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Abstract

We derive a fundamental trade-off between standard and adversarial risk in a rather general
situation that formalizes the following simple intuition:

If no (nearly) optimal predictor is smooth, adversarial robustness comes at the cost
of accuracy.

As a concrete example, we evaluate the derived trade-off in regression with polynomial ridge
functions under mild regularity conditions.

1 Introduction

The study of adversarial robustness of machine learning models is concerned with finding prediction schemes
whose accuracy gracefully degrades when minute but adversarial perturbations are applied to the data. We
focus on a simple prevalent mathematical abstraction of the problem that can be described as follows. Given
a pair of random variables (X, Y ) ∈ Rd × Rk that represent a data sample and its corresponding label, as
well as F , a class of functions from Rd to Rk, the goal is to find an f ∈ F that achieves a low adversarial risk
E
(

sup∆: ∥∆∥≤ϵ ℓ (f (X + ∆) , Y )
)

where ℓ : Rk × Rk → R≥0 is the loss function and ∥·∥ is a certain norm
defined over Rd.

Intuitively, if a prediction function f ∈ F is very non-smooth (e.g., it has a large Lipschitz seminorm), then
we can expect its adversarial risk

Rϵ(f) = E

(
sup

∆: ∥∆∥≤ϵ

ℓ (f (X + ∆) , Y )
)

,

to be much larger than its standard risk

R(f) = E (ℓ (f (X) , Y )) .

We formalize this intuition and show a simple fundamental trade-off between the standard and adversarial
risks of any candidate function f ∈ F as quantified by certain notion of local sharpness of f . It is worth
mentioning that the constraints on the intensity of the data perturbation are formulated using a norm
merely for the sake of a simpler exposition; many other types of perturbation constraints can be addressed
by straightforward adaptation of the presented arguments.

In the finite sample setting we only access n independent draws of (X, Y ) which we denote by
(X1, Y1) , . . . , (Xn, Yn). Then, the empirical risk and its adversarial version are defined respectively by

R̂n(f) = 1
n

n∑
i=1

ℓ(f(Xi), Yi) ,

and

R̂n,ϵ(f) = 1
n

n∑
i=1

sup
∆i : ∥∆i∥≤ϵ

ℓ(f(Xi + ∆i), Yi) .
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Empirical risk minimization (ERM) is the most common mechanism to construct a predictor f from n data
samples that “generalizes” well in the sense that R(f) is close to min

f̃∈F R(f̃). Specifically, based on the
premise that R(·) is nowhere much larger than R̂n(·), ERM provides the predictor

f̂n = argmin
f∈F

R̂n(f) .

Analogously, empirical adversarial risk minimization, also referred to as adversarial training, provides the
predictor

f̂n,ϵ = argmin
f∈F

R̂n,ϵ(f) . (1)

If R̂n,ϵ(f) concentrates around Rϵ(f) uniformly for all f ∈ F , which can be shown, e.g., using a variety of
tools from the theory of empirical processes (van der Vaart & Wellner, 2012) or PAC-Bayesian arguments
(Catoni, 2007), under reasonable regularity conditions, then we can guarantee with high probability that
Rϵ(f̂n,ϵ) ≤ minf∈F Rϵ(f) + on(1) where on(1) is a term that vanishes to zero typically at rate n−1/2.
Therefore, the adversarial risk of f̂n,ϵ is nearly-optimal and we only need to examine the gap between the
standard risk of f̂n,ϵ and the optimal standard risk minf∈F R(f). We do not pursue the finite sample scenario
any further in this paper. Instead, we exclusively focus on a fundamental trade-off between the standard
population risk R(f) and its adversarial analog Rϵ(f) that exist for any arbitrary predictor f ∈ F even if
the access to the data distribution is not restricted by finite samples.

Related Work

A comprehensive review of the literature on adversarial robustness is beyond the scope of this work, but we
summarize some of the results in this area that are most relevant for us. For a broader view of the literature
interested readers are referred to (Carlini et al., 2019; Bai et al., 2021) and references therein.

