
Multi-Task Training Increases Native Sequence Recovery of Antigen-Specific
T-cell Receptor Sequences

Dhuvarakesh Karthikeyan 1 2 Benjamin Vincent 1 3 4 Alexander Rubinsteyn 1 2 4

Abstract
T-cells are a critical component of the adaptive
immune system that use specialized T-cell recep-
tors (TCRs) to bind non-self peptide fragments
presented by major histocompatibility complex
(MHC) molecules on the surface of other cells.
Given their importance, a foundation model of
TCR specificity that is capable of reliably map-
ping between TCR sequences and their cognate
peptide-MHC (pMHC) ligands remains an un-
met need. This study presents a key step towards
developing a comprehensive foundation model
by exploring the bi-directional mapping of both
pMHCs to their corresponding TCRs, and vice
versa. While validation performance was signifi-
cantly worse in the TCR to pMHC direction given
the highly asymmetric distribution of pMHC data,
we find that the bidirectionally trained model out-
performed the model trained in a single pMHC to
TCR direction, at the cost of diversity. We work
through a rigorous evaluation using well charac-
terized pMHCs and present our framework and
findings as a potential direction towards a uni-
fied generative foundation model of TCR:pMHC
cross-reactivity.

1. Introduction
The T-cell receptor (TCR) and peptide-MHC (pMHC) inter-
action is a fundamental immunological event that triggers
our bodies’ T-cell response against cancer, viruses, and even
self-antigens. As such, there has been significant effort
in developing a model of TCR specificity to map TCR se-
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quences to their cognate epitopes, or design TCRs against
antigens of interest (Hudson et al., 2023). Such a model
would revolutionize cellular therapies (Cao et al., 2021;
Tzannou et al., 2017; Ellebrecht et al., 2016; Poole et al.,
2022) and our ability to contextualize the T-cell response
against a specific pathogen. However, a foundation model
that reliably goes between TCRs and their corresponding
pMHC ligands remains blocked by issues of extreme data
sparsity and noisy provenance coupled with a complicated
cross-reactivity landscape (Wooldridge et al., 2011; Sewell,
2012).

In addition to efforts in the structural space (Ribeiro-Filho
et al., 2024), recent work explored the explicit framing
of the TCR reactivity problem as a sequence-to-sequence
(seq2seq) task, demonstrating the capacity of sequence-
based models to design TCR sequences against a spe-
cific pMHC (Karthikeyan et al., 2023; Fast et al., 2023).
Sequence-to-sequence learning introduced the concept of an
encoder:decoder model that was end-to-end trainable in the
context of machine translation tasks (Sutskever et al., 2014;
Kalchbrenner & Blunsom, 2013; Cho et al., 2014). However,
this framework quickly became a paradigm-shifting method
for training deep networks to maximize the conditional like-
lihood of target sequences given a source sequence for arbi-
trary source:target pairs such as question answering and text
summarization, which we apply here to the TCR:pMHC.

A key consideration for encoder:decoder models is the
amount of parallel data (source-target pairs) available, a
requirement that scales with the complexity of the sequence
mapping. In machine translation, a number of methods have
been developed to specifically address the challenge max-
imizing the information usage of low-resource languages,
when labeled data is limited and expensive to generate (Had-
dow et al., 2022). Techniques such as back-translation (Sen-
nrich et al., 2016), self-training (He et al., 2020), transfer
learning (Liu et al., 2020), and semi-supervised translation
approaches that leverage monolingual data have all been
proposed with varying degrees of success, dependent on the
problem specifics. However these approaches have been
shown to exacerbate overfitting to specific domain contexts
or sequence distributions (Shen et al., 2020). To combat
these effects, multi-task learning of bidirectional transla-
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tion models and mulitilingual translation models have been
shown to significantly improve translation quality by sharing
representations and aligning latent spaces across multiple
languages (Niu et al., 2018; Ding et al., 2021). In this work,
we explore the use of multi-task training to train on both di-
rections of the TCR:pMHC specificity problem and evaluate
its effect on the conditional generation of TCR sequences
as well as its potential to simultaneously sample accurate
cognate pMHCs using the same weights.

2. Methodology
2.1. Setup

For our setup, we largely follow the same seq2seq prob-
lem formulation as laid out in (Karthikeyan et al., 2023).
Briefly, we adopt the amino acid level tokenization scheme
and restrict the sequence space to the high entropy por-
tions of the TCR:pMHC interface, namely the CDR3b,
peptide, and MHC pseudo-sequence as defined in (Hoof
et al., 2009). In addition we use the BART and T5 en-
coder:decoder transformer architectures (Figure S1a), with
modified hyper-parameters to control for their total parame-
ter count (Table 1). However, in order to introduce flexibility
with the directionality, we leverage the concept of task pre-
fixes introduced in (Raffel et al., 2020) as a special token for
the T5 model architecture, using the BART model and its
prefix-agnostic tokenization scheme for comparison (Figure
S1b). Additionally, we retain the use of the ‘[SEP]‘ token
to separate the peptide, which typically spans 8-11 amino
acids, and the fixed length psuedosequence.

