
Sparse Autoencoders Trained on the Same Data Learn
Different Features

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sparse autoencoders (SAEs) are a useful tool for uncovering human-interpretable1

features in the activations of large language models (LLMs). While some expect2

SAEs to find the true underlying features used by a model, our research shows that3

SAEs trained on the same model and data, differing only in the random seed used4

to initialize their weights, identify different sets of features. For example, in an5

SAE with 131K latents trained on a feedforward network in Llama 3 8B, only 30%6

of the features were shared across different seeds. We observed this phenomenon7

across multiple layers of three different LLMs, two datasets, and several SAE8

architectures. While ReLU SAEs trained with the L1 sparsity loss showed greater9

stability across seeds, SAEs using the state-of-the-art TopK activation function10

were more seed-dependent, even when controlling for the level of sparsity. Our11

results suggest that the set of features uncovered by an SAE should be viewed as a12

pragmatically useful decomposition of activation space, rather than an exhaustive13

and universal list of features “truly used” by the model.14

1 Introduction15

Sparse autoencoders (SAEs) are an interpretability tool used to decompose neural network activa-16

tions into human-understandable features (Cunningham et al., 2023). They address the problem of17

polysemanticity, where individual neurons activate in semantically diverse contexts, defying any18

simple explanation (Arora et al., 2018; Elhage et al., 2022). SAEs consist of two parts: an encoder19

that transforms activation vectors into a sparse, higher-dimensional latent space, and a decoder20

that projects the latents back into the original space. Both parts are trained jointly to minimize21

reconstruction error. Recently, SAEs have been scaled to state-of-the-art large language models, like22

GPT-4 (Gao et al., 2024) and Claude 3 Sonnet (Templeton et al., 2024).23

Many researchers hope SAEs can be used to “identify and enumerate over all features in a model”24

(Elhage et al., 2022), which might allow us to check certain safety properties, such as that “a model25

will never lie” (Olah, 2023). These hopes seem to presuppose that there is a unique, objective26

decomposition of a neural network into features, and that SAEs can uncover this decomposition27

(Smith, 2024). In this paper, we test this presupposition by measuring the degree to which SAE28

features depend on the random seed used to initialize their weights.29

It is somewhat nontrivial to compare features learned by different SAEs, since the latents of the30

SAE have no inherent ordering.1 Given a trained SAE M, we can generate a “shuffled” SAE M′ by31

randomly permuting the rows of M’s encoder matrix, and rearranging the columns of its decoder32

1In this work we will use “latent” to refer to a row in an SAE encoder matrix and its corresponding row in the
decoder matrix. By contrast, “feature” is reserved for the concept that a latent may represent. We assume that if
two latents are matched by our method, they do refer to some shared concept worth calling a “shared feature,”
although it may not make sense to a human. It would be a misnomer to speak of “shared latents.”

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

matrix using the inverse permutation.2 M and M′ represent the same function and contain the same33

features, up to an irrelevant permutation symmetry, and yet their weights may look very different.34

This means that if independently trained SAEs with different random initializations do learn the same35

features, we would still expect their latents to be arranged in different orders, and hence we cannot36

directly compare them.37

We can get around this problem by computing a bijective matching of each latent in the first SAE38

with a unique counterpart latent in second SAE. This matching should be optimal in the sense that39

it maximizes the average “similarity” between the matched latents. This ensures that, in the case40

where one SAE has actually been generated by shuffling the latents of another, we will conclude that41

the resulting SAEs do indeed have the same features. Luckily, the Hungarian algorithm is known to42

efficiently compute this optimal matching, and has been used to align independently trained networks43

before (Ainsworth et al., 2023). Empirically, we find that the pairs of latents cluster into two distinct44

modes: high-similarity hits where a latent has been matched to a close counterpart, and low-similarity45

misses where the latents are relatively unrelated (Figure 1). Qualitatively, hits have a strong tendency46

to occur in semantically similar contexts and share similar explanations, while misses are usually47

semantically unrelated.48

This bimodal distribution allows us to analyze the fraction of features that are shared between two49