A common theme in the literature is to analyze adversarial robustness in classification or regression prob-
lems assuming a curated data distribution (Fawzi et al., 2017; Schmidt et al., 2018; Tsipras et al., 2019; Dan
et al., 2020; Javanmard et al., 2020; Javanmard & Soltanolkotabi, 2022; Dobriban et al., 2023; Javanmard
& Mehrabi, 2024). Among the results that study the trade-offs between standard and adversarial risk, (Ja-
vanmard et al., 2020) considers the least squares linear regression with standard Gaussian covariates under
an ℓ2 adversarial perturbation. Leveraging the convex Gaussian min-max theorem (CGMT) (Thrampoulidis
et al., 2015) they provide a precise (asymptotic) trade-off formula between Rϵ(f̂n,ϵ) and R(f̂n,ϵ) where f̂n,ϵ is
the linear function obtained by adversarial training on n samples as in (1). This trade-off formula approaches
a fundamental limit for any estimator by increasing the considered “sampling ratio” n/d. Similarly, (Javan-
mard & Soltanolkotabi, 2022) considers binary classification under the Gaussian mixture model and derives
a precise formula for the standard, robust classification accuracy, and a phase transition threshold for the
sampling ratio at which the classes become “robustly separable”. Even though (Javanmard & Soltanolkotabi,
2022) considers the test accuracy in terms of the binary loss function, the classifier is learnt based on a suit-
able decreasing convex loss function not only to have a closed-form expression for the robust risk, but also
to have a setup compatible with the CGMT.

Adversarial ℓ2 and ℓ∞ robustness for classification of a mixture of two or three Gaussian distributions with
colinear means and identical isotropic covariance matrices is analyzed in (Dobriban et al., 2023). In the
mentioned setting, optimal and approximately optimal robust classifiers are derived, and it is shown that
the trade-off between accuracy and robustness for any classifier deteriorates as the imbalance of the classes
increases.

Binary classification with ℓp-adversaries for two particular low-dimensional manifolds is analyzed in (Javan-
mard & Mehrabi, 2024) where the covariates are modeled as X = φ(WZ) with φ denoting a monotonic
coordinatewise nonlinearity, W ∈ Rd×k being a tall matrix, and Z ∈ Rk being the low-dimensional latent
variable. The first model is a Gaussian mixture model where Y is a biased ±1-valued random variable, and
conditioned on Y we have Z ∼ Normal(Yµ, I) for a fixed µ ∈ Rk. The second model is a generalized linear
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model where Z ∼ Normal(0, I) and P(Y = 1 | Z) = 1 − P(Y = −1 | Z) = g(βTZ) for a monotonic “link
function” g : R → [0, 1] and a fixed β ∈ Rk. With σmin(W ) denoting the smallest singular value of W , it is
shown in (Javanmard & Mehrabi, 2024) that if σmin(W ) dominates ϵd1/2−1/p as d → ∞, then for both of
the considered models the gap between the adversarial risk and the standard risk (i.e., the “boundary risk”)
of the optimal standard classifier vanishes asymptotically.

Contributions and Remarks

In contrast with the work mentioned above, our main motivation has been to expose the role of “sharpness”
(as a notion opposite to “smoothness”), through an explicit and formal mathematical formulation of the
trade-off between the adversarial and standard risks that holds in rather general scenarios under minimal
assumptions. To do so, we introduce a mild condition on the loss function to satisfy certain “three-point
quasi triangle inequalities” which readily hold for the commonly used loss functions. These simple conditions
allow us to derive a lower bound for the sum of the standard and adversarial risk of any function in terms
of a certain notion of the sharpness of the function. Suppose that for given data distribution and function
class, there are functions that achieve an adversarial risk comparable with the optimal standard risk achieved
within the function class. Therefore, based on our result, the sharpness of these functions has to be no more
that a multiple of the optimal standard risk. This requirement, imposed on the provided function class and
the data distribution determines the tolerable ϵ that limits the adversary’s power.

As a concrete example, we use our approach to derive a trade-off between the standard and adversarial risk in
the problem of regression over polynomial ridge functions, which includes linear regression as a special case.
We obtain a threshold value for ϵ beyond which adversarial robustness cannot hold without a significant
sacrifice of the regression accuracy. Our result also suggests that the adversarial robustness deteriorates by
increasing the nonlinearity as characterized by the degree of the polynomial ridge function.

