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Multi-Task Training Increases Native Sequence Recovery of Antigen-Specific
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Abstract
T-cells are a critical component of the adaptive
immune system that use T-cell receptors (TCRs)
to bind highly specific non-self peptide fragments
presented by major histocompatibility complex
(MHC) molecules on the surface of other cells.
Given their importance, a foundation model of
TCR specificity that is capable of reliably map-
ping between TCR sequences and their cognate
peptide-MHC (pMHC) ligands remains an un-
met need. This study presents a key step towards
developing a comprehensive foundation model
by exploring the bi-directional mapping of both
pMHCs to their corresponding TCRs, and vice
versa. While validation performance was signifi-
cantly worse in the TCR to pMHC direction given
the highly asymmetric distribution of pMHC data,
we find that the bidirectionally trained model out-
performed the model trained in a single pMHC
to TCR direction. We present our findings as a
potential direction towards a unified generative
foundation model of TCR:pMHC cross-reactivity.

1. Introduction
The T-cell receptor (TCR) and peptide-MHC (pMHC) inter-
action is a fundamental immunological event that triggers
our bodies’ T-cell response against cancer, viruses, and even
self-antigens. As such, there has been significant effort
in developing a model of TCR specificity to map TCR se-
quences to their cognate epitopes, or design TCRs against
antigens of interest (Hudson et al., 2023). Such a model
would revolutionize cellular therapies (Cao et al., 2021;
Tzannou et al., 2017; Ellebrecht et al., 2016; Poole et al.,
2022) and our ability to contextualize the T-cell response
against a specific pathogen. However, a foundation model
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that reliably goes between TCRs and their corresponding
pMHC ligands remains blocked by issues of extreme data
sparsity and noisy provenance coupled with a complicated
cross-reactivity landscape (Wooldridge et al., 2011; Sewell,
2012).

In addition to efforts in the structural space (Ribeiro-Filho
et al., 2024), recent work explored the explicit framing
of the TCR reactivity problem as a sequence-to-sequence
(seq2seq) task, demonstrating the capacity of sequence-
based models to design TCR sequences against a spe-
cific pMHC (Karthikeyan et al., 2023; Fast et al., 2023).
Sequence-to-sequence learning introduced the concept of an
encoder:decoder model that was end-to-end trainable in the
context of machine translation tasks (Sutskever et al., 2014;
Kalchbrenner & Blunsom, 2013; Cho et al., 2014). How-
ever, this framework quickly became a paradigm-shifting
method for training deep networks to maximize the condi-
tional likelihood of target sequences given a source sequence
for arbitrary source:target pairs such as question answering,
text summarization, or even the TCR:pMHC.

A key consideration for encoder:decoder models is the
amount of parallel data (source-target pairs) available, a
requirement that scales with the complexity of the sequence
mapping. In machine translation, a number of methods have
been developed to specifically address the challenge max-
imizing the information usage of low-resource languages,
when labeled data is limited and expensive to generate (Had-
dow et al., 2022). Techniques such as back-translation (Sen-
nrich et al., 2016), self-training (He et al., 2020), transfer
learning (Liu et al., 2020), and semi-supervised translation
approaches that leverage monolingual data have all been
proposed with varying degrees of success, dependent on the
problem specifics. However these approaches have been
shown to exacerbate overfitting to specific domain contexts
or sequence distributions (Shen et al., 2020). To combat
these effects, multi-task learning of bidirectional transla-
tion models and mulitilingual translation models have been
shown to significantly improve translation quality by sharing
representations and aligning latent spaces across multiple
languages (Niu et al., 2018; Ding et al., 2021). In this work,
we explore the use of multi-task training to train on both di-
rections of the TCR:pMHC specificity problem and evaluate
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its effect on the conditional generation of TCR sequences
as well as its potential to simultaneously sample accurate
cognate pMHCs using the same weights.

2. Methodology
2.1. Setup

For our setup, we largely follow the same seq2seq problem
formulation as laid out in (Karthikeyan et al., 2023). Briefly,
we adopt the amino acid level tokenization scheme and re-
strict the sequence space to the high entropy portions of
the TCR:pMHC interface, namely the CDR3b, peptide, and
MHC pseudo-sequence as defined in (Hoof et al., 2009). In
addition we use the BART and T5 encoder:decoder trans-
former architectures, with modified hyper-parameters to
control for their total parameter count (Table 1). However,
in order to introduce flexibility with the directionality, we
leverage the concept of task prefixes introduced in (Raffel
et al., 2020) as a special token for the T5 model architecture,
using the BART model and its prefix-agnostic tokenization
scheme for comparison. Additionally, we keep the use of the
‘[SEP]‘ token to separate the peptide, which typically spans
8-11 amino acids, and the fixed length psuedosequence.

BART:

[SOS]EPITOPE[SEP]PSEUDOSEQUENCE[EOS]
⇌

[SOS]CDR3SEQUENCE[EOS]

T5:

[PMHC]EPITOPE[SEP]PSEUDOSEQUENCE[EOS]
⇌

[TCR]CDR3SEQUENCE[EOS]

2.2. Dataset

For the generation of a parallel corpus, we used experi-
mentally validated immunogenic TCR:pMHC pairs taken
from publicly available databases (McPAS (Tickotsky et al.,
2017), VDJdb (Shugay et al., 2017), and IEDB (Vita et al.,
2018). Additionally, we used a large injection of weakly-
labeled data derived from the MIRA (Dines et al., 2020))
which contained CDR3b and peptide sequences along with
the HLA-type of the individual, instead of the presenting
MHC allele. MHC allele was inferred using MHCFlurry2.0
(O’Donnell et al., 2020)’s ranked presentation score met-
ric among the HLA-type. Of importance, these pseudo-
synthetic examples were not used in evaluation. More on
the dataset standardization procedures can be found in the
Supplementary Methods A.1.1. The resulting dataset con-
tains over 670,000 paired sequences (N=7834 pMHCs). In

order to assess the capacity of the models to recapitulate
the diversity of antigen-specific TCRs, we curated a target-
rich dataset by separating out the top-20 most represented
pMHCs for validation and trained on the remaining data,
removing the occurrences of the held-out epitopes bound al-
ternate MHCs. This resulted in a final dataset split of 580k
training sequences (N=7745 pMHCs) and 93k validation
sequences (N=20 pMHCs