SAEs. For the largest model we tested, Llama 3 8B (Dubey et al., 2024), only 30% of features50

are shared across both seeds. We find that smaller models, and smaller SAEs trained on the same51

model, tend to have higher fractions of shared features. We also apply the automated interpretability52

pipeline of Paulo et al. (2024) to compare the interpretability of hits and misses. We find that misses53

are often quite interpretable, so that an individual SAE training run is likely missing out on a number54

of interpretable features.55

2 Related Work56

Recent work has found that SAE features are not atomic, in the sense that a “meta SAE” can57

decompose them into more specific features (Anonymous, 2024). Relatedly, a feature in a small58

SAE may be replaced by multiple, more specific features in a larger SAE. In some cases, a more59

general feature like starts with the letter L appears alongside a specific feature like the token “lion”,60

which may prevent the general feature from being active in contexts where intuitively, both the61

general and the specific feature apply (Chanin et al., 2024). In light of these phenomena, some have62

questioned whether the “flat” design of standard SAEs can accommodate the hierarchical structure63

inherent to human concepts (Ayonrinde et al., 2024). While sparse autoencoders presuppose that64

neural networks use linear representations, some research suggests that irreducibly nonlinear features65

also exist (Engels et al., 2024). If this is true, SAEs trained with different random initializations66

might converge to different ways of “linearizing” the nonlinear features in activation space.67

Previous work had found that ReLU SAEs trained with an L1 sparsity penalty were stable under68

different seeds (Anonymous, 2024; Braun et al., 2024). By contrast, Marks et al. (2024) found that69

TopK SAEs could be improved by training two different seeds and forcing them to be “aligned,”70

suggesting that they may not be sufficiently aligned by default. A recent benchmark of feature splitting71

showed a convergent result, where JumpReLU and TopK latents had a higher feature splitting rate72

than ReLU SAEs (Karvonen et al., 2024).73

Concurrently with our work, Balagansky et al. (2024) use the Hungarian algorithm to align features74

from SAEs trained on adjacent layers of the Gemma 2 models (Lieberum et al., 2024). However, we75

learned in personal communication with the DeepMind interpretability team that the same random76

seed was used to initialize every SAE in the Gemmascope collection, so Balagansky et al. (2024)’s77

positive results are likely dependent on this hyperparameter choice.78

2This is generally true for any MLP with elementwise nonlinearities. Indeed, for ReLU networks there is also
a continuous symmetry: the function represented by the model is unchanged when the pre-activation is scaled
by s and the post-activation is scaled by s−1. The standard training recipe for SAEs eliminates this symmetry,
however, by constraining decoder vectors to be unit norm (Bricken et al., 2023).

2

https://en.wikipedia.org/wiki/Hungarian_algorithm

3 Methods79

We trained several SAEs on the sixth MLP of Pythia 160M (Biderman et al., 2023) with 215 latents80

over the first 8B tokens of its own training corpus, the Pile (Gao et al., 2020), using the sparsify81

library (Belrose, 2024). We use different random seeds for initialization, but SAEs see exactly the82

same data in the same order. The SAEs we trained have the functional form83

x̂ = D TopK(Ex+ e) + d (1)

where x is the output of the MLP, x̂ is the reconstructed output of the MLP, E and e are the encoder84

weight and bias, and D and d are the decoder weight and bias. SAEs are trained to minimize the85

mean squared error ||x − x̂||22 between the model’s output x̂ and the target module output x. The86

SAEs are trained using the Adam optimizer (Kingma & Ba, 2015), with sequence length of 2049, and87

a batch size of 32 sequences. We also trained SAEs in SmolLM (Allal et al., 2024), GPT-2 (Radford88

et al., 2019) and Llama 3.1 8B (Dubey et al., 2024). The GPT-2 SAEs where trained on OpenWebText89