2.2. Dataset

For the generation of a parallel corpus, we used experi-
mentally validated immunogenic TCR:pMHC pairs taken
from publicly available databases (McPAS (Tickotsky et al.,
2017), VDJdb (Shugay et al., 2017), and IEDB (Vita
et al., 2018). Additionally, we used a large injection of
weakly-labeled data derived from the MIRA (Dines et al.,
2020)) which contained CDR3b and peptide sequences
along with the HLA-type of the individual, instead of the
presenting MHC allele. MHC allele was inferred using
MHCFlurry2.0’s (O’Donnell et al., 2020) ranked presen-
tation score metric among the HLA-type. Of importance,
these pseudo-synthetic examples were not used in evalua-
tion. More on the dataset standardization procedures can
be found in the Supplementary Methods (A.2.1). The re-
sulting dataset was subsequently deduplicated to remove
near duplicates which we found to marginally help overall
performance, in accordance with (Lee et al., 2022) (Figure
S3, Figure S4).

In order to assess the capacity of the models to produce
not only plausible TCR sequences, but specifically antigen-

specific sequences, we pivot from the balanced split on
allele strategy used previously (Karthikeyan et al., 2023),
motivated by our analysis in (Appendix A.1). Instead, to
explicitly evaluate sequence generations for their antigen-
specificity, we curated a target-rich dataset by separating out
the top-20 most represented real pMHCs for validation and
evaluate our models on how well their generations overlap
with the real validated sequences. We train on the remain-
ing data, further removing the occurrences of the held-out
epitopes bound alternate MHCs to ensure a validation set
of unseen epitopes. We allowed a high degree of sequence
overlap with training sequences both out of necessity, given
the sparsity of well characterized pMHCs, but also to quali-
tatively characterize their performance. The degree in which
these sequences exhibit training set similarity is reflected
in (Table 3). This resulted in a final dataset split of 330k
training sequences (N=6989 pMHCs) and 68k validation
sequences (N=20 pMHCs). A key limitation of this dataset
is its highly skewed HLA distribution towards well studied
alleles (A*02:01, A*03:01, A*11:01, etc).

2.3. Model Training

For our experiments, we considered three model training
regimes. The baseline model was trained on the pMHC →
TCR direction, a bidirectional model was trained on both di-
rections, and finally a multi-task model was trained on both
directions as well a masked language modeling objective for
both TCR and pMHC sequences. The models were trained
using the categorical cross entropy loss function (Equation
1), favored in seq2seq tasks for its desired effect of max-
imizing the conditional likelihoods over target sequences
(Sutskever et al., 2014; Cho et al., 2014).

L = CE(y, ŷ) = −
n∑

i=1

yi log ŷi

= −
n∑

i=1

k∑
j−1

yij log pθ(yij |x)
(1)

Lbidxn = Lpmhc→tcr + Ltcr→pmhc (2)

Lmulti = LMLM + Lpmhc→tcr + Ltcr→pmhc (3)

The baseline models were trained using the above cross
entropy objective whereas the bidirectional and multi-task
models were trained on a mutli-term objective, compris-
ing of a linear combination of individual loss terms corre-
sponding to each task/direction. This was achieved using
a batch processing algorithm (Algorithm 1), where each
batch was rearranged into one of four sequence-to-sequence
mapping possibilities with equal probability and the model
was trained on target reconstruction. For the bidirectional
model this was straightforward as we could swap the input
and output tensors during training to get the individual loss
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contributions of the Lpmhc→tcrandLtcr→pmhc (Equation 2).
For the multi-task model, the mapping possibilities are: 1)
pMHC → TCR 2) pMHC → TCR 3) Corrupted pMHC*
→ pMHC 4) Corrupted TCR* → TCR, which combine
to to form Lmulti (Equation 3). For the purposes of com-
parison between models, each of the models was trained
for 20 epochs, from which the checkpoint with the highest
combined F1 and sequence recovery was chosen. Interest-
ingly, we observed that training for longer resulted in worse
validation performance and the convergence dynamics be-
tween TCRBART and TCRT5 were notably dissimilar. We
chose this approach to better capture the models’ real world
utility, as opposed to training for a fixed number of steps
and evaluating the learning objective for its accuracy and
efficiency.

Algorithm 1 Multi-Task Training Step

Batched Input: source pMHCs: X, target TCRs: Y
Sample a ∼ Bernoulli(0.5)
if a > 0.5 then

Swap X and Y
Compute attention masks

end if
Sample b ∼ Bernoulli(0.5)
if b > 0.5 then

Set X = X* and Y = X
Compute attention masks

end if
do Predict Ŷ = ϕ(X) and gradient updates on CE(y, ŷ)

2.4. Conditional Sampling

Given its marked performance gains over other sampling
methods in the TCR:pMHC sequence space (Karthikeyan
et al., 2023), we fix beam-search as our chosen method of
sequence generation for all generation-based metrics ex-
cept for the Char-BLEU score, for which we used single
generations via greedy decoding. Both decoding methods
and the broader class of mode-seeking methods, aim to
maximize for the highest probability conditional sequence.
Recently, however, mode-seeking algorithms have come
under scrutiny for sampling only a small portion of the
true target distribution, as noted in (Eikema & Aziz, 2020).
Instead of sampling tokens directly from the whole con-
ditional distribution: yt ∼ P (yt|y<t, x, θ). Given source
sequence x and model parameters θ, they try to approximate
the yMAP = argmaxy∈Y log p(y|x, θ) which explores the
conditional distribution about the mode. However, com-
bined with the ability to assess and maintain longer high
probability subsequences, the use of beam search results
in a powerful method for sampling native sequence-like
predictions.

