00 0.46 ± 0.01 0.46 ± 0.01
MNIST CNNPoolReLU 2048 0.69± 0.01 0.73± 0.02 0.66± 0.01 0.64 ± 0.01 0.65± 0.01
MNIST CNNPoolReLU 256 0.51± 0.01 0.55± 0.03 0.52± 0.01 0.48 ± 0.00 0.49± 0.00
MNIST CNNReLU 2048 1.14± 0.03 1.20± 0.09 1.11± 0.02 1.06 ± 0.00 1.08± 0.01
MNIST CNNReLU 256 1.09± 0.02 1.06± 0.01 1.08± 0.02 1.03 ± 0.00 1.03 ± 0.00
Fashion CNNPoolTanh 2048 7.14± 0.06 7.10± 0.05 7.05 ± 0.06 7.03 ± 0.03 7.16± 0.02
Fashion CNNPoolTanh 256 6.51± 0.03 6.67± 0.18 6.41± 0.07 6.38± 0.02 6.28 ± 0.01
Fashion CNNPoolReLU 2048 7.47± 0.02 7.48± 0.04 7.52± 0.06 7.42 ± 0.03 7.53± 0.04
Fashion CNNPoolReLU 256 6.78± 0.04 6.74± 0.01 6.89± 0.06 6.79± 0.04 6.70 ± 0.01
Fashion CNNReLU 2048 7.70± 0.03 7.47 ± 0.09 7.64± 0.06 7.57± 0.01 7.56± 0.02
Fashion CNNReLU 256 7.70± 0.04 7.46± 0.11 7.83± 0.05 7.44± 0.12 7.25 ± 0.05
CIFAR100 WRN 2048 21.28± 0.27 20.78 ± 0.19 20.94 ± 0.13 21.26± 0.23 20.98± 0.24
CIFAR100 WRN 256 19.17± 0.19 19.02± 0.03 19.15± 0.06 19.07± 0.04 18.98 ± 0.01
CIFAR10 WRN 2048 3.73± 0.05 3.43 ± 0.07 3.40 ± 0.04 3.66± 0.11 3.43 ± 0.07
CIFAR10 WRN 256 2.84± 0.04 2.88± 0.06 2.84± 0.05 2.83± 0.03 2.80 ± 0.02

To more precisely quantify HyperBO’s advantage, we also computed how much faster HyperBO
can get a better error rate than best alternatives, which can be different from task to task. We found
that on average, on over 50% tasks, H* NLL is at least 2.86 times faster than best non-HyperBO
alternatives; while on over 57% tasks, H* KL is at least 3.26 times faster than best non-HyperBO
alternatives. Moreover, on over 73% tasks, H* NLL is at least 7.74 times faster than random search;
and on over 75% tasks, H* KL is at least 6.07 times faster than random search.

E.2.2 EFFECT OF NUMBER OF TRAINING TASKS

We now investigate the impact of number of training tasks on the performance of meta BO methods.
In Fig 8 we show the BO simple regrets on tasks from Table 1 (except ImageNet ResNet50 2048)
that use meta BO models trained on different number of training tasks. To analyze the performance
of all methods on less-related tasks, we first remove training tasks that have the same task dataset as
our current tuning task for testing, and then remove randomly selected training datasets from the rest.

HyperBO variants were able to reduce the simple regret as more training tasks are given. Interestingly,
both H* NLL and H* KL are already slightly better than Rand and STBOH when they started off
with only 3 training tasks. There are reasonable fluctuations in the results but overall the trend of
regret is going down as the number of training tasks increases. MIMO also reduced regret when the
number of tasks increased from 8 to 18. RFGP, however, fails to learn from training tasks possibly
because it did not learn good task embeddings for GP regression models.