(Gokaslan et al., 2019), the LLama 3.1 SAEs on RedPajama V2 (Computer, 2023), and the SmolLM90

SAEs on Fineweb-edu Lozhkov et al. (2024). All SAEs had a different number of latents, but all had91

a ratio of 36 between the number of latents and the dimension of the input.92

The exact cost function that we feed into the Hungarian algorithm is a hyperparameter in our method.93

In particular, we can try to maximize the average cosine similarity of the encoder vectors or the94

decoder vectors. While the decoder is initialized using the transpose of the encoder, the two matrices95

can diverge during SAE training. To err on the side of conservatism, we compute one matching using96

the encoder and another matching using the decoder. We consider a feature to be shared if its97

latents are paired together in both the encoder and decoder matchings, and in both of these98

matchings they have a cosine similarity of 0.7 or greater. If a latent does not refer to a shared99

feature, we will call it unpaired.100

More specifically, we use SciPy’s (Virtanen et al., 2020) function linear_sum_assignment to find101

the decoder permutation Pdec that maximizes tr(PT
decD

T
1 D2) and the encoder permutation Penc102

that maximizes tr(PT
encE1E

T
2), where the columns of D1,D2 and the rows of E1,E2 have been103

standardized to unit norm beforehand. Shared features correspond to pairs of latents (i, j) where the104

ith columns in Pdec and Penc (or equivalently, the jth rows) are equal. Additionally, the matched105

cosine similarities (PT
decD

T
1 D2)ii and (PT

encE
T
1 E2)jj are required to be greater than 0.7. By this106

definition, only 42% of latents are shared across our two independently trained SAEs. Interestingly,107

the fraction of shared features is essentially unchanged if we were to use maximum cosine similarity108

(see below) in lieu of the Hungarian algorithm to label features as shared (Figure A2).109

Maximum cosine similarity. Prior work has measured the similarity of independently trained110

SAEs using the mean maximum cosine similarity (Braun et al., 2024, Figure 3b). Specifically, for111

each latent in the first SAE we find the maximum cosine similarity between itself and all latents in the112

second SAE. The average of these maxima is the overall similarity score. This metric is simple, but it113

has the downside that it does not yield a bijective matching: many latents in the first SAE may be114

mapped to one latent in the second SAE. We compare the matched cosine similarity produced by the115

Hungarian algorithm to the maximum cosine similarity for each latent in Figure A3, observing that116

while for some latents the max cosine similarity is higher than the matched cosine similarity, the vast117

majority have the same value for both metrics, suggesting that the Hungarian algorithm has chosen to118

match most latents with their nearest neighbors. While we think the Hungarian matching approach is119

more principled and use it in the rest of this paper, we do find that empirically the difference between120

these two approaches is small.121

Interpretability We use the automated interpretability pipeline released by Paulo et al. (2024) to122

generate explanations and scores for the SAE latents. For each latent, representative samples of its123

activations are sampled and shown to an LLM, in our case Llama 3.1 70b Instruct (Dubey et al.,124

2024), which is told to generate a succinct explanation that summarizes the activations. The LLM is125

shown 40 examples sampled from the whole activation distribution.126

After explanations are generated for each latent, they are scored. We also use the pipeline from Paulo127

et al. (2024) for this process. We use both fuzzing and detection to score the latents. To compute the128

detection score, Llama 3.1 70b Instruct is given the explanation of the latent and a set of examples.129

The LLM then has to decide which examples activate the latent and which don’t using the explanation130

3

https://github.com/EleutherAI/sparsify

Figure 1: Cosine similarities of features from SAE 1 with their counterparts in SAE 2. Both
SAEs have 32K latents, and are trained on the sixth MLP of Pythia 160M. Contour lines are regions
of equal density according to kernel density estimation. We color each SAE 1 latent depending on
whether the encoder-based and decoder-based matchings agree on which counterpart it should get.