2.5. Evaluation

In-silico evaluation of TCR:epitope specificity can be chal-
lenging since unlike antibodies, binding affinity and struc-
tural fit alone do not predict functional response (Singh et al.,
2017) of TCRs. Thus, motivated by a need to evaluate model
performance on antigen-specificity in an unequivocal man-
ner, we build our evaluation around sampling exact CDR3b
sequences from known experimental data on the unseen
epitopes with a large enough sample of cognate TCRs (Ap-
pendix A.1). However, since generation of new data is both
expensive and time consuming, we include metrics based on
sequence similarity to known binders and characterize their
concordance with F1 performance to determine their faith-
fulness and utility for future use on unseen epitopes with
orders of magnitude fewer known cognate sequences. Our
choice of metrics and their intuitions can be summarized in
brief:

• Char-BLEU: Character-level weighted n-gram pre-
cision calculated on the greedy decoding sequences
against the k = 20 closest reference sequences. We use
NLTK’s ‘sentence bleu‘ and ‘corpus bleu‘ functions
to compute the single translation and whole dataset
BLEU scores, respectively. (Papineni et al., 2002).

• Perplexity: Perplexity as a standard measure of lan-
guage model performance, using the cross entropy loss
calculated over the validation corpus.

• Precision, Recall, and F1@K: Precision, recall, and
F1 measures exact whole sequence recovery, computed
after sampling K times (not necessarily K separate
sequences).

• Native Sequence Recovery: In the de novo protein
design space, native sequence recovery is a useful in-
dicator of model performance. Here, for each model
prediction, the index-matched exact amino acid recov-
ery with the closest match of the same sequence length
is calculated.

3. Results
As shown in Figure 1, we first evaluate the dataset-level
performance of the models trained in the various methods
on TCR generations against the holdout dataset compris-
ing the top-20 most well represented, real pMHCs. Of the
models tested, the top performing models per architecture
were the BART multi-task (TCRBART (M)) and T5 bidi-
rectional model (TCRT5 (B)) with the former achieving an
average F1@100 score of .042 and mean sequence recovery
of 84.3%. TCRT5 (B) performed better on the F1 metric
with a score of .054 and a sequence recovery rate of 84.4%.
While the perplexity and CharBLEU scores were highly
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similar for the most part, we noticed a steep drop in Char-
BLEU performance for the T5 models with auxiliary tasks.
We attribute this phenomena to the earlier checkpoints used,
which for tasks of bidirectional and multi-task translation,
may not have fully resolved for the single direction in which
we are evaluating it. However for all of the models, adding
the additional task directions increased both the mean and
median F1 and sequence recovery.

MODEL CHARBLEU PPL F1@100 % REC.

BART 99.2 2.49 .048/.01 83.9/85.0
BART (B) 98.7 2.53 .055/.015 83.7/85.4
BART (M) 99.4 2.49 .042/.030 84.3/86.0

T5 97.9 2.44 .040/.01 83.9/85.3
T5 (B) 36.7 2.49 .054/.035 84.4/85.9
T5 (M) 40.5 2.50 .054/.02 84.7/85.8

Figure 1: Model Performance across Top-20 Dataset a)
Multiple bar chart showing the native sequence recovery
and F1@100 score of the benchmarked models. b) Table
of values showing dataset-level metrics for CharBLEU and
Perplexity as well as mean/median values for F1 and Se-
quence Recovery. Results computed using 100 sequences
generated using the beam search algorithm (beams=300).

To further understand the models’ performance on individ-
ual pMHCs and their contribution to the global statistics, we
computed the same metrics and stratified them by pMHC
(Table 4). When independently evaluating the different
pMHCs, we observe that the performances of the models
are largely consistent across models within each pMHC
for both sequence recovery as well as F1 score (Figure S5,
Figure S6). The pMHC EAAGIGILTV-A*02:01 was the
worst performing pMHC of the 20, showing poor model
performance on both sequence recovery and the F1 score
across all models. In contrast, KLGGALQAK-A*03:01
and NLVPMVATV-A*02:01, among others, stand out as
examples where all models performed well. Given the cross-
model consistency in performance, we sought to better un-

derstand the 20 epitopes in the context of the metrics and
the training and validation data (Table 3).

Since the metrics all implicitly or explicitly rely on held-out
sequences, we first checked for a correlation between the
number of TCRs for a held-out example and its performance.
Unsurprisingly, we observed a positive trend between the
number of reference CDR3b sequences a model has and all
of our performance metrics. Specifically, we note that a soft
threshold where pMHCs with less 1000 reference CDR3bs
have an F1 score of 0, while those with higher CDR3b
counts had enough TCRs to where at least one coincided
with the sampled sequences (Figure S6). Next, we sought to
evaluate the concordance between the F1 score and the other
sequence-based metrics. While the CharBLEU and F1 were
loosely related, we see a strong relationship between the se-
quence recovery and F1 (Figure S7), indicating the utility of
sequence recovery in assessing CDR3bs with lower known
CDR3b abundancies. Building on this, we evaluate the se-
quence of recovery of random CDR3bs sampled from (Chen
et al., 2020) and compare them to the reference CDR3bs for
each antigen. We found that even random CDR3bs possess
greater than 60% sequence identity with known antigen spe-
cific CDR3bs, which was significantly higher than random
noise but lower than the median performance of sequences
generated by the models (Figure S8), indicating our con-
ditionally generated sequences capture signals that confer
antigen specificity.