E.2.3 EFFECT OF NUMBER OF DATA POINTS IN TRAINING TASKS

One remaining question is, how does Mi in §2, the number of data points in each training tasks,
affect the performance of meta BO methods. We analyze the impact of Mi by removing a portion
of all data that we have access to for each task. In particular, we set the percentage of remaining
data to be 0.2%, 0.5%, 1%, 3%, 5%, 10%, 30%, 50%, 70%, 90%. Remaining datapoints are selected
uniformly randomly, which breaks the structure of matching data. Hence we do not include H* KL in
this comparison, as H* KL only makes use of matching data.

Fig. 9 shows how the simple regret changes as the fraction of training data grows. Below 10% training
data, we observe clear trend that more data lead to lower regret for both H* NLL and MIMO, and
relatively no change for RFGP. We also found that the performance of HyperBO (H* NLL) does not
change much as the fraction of training data increases from 5% to 90%. However, MIMO and RFGP
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Figure 8: Aggregated BO results on 23 tasks (all in Table 1 except ImageNet ResNet50 2048 because
of insufficient data) that uses models trained on 3 to 23 training tasks. Note that the models are never
trained on the data from the test task that we run BO on. If the number of training tasks is less than
23, we first remove the tasks that involve the same task dataset as the test task and then remove others
randomly until we reach the designated number of training tasks. The top left shows the median and
20/80 percentiles of regret on best validation error rate for each method. The rest are violin plots
showing the regret for MIMO, H* NLL and H* KL, where white dots indicate the median and black
lines the 20/80 percentiles.

suffers significantly from more data as the fraction of training data increases from 5% to 50%. It is
not entirely clear why MIMO and RFGP have such behaviors. One conjecture is that neural network
based Bayesian linear regression models may get too confident once the amount of data reaches a
certain threshold. This means much less exploration if those models are used for BO.

E.2.4 TRAINING ON ALL BUT ONE TASK

We also studied the case where meta BO approaches have access to both training tasks that do
not use the same task dataset and training tasks that use the same task dataset but different model
configurations. This is especially common when we do architecture search: we aim to find the best
model and we are tuning the optimizer hyperparameters for a new machine learning model given
tuning data of the same task dataset on some other models.

For this section only, we added a new baseline, MAF: We refer to the meta BO method from Volpp
et al. (2020) as MAF (Meta Acquisition Function) to avoid confusion. MAF used reinforcement
learning to learn an acquisition function modeled by a neural network over a set of transfer learning
tasks. All MAF results were generated using the code from Volpp et al. (2020). See App. E.6 for
experimental details. As MAF takes significantly longer to run than HyperBO and other methods, we
only include its results for this section.

We carried out a series of leave-one-out experiments, where we picked one task as the BO test
function and let meta BO methods train on the remaining tasks. In Fig. 10, we aggregated results
from all 23 tasks to show the trend of how each method performs.

The conclusions are similar to those from §E.2.1. As expected, STBO without any tricks to avoid
pitfalls of vanilla BO did not show very good results. We inspected its learned GP which mimicked a
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Figure 9: Aggregated BO results on 23 tasks (all in Table 1 except ImageNet ResNet50 2048 because
of insufficient data) that uses models trained on 0.2% to 90% of data in each task. Note that the
models are never trained on the data from the test task that we run BO on. The top left is the median
and 20/80 percentiles of simple regret in log scale. The rest of the figures are simple regret violin
plots for MIMO and H* NLL

Figure 10: Aggregated leave-one-out BO convergence results on 23 tasks, each with 5 repeats using
different random seeds. The left most is the median and 20/80 percentiles of the regrets on error rates.
We also show violin plots on its two vertical slices at 50th and 100th iteration, where the white dot is
the median and the black line is the 20/80 percentile.

Dirac function that is flat almost everywhere except some locations, and hence it got very confident
that it landed at a good spot and lost its ability to explore.

STBOH, on the other hand, achieved very competitive results. This is because it used hand-tuned
priors on all of its GP parameters, although they were tuned on somewhat different problems than the
ones we consider. As part of the goals of meta learning, we would like to show that it is possible for
meta BO methods to exceed or at least match STBOH.