We emphasize that, while detailed analysis of specific models can be valuable, we must be cautious about
generalizing the observed behavior under these models. For example, most of the models for which adversarial
robustness is analyzed are regression and (binary) classification models with data distributions for which there
are “simple” (e.g., linear or affine) (nearly) optimal predictors. While such models are amenable to highly
detailed analysis, we need to consider more general scenarios in order to identify and understand the central
mechanisms that create the trade-off between the standard and adversarial risk.

Future Direction

The importance of certain isoperimetric properties of the data distribution in adversarial robustness has
been observed in prior work (e.g., (Bubeck & Sellke, 2023), (Dobriban et al., 2023)). As can be extracted
from the analysis of the regression problem in Section 3, our work exposes the importance of alternative
characteristics of the data distribution that can be expressed through a non-standard functional inequality
that resembles the classic Poincaré inequality. A deeper understanding of such functional inequalities in a
general setting is critical to understanding adversarial robustness.

2 Problem Setup and the Main Result

The basic property that we will exploit is that there often exist functions A : Rk × Rk → R≥0 and B :
Rk × Rk → R≥0 such that A(u, u) = B(u, u) = 0 for all u ∈ Rk, and for every two pairs (u, v) and (u′, v′)
in Rk × Rk we have

ℓ(u, v) + ℓ(u′, v′) + A(u, u′) ≥ B(v, v′) , (2)

and

ℓ(u, v) + ℓ(u′, v′) + A(v, v′) ≥ B(u, u′) . (3)
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For the sake of concreteness, we distinguish three special scenarios in our notation. The first scenario is the
least-squares regression where k = 1 and

ℓ(u, v) = ℓLS(u, v) def= (u − v)2/2

for which, using the Cauchy-Schwarz inequality,

A(u, v) = ALS(u, v) def= (u − v)2/2

and
B(u, v) = BLS(u, v) def= (u − v)2/6

fulfill the conditions (2) and (3). The second scenario is the multiclass classification where the functions
f ∈ F map their input to the unit simplex △k−1 ⊂ Rk for some k > 1 and the response variable Y is
some extreme point of △k−1, i.e., a canonical basis vector in Rk. In this setting, the Kullback–Leibler (KL)
divergence can be used as the loss function, i.e.,

ℓ(u, v) = ℓKL(u, v) =
k∑

j=1
vj log vj

uj
,

for which, by Pinsker’s inequality (see, e.g., (Boucheron et al., 2013, Theorem 4.19)), the functions

A(u, v) = AKL(u, v) def= 1
2∥u − v∥2

1 ,

and
B(u, v) = BKL(u, v) def= 1

6∥u − v∥2
1 ,

satisfy the conditions (2) and (3).

Another suitable loss function for multiclass classification whose corresponding risk is the actual misclassifi-
cation probability, rather than a surrogate of it, is

ℓ(u, v) = ℓ0/1(u, v) =
{

0 , if u = v or ∃i ∈ [k] such that ui > uj and vi > vj for all j ∈ [k]\{i}
1 , otherwise ,

with [m] def= {1, 2, . . . , m} for any positive integer m. Clearly, ℓ(u, v) = ℓ(v, u), and we have

ℓ0/1(u, v) + ℓ0/1(u′, v′) + ℓ0/1(u, u′) ≥ ℓ0/1(v, v′) ,

since the left-hand side is either greater than 1 or the vectors u, u′, v, and v′ all have their unique maximum
at the same coordinate. Therefore, in this case we can choose

A(u, v) = A0/1(u, v) = ℓ0/1(u, v) ,

and

B(u, v) = B0/1(u, v) = ℓ0/1(u, v) .