Qualitatively, we can begin to contextualize performance as
driven by both apparent cases of memorization and general-
ization. For example, the SARS-Cov-2 epitope YLQPRT-
FLL had the highest performance of the pMHCs, with a
sequence recovery of over 90% and an F1 score nearly 10x
greater than the mean, which we find can be explained by
the presence of an epitope in the training set that shares over
600 CDR3b sequences and has dedit = 1 (Table 3). How-
ever, a low edit distance and high overlap do not necessarily
guarantee outstanding performance, as evidenced by an-
other SARS-Cov-2 epitope LLLDRLNQL. Remarkably, the
second-best performing epitope was KLGGALQAK, with a
>90% sequence recovery rate, despite the closest training
sequence being five edits away and having an overlap of
one. This may be due to the epitope having over 12,000
reference CDR3bs, so the likelihood of finding a matching
or similar CDR3b here is far greater than the other epitopes.

In addition to model accuracy, we look at the diversity of
sequences generated by these models, a known trade-off
in the space of conditional generation (Vijayakumar et al.,
2018). We find that while the multi-task models increase the
performance of these models, they are prone to sample de-
generate solutions by generating the same high probability
TCRs across unrelated pMHCs (Figure S9) and also sam-
ple more sequences that were seen during training (Figure
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S10). While these results highlight the models’ capability
to generate sequences with validated antigen-specificities,
they also underscore the importance of contextualizing the
accuracy in the greater context of model utility. The mixed
results suggest that both memorization and generalization
play roles in model performance and while learning the
bi-directional mapping increases performance in the TCR
generation space, the implicit self-consistency may be detri-
mental to model utility given the current sparsity in balanced
pMHC data.

Finally, with regards to the reverse direction (TCR de-
orphanization), we found that both bidirectional and multi-
task models fared substantially worse than the TCR gener-
ation direction. Interestingly, while the peptide-only Char-
BLEU scores was near 0, the models generated plausible-
looking MHC pseudosequences. We believe that the dispar-
ity in performance between tasks is due to combination of
lack of tuning for generating longer sequences as well as the
asymmetric number of pMHCs than TCRs in the training
data. As such we hold off on reporting the standard metrics
for this iteration of our study.

4. Discussion
In this study we set out to investigate the effect of multi-task
training in improving the mapping quality between TCR
and their corresponding pMHCs. We showed the improve-
ment in model performance by including auxiliary tasks
was matched with a decrease in diversity. To do so we
constructed a dataset in which we could probabilistically
expect to see exact sequence matches with the conditional
generations. We find that the TCRBART and TCRT5 mod-
els showed similar performance, and that this performance
is conserved across pMHCs and tied directly to the num-
ber of available reference TCRs. The performance of the
multi-task models in generating accurate TCR sequences
suggests that jointly learning both directions of the TCR-
pMHC sequence mapping, along with the unconditional
distributions of both modalities, enhances the ability to find
motifs that are conserved across a large number of TCRs
derived from different disease contexts. However, more
analysis is required to determine if there is any biologi-
cal relevance in these polyspecific motifs. The observed
variability in performance across different pMHC epitopes
highlights the critical role of training data composition and
its relationship to the test set. Future work will explore
leveraging ’monolingual’ data for iterative back-translation
and other semi-supervised techniques, to further improve
model robustness, and engineering splits across more di-
verse TCR-pMHC interactions.
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A. Appendix

Supplementary Figure 1: Comparing TCRBART and TCRT5. A) Transformer architecture juxtaposing BART and T5
encoder and decoder layers, inspired by Figure 1 of (Vaswani et al., 2023). While BART follows the traditional Transformer
architecture, T5 introduces the following key changes: removing the additive bias from LayerNorm, moving the LayerNorm
before the feature processing blocks, introducing relative attention bias instead of learned positional encoding, and
implementing dropout throughout the network. B) Differentiating between sequence representations encountered in the
three tasks by each model (BART vs. T5).
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A.1. Quantitative Break Down of Data Constraints on Model Performance

For all metrics, Seq2Seq performance is predicated on a representative number of reference target sequences. Given that
we are evaluating generations where even the most represented pMHC has on the order of ≈ 10,000 observed sequences
out of a theoretical max of 106 (Mason, 1998; Sewell, 2012) (1% of the total diversity), we are in a regime where model
performance is the lower bound on performance. This is because we are evaluating the model not only on its ability to
generate correct target sequences, but are inadvertently asking it to generate target sequences that resemble those that
have been experimentally validated, comletely unrelated to sequence veracity (Figure S2A). We distill this intuition into a
probabilistic framework to contextualize the limits on recall-based metrics (i.e. F1 score) for model evaluation, given the
amount of data that currently exists:

Assume we have a held-out pMHC (pMHCi) with a theoretical set C of cognate CDR3b sequences, of which a subset
of sequences have been experimentally validated (observed). We can model the likelihood of the generated sequences
belonging to the observed set using a composite distribution linking the binomial and hypergeometric distributions. Given
model that samples n CDR3b sequences conditioned on that pMHC, we can define Z to be an unobservable binomially
distributed random variable representing the number of correct (but not necessarily observed) generated CDR3b sequences.

Pr(Z = z; θi) =

(
n

z

)
θzi (1− θi)

n−z

where: Z = Random Variable: unobservable number of correct sequences that are in the reference set
n = Number of generated translations
θi =True model accuracy for a given pMHCi

Then we can construct a conditional distribution of number of correct and observed sequences Y |Z according to:

Pr(Y = y|Z = z) =

(
K
y

)(
N−K
z−y

)(
N
z

)
where: Y = Random Variable: observed number of correct sequences that have been experimentally validated.