Both HyperBO variants obtained better results than the hand-tuned STBOH. Especially in the
beginning few BO iterations, it is able to locate much better hyperparameters than all other methods.

Tab. 4 presents mean and standard error of the best validation error rates achieved in 100 BO iterations
on the 23 tasks. HyperBO and its variants were able to achieve the best performance on 20 out of
23 tasks. In Fig. 11, we show the optimization curves of 4 individual tasks that are considered most
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Figure 11: Leave-one-out log regret mean and standard deviation results on ImageNet ResNet50
512, LM1B Transformer 2048, WMT XFormer 64 and Uniref50 Transformer 128. All methods were
repeated 5 times with different random seeds to initialize their models. In LM1B Transformer 2048,
H* NLL and H* KL disappeared around 60 to 80 BO iterations because they reached 0 regret.

difficult because few similar task datasets are present in their training data. On all of these 4 difficult
tasks, HyperBO identified good hyperparameters much sooner than its competitors.

E.3 RESULTS ON ONLINE OPTIMIZER HYPERPARAMETER TUNING TASKS

Finally, we look into the online BO setting where we optimize over the full hypercube. In the online
setting, some combinations of hyperparameters may be infeasible to evaluate. For example, an overly
big learning rate may lead to divergence in gradients, in which case we do not obtain a valid model.
To address this, we pre-process the function values to [−2, 2) such that infeasible evaluations map to
−2, while bad evaluations approach asymptotically to −2. More precisely, for each subdataset Dfi ,
we applied for each successful y ∈ {yj(i)}Mi

j=1 the following mapping:

y ← softplus(y − y)

softplus(ymax − y)
∗ 4− 2

where y is the median of {yj(i)}Mi
j=1.
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Table 4: The mean and standard error of best validation error rates (%) for each test task in the offline
leave-one-out experiments. We show results of the top 6 methods, and we highlight the lowest error
rates in bold.