Theorem 1. Assuming that the loss function ℓ : Rk × Rk → R≥0, and the functions A : Rk × Rk → R≥0
and B : Rk × Rk → R≥0 meet the conditions (2) and (3), then for every f ∈ F we have

R(f) + Rϵ(f) ≥ sup
(X′,Y ′)∼(X,Y )

max
{
E

(
sup

∆: ∥∆∥≤ϵ

B(f(X), f(X ′ + ∆)) − A(Y, Y ′)
)

,

E

(
B(Y, Y ′) − inf

∆: ∥∆∥≤ϵ
A(f(X), f(X ′ + ∆))

)}
,
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where, the outer supremum is with respect to the pair of random variables (X ′, Y ′), which may depend on
(X, Y ), and has the same joint distribution as (X, Y ). In particular, we also have the simplified bound

R(f) + Rϵ(f) ≥ max
{
E

(
sup

∆: ∥∆∥≤ϵ

B(f(X), f(X + ∆))
)

, EB(Y, Y ′)
}

,

in which, conditioned on X, Y ′ and Y are identically distributed.

Proof. Under (3), we can write

ℓ(f(X), Y ) + ℓ(f(X ′ + ∆), Y ′) ≥ B(f(X), f(X ′ + ∆)) − A(Y, Y ′) .

Taking the supremum with respect to ∆ subject to ∥∆∥ ≤ ϵ, and then taking the expectation on both sides
of the inequality yields

R(f) + Rϵ(f) = E ℓ(f(X), Y ) + E

(
sup

∆: ∥∆∥≤ϵ

ℓ(f(X ′ + ∆), Y )
)

≥ E

(
sup

∆: ∥∆∥≤ϵ

B(f(X), f(X ′ + ∆)) − A(Y, Y ′)
)

. (4)

Similarly, it follows from (2) that

ℓ(f(X), Y ) + ℓ(f(X + ∆), Y ′) ≥ B(Y, Y ′) − A(f(X), f(X ′ + ∆)) .

Again, taking the supremum with respect to ∆ subject to ∥∆∥ ≤ ϵ, and then taking the expectation on both
sides of the inequality yields

R(f) + Rϵ(f) = E ℓ(f(X), Y ) + E

(
sup

∆: ∥∆∥≤ϵ

ℓ(f(X ′ + ∆), Y ′)
)

≥ E

(
B(Y, Y ′) − inf

∆: ∥∆∥≤ϵ
A(f(X), f(X ′ + ∆))

)
. (5)

The claimed lower bound on R(f) + Rϵ(f) follows by choosing the better lower bound between (4) and (5).

The simplified bound follows by considering two special choices for (X ′, Y ′). Choosing (X ′, Y ′) to be identical
to (X, Y ) reduces the right-hand side of (4) to E

(
sup∆: ∥∆∥≤ϵ B(f(X), f(X + ∆))

)
. If instead we choose

X ′ = X, with Y ′ and Y being independent and identically distributed conditioned on X, the right-hand side
of (5) reduces to EB(Y, Y ′).

It is worth highlighting the role of the two terms on the right-hand side of the simplified bound provided
by Theorem 1. The first term, i.e., E

(
sup∆: ∥∆∥≤ϵ B(f(X), f(X + ∆))

)
, becomes significant if f(·) is not

(locally) smooth, whereas the second term, i.e., EB(Y, Y ′), becomes significant if f(·) is (locally) smooth,
but the measurement/label noise is large.

The following immediate corollary addresses the cases of multiclass classification and least-squares regression
mentioned above where the risk of a function f ∈ F is R(f) = E ℓKL(f(X), Y ) and R(f) = E ℓLS(f(X), Y ),
respectively.
Corollary 1. Define the “mean local sharpness factor” of f ∈ F with respect to X as

Lϵ(f) = E sup
∆: ∥∆∥≤ϵ

∥f(X + ∆) − f(X)∥2
1 ,

both in the case of least-squares regression and multiclass classification (with ℓKL(·) as the loss function).
Then, we have

R(f) + Rϵ(f) ≥ 1
6 max

{
Lϵ(f), E ∥Y − Y ′∥2

1

}
, (6)

with Y and Y ′ being i.i.d. conditioned on X.
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Proof. The claim follows immediately from Theorem 1 by specializing B(·) to BLS(·) in the case of least
squares regression, and to BKL(·) in the case of multiclass classification.