that was given. At the end the detection score of the latent is given by the balanced accuracy, which131

in our case reduces to accuracy because we use the same number of activating and non activating132

examples. The fuzzing score is computed with a similar protocol, but LLM is instead tasked to133

identify if a given highlighted token is active given the explanation.134

4 Results135

On this pair, we find that the distribution of matched cosine similarities has two modes: high-similarity136

hits and low-similarity misses (Figure 1). Overall, cosine similarities for encoder and decoder vectors137

are strongly correlated. We observe that in cases where the encoder and decoder matchings disagree138

(colored in orange), the cosine similarity is usually low for both matchings, whereas similarities are139

higher when the encoder and decoder matchings agree (colored in blue).140

4.1 Asymptotic Trend141

We now consider seven more SAEs with the same data order, but with seeds different from the first142

two, yielding a total of nine independently trained SAEs. We first run the Hungarian algorithm143 (
9
2

)
= 36 times, one for each pair of SAEs. Then for each integer k from 2 to 9, we iterate over all144 (

9
k

)
combinations of SAEs of size k, and for each combination, we run the following experiment145

k different times, each time using a different SAE as the “base SAE.” We use each of the k − 1146

matchings of the base SAE with a different SAE within this combination to compute a binary mask147

classifying each latent as a hit or a miss, using the definition from Section 3.148

We say that a latent is “only in the base SAE” if it is an miss according to all k − 1 of these binary149

masks. Then, with respect to a given base SAE, we compute the proportion of all latents that are only150

in the base. Finally, we average the proportions generated by running this experiment k ×
(
9
k

)
times,151

one for each combination of k SAEs and each possible base SAE in each combination. When k = 9,152

4

Figure 2: Latent similarity vs. firing frequency. We plot the cosine similarity between matched
latents, vs. how often the latent fires in the base SAE. The similarity of each latent is averaged over
all the matched latents of different seeds. The histograms in this figure are stacked, and the histogram
of number of occurrences has a log-scale from 0 to 500, to highlight the few latents that rarely fire or
that fire frequently, and a linear-scale from 500 to 4000. Latent occurrences were collected over 10M
tokens of the Pile, the same dataset that the SAEs were trained on.

we find that number of latents found in only one SAE is reduced to about 35% . The results of these153

experiments are plotted in Figure A1.154

The number of latents found in only one SAE decreases slowly as the number of seeds increases155

Figure A1. Our results indicate that when training a small number of SAEs, a certain number of156

latents will never find a counterpart – we found that a power law with an offset term fits the data157

significantly better than one without the offset.158

To generate Figure 2, we fix Seed 1 as the base SAE, and color latents based on the number of159

matchings (out of the 9− 1 = 8 matchings involving Seed 1) in which they find a counterpart. We160

find that the latents that most frequently fire in the first SAE are the ones that have a counterpart in all161

eight SAEs, and that the ones that most infrequently fire are the ones that do not have a counterpart in162

any other SAE, see Figure 2. Interestingly, a significant number of misses have a higher firing rate on163

average than latents with counterparts in all SAEs. In fact, as the average alignment between latents164

increases, the firing frequency seems to decrease.165

4.2 Are the unpaired latents interpretable?166

In this section, we generate explanations for all latents of two seeds of a 215 latent SAE and score167

them using detection and fuzzing scoring (Paulo et al., 2024), evaluating the explanation over 100168

active sequences and 100 non-active sequences. The average score of the explanations of the 32K169

SAEs is 0.72, with only 25% of explanations having a score lower than 0.62, and only 25% having a170

score better than 0.8.171

Plotting the distributions of scores conditioned on the number of SAEs that “shared” that latent reveals172

that features shared across a higher number of SAE seeds have on average higher interpretability173

scores. In spite of this, a significant fraction of latents found only on one SAE, have high scoring174

latents. Plotting the scores of the latents of the two seeds mentioned above, we find that the most of175

the latents that have low similarity have either a low or an average score, see Figure 3 left. Some176

5

latents have a average cosine similarity < 0.7 and high scores, reinforcing the observation that some177

interpretable latents can be missing from any given seed, see Table 1 for some examples.178

Figure 3: Interpretability of unpaired latents. Distribution of scores of different latent explanation
conditioned on the number of SAEs that latent can be found on. On the right we compare the scores
of 5k explanations of matched latents of different SAE seeds. We see that most of the latents that
have low alignment either have a low score or have a higher score in one of the SAEs than in the
other.