Rand STBOH MIMO MAF H* NLL H* KL
WMT XFormer 64 34.27 ± 0.16 34.15 ± 0.15 34.40 ± 0.13 34.09 ± 0.09 33.91 ± 0.01 33.97 ± 0.02
Uniref50 Transformer 128 79.06 ± 0.04 78.92 ± 0.12 79.17 ± 0.13 79.34 ± 0.27 78.71 ± 0.06 78.64 ± 0.00
LM1B Transformer 2048 61.96 ± 0.03 61.95 ± 0.04 61.96 ± 0.05 62.02 ± 0.10 61.81 ± 0.01 61.81 ± 0.01
SVHN WRN 1024 3.99 ± 0.04 4.05 ± 0.10 3.83 ± 0.04 4.10 ± 0.09 4.10 ± 0.02 4.08 ± 0.01
SVHN WRN 256 3.71 ± 0.01 3.72 ± 0.02 3.65 ± 0.01 3.69 ± 0.03 3.78 ± 0.01 3.72 ± 0.03
ImageNet ResNet50 256 23.03 ± 0.07 22.66 ± 0.07 22.73 ± 0.07 26.44 ± 1.98 22.53 ± 0.00 22.58 ± 0.04
ImageNet ResNet50 512 23.02 ± 0.11 22.74 ± 0.05 23.01 ± 0.05 25.46 ± 1.41 22.65 ± 0.02 22.79 ± 0.03
MNIST CNNPoolTanh 2048 0.55 ± 0.01 0.53 ± 0.01 0.53 ± 0.01 0.52 ± 0.01 0.59 ± 0.02 0.54 ± 0.00
MNIST CNNPoolTanh 256 0.51 ± 0.01 0.48 ± 0.01 0.47 ± 0.00 0.47 ± 0.01 0.46 ± 0.01 0.47 ± 0.01
MNIST CNNPoolReLU 2048 0.69 ± 0.01 0.73 ± 0.02 0.67 ± 0.02 0.68 ± 0.01 0.64 ± 0.00 0.70 ± 0.03
MNIST CNNPoolReLU 256 0.51 ± 0.01 0.55 ± 0.03 0.50 ± 0.01 0.51 ± 0.01 0.49 ± 0.00 0.49 ± 0.00
MNIST CNNReLU 2048 1.14 ± 0.03 1.20 ± 0.09 1.10 ± 0.01 1.17 ± 0.02 1.06 ± 0.00 1.11 ± 0.02
MNIST CNNReLU 256 1.09 ± 0.02 1.06 ± 0.01 1.08 ± 0.02 1.07 ± 0.02 1.03 ± 0.00 1.04 ± 0.01
Fashion CNNPoolTanh 2048 7.14 ± 0.06 7.10 ± 0.05 7.01 ± 0.04 7.12 ± 0.04 7.00 ± 0.04 7.02 ± 0.07
Fashion CNNPoolTanh 256 6.51 ± 0.03 6.67 ± 0.18 6.40 ± 0.05 6.47 ± 0.03 6.40 ± 0.04 6.34 ± 0.04
Fashion CNNPoolReLU 2048 7.47 ± 0.02 7.48 ± 0.04 7.54 ± 0.06 7.63 ± 0.04 7.47 ± 0.03 7.47 ± 0.02
Fashion CNNPoolReLU 256 6.78 ± 0.04 6.74 ± 0.01 7.03 ± 0.07 6.84 ± 0.05 6.74 ± 0.03 6.81 ± 0.05
Fashion CNNReLU 2048 7.70 ± 0.03 7.47 ± 0.09 7.60 ± 0.04 40.40 ± 17.80 7.54 ± 0.01 7.57 ± 0.02
Fashion CNNReLU 256 7.70 ± 0.04 7.46 ± 0.11 7.84 ± 0.06 24.13 ± 14.54 7.29 ± 0.05 7.25 ± 0.05
CIFAR100 WRN 2048 21.28 ± 0.27 20.78 ± 0.19 21.75 ± 0.15 50.70 ± 15.44 21.22 ± 0.23 20.82 ± 0.19
CIFAR100 WRN 256 19.17 ± 0.19 19.02 ± 0.03 19.12 ± 0.04 19.84 ± 0.13 19.00 ± 0.00 19.04 ± 0.05
CIFAR10 WRN 2048 3.73 ± 0.05 3.43 ± 0.07 3.46 ± 0.05 3.40 ± 0.06 3.55 ± 0.10 3.43 ± 0.05
CIFAR10 WRN 256 2.84 ± 0.04 2.88 ± 0.06 2.89 ± 0.06 3.04 ± 0.05 2.82 ± 0.03 2.74 ± 0.01

In this section, we set HyperBO variants and STBO to share exactly the same GP-UCB acquisition
function as STBOH, MIMO and RFGP. The UCB coefficient for all methods is 1.8. The variants of
HyperBO are as follows:

• H* NLL: HyperBO with UCB as the acquisition function and negative log marginal likeli-
hood (NLL) as the objective function.

• H* NLLKL: HyperBO with UCB as the acquisition function and NLL plus 10 times KL
divergence on matching datapoints as the objective function. See §C for more details.

In Fig. 12, we include the online tuning results for selected tasks due to limited compute resources.
We noticed that for some methods, e.g. STBO and MIMO, it is very difficult for them to recover from
a “bad” datapoint. This is partly because predictions from these models are significantly tied to the
initial observations. For example, STBO may overfit to the initial bad value and believe there are bad
values in the entire search space. Nevertheless, in 7 out of 9 tasks, HyperBO methods performed the
best among all methods being compared.

E.4 IMPACT OF OBJECTIVE FUNCTIONS

Here we investigate how different objective functions in HyperBO can impact its performance.
Besides NLL and KL, which are already described in details in §3, we also include NLL+KL, which
corresponds to Eq. 8 with λ = 10. λ = 10 is an arbitrary choice, and one may find other better
options to set λ in Eq. 8.