Corollary 1 shows that for every f ∈ F the standard risk R(f) and the adversarial risk Rϵ(f) cannot be both
less than 1

12 max
{

Lϵ(f), E ∥Y − Y ′∥2
1

}
. In particular, because the adversarial risk of a function is always

greater than its standard risk, any function f ∈ F whose standard risk R(f) is nearly optimal in the sense
that1 R(f) ≲ R⋆ = inf

f̃∈F R(f̃), cannot achieve an adversarial risk Rϵ(f) comparable to R⋆ if it is not
sufficiently smooth as quantified by Lϵ(f) ≫ R⋆. From a different perspective, the derived trade-off can be
interpreted as the necessity of ϵ to be sufficiently small such that Lϵ(f) ≲ R⋆, to make R(f) + Rϵ(f) ≲ R⋆

possible.

The following is a similar corollary in the case of multiclass classification using ℓ0/1(·) as the loss function.
Corollary 2. For any S ⊂ Rd define the ϵ-core of S with respect to the norm ∥·∥ as

coreϵ(S) def=
{

x ∈ Rd : {x} + ϵB ⊆ S
}

,

where B denotes the unit ball of ∥·∥, and the sum of two sets is taken to be their Minkowski sum. For any
f : Rd → Rk let

Si(f) =
{

x ∈ Rd : fi(x) > max
j∈[k]\{i}

fj(x)
}

,

denote the set of points x ∈ Rd at which the ith coordinate of f(x) is the unique largest entry of f(x). Then,
for multiclass classification using the ℓ0/1(·) loss, we have

R(f) + Rϵ(f) ≥ max
{
P
(
X /∈ ∪i∈[k]coreϵ (Si(f))

)
,

1
2 E ∥Y − Y ′∥1

}
,

where, conditioned on X, Y ′ is an independent copy of Y (whose domain is the set of canonical basis vectors
in Rk).

Proof. In view of Theorem 1, it suffices to show that

E sup
∆: ∥∆∥≤ϵ

ℓ0/1(f(X), f(X + ∆)) = P
(
X /∈ ∪i∈[k]coreϵ (Si(f))

)
, (7)

and

E ℓ0/1(Y, Y ′) = 1
2∥Y − Y ′∥1 . (8)

Recalling the definition of ℓ0/1(·), we have sup∆: ∥∆∥≤ϵ ℓ0/1(f(x), f(x + ∆)) = 0 if for all ∆ ∈ ϵB, the
maximum entry of f(x + ∆) occurs at the same unique coordinate. This can be equivalently expressed as
x ∈ ∪i∈[k]coreϵ (Si(f)), from which (7) follows. Furthermore, (8) holds because the fact that Y and Y ′ are
canonical basis vectors in Rk guarantees that

ℓ0/1(Y, Y ′) = 1
2∥Y − Y ′∥1 .

An intuitive interpretation of Corollary 2 is that if the functions f ∈ F that provide near-optimal standard
accuracy, in the sense that R(f) ≲ R⋆ = inf

f̃∈F R(f̃), have small ϵ-cores in regions where each coordinate
of f is dominant, then adversarial robustness comes at the cost of losing the accuracy.

Of course, the bounds established in Theorem 1, Corollary 1, and Corollary 2 inevitably contain abstract
terms due to the generality of these bounds. However, these abstract terms can be approximated appropri-
ately using the structure of the special prediction problems of interest. In the next section, we consider a
special regression problem and express the derived bounds in terms of more explicit quantities.

1We write a ≲ b if a ≤ Cb for some absolute constant C > 0.
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3 Least Squares Regression over Polynomial Ridge Functions

Consider the case of least squares regression over the set of polynomial ridge functions

Fp =
{

x 7→ fθ(x) def= ⟨θ, x⟩p : θ ∈ Rd
}

,

for some integer p ≥ 1. In particular, for a parameter θ⋆ ∈ Rd the observations have the form

Y = fθ⋆(X) + Z ,

where X is a zero-mean random variable in Rd whose marginals have finite moments of order at least 2p,
and the noise term Z is a random scalar independent of X such that EZ = 0 and EZ2 = σ2. This model
reduces to the standard linear regression model for p = 1. With Σ denoting the covariance matrix of X and
∥θ∥Σ

def= (θTΣθ)1/2, we further assume that for some constant Cp > 0, for every θ ∈ Rd we have(
E |⟨θ, X⟩|2p