Alignment Seed 1 Seed 2
0.10 Abbreviated country name in United

States Supreme Court case citations.
(0.865)

A single character or a small group of
characters embedded within a larger
word, often in a non-English language
context (...). (0.56)

0.27 Definite articles and other words com-
monly used in formal and legal lan-
guage, such as disclaimers, licensing
terms, and court documents. (0.91)

Punctuation marks or short words con-
necting or separating clauses, (...) and
sometimes serving as conjunctions or
prepositions. (0.46)

0.44 Abbreviated geographical or institu-
tional references, usually in the context
of legal citations. (0.85)

Punctuation marks. (0.49)

0.75 Percent symbols marking numerical val-
ues representing proportions or rates.
(0.95)

A percentage symbol denoting the pro-
portion of a quantity, (...) and usually in
the form of a numerical value followed
by the symbol. (0.97)

0.97 Adverbs that express frequency, such as
’often’, ’sometimes’, (...), used to indi-
cate the occurrence or tendency of an
event or action. (0.94)

Adverbs indicating frequency, such as
’often’, ’frequently’, (...), are used to
describe the regularity or likelihood of
an event or situation. (0.99)

Table 1: Unpaired latents can have high scoring explanations. We selected explanations of pairs of
latents shown in Fig. 3. Each explanation is shown alongside its detection score (Paulo et al., 2024),
a number in [0, 1] measuring explanation quality, in parentheses. We select latents from 5 bins of
alignment by maximizing the score of both explanations if the cosine similarity between the latents is
> 0.7 and by maximizing the score of the explanation on seed 1 and minimizing the score on seed 2
of the cosine similarity is < 0.7. Ellipsis added to some explanations for brevity. This choice was
made to capture latents that had good explanations in seed 1 but were not matched in seed 2. The
latent pairs are (12314, 6024), (21463, 3361), (5888, 6649), (14931, 5456) and (1817, 66).

6

4.3 Ablations179

We performed several ablation studies to investigate how our results depend on the hyperparameters180

used to train the SAE, including the number of active latents k, the total number of latents, the number181

of tokens used for training, and the SAE architecture (TopK, Gated, or ReLU).182

Figure 4: Dependence of overlap on SAE hyperparameters. On the right we see the how the
fraction of shared features for a Pythia-160M SAE depends on the layer and on the number of latents.
In the middle we compare SAEs with the same expansion factor, 36, trained on different models and
positions. On the right we compare SAEs trained on GPT2 using different activation functions and
architectures.

We find that increasing the number of SAE latents, all else being equal, decreases the overlap between183

different seeds, see Figure 5. Increasing the number of active latents, by increasing the k for TopK184

SAEs, also decreases the overlap, while the training time increases the overlap between latents. These185

results seem to indicate that what the seed dependence is not mainly due to feature absorption, as186

absorption increases when sparsity is decreased (Karvonen et al., 2024), and the model is trained187

for longer, while it does increase when the number of latents increases. We have found no evidence188

of feature absorption on the MLP SAEs we trained, but that may be due to the fact that the current189

metric is not tuned to find absorption on MLP SAEs, as it was mostly used on residual stream ones.190

Figure 5: Dependence of overlap of a Pythia-160M SAE on size, number of active latents and
training time. On the left we see that the fraction of aligned latents decreases with the increase of
the number of latents. Middle shows that increasing the number of active latents, by increasing the
value of k for the TopK activation function, also decreases the overlap. On the right, training time
increases the alignment of different SAE seeds. Unless otherwise indicated, each SAE has 215 latents
and was trained on the output of the sixth layer MLP of Pythia 160M, on the first 8B tokens of its
training corpus, the Pile.