Figure 13 shows the performance profiles and BO simple regret curves of NLL, KL and NLL+KL
when HyperBO uses different acquisition functions. As comparisons, we also included the better
performing baselines: Rand, STBOH and MIMO. While the ranks of performance by different
objectives do vary depending on which acquisition function we used, it is clear that all HyperBO
variants outperform the baselines. For EI and PI, the KL objective gives better performance, but NLL
or NLL+KL might be preferred for UCB with coefficient 2, 3 or 4.

E.5 IMPACT OF ACQUISITION FUNCTIONS

As explained briefly in §4, we used 5 acquisition functions in our experiments: the vannila EI method,

PI with coefficient 0.1, αPI
(
x;GP(µ̂, k̂ | Df )

)
=

µ̂Df (x)−maxt(yt+0.1)

σ̂Df (x)
, and UCB with coefficient

ζ = 2, 3 and 4 in αUCB
(
x;GP(µ̂, k̂ | Df )

)
= µ̂Df (x) + ζσ̂Df (x).
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Figure 12: Results of running BO methods in the online setting on 9 different tasks. The image based
tasks all use best validation error rate as objective while the text based tasks (LM1B, Uniref50 and
WMT) use best validation ce loss. HyperBO methods achieved better results in 7 out of 9 tasks.

Our goal is to verify that HyperBO maintains good performance across different choices of acquisition
functions. To do so, we investigated in the performance of HyperBO variants under different
objectives. We avoid over cluttering the figures by only including STBOH as baseline, since it is
roughly the best baseline according to the main results in Fig. 6.

As shown in Figure 14, HyperBO with EI and PI as acquisition functions perform relatively better
than HyperBO with UCB variants. However, HyperBO with UCB3 can still be very competitive
when it is coupled with NLL objective. Overall, HyperBO with all of the 5 acquisition function
options outperforms the best performing baselines.

E.6 MAF IMPLEMENTATION DETAILS

We compared to (Volpp et al., 2020) using the code and default hyperparameters provided by the
authors.7 This code assumes that each task is additionally accompanied by the optimal set of
hyperparameters for the GP used to model the task (including the task used for evaluation). Following
the MAF approach, we learned these hyperparameters using the GPY library, and provided them to

7https://github.com/boschresearch/MetaBO
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Figure 13: We compare the performance of 3 different objective functions in HyperBO under 5
settings of acquisition functions. For EI and PI, using KL as the objective for HyperBO is slightly
better than NLL or NLL+KL. However, different conclusions can be drawn for UCB2, UCB3 and
UCB4. Nevertheless, all HyperBO variants still outperform the best alternatives.

the MAF algorithm. Given that MAF takes significantly longer to run than HyperBO, each subdataset
was evaluated using only one random seed.

Each neural acquisition function was trained for a total of 1000 iterations. As was done in (Volpp et al.,
2020), we selected the optimal training iteration for the neural acquisition function by cross-validation
on the transfer learning tasks; in this case, we randomly sampled 3 transfer learning task, and chose
the training iteration with the lowest average simple regret.

Finally, to reuse the MAF code, we also had to ensure that (a) each subtask had the same number of
evaluation points, and (b) that there were no duplicated hyperparameters. For this reason, we first
removed all duplicate hyperparameters within each subdataset, then capped each subdataset to the
first 1559 points (the size of the smallest sub-dataset).
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Figure 14: We compare the performance of 5 different acquisition functions under 3 settings of
objectives in HyperBO. Overall, PI and EI outperform UCB with different coefficient values. But
HyperBO with UCB variants still outperforms STBOH, which is roughly the best baseline according
to the main results in Fig. 6.

F DISCUSSION

In this work, we focused on the question of how to make use of multi-task data to enable better
Bayesian optimization. For the convenience of our investigation, we made simplifications such as
sequential evaluations and a shared search space across tasks, although these are mostly unnecessary
(see below). Our method also relies on an important assumption: functions of all tasks are i.i.d.
samples from the same GP. In this section, we explore how reasonable the i.i.d. assumption is and
discuss extensions to our work that would enable even more flexible uses.