N = Number of total cognate sequences (ground truth, partially observed)
K = Number of experimentally validated cognate sequences
n = Number of generated sequences
z = Sample size (number of correct generated sequences, observed through Y)

This gives a joint distribution: Pr(Y = y, Z = z) = Pr(Y = y|Z = z)Pr(Z = z)

=

(
K
y

)(
N−K
z−y

)(
N
y

) (
n

z

)
θzi (1− θi)

n−z
(4)

By marginalizing on Y we get the following equation, whose PMF we plot in Figure S2B:

Pr(Y = y) =

n∑
z

Pr(Y = y|Z = z)Pr(Z = z)

Pr(Y = y;N,K, n, θi) =

n∑
z=y

(
K
y

)(
N−K
z−y

)(
N
y

) (
n

z

)
θzi (1− θi)

n−z

(5)

We posit that this framework may be useful in characterizing model performance via estimating the parameter θi for pMHCs
using Bayesian methods or jointly estimating Zi and θi through the Expectation Maximization algorithm. We leave this for
future exploration and use the above for contextualizing evaluation performance in the current data regime.
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Supplementary Figure 2: Data Constraints on Model Performance. A) Illustrative diagram showing the global and local
TCR context. Global TCR space is represented by 2D projections of various TCR sequences, where antigen-specific TCRs
are radially distributed about a pMHC and overlap designates TCR cross reactivity. The local pMHC-specific TCR space
shows the distinction between observed TCRs and ground truth TCRs in relation to model generations. B) Probability mass
function (PMF) of Equation plotted for different values of ground truth TCRs and different model accuracies. K is fixed to
be the current maximum of known TCRs for a given antigen ≈ 16, 000. C) Expected value of the F1 score is plotted for
different average model accuracies given θ (the PMF simplifies to the conditional hypergeometric distribution). Red arrows
indicate the percentiles of reference TCR counts (K) from the real data.
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A.2. Supplementary Methods

A.2.1. DATASET CONSTRUCTION

First, to aggregate the data spanning various sources, formats, and nomenclature, we mapped the columns from each
individual dataset to a common consensus schema and concatenated the data along the consensus columns. In the interest of
data retention, missing values were reasonably imputed according to other information for that data instance. To keep only
the cytotoxic (CD8+) T-cells, we filtered the instances wherever the cell-type was provided or where the HLA-Allele was
of MHC-class I. In cases where an HLA-haplotype was provided instead of the specific HLA-allele, as was the case for
the MIRA data, we used MHCFlurry2.0 (O’Donnell et al., 2020) to predict the best presenting allele for the given epitope
among the potential options from the haplotype information. This data augmentation step resulted in a 5-fold expansion of
our training data. An key caveat to note is that the additional training examples are all derived from a single disease context
(SARS-Cov-2), skewing the training data’s distribution. Additionally there is room for slight error given the peptide-MHC
assignment in-silico and not validated experimentally. However, given the merits of including examples with thousands of
TCRs against an epitope, we argue for its inclusion. Where the granularity of the HLA-information or TR genes was at
the serotype level, we inferred the canoncial gene/allele by starting off with the subgroup ’*01’ and incremented it until
a matching IMGT gene was found. This step has the potential of introducing minor differences between the unknown
ground truth and the imputed pseudo-sequence, as the pseudosequence is well conserved within serotype. Once the data was
aggregated and values were imputed, we applied the following column-level standardization for each source of information:

• Complementarity Determining Region (CDR3b), Epitope, and MHC Pseudo-Sequence: All amino acid represen-
tations were normalized used the tidytcells.aa.standardise function found in the TidyTcells python package (Nagano &
Chain, 2023).

• TR Genes: The TidyTcells package (Nagano & Chain, 2023) was once again used to standardize the nomenclature
surrounding the T-Cell Receptor genes (e.g. TRB-V and TRB-J).

• HLA-Allele: HLA alleles were imputed where allele level information when necessary and then normalized using the
MHCgnomes package to the standard HLA-[A,B,C]*XX:YY format.

Finally, given the importance of training LLMs on non-redundant data (Lee et al., 2022) a de-duplication step was performed
to consolidate training examples where examples pMHCs that bound to the same CDR3b and shared a k-mer overlap of at
least 6 were clustered together and a single representative pair was chosen from each cluster. The allocation of pairs from
each cluster was done to balance pMHC representation.
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Supplementary Figure 3: Parallel Dataset Imbalance. A) pMHC → TCR. Bar chart and corresponding Lorenz curve
demonstrating the phenomenon in which a few well characterized pMHCs account for a disproportionately large share of
the labeled data. B) TCR → pMHC. Bar chart and corresponding Lorenz curve showing that most TCRs have both a smaller
and more equally distributed range of cognate pMHCs, which is unfortunately confounded by a lack of pMHC diversity.
This is due in large part experimental reasons, namely the ease in which T-cell stimulation assays in the presence of specific
antigen reveal diverse TCRs upon sequencing while stimulation assays against various pMHCs given a specific TCR not as
common given their low positivity rates.
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Supplementary Figure 4: Relative pMHC Abundances in De-Duplicated Training and Validation Set. Relative pMHC
abundances for the de-duplicated training set (left) and validation set (right) are shown. The top-8 pMHCs account for 13%
and 77.9% of the training and validation set, respectively.
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A.3. Model/Training Hyperparameters

Table 1: Model Architecture Hyperparameters

TCRBART TCRT5

Parameters 46M 42M
dmodel 768 256
Vocab Size 28 128
Encoder Layers 6 10
Decoder Layers 6 10
Max Position Embedding 512 512
Attention Heads 16 16
Feed Forward Dim 128 1024
Cross Attention ✓ ✓