)1/(2p) ≤ Cp∥θ∥Σ . (9)

For fθ(x) = ⟨θ, x⟩p ∈ Fp the quantity Lϵ(fθ) can be expressed as

Lϵ(fθ) = E sup
∆: ∥∆∥≤ϵ

|⟨θ, X + ∆⟩p − ⟨θ, X⟩p|2

= E ((|⟨θ, X⟩| + ∥θ∥∗ϵ)p − |⟨θ, X⟩|p)2

where the second line follows from the facts that

(|z0| + δ)p − |z0|p ≤ sup
z : |z−z0|≤δ

|zp − zp
0 | ,

as one can specialize the right-hand side to the case z = z0 + sgn(z0)δ, and

sup
z : |z−z0|≤δ

|zp − zp
0 | = sup

z : |z−z0|≤δ

∣∣∣∣∣
p∑

k=1

(
p

k

)
(z − z0)kzp−k

0

∣∣∣∣∣
≤

p∑
k=1

(
p

k

)
δk|z0|p−k

= (|z0| + δ)p − |z0|p .

To obtain a lower bound for Lϵ(fθ) we will use the following identities

E ((|⟨θ, X⟩| + ∥θ∥∗ϵ)p − |⟨θ, X⟩|p)2 = E

(
p∑

k=1

(
p

k

)
|⟨θ, X⟩|p−k∥θ∥k

∗ϵk

)2

(10)

E

(
K∑

k=1

(
p

k

)
|⟨θ, X⟩|p−k∥θ∥k

∗ϵk

)2

=
K∑

j=1

K∑
k=1

(
p

j

)(
p

k

)
E |⟨θ, X⟩|2p−j−k∥θ∥j+k

∗ ϵj+k , (11)

for K ∈ [p]. Using the fact that for any pair of nonnegative numbers a and b we have (a + b)2 ≥ a2 + b2, it
follows from (10) and (11) that

E ((|⟨θ, X⟩| + ∥θ∥∗ϵ)p − |⟨θ, X⟩|p)2 ≥ ∥θ∥2p
∗ ϵ2p + E

(
p−1∑
k=1

(
p

k

)
|⟨θ, X⟩|p−k∥θ∥k

∗ϵk

)2

= ∥θ∥2p
∗ ϵ2p +

p−1∑
j=1

p−1∑
k=1

(
p

j

)(
p

k

)
E |⟨θ, X⟩|2p−j−k∥θ∥j+k

∗ ϵj+k
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≥ ∥θ∥2p
∗ ϵ2p +

p−1∑
j=1

p−1∑
k=1

(
p

j

)(
p

k

)
∥θ∥2p−j−k

Σ ∥θ∥j+k
∗ ϵj+k

= ∥θ∥2p
∗ ϵ2p +

(
p−1∑
k=1

(
p

k

)
∥θ∥p−k

Σ ∥θ∥k
∗ϵk

)2

≥ 1
2

(
p∑

k=1

(
p

k

)
∥θ∥p−k

Σ ∥θ∥k
∗ϵk

)2

,

where we used the power mean inequality on the third line and the Cauchy–Schwarz inequality on the fifth
line. Therefore, we have shown that

Lϵ(fθ) ≥ 1
2 ((∥θ∥Σ + ∥θ∥∗ϵ)p − ∥θ∥p

Σ)2
.

Furthermore, we have

E(Y − Y ′)2 = 2σ2 .

Applying the inequalities above in (6), we obtain

R(fθ) + Rϵ(fθ) ≥ max
{

1
12 ((∥θ∥Σ + ∥θ∥∗ϵ)p − ∥θ∥p

Σ)2
,

σ2

3

}
.

Because the standard risk is of the form

R(fθ) = E (⟨X, θ⟩p − ⟨X, θ⋆⟩p)2 + σ2 ,

if R(fθ) + Rϵ(fθ) ≲ R(fθ⋆
) = σ2, meaning that fθ(X) is an accurate and robust predictor for Y , then we

must have

E (⟨X, θ⟩p − ⟨X, θ⋆⟩p)2
≲ σ2 ,

and

((∥θ∥Σ + ∥θ∥∗ϵ)p − ∥θ∥p
Σ)2

≲ σ2 .

