© ©® N O O A~ W N =

Sparse Autoencoders Trained on the Same Data Learn
Different Features

Anonymous Author(s)
Affiliation
Address

email

Abstract

Sparse autoencoders (SAEs) are a useful tool for uncovering human-interpretable
features in the activations of large language models (LLMs). While some expect
SAEs to find the true underlying features used by a model, our research shows that
SAE:s trained on the same model and data, differing only in the random seed used
to initialize their weights, identify different sets of features. For example, in an
SAE with 131K latents trained on a feedforward network in Llama 3 8B, only 30%
of the features were shared across different seeds. We observed this phenomenon
across multiple layers of three different LLMs, two datasets, and several SAE
architectures. While ReLU SAEs trained with the L1 sparsity loss showed greater
stability across seeds, SAEs using the state-of-the-art TopK activation function
were more seed-dependent, even when controlling for the level of sparsity. Our
results suggest that the set of features uncovered by an SAE should be viewed as a
pragmatically useful decomposition of activation space, rather than an exhaustive
and universal list of features “truly used” by the model.

1 Introduction

Sparse autoencoders (SAEs) are an interpretability tool used to decompose neural network activa-
tions into human-understandable features (Cunningham et al., 2023). They address the problem of
polysemanticity, where individual neurons activate in semantically diverse contexts, defying any
simple explanation (Arora et al., [2018; [Elhage et al., 2022)). SAEs consist of two parts: an encoder
that transforms activation vectors into a sparse, higher-dimensional latent space, and a decoder
that projects the latents back into the original space. Both parts are trained jointly to minimize
reconstruction error. Recently, SAEs have been scaled to state-of-the-art large language models, like
GPT-4 (Gao et al.} 2024) and Claude 3 Sonnet (Templeton et al., 2024).

Many researchers hope SAEs can be used to “identify and enumerate over all features in a model”
(Elhage et al.| 2022)), which might allow us to check certain safety properties, such as that “a model
will never lie” (Olah, 2023). These hopes seem to presuppose that there is a unique, objective
decomposition of a neural network into features, and that SAEs can uncover this decomposition
(Smith, 2024). In this paper, we test this presupposition by measuring the degree to which SAE
features depend on the random seed used to initialize their weights.

It is somewhat nontrivial to compare features learned by different SAEs, since the latents of the
SAE have no inherent orderingm Given a trained SAE M, we can generate a “shuffled” SAE M’ by
randomly permuting the rows of M’s encoder matrix, and rearranging the columns of its decoder

'In this work we will use “latent” to refer to a row in an SAE encoder matrix and its corresponding row in the
decoder matrix. By contrast, “feature” is reserved for the concept that a latent may represent. We assume that if
two latents are matched by our method, they do refer to some shared concept worth calling a “shared feature,”
although it may not make sense to a human. It would be a misnomer to speak of “shared latents.”

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55

56

57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73

74
75
76
77
78

matrix using the inverse permutationE] M and M’ represent the same function and contain the same
features, up to an irrelevant permutation symmetry, and yet their weights may look very different.
This means that if independently trained SAEs with different random initializations do learn the same
features, we would still expect their latents to be arranged in different orders, and hence we cannot
directly compare them.

We can get around this problem by computing a bijective matching of each latent in the first SAE
with a unique counterpart latent in second SAE. This matching should be optimal in the sense that
it maximizes the average “similarity” between the matched latents. This ensures that, in the case
where one SAE has actually been generated by shuffling the latents of another, we will conclude that
the resulting SAEs do indeed have the same features. Luckily, the Hungarian algorithm is known to
efficiently compute this optimal matching, and has been used to align independently trained networks
before (Ainsworth et al.,|2023)). Empirically, we find that the pairs of latents cluster into two distinct
modes: high-similarity hits where a latent has been matched to a close counterpart, and low-similarity
misses where the latents are relatively unrelated (Figure [T). Qualitatively, hits have a strong tendency
to occur in semantically similar contexts and share similar explanations, while misses are usually
semantically unrelated.

This bimodal distribution allows us to analyze the fraction of features that are shared between two
SAEs. For the largest model we tested, Llama 3 8B (Dubey et al., [2024)), only 30% of features
are shared across both seeds. We find that smaller models, and smaller SAEs trained on the same
model, tend to have higher fractions of shared features. We also apply the automated interpretability
pipeline of |Paulo et al.|(2024) to compare the interpretability of hits and misses. We find that misses
are often quite interpretable, so that an individual SAE training run is likely missing out on a number
of interpretable features.