Table 2: Model Training Parameters

BART T5

Batch Size 128 128
Baseline Learning Rate 5e-05 3e-04

Weight Decay 0.01 0.001
Optimizer AdamW AdamW

Batch Size 128 128
Bidirectional Training Learning Rate 5e-05 3e-04

Weight Decay 0.01 0.001
Optimizer AdamW AdamW

Batch Size 128 128
Multitask Training Learning Rate 5e-05 3e-04

Weight Decay 0.01 0.001
pMLM 0.15 0.15

Optimizer AdamW AdamW

14



Multi-Task Training Increases Native Sequence Recovery of Antigen-Specific T-cell Receptor Sequences

A.4. Extended Results

Supplementary Figure 5: Sequence Recoveries by pMHC. Box and whisker plots showing the range, median, and quartiles
of sequence recoveries per pMHC split by model.

15



Multi-Task Training Increases Native Sequence Recovery of Antigen-Specific T-cell Receptor Sequences

Supplementary Figure 6: F1@100 Score by pMHC. Bar plot of F1@100 scores per model shown for each pMHC. The
number of reference CDR3b sequences, experimentally validated to bind that pMHC is shown at the top right corner of each
subplot as (K).
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Figure 7: Evaluation Metric Correlation Plot. Pairwise scatterplots between performance metrics (CharBLEU, sequence
recovery, F1@100) shown for all 20 pMHCs with the baseline and multi-task models (n=80 per plot).
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Supplementary Figure 8: Translation Quality of Model Generations vs. Random CDR3bs. Density plot showing the
sequence recoveries of translations derived from each model and the pMHC’s known cognate TCRs vs. a set of 1000 random
TCR sequences where known binders were filtered out. Simulation was ran 1000 iterations and the mean sequence recovery
derived from random sequences is plotted as a red line.
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Supplementary Figure 9: Sequence Diversity and Accuracy of Generations. Circle heatmap plot showing the pairwise
overlap between generations conditioned on pMHCi and pMHCj as the size of the circle, colored by the row-wise
F1@100 score of that generations conditioned on that pMHC.
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Supplementary Figure 10: Characterizing Validity, Accuracy, and Novelty of Generated Sequences. Sankey plots showing
the validity of translations (determined by OLGA (Sethna et al., 2019) Pgen > 0), accuracy (determined by sampling exact
cognate TCRs) and novelty (membership in the training set) for each model.
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Table 3: Characterization of Train/Test Target Overlap

TEST PEPTIDE CLOSEST TRAIN PEPTIDE(S) EDIT DISTANCE CDR3B OVERLAP

AVFDRKSDAK RLFRKSNLK 5 0/1655
AVFDRKSDAK AAFKRSCLK 5 0/1655
AVFDRKSDAK AVGVGKSAL 5 0/1655

CRVLCCYVL PVTLACFVL 5 0/435
CRVLCCYVL CFVECAPVC 5 0/435
CRVLCCYVL WPVTLACFVL 5 4/435

EAAGIGILTV AAGIGILTV 1 2/487

ELAGIGILTV ELAGIGALTV 1 1/1919
ELAGIGILTV ELAAIGILTV 1 1/1919
ELAGIGILTV ELAGIGLTV 1 5/1919

GILGFVFTL GILEFVFTL 1 1/8083
GILGFVFTL GILGLVFTL 1 1/8083
GILGFVFTL GIWGFVFTL 1 0/8083

GLCTLVAML ALNTLVKQL 4 0/7388

IVTDFSVIK IPTDFTISV 5 0/563
IVTDFSVIK ITNFKSVLY 5 0/563
IVTDFSVIK YTDFSSEII 5 0/563
IVTDFSVIK HVTFFIYNK 5 0/563

KLGGALQAK ALGGLLTMV 5 0/12660
KLGGALQAK KLFAAETLK 5 0/12660
KLGGALQAK CLGGLLTMV 5 1/12660
KLGGALQAK MLWGYLQYV 5 0/12660

LLLDRLNQL LLLLDRLNQL 1 146/2095

LLWNGPMAV LLFGPVYV 4 0/2458
LLWNGPMAV LLEWLAMAV 4 0/2458
LLWNGPMAV LLFGYPVAV 4 0/2458

LPRRSGAAGA LPSYAAFAT 5 0/2140
LPRRSGAAGA LPSYAALAT 5 0/2140

LVVDFSQFSR HLVDFQVTI 6 1/1871
LVVDFSQFSR RVVVLSFEL 6 0/1871
LVVDFSQFSR VVDSYYSLL 6 0/1871
LVVDFSQFSR ALVYFLQSI 6 0/1871
LVVDFSQFSR LLHGFSFYL 6 0/1871
LVVDFSQFSR LVQSTQWSL 6 0/1871
LVVDFSQFSR VLCNSQTSL 6 0/1871

NLVPMVATV NLVPVVATV 1 1/8456
NLVPMVATV NLVPQVATV 1 1/8456
NLVPMVATV NLVPMVASV 1 1/8456
NLVPMVATV NLVAMVATV 1 2/8456
NLVPMVATV NLVGMVATV 1 1/8456
NLVPMVATV ALVPMVATV 1 1/8456
NLVPMVATV NLVPTVATV 1 1/8456