Assumption on i.i.d. GP samples. To get a better idea on how much our assumptions helped on
training the GP, we compare NLLs associated with 23 tasks in §4.1 with models obtained via 3
scenarios:
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(a) No training: a randomly initialized model with no training;

(b) Single task: models trained on 100 randomly selected data points of the test task;

(c) H*: models trained on 18 irrelevant tasks selected in §E.2.2.

Here case (c) corresponds to the method HyperBO used for training a GP and case (b) corresponds
to the model STBO can obtain with 100 initial observations. In Tab. 5, we show NLLs of these 3
methods on all tasks8 and NLLs on the test task. Note that the held-out tasks for some test tasks are
the same because of the held-out rules in §E.2.1.

Comparing NLLs of the test tasks using models without training and trained via marginal likelihood
like STBO, it is perhaps surprising to see that training on a subset of data points of the sub-dataset of
the test task not only did not contribute to lowering NLL on the entire sub-dataset, but it even made it
worse in 20 out of 23 test tasks. The training process by optimizing the NLL on a part of a sub-dataset
leads to severe over-fitting. We can observe the same results of NLLs on all tasks. Without any
training, our NLL is 148211.2. Yet single-task training leads to higher NLLs for all models trained
on different sub-datasets.

Our method H*, on the other end, consistently achieves lower NLLs on both the test task and all tasks.
Although it is not entirely clear what the relation is between a better NLL of the GP and better BO
results, achieving lower NLLs typically means that the model has a better fit to the dataset. Hence, by
the assumption of typical BO methods, the test function should look like a sample from our model,
and so lower NLLs of model will contribute to matching the assumption of typical BO methods. By
enhancing the assumption with ours on i.i.d. GP samples, Tab. 5 shows we then will be able to obtain
models with a much better fit to the data.
Table 5: NLLs on 23 tasks and (pseudo) KL divergences on matching datasets with trained and
randomly initialized GP models. The NLL of randomly initialized model (No training) on all tasks is
148211.2. The KL value of randomly initialized model (No training) is 2177.2. Training on a subset
of a sub-dataset in the test task (Single task) often leads to much worse marginal likelihood on the
entire sub-dataset. Training on irrelevant tasks (H*) achieves much lower (pseudo) KLs on matching
datasets and lower NLLs for both the test task only and all tasks.

NLL of the test task only NLL of all tasks (Pseudo) KL
Test task No training Single task H* Single task H* Single task H*
WMT XFormer 64 −301.1 159.1 −1735.0 1147900.5 2264.5 9651.9 −40.2
Uniref50 Transformer 128 −651.7 −6829.4 −1850.0 106348128.0 867.9 316672.2 −25.1
LM1B Transformer 2048 −540.6 −2009.7 −1692.7 18840458.0 3565.7 57744.1 −23.5
SVHN WRN 1024 9703.1 72407.5 4267.1 3399330.0 9346.5 4677.9 −0.9
SVHN WRN 256 10770.0 53245.5 3794.8 1164804.5 9346.5 3092.7 −0.9
ImageNet ResNet50 256 1196.7 7483.0 −746.3 7925583.5 −74.2 15028.1 −30.6
ImageNet ResNet50 512 1300.2 6930.3 −673.1 1778823.5 −74.2 9462.1 −30.6
MNIST CNNPoolTanh 2048 10079.7 38871.9 794.8 1375930.1 97.0 3165.5 −32.4
MNIST CNNPoolTanh 256 12147.7 25607.9 550.0 556254.6 −606.0 1255.1 −41.9
MNIST CNNPoolReLU 2048 26870.5 7149.3 5506.6 46538.2 1542.2 113.8 −59.4
MNIST CNNPoolReLU 256 15601.6 6734.6 51.0 88687.7 −782.2 361.2 −41.5
MNIST CNNReLU 2048 13939.2 40619.2 3153.2 743233.1 −231.4 877.6 −61.7
MNIST CNNReLU 256 10111.0 34412.4 1365.3 977295.0 −779.8 1373.3 −46.2
Fashion CNNPoolTanh 2048 2072.8 11433.0 −381.0 1139702.4 −1051.7 1910.5 −37.8
Fashion CNNPoolTanh 256 2800.7 4115.6 −251.4 1278018.0 −1051.7 4208.3 −37.8
Fashion CNNPoolReLU 2048 4677.4 725.2 −405.2 69173.3 −1051.7 205.1 −37.8
Fashion CNNPoolReLU 256 3925.7 4254.4 −755.7 296739.1 −1051.7 1027.1 −37.8
Fashion CNNReLU 2048 4667.3 6778.1 251.9 193488.4 −1051.7 597.0 −37.8
Fashion CNNReLU 256 3295.1 29348.6 −235.1 1526829.2 −1051.7 3341.4 −37.8
CIFAR100 WRN 2048 1271.5 15813.7 −467.4 3306556.5 312.3 25593.7 −19.2
CIFAR100 WRN 256 1957.6 5950.8 −510.9 3468309.0 11.7 9288.4 −25.9
CIFAR10 WRN 2048 5220.6 4917.6 832.9 334488.8 1127.1 1040.4 −14.8
CIFAR10 WRN 256 7819.1 32995.8 463.4 895691.2 847.4 1946.0 −19.6