2 Related Work

Recent work has found that SAE features are not atomic, in the sense that a “meta SAE” can
decompose them into more specific features (Anonymous), [2024). Relatedly, a feature in a small
SAE may be replaced by multiple, more specific features in a larger SAE. In some cases, a more
general feature like starts with the letter L appears alongside a specific feature like the roken “lion”,
which may prevent the general feature from being active in contexts where intuitively, both the
general and the specific feature apply (Chanin et al., 2024])). In light of these phenomena, some have
questioned whether the “flat” design of standard SAEs can accommodate the hierarchical structure
inherent to human concepts (Ayonrinde et al., [2024). While sparse autoencoders presuppose that
neural networks use linear representations, some research suggests that irreducibly nonlinear features
also exist (Engels et al.| [2024). If this is true, SAEs trained with different random initializations
might converge to different ways of “linearizing” the nonlinear features in activation space.

Previous work had found that ReLU SAEs trained with an L1 sparsity penalty were stable under
different seeds (Anonymous) 2024; Braun et al.,[2024). By contrast, [Marks et al.|(2024) found that
TopK SAEs could be improved by training two different seeds and forcing them to be “aligned,”
suggesting that they may not be sufficiently aligned by default. A recent benchmark of feature splitting
showed a convergent result, where JumpReL U and TopK latents had a higher feature splitting rate
than ReLU SAEs (Karvonen et al., 2024).

Concurrently with our work, |Balagansky et al.| (2024)) use the Hungarian algorithm to align features
from SAEs trained on adjacent layers of the Gemma 2 models (Lieberum et al., 2024). However, we
learned in personal communication with the DeepMind interpretability team that the same random
seed was used to initialize every SAE in the Gemmascope collection, so|Balagansky et al.|(2024))’s
positive results are likely dependent on this hyperparameter choice.

*This is generally true for any MLP with elementwise nonlinearities. Indeed, for ReLU networks there is also
a continuous symmetry: the function represented by the model is unchanged when the pre-activation is scaled
by s and the post-activation is scaled by s ~'. The standard training recipe for SAEs eliminates this symmetry,
however, by constraining decoder vectors to be unit norm (Bricken et al.,[2023).

https://en.wikipedia.org/wiki/Hungarian_algorithm

79

80
81
82
83

84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126

127
128
129
130

3 Methods

We trained several SAEs on the sixth MLP of Pythia 160M (Biderman et al., 2023) with 2'° latents
over the first 8B tokens of its own training corpus, the Pile (Gao et al.| [2020)), using the|sparsify
library (Belrosel 2024)). We use different random seeds for initialization, but SAEs see exactly the
same data in the same order. The SAEs we trained have the functional form

i =D TopK(Ez +e) +d (1)

where z is the output of the MLP, Z is the reconstructed output of the MLP, E and e are the encoder
weight and bias, and D and d are the decoder weight and bias. SAEs are trained to minimize the
mean squared error ||z — 2||3 between the model’s output & and the target module output 2. The
SAE:s are trained using the Adam optimizer (Kingma & Bal 2015)), with sequence length of 2049, and
a batch size of 32 sequences. We also trained SAEs in SmolLM (Allal et al., [2024), GPT-2 (Radford
et al.,|2019) and Llama 3.1 8B (Dubey et al.,|2024). The GPT-2 SAEs where trained on OpenWebText
(Gokaslan et al.| 2019), the LLama 3.1 SAEs on RedPajama V2 (Computer, 2023, and the SmolLM
SAEs on Fineweb-edu |[Lozhkov et al.| (2024). All SAEs had a different number of latents, but all had
a ratio of 36 between the number of latents and the dimension of the input.

The exact cost function that we feed into the Hungarian algorithm is a hyperparameter in our method.
In particular, we can try to maximize the average cosine similarity of the encoder vectors or the
decoder vectors. While the decoder is initialized using the transpose of the encoder, the two matrices
can diverge during SAE training. To err on the side of conservatism, we compute one matching using
the encoder and another matching using the decoder. We consider a feature to be shared if its
latents are paired together in both the encoder and decoder matchings, and in both of these
matchings they have a cosine similarity of 0.7 or greater. If a latent does not refer to a shared
feature, we will call it unpaired.