With

λ∗ = sup
ϑ̸=0

∥ϑ∥2
Σ

∥ϑ∥2
∗

,

we can write

((∥θ∥Σ + ∥θ∥∗ϵ)p − ∥θ∥p
Σ)2 = ∥θ∥2p

Σ

((
1 +

∥θ∥∗
∥θ∥Σ

ϵ

)p

− 1
)2

≥ ∥θ∥2p
Σ

((
1 + ϵ√

λ∗

)p

− 1
)2

.

Furthermore, using the triangle inequality and the moments equivalence assumption (9), we also have√
E ⟨X, θ⋆⟩2p ≤

√
E (⟨X, θ⟩p − ⟨X, θ⋆⟩p)2 +

√
E ⟨X, θ⟩2p

≤
√
E (⟨X, θ⟩p − ⟨X, θ⋆⟩p)2 + Cp

p ∥θ∥p
Σ .

Combining the derived bounds we obtain

E ⟨X, θ⋆⟩2p ≲

(
1 +

Cp
p

(1 + ϵ/
√

λ∗)p − 1

)2

σ2 .

8



Under review as submission to TMLR

Interpreting SNRp = E ⟨X, θ⋆⟩2p
/σ2 as the Signal-to-Noise-Ratio and using the inequality (1+ϵ/

√
λ∗)p −1 ≥

max{pϵ/
√

λ∗, (ϵ/
√

λ∗)p}, the bound above shows that if

ϵ ≫ min
{

Cp
p

p

√
λ∗

SNRp
, Cp

√
λ∗

SNR1/p
p

}
, (12)

adversarial robustness is impossible unless we are operating at low SNRp meaning that the optimal standard
risk is also relatively large.

In particular, for linear regression which corresponds to the case of p = 1, where we have SNR1 = ∥θ⋆∥2
Σ/σ2

and C1 = 1, adversarial robustness is impossible if

ϵ ≫
√

λ∗

∥θ⋆∥2
Σ

σ ,

unless ∥θ⋆∥2
Σ/σ2 is low. In particular, assuming that X has the identity matrix as its covariance (i.e., Σ = I)

and the adversarial perturbations are bounded in ℓ2 norm (i.e., ∥·∥ = ∥·∥2), we have λ⋆ = 1. Therefore, the
threshold above reduces to ϵ ≫ σ/∥θ⋆∥2. Up to the constant factors, this threshold is equivalent to what can
be calculated using the analytic formula for the adversarial risk (see, e.g., (Javanmard et al., 2020, Lemma
3.1)). Assuming that X has a Gaussian distribution, Javanmard et al. (2020) provide precise asymptotic
expressions for the standard and adversarial risk of the adversarially trained estimator, as the dimension and
the sample size grow proportionally to infinity.

It is worth mentioning that the threshold for ϵ specified by (12) is in general dependent on the dimension
d through the parameter λ∗. For example, if Σ = I and the perturbations are bounded in ℓ∞ norm
(i.e., ∥·∥ = ∥·∥∞), then we have λ∗ = supϑ̸=0 ∥ϑ∥2

2/∥ϑ∥2
1 = 1/d. Therefore, if p, Cp, and SNRp are constants

independent of the dimension d, robustness against adversarial ℓ∞ perturbations of size greater than O(d−1/2)
cannot be guaranteed.

We can also examine the effect of the nonlinearity in the model, as parameterized by p, using (12). For
simplicity, let us focus on the special case where X is sub-Gaussian which can be expressed by (9) with
Cp = C1

√
p for a sufficiently large constant C1 > 1 and all p ≥ 1. Operating at a fixed SNRp = η > C2p

1 pp−2

and ϵ ≤
√

λ⋆, the impossibility threshold (12) simplifies to

ϵ ≫ Cp
1 pp/2−1

√
λ⋆

η
,

which is more restrictive for smaller values of p ≥ 2.
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