RAKFKQLL RLSFKELLV 4 0/916

SPRWYFYYL LPRWYFYYL 1 14/3355

STLPETAVVRR GLPWNVVRI 6 0/925

TPRVTGGGAM APRITFGGL 5 0/2606

TTDPSFLGRY HTTDPSFLGRY 1 46/451

YLQPRTFLL YLQPRTFL 1 606/1636
YLQPRTFLL YLRPRTFLL 1 0/1636

YVLDHLIVV KVLEYVIKV 5 1/8317
YVLDHLIVV SVLLFLAFV 5 1/8317
YVLDHLIVV TVYSHLLLV 5 2/8317
YVLDHLIVV VLLFLAFVV 5 0/8317
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Table 4: Individual Top-20 pMHC Performance Metrics

Evaluation Metrics

Model Char-BLEU P@100 R@100 F1@100 % Recovery

TCRBART-0 0.865 0.00 0.00 0.00 82.6
TCRBART-0 (B) 0.865 0.01 0.01 0.01 85.4

AVFDRKSDAK-A*11:01 TCRBART-0 (M) 0.865 0.03 0.03 0.03 87.3
TCRT5-0 0.777 0.01 0.01 0.01 86.8

TCRT5-0 (B) 0.347 0.03 0.03 0.03 86.7
TCRT5-0 (M) 0.347 0.01 0.01 0.01 86.9

TCRBART-0 0.869 0.00 0.00 0.00 76.7
TCRBART-0 (B) 0.869 0.00 0.00 0.00 75.7

CRVLCCYVL-C*07:02 TCRBART-0 (M) 0.869 0.00 0.00 0.00 78.7
TCRT5-0 0.869 0.00 0.00 0.00 76.9

TCRT5-0 (B) 0.277 0.00 0.00 0.00 78.0
TCRT5-0 (M) 0.277 0.00 0.00 0.00 78.9

TCRBART-0 0.859 0.00 0.00 0.00 68.9
TCRBART-0 (B) 0.754 0.00 0.00 0.00 62.3

EAAGIGILTV-A*02:01 TCRBART-0 (M) 0.784 0.00 0.00 0.00 66.2
TCRT5-0 0.760 0.00 0.00 0.00 65.1

TCRT5-0 (B) 0.292 0.00 0.00 0.00 65.1
TCRT5-0 (M) 0.292 0.00 0.00 0.00 64.5

TCRBART-0 1.000 0.04 0.04 0.04 84.6
TCRBART-0 (B) 0.912 0.02 0.02 0.02 83.6

ELAGIGILTV-A*02:01 TCRBART-0 (M) 0.951 0.03 0.03 0.03 84.6
TCRT5-0 0.974 0.02 0.02 0.02 83.2

TCRT5-0 (B) 0.324 0.04 0.04 0.04 85.6
TCRT5-0 (M) 0.324 0.03 0.03 0.03 85.6

TCRBART-0 1.000 0.01 0.01 0.01 85.3
TCRBART-0 (B) 0.912 0.03 0.03 0.03 86.2

GILGFVFTL-A*02:01 TCRBART-0 (M) 1.000 0.00 0.00 0.00 86.5
TCRT5-0 0.912 0.01 0.01 0.01 85.8

TCRT5-0 (B) 0.420 0.02 0.02 0.02 86.1
TCRT5-0 (M) 0.420 0.02 0.02 0.02 86.8

TCRBART-0 1.000 0.01 0.01 0.01 86.3
TCRBART-0 (B) 1.000 0.01 0.01 0.01 85.5

GLCTLVAML-A*02:01 TCRBART-0 (M) 1.000 0.03 0.03 0.03 87.1
TCRT5-0 0.851 0.01 0.01 0.01 84.9

TCRT5-0 (B) 0.429 0.02 0.02 0.02 87.0
TCRT5-0 (M) 0.429 0.03 0.03 0.03 86.0

TCRBART-0 0.731 0.01 0.01 0.01 81.4
TCRBART-0 (B) 0.783 0.00 0.00 0.00 77.2

IVTDFSVIK-A*11:01 TCRBART-0 (M) 0.783 0.00 0.00 0.00 81.6
TCRT5-0 0.831 0.00 0.00 0.00 83.0

TCRT5-0 (B) 0.339 0.01 0.01 0.01 81.9
TCRT5-0 (M) 0.417 0.01 0.01 0.01 82.1

TCRBART-0 0.976 0.18 0.18 0.18 92.9
TCRBART-0 (B) 0.931 0.09 0.09 0.09 90.6

KLGGALQAK-A*03:01 TCRBART-0 (M) 1.000 0.15 0.15 0.15 92.9
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Table 4: (continued)