More specifically, we use SciPy’s (Virtanen et al.,2020) function linear_sum_assignment to find
the decoder permutation P ;.. that maximizes tr(PéechDg) and the encoder permutation P,

that maximizes tr(PZ, . E;EZ), where the columns of D;, D5 and the rows of E;, E; have been
standardized to unit norm beforehand. Shared features correspond to pairs of latents (7, j) where the
i columns in P 4. and P, (or equivalently, the j™ rows) are equal. Additionally, the matched
cosine similarities (PZ, D7 D,);; and (PZ, [ETE,);; are required to be greater than 0.7. By this
definition, only 42 % of latents are shared across our two independently trained SAEs. Interestingly,
the fraction of shared features is essentially unchanged if we were to use maximum cosine similarity

(see below) in lieu of the Hungarian algorithm to label features as shared (Figure[A2)).

Maximum cosine similarity. Prior work has measured the similarity of independently trained
SAEs using the mean maximum cosine similarity (Braun et al., 2024, Figure 3b). Specifically, for
each latent in the first SAE we find the maximum cosine similarity between itself and all latents in the
second SAE. The average of these maxima is the overall similarity score. This metric is simple, but it
has the downside that it does not yield a bijective matching: many latents in the first SAE may be
mapped to one latent in the second SAE. We compare the matched cosine similarity produced by the
Hungarian algorithm to the maximum cosine similarity for each latent in Figure[A3] observing that
while for some latents the max cosine similarity is higher than the matched cosine similarity, the vast
majority have the same value for both metrics, suggesting that the Hungarian algorithm has chosen to
match most latents with their nearest neighbors. While we think the Hungarian matching approach is
more principled and use it in the rest of this paper, we do find that empirically the difference between
these two approaches is small.

Interpretability We use the automated interpretability pipeline released by [Paulo et al.| (2024) to
generate explanations and scores for the SAE latents. For each latent, representative samples of its
activations are sampled and shown to an LLM, in our case Llama 3.1 70b Instruct (Dubey et al.,
2024), which is told to generate a succinct explanation that summarizes the activations. The LLM is
shown 40 examples sampled from the whole activation distribution.

After explanations are generated for each latent, they are scored. We also use the pipeline from Paulo
et al.| (2024) for this process. We use both fuzzing and detection to score the latents. To compute the
detection score, Llama 3.1 70b Instruct is given the explanation of the latent and a set of examples.
The LLM then has to decide which examples activate the latent and which don’t using the explanation

https://github.com/EleutherAI/sparsify

131
132
133
134

135

136
137
138
139
140

141

142
143
144

145
146
147
148

149
150
151
152

1.0 7 Encoder-Decoder pairs _ a | T
® Different A
- 0.8 ® Equal .
c
a
E |
o 0.6 1
™
@
5 0.4 1 .
<!
w
c
“ 0.2]
0.0 T T T T 1 =
0.0 0.2 0.4 0.6 0.8 1.0

Decoder alignment

Figure 1: Cosine similarities of features from SAE 1 with their counterparts in SAE 2. Both
SAEs have 32K latents, and are trained on the sixth MLP of Pythia 160M. Contour lines are regions
of equal density according to kernel density estimation. We color each SAE 1 latent depending on
whether the encoder-based and decoder-based matchings agree on which counterpart it should get.

that was given. At the end the detection score of the latent is given by the balanced accuracy, which
in our case reduces to accuracy because we use the same number of activating and non activating
examples. The fuzzing score is computed with a similar protocol, but LLM is instead tasked to
identify if a given highlighted token is active given the explanation.

4 Results

On this pair, we find that the distribution of matched cosine similarities has two modes: high-similarity
hits and low-similarity misses (Figure[T). Overall, cosine similarities for encoder and decoder vectors
are strongly correlated. We observe that in cases where the encoder and decoder matchings disagree
(colored in orange), the cosine similarity is usually low for both matchings, whereas similarities are
higher when the encoder and decoder matchings agree (colored in blue).