The overlap between different seeds remains almost constant across the middle layers of the model,191

being lower for the earlier layers and the last layer (Figure 4). On SmolLM (Allal et al., 2024)192

and GPT2 the MLP latents have more overlap between seeds than the residual stream ones, but the193

same is not true for Pythia. Previous work had found that a large number of latents (> 90%) where194

7

shared between GPT2 seeds (Anonymous, 2024; Braun et al., 2024), although those numbers where195

measured for SAEs with smaller numbers of latents than ours, and using a different architecture196

(ReLU instead of TopK). Indeed we find that standard and Gated SAEs (Rajamanoharan et al., 2024)197

trained with L1 loss have a larger overlap between latents. The overlap is much lower for the Llama198

8B SAEs, which has more latents but the same expansion factor.199

In Figure A4 we compare the matched cosine similarity produced by the Hungarian algorithm to the200

maximum cosine similarity, showing that these are strongly correlated. This shows that our results are201

not strongly dependent on the choice of method used to compare latents from independently trained202

SAEs.203

5 Conclusion204

Our results are further evidence for the idea that SAEs do not uncover a “universal” set of features.205

Different random initializations can lead to different sets of features being found, and SAEs seem to206

diverge, rather than converge, with increasing scale. We think feature discovery is best viewed as207

a compositional problem, wherein we look for useful ways of cutting up the activation space into208

categories, and these categories can themselves be cut up into further categories, hierarchically.209

Mathematically, the lack of universality we observe here is due to the nonconvexity of the SAE loss210

function, which gives rise to many local optima. One might have expected a priori, however, that211

different local optima would have more feature overlap than we found in this study.212

References213

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo214

permutation symmetries. In The Eleventh International Conference on Learning Representations,215

2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.216

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -217

blazingly fast and remarkably powerful, 2024.218

Anonymous. Sparse autoencoders do not find canonical units of analysis. In Submitted to219

The Thirteenth International Conference on Learning Representations, 2024. URL https:220

//openreview.net/forum?id=9ca9eHNrdH. under review.221

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure222

of word senses, with applications to polysemy. Transactions of the Association for Computational223

Linguistics, 6:483–495, 2018.224

Kola Ayonrinde, Michael T Pearce, and Lee Sharkey. Interpretability as compression: Reconsidering225

sae explanations of neural activations with mdl-saes. arXiv preprint arXiv:2410.11179, 2024.226

Nikita Balagansky, Ian Maksimov, and Daniil Gavrilov. Mechanistic permutability: Match features227

across layers. arXiv preprint arXiv:2410.07656, 2024.228

Nora Belrose. Sparsify repository. GitHub repository, 2024. URL https://github.com/229

EleutherAI/sparsify.230

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric231

Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.232

Pythia: A suite for analyzing large language models across training and scaling. In International233

Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.234

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally235

important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv.org/236

abs/2405.12241.237

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,238

Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,239

Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina240

Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and241

8

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=9ca9eHNrdH
https://openreview.net/forum?id=9ca9eHNrdH
https://openreview.net/forum?id=9ca9eHNrdH
https://github.com/EleutherAI/sparsify
https://github.com/EleutherAI/sparsify
https://github.com/EleutherAI/sparsify
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241

Chris Olah. Towards monosemanticity: Decomposing language models with dictionary learn-242

ing. Transformer Circuits Thread, 2023. URL https://transformer-circuits.pub/2023/243

monosemantic-features. Published October 4, 2023.244

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is245

for absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint246

arXiv:2409.14507, 2024.247

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL248

https://github.com/togethercomputer/RedPajama-Data.249

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-250

coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,251

2023.252

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha253

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.254

arXiv preprint arXiv:2407.21783, 2024.255

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,256

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.257

arXiv preprint arXiv:2209.10652, 2022.258

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model259

features are linear. arXiv preprint arXiv:2405.14860, 2024.260

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,261

Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for262

language modeling. arXiv preprint arXiv:2101.00027, 2020.263

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya264

Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint265

arXiv:2406.04093, 2024.266

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:267

//Skylion007.github.io/OpenWebTextCorpus, 2019.268

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,269

Eoin Farrell, Arthur Conmy, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Samuel270

Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders, 2024.271

URL https://www.neuronpedia.org/sae-bench/info. Accessed: 2025-01-17.272

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),273

2015. URL http://arxiv.org/abs/1412.6980.274

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant275

Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse276

autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/2408.277

05147.278

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the279

finest collection of educational content, 2024. URL https://huggingface.co/datasets/280

HuggingFaceFW/fineweb-edu.281

Luke Marks, Alisdair Paren, David Krueger, and Fazl Barez. Enhancing neural network interpretabil-282

ity with feature-aligned sparse autoencoders. arXiv preprint arXiv:2411.01220, 2024.283

Chris Olah. Interpretability dreams. Transformer Circuits Thread, 2023. URL https://284

transformer-circuits.pub/2023/interpretability-dreams/index.html. Published285

May 24, 2023.286

Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of287

features in large language models. arXiv preprint arXiv:2410.13928, 2024.288

9

https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://github.com/togethercomputer/RedPajama-Data
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.neuronpedia.org/sae-bench/info
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://transformer-circuits.pub/2023/interpretability-dreams/index.html

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language289

models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.org/290

CorpusID:160025533.291

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János292

Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-293

coders. arXiv preprint arXiv:2404.16014, 2024.294

Lewis Smith. The strong feature hypothesis could be wrong, 2024. URL https://www.lesswrong.295

com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong.296

Accessed: 2025-01-17.297

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam298

Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,299

Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,300

Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monoseman-301

ticity: Extracting interpretable features from claude 3 sonnet. Transformer Circuits Thread,302

2024. URL https://transformer-circuits.pub/2024/scaling-monosemanticity/303

index.html.304

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,305

Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,306

Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric307

Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,308

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,309

Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0310

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature311

Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.312

10

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Figure A1: Dependence of the number of latents found only in the base SAE on the number of
seeds. We consider a latent X in SAE A to be “shared” in SAE B if and only if X is matched to a
latent Y in B with which it has cosine similarity greater than 0.7 according to both the encoder and
decoder weights. To generate this plot we select a “base” SAE and compute its overlap with all the
other seeds, then we average over all different base seeds.

Figure A2: The average alignment of points with equal decoder and encoder indices is 0.72 and
of the ones that have different indices is 0.33. On the right, we plot the fraction of latents that are
considered shared between 2 SAEs as we control a threshold. We decide to use a threshold of 0.7 on
both the encoder and decoder alignment to decide if a latent is shared between two SAEs.

11

Figure A3: Cosine similarity of latents when paired with the Hungarian algorithm vs when
using max cosine similarity. The majority of latents that have the same counterpart latent in both
the encoder and decoder matchings using the Hungarian algorithm have a similar alignment as if they
had been aligned with maximum cosine similarity. The latents which have a higher cosine similarity
pair when using max cosine similarity are paired with a latent that already had a pair.

Figure A4: Dependence of mean matched and mean max cosine sim of a Pythia-160M SAE on
different hyperparameters. On the left we see that the average cosine similarity of latents decreases
with the increase of the total number of latents. Middle shows that increasing the number of active
latents also decreases the average cosine similarity. On the right, training time increases the average
cosine similarity of different SAE seeds. We observe that the mean matched and max cosine similarity
have very similar trends, with max cosine similarity being just slightly higher. On panels all panels a
32768 latent SAE was trained on the output MLP of Pythia 160M, for 8B tokens, except when the
panel changes one of these conditions.

12

	Introduction
	Related Work
	Methods
	Results
	Asymptotic Trend
	Are the unpaired latents interpretable?
	Ablations

	Conclusion