We also computed the (pseudo) KL divergence across all matching datasets in the last columns of
Tab. 5. See Appendix C for a comprehensive analysis on pseudo KL divergence for degenerate
multivariate Gaussians. Note that pseudo KL divergence can be negative. Here we use pseudo KL
divergence if required by the matching dataset. Again, single-task training leads to unstable (pseudo)
KL values, sometimes even higher than without training (2177.2). On the contrary, training with H*
leads to much more stable and lower values for KL. This indicates that the model learned to predict

8All tasks include ImageNet ResNet50 2048. But it is excluded in the test tasks in Tab. 5 because it has much
fewer data points than the others.
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similarly to the sample mean/covariance estimate, which is known to help better selection of BO
query points by Theorem 1.

Batch evaluation. For simplicity of this paper, we did not consider batch evaluation but rather only
focused on the prior selection dimension of the challenges in BO. However, it is straightforward
to adopt any batch BO methods in conjunction with HyperBO to support obtaining observations
in parallel. For example, we can directly use batch methods in Snoek et al. (2012), Kathuria et al.
(2016), or Wang et al. (2017) to replace line 5 of Alg. 1.

High-dimensional and large scale data. Similar to batch BO, our method can also be naturally
combined with most high-dimensional and large scale BO methods to offer more capabilities. For
these cases, typically a probabilistic model different from vanilla GPs may be adopted. In line 2 of
Alg. 1, it is straightforward to adapt our method to optimize the cumulative marginal likelihood in
Eq. 3 instead for the new model. Our meta-learning idea in this paper in fact also brings benefit to
high-dimensional and large scale BO methods so that they can better identify their critical special
structures, e.g. low-dimensional embedding Wang et al. (2016), cylindrical kernels Oh et al. (2018)
or additive Mondrian kernels Wang et al. (2018a).

Different search spaces. Roughly speaking, there could be two circumstances for difference
search spaces. Case I is that tasks share the same search variables, but the search ranges for some
variables are different. For example, we may have each function fi : Xi → R, i ∈ [N ] and
Xi =

∏d
j=1[lij , hij ] ⊂ Rd. In this case, our solution still applies by simply setting a union search

space as X =
⋃N
i=1 Xi for learning and use the designated search space of new tasks for optimization.

Case II is more complicated: the search space for each function fi is Xi ⊂ Rdi and each dimension
of Xi may have a different meaning than another search space Xj (i 6= j). This paper does not have a
solution for this scenario. Further research will be needed to reduce Case II to Case I which can be
then immediately combined with HyperBO.
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