4.1 Asymptotic Trend

‘We now consider seven more SAEs with the same data order, but with seeds different from the first
two, yielding a total of nine independently trained SAEs. We first run the Hungarian algorithm

(g) = 36 times, one for each pair of SAEs. Then for each integer k from 2 to 9, we iterate over all

(Z) combinations of SAEs of size k, and for each combination, we run the following experiment
k different times, each time using a different SAE as the “base SAE.” We use each of the k — 1
matchings of the base SAE with a different SAE within this combination to compute a binary mask
classifying each latent as a hit or a miss, using the definition from Section 3}

We say that a latent is “only in the base SAE” if it is an miss according to all £ — 1 of these binary
masks. Then, with respect to a given base SAE, we compute the proportion of all latents that are only
in the base. Finally, we average the proportions generated by running this experiment k x (2) times,
one for each combination of k£ SAEs and each possible base SAE in each combination. When k = 9,

153
154

155
156
157
158

159
160
161
162

164
165

167
168
169
170
171

172
173
174
175
176

=

o
<
L

=
[=}
>

=

o
o]
n

=

o
S
L

=

o
W
L

=

o
~
L

Number of occurrences

Shared with:
® 0 SAEs (Orphan)

10t o 1SAEs ® 55SAEs

® 2 SAEs 6 SAEs

e 3 SAEs ® 7SAEs

10° 4 ® 4 SAEs 8 SAEs
0.0 022 014 Oj6 Oj8 1.0 110500 2000 4000

Similarity

Figure 2: Latent similarity vs. firing frequency. We plot the cosine similarity between matched
latents, vs. how often the latent fires in the base SAE. The similarity of each latent is averaged over
all the matched latents of different seeds. The histograms in this figure are stacked, and the histogram
of number of occurrences has a log-scale from 0 to 500, to highlight the few latents that rarely fire or
that fire frequently, and a linear-scale from 500 to 4000. Latent occurrences were collected over 10M
tokens of the Pile, the same dataset that the SAEs were trained on.

we find that number of latents found in only one SAE is reduced to about 35% . The results of these
experiments are plotted in Figure[AT]

The number of latents found in only one SAE decreases slowly as the number of seeds increases
Figure @ Our results indicate that when training a small number of SAEs, a certain number of
latents will never find a counterpart — we found that a power law with an offset term fits the data
significantly better than one without the offset.

To generate Figure 2] we fix Seed 1 as the base SAE, and color latents based on the number of
matchings (out of the 9 — 1 = 8 matchings involving Seed 1) in which they find a counterpart. We
find that the latents that most frequently fire in the first SAE are the ones that have a counterpart in all
eight SAEs, and that the ones that most infrequently fire are the ones that do not have a counterpart in
any other SAE, see Figure[2] Interestingly, a significant number of misses have a higher firing rate on
average than latents with counterparts in all SAEs. In fact, as the average alignment between latents
increases, the firing frequency seems to decrease.

4.2 Are the unpaired latents interpretable?

In this section, we generate explanations for all latents of two seeds of a 2!° latent SAE and score
them using detection and fuzzing scoring (Paulo et al.}[2024)), evaluating the explanation over 100
active sequences and 100 non-active sequences. The average score of the explanations of the 32K
SAEs is 0.72, with only 25% of explanations having a score lower than 0.62, and only 25% having a
score better than 0.8.

Plotting the distributions of scores conditioned on the number of SAEs that “shared” that latent reveals
that features shared across a higher number of SAE seeds have on average higher interpretability
scores. In spite of this, a significant fraction of latents found only on one SAE, have high scoring
latents. Plotting the scores of the latents of the two seeds mentioned above, we find that the most of
the latents that have low similarity have either a low or an average score, see Figure [3]left. Some

177
178 interpretable latents can be missing from any given seed, see Table [I]for some examples.

1200

1.0 -
In 1 SAE o s
In 2 SAEs
In 3 SAEs
In 4 SAEs
In 5 SAEs
In 6 SAEs
In 7 SAEs
e In8SAEs
In all SAEs

1000 -

800 1

600 1

Number of latents

400 q

Seed 2 (balanced accuracy)

200

0.5 0.6

0.7

Scores SAE-1 Seed 1 (balanced accuracy)

latents have a average cosine similarity < 0.7 and high scores, reinforcing the observation that some

o
o

0.6

Average alignment

e
»

Figure 3: Interpretability of unpaired latents. Distribution of scores of different latent explanation
conditioned on the number of SAEs that latent can be found on. On the right we compare the scores
of 5k explanations of matched latents of different SAE seeds. We see that most of the latents that
have low alignment either have a low score or have a higher score in one of the SAEs than in the

other.

Alignment | Seed 1 Seed 2

0.10 Abbreviated country name in United | A single character or a small group of
States Supreme Court case citations. | characters embedded within a larger
(0.865) word, often in a non-English language

context (...). (0.56)

0.27 Definite articles and other words com- | Punctuation marks or short words con-
monly used in formal and legal lan- | necting or separating clauses, (...) and
guage, such as disclaimers, licensing | sometimes serving as conjunctions or
terms, and court documents. (0.91) prepositions. (0.46)

0.44 Abbreviated geographical or institu- | Punctuation marks. (0.49)
tional references, usually in the context
of legal citations. (0.85)

0.75 Percent symbols marking numerical val- | A percentage symbol denoting the pro-
ues representing proportions or rates. | portion of a quantity, (...) and usually in
(0.95) the form of a numerical value followed

by the symbol. (0.97)

0.97 Adverbs that express frequency, such as | Adverbs indicating frequency, such as
’often’, ’sometimes’, (...), used to indi- | ’often’, ’frequently’, (...), are used to
cate the occurrence or tendency of an | describe the regularity or likelihood of
event or action. (0.94) an event or situation. (0.99)

Table 1: Unpaired latents can have high scoring explanations. We selected explanations of
latents shown in Fig. [3] Each explanation is shown alongside its detection score (Paulo et al.
a number in [0, 1] measuring explanation quality, in parentheses. We select latents from 5

pairs of

2024),

bins of

alignment by maximizing the score of both explanations if the cosine similarity between the latents is
> (.7 and by maximizing the score of the explanation on seed 1 and minimizing the score on seed 2
of the cosine similarity is < 0.7. Ellipsis added to some explanations for brevity. This choice was

made to capture latents that had good explanations in seed 1 but were not matched in seed
latent pairs are (12314, 6024), (21463, 3361), (5888, 6649), (14931, 5456) and (1817, 66).

2. The

179

180
181
182

183
184
185
186
187
188
189
190

191
192
193
194

4.3 Ablations

We performed several ablation studies to investigate how our results depend on the hyperparameters
used to train the SAE, including the number of active latents &, the total number of latents, the number
of tokens used for training, and the SAE architecture (TopK, Gated, or ReLU).

Number of latents
768
4k
32k

Location
. Res
= MLP

Fraction of latents

0.0*

o 1 2 3 4 5 6 7 8 9 10 11 SmoLLM Llama Pythia
Model

L1
Architecture

Figure 4: Dependence of overlap on SAE hyperparameters. On the right we see the how the
fraction of shared features for a Pythia-160M SAE depends on the layer and on the number of latents.
In the middle we compare SAEs with the same expansion factor, 36, trained on different models and
positions. On the right we compare SAEs trained on GPT2 using different activation functions and
architectures.

We find that increasing the number of SAE latents, all else being equal, decreases the overlap between
different seeds, see Figure[5] Increasing the number of active latents, by increasing the k for TopK
SAE:s, also decreases the overlap, while the training time increases the overlap between latents. These
results seem to indicate that what the seed dependence is not mainly due to feature absorption, as
absorption increases when sparsity is decreased (Karvonen et al., [2024)), and the model is trained
for longer, while it does increase when the number of latents increases. We have found no evidence
of feature absorption on the MLP SAEs we trained, but that may be due to the fact that the current
metric is not tuned to find absorption on MLP SAEs, as it was mostly used on residual stream ones.

1.0 e
L]
L]
L]
084 °® Y % ° .
To06 .] .
)
o
s .
g 049 % ° ¢
fist
.
L]
L]
0.2 .
e Aligned e Aligned e Aligned
e Encoder-Decoder equal e Encoder-Decoder equal o e Encoder-Decoder equal
0.0
32 768 4k 32k 131k 32 64 128 256 0.8 8 80
Number of latents Active latents Training tokens (Billion)

Figure 5: Dependence of overlap of a Pythia-160M SAE on size, number of active latents and
training time. On the left we see that the fraction of aligned latents decreases with the increase of
the number of latents. Middle shows that increasing the number of active latents, by increasing the
value of k for the TopK activation function, also decreases the overlap. On the right, training time
increases the alignment of different SAE seeds. Unless otherwise indicated, each SAE has 215 Jatents
and was trained on the output of the sixth layer MLP of Pythia 160M, on the first 8B tokens of its
training corpus, the Pile.

The overlap between different seeds remains almost constant across the middle layers of the model,
being lower for the earlier layers and the last layer (Figure d). On SmolLM (Allal et al, [2024)
and GPT2 the MLP latents have more overlap between seeds than the residual stream ones, but the
same is not true for Pythia. Previous work had found that a large number of latents (> 90%) where

195
196
197
198
199

200
201
202

204

205
206
207
208

210
211
212

213

214
215
216

217
218

219
220
221

222
223
224

225
226

227
228

229
230

231
232

234

235
236
237

238
239
240
241

shared between GPT2 seeds (Anonymous), |2024; |Braun et al., 2024)), although those numbers where
measured for SAEs with smaller numbers of latents than ours, and using a different architecture
(ReLU instead of TopK). Indeed we find that standard and Gated SAEs (Rajamanoharan et al., [2024)
trained with L1 loss have a larger overlap between latents. The overlap is much lower for the Llama
8B SAEs, which has more latents but the same expansion factor.

In Figure[A4] we compare the matched cosine similarity produced by the Hungarian algorithm to the
maximum cosine similarity, showing that these are strongly correlated. This shows that our results are
not strongly dependent on the choice of method used to compare latents from independently trained
SAE:s.

5 Conclusion

Our results are further evidence for the idea that SAEs do not uncover a “universal” set of features.
Different random initializations can lead to different sets of features being found, and SAEs seem to
diverge, rather than converge, with increasing scale. We think feature discovery is best viewed as
a compositional problem, wherein we look for useful ways of cutting up the activation space into
categories, and these categories can themselves be cut up into further categories, hierarchically.

Mathematically, the lack of universality we observe here is due to the nonconvexity of the SAE loss
function, which gives rise to many local optima. One might have expected a priori, however, that
different local optima would have more feature overlap than we found in this study.

References

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=CQsmMYm1P5T,

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -
blazingly fast and remarkably powerful, 2024.

Anonymous. Sparse autoencoders do not find canonical units of analysis. In Submitted to
The Thirteenth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=9ca9eHNrdH. under review.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure
of word senses, with applications to polysemy. Transactions of the Association for Computational
Linguistics, 6:483—495, 2018.

Kola Ayonrinde, Michael T Pearce, and Lee Sharkey. Interpretability as compression: Reconsidering
sae explanations of neural activations with mdl-saes. arXiv preprint arXiv:2410.11179, 2024.

Nikita Balagansky, Ian Maksimov, and Daniil Gavrilov. Mechanistic permutability: Match features
across layers. arXiv preprint arXiv:2410.07656, 2024.

Nora Belrose. Sparsify repository. GitHub repository, 2024. URL https://github.com/
EleutherAI/sparsify.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally
important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv.org/
abs/2405.12241.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=9ca9eHNrdH
https://openreview.net/forum?id=9ca9eHNrdH
https://openreview.net/forum?id=9ca9eHNrdH
https://github.com/EleutherAI/sparsify
https://github.com/EleutherAI/sparsify
https://github.com/EleutherAI/sparsify
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241

242
243
244

245
246
247

248
249

250
251
252

254
255

256
257
258

259
260

261
262

264
265
266

267
268

269
270
271
272

273
274

275
276
277
278

279
280
281

282
283

284

286

287
288

Chris Olah. Towards monosemanticity: Decomposing language models with dictionary learn-
ing. Transformer Circuits Thread, 2023. URL https://transformer-circuits.pub/2023/
monosemantic-features. Published October 4, 2023.

David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint
arXiv:2409.14507, 2024.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Datal

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652, 2022.

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
features are linear. arXiv preprint arXiv:2405.14860, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Arthur Conmy, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Samuel
Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders, 2024.
URL https://www.neuronpedia.org/sae-bench/infol Accessed: 2025-01-17.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015. URL http://arxiv.org/abs/1412.6980.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/2408,
05147.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the
finest collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Luke Marks, Alisdair Paren, David Krueger, and Fazl Barez. Enhancing neural network interpretabil-
ity with feature-aligned sparse autoencoders. arXiv preprint arXiv:2411.01220, 2024.

Chris Olah. Interpretability dreams. Transformer Circuits Thread, 2023. URL lhttps://
transformer-circuits.pub/2023/interpretability-dreams/index.html. Published
May 24, 2023.

Gongalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models. arXiv preprint arXiv:2410.13928, 2024.

https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://github.com/togethercomputer/RedPajama-Data
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.neuronpedia.org/sae-bench/info
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://transformer-circuits.pub/2023/interpretability-dreams/index.html
https://transformer-circuits.pub/2023/interpretability-dreams/index.html

289
290
291

292
293
294

295
296
297

298
299
300
301
302
303
304

305
306
307
308
309
310
311
312

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.org/
CorpusID:160025533.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Jdnos
Kramar, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024.

Lewis Smith. The strong feature hypothesis could be wrong, 2024. URL https://www.lesswrong,
com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong.
Accessed: 2025-01-17.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,
Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monoseman-
ticity: Extracting interpretable features from claude 3 sonnet. Transformer Circuits Thread,
2024. URL https://transformer-circuits.pub/2024/scaling-monosemanticity/
index.html.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antdnio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

10

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://www.lesswrong.com/posts/tojtPCCRpKLSHBdpn/the-strong-feature-hypothesis-could-be-wrong
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

0.7

0.6 4

0.54
i L]

0.4 ¢

0.34

0.2

Proportion of features only in one SAE

0.14

0.0 +— T T T T T T T
2 3 4 5 6 7 8 9
Number of SAEs

Figure Al: Dependence of the number of latents found only in the base SAE on the number of
seeds. We consider a latent X in SAE A to be “shared” in SAE B if and only if X is matched to a
latent Y in B with which it has cosine similarity greater than 0.7 according to both the encoder and
decoder weights. To generate this plot we select a “base” SAE and compute its overlap with all the
other seeds, then we average over all different base seeds.

1.0 A

[=]
co

o
o

<
IS

Fraction of overlapping latents

0.2
—— Threshold cosine similarity
Equal + Threshold
0.04 — Max cosine similarity
0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Figure A2: The average alignment of points with equal decoder and encoder indices is 0.72 and
of the ones that have different indices is 0.33. On the right, we plot the fraction of latents that are
considered shared between 2 SAEs as we control a threshold. We decide to use a threshold of 0.7 on
both the encoder and decoder alignment to decide if a latent is shared between two SAEs.

11

/\Ffj.

1.04 B
Equal
Different
0.8 1 /
2 4
=
5 0.6 g
£ 7
& 7
o 7
£ 7
T
o
o
x 0.4
o]
=
0.24
0.0 T T T T i
0.0 0.2 0.4 0.6 0.8 1.0

Matched cosine similarity

Figure A3: Cosine similarity of latents when paired with the Hungarian algorithm vs when
using max cosine similarity. The majority of latents that have the same counterpart latent in both
the encoder and decoder matchings using the Hungarian algorithm have a similar alignment as if they
had been aligned with maximum cosine similarity. The latents which have a higher cosine similarity
pair when using max cosine similarity are paired with a latent that already had a pair.

1.04
0848 i H %
¥ z x x $
> L] L]
2
506 & | x H
= x L]
€ . S %
@ 5 :
204 HIF
0
S H
e Mean cosine similarity decoder e Mean cosine similarity decoder ® Mean cosine similarity decoder
0.2 e Mean cosine similarity encoder ® Mean cosine similarity encoder ® Mean cosine similarity encoder
x Max cosine similarity decoder x Max cosine similarity decoder x Max cosine similarity decoder
% Max cosine similarity encoder % Max cosine similarity encoder x Max cosine similarity encoder
0.04 T T T
32 768 4k 32k 131k 32 64 128 256 0.8 8 30

Number of latents

Active latents

Training tokens (Billion)

Figure A4: Dependence of mean matched and mean max cosine sim of a Pythia-160M SAE on
different hyperparameters. On the left we see that the average cosine similarity of latents decreases
with the increase of the total number of latents. Middle shows that increasing the number of active
latents also decreases the average cosine similarity. On the right, training time increases the average
cosine similarity of different SAE seeds. We observe that the mean matched and max cosine similarity
have very similar trends, with max cosine similarity being just slightly higher. On panels all panels a
32768 latent SAE was trained on the output MLP of Pythia 160M, for 8B tokens, except when the
panel changes one of these conditions.

12

	Introduction
	Related Work
	Methods
	Results
	Asymptotic Trend
	Are the unpaired latents interpretable?
	Ablations

	Conclusion