Evaluation Metrics

Model Char-BLEU P@100 R@100 F1@100 % Recovery

TCRT5-0 0.931 0.17 0.17 0.17 93.4
TCRT5-0 (B) 0.384 0.25 0.25 0.25 93.7
TCRT5-0 (M) 0.384 0.27 0.27 0.27 94.0

TCRBART-0 0.821 0.01 0.01 0.01 79.3
TCRBART-0 (B) 0.836 0.00 0.00 0.00 76.2

LLLDRLNQL-A*02:01 TCRBART-0 (M) 0.821 0.00 0.00 0.00 78.5
TCRT5-0 0.821 0.00 0.00 0.00 79.0

TCRT5-0 (B) 0.379 0.01 0.01 0.01 78.2
TCRT5-0 (M) 0.379 0.02 0.02 0.02 79.5

TCRBART-0 0.976 0.03 0.03 0.03 86.5
TCRBART-0 (B) 0.946 0.09 0.09 0.09 87.7

LLWNGPMAV-A*02:01 TCRBART-0 (M) 0.976 0.08 0.08 0.08 87.3
TCRT5-0 0.976 0.08 0.08 0.08 87.8

TCRT5-0 (B) 0.341 0.12 0.12 0.12 86.9
TCRT5-0 (M) 0.341 0.06 0.06 0.06 86.9

TCRBART-0 1.000 0.01 0.01 0.01 86.5
TCRBART-0 (B) 1.000 0.1 0.1 0.1 89.5

LPRRSGAAGA-B*07:02 TCRBART-0 (M) 1.000 0.1 0.1 0.1 88.8
TCRT5-0 1.000 0.11 0.11 0.11 88.9

TCRT5-0 (B) 0.339 0.1 0.1 0.1 89.4
TCRT5-0 (M) 0.339 0.15 0.15 0.15 91.0

TCRBART-0 0.895 0.01 0.01 0.01 84.6
TCRBART-0 (B) 0.955 0.00 0.00 0.00 84.5

LVVDFSQFSR-A*11:01 TCRBART-0 (M) 0.895 0.01 0.01 0.01 85.5
TCRT5-0 0.831 0.02 0.02 0.02 85.6

TCRT5-0 (B) 0.301 0.04 0.04 0.04 84.0
TCRT5-0 (M) 0.301 0.01 0.01 0.01 85.3

TCRBART-0 1.000 0.09 0.09 0.09 90.1
TCRBART-0 (B) 1.000 0.11 0.11 0.11 90.1

NLVPMVATV-A*02:01 TCRBART-0 (M) 0.974 0.11 0.11 0.11 89.9
TCRT5-0 0.976 0.11 0.11 0.11 90.2

TCRT5-0 (B) 0.301 0.12 0.12 0.12 90.1
TCRT5-0 (M) 0.301 0.12 0.12 0.12 89.9

TCRBART-0 0.912 0.01 0.01 0.01 79.1
TCRBART-0 (B) 0.955 0.00 0.00 0.00 82.2

RAKFKQLL-B*08:01 TCRBART-0 (M) 0.912 0.06 0.06 0.06 83.8
TCRT5-0 0.851 0.00 0.00 0.00 81.3

TCRT5-0 (B) 0.339 0.04 0.04 0.04 84.1
TCRT5-0 (M) 0.646 0.02 0.02 0.02 84.7

TCRBART-0 0.886 0.05 0.05 0.05 86.5
TCRBART-0 (B) 0.938 0.04 0.04 0.04 87.4

SPRWYFYYL-B*07:02 TCRBART-0 (M) 0.886 0.06 0.06 0.06 86.6
TCRT5-0 0.976 0.11 0.11 0.11 87.7

TCRT5-0 (B) 0.353 0.11 0.11 0.11 86.9
TCRT5-0 (M) 0.619 0.1 0.1 0.1 87.9
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Table 4: (continued)

Evaluation Metrics

Model Char-BLEU P@100 R@100 F1@100 % Recovery

TCRBART-0 0.831 0.00 0.00 0.00 80.7
TCRBART-0 (B) 0.904 0.01 0.01 0.01 84.6

STLPETAVVRR-A*11:01 TCRBART-0 (M) 0.912 0.00 0.00 0.00 83.2
TCRT5-0 0.912 0.00 0.00 0.00 82.8

TCRT5-0 (B) 0.330 0.00 0.00 0.00 84.5
TCRT5-0 (M) 0.330 0.00 0.00 0.00 82.6

TCRBART-0 1.000 0.06 0.06 0.06 88.3
TCRBART-0 (B) 0.946 0.08 0.08 0.08 88.6

TPRVTGGGAM-B*07:02 TCRBART-0 (M) 1.000 0.13 0.13 0.13 90.0
TCRT5-0 1.000 0.12 0.12 0.12 88.8

TCRT5-0 (B) 0.339 0.11 0.11 0.11 89.5
TCRT5-0 (M) 0.339 0.14 0.14 0.14 90.6

TCRBART-0 0.727 0.00 0.00 0.00 78.1
TCRBART-0 (B) 1.000 0.00 0.00 0.00 77.0

TTDPSFLGRY-A*01:01 TCRBART-0 (M) 0.727 0.00 0.00 0.00 81.7
TCRT5-0 0.727 0.01 0.01 0.01 80.6

TCRT5-0 (B) 0.375 0.00 0.00 0.00 81.9
TCRT5-0 (M) 0.375 0.00 0.00 0.00 81.7

TCRBART-0 0.919 0.4 0.4 0.4 93.2
TCRBART-0 (B) 0.912 0.46 0.46 0.46 93.3

YLQPRTFLL-A*02:01 TCRBART-0 (M) 0.919 0.01 0.01 0.01 79.0
TCRT5-0 0.831 0.00 0.00 0.00 78.5

TCRT5-0 (B) 0.285 0.00 0.00 0.00 80.9
TCRT5-0 (M) 0.285 0.02 0.02 0.02 79.8

TCRBART-0 0.931 0.04 0.04 0.04 86.7
TCRBART-0 (B) 0.912 0.04 0.04 0.04 85.7

YVLDHLIVV-A*02:01 TCRBART-0 (M) 0.931 0.04 0.04 0.04 87.3
TCRT5-0 0.874 0.02 0.02 0.02 87.2

TCRT5-0 (B) 0.361 0.05 0.05 0.05 86.9
TCRT5-0 (M) 0.361 0.06 0.06 0.06 88.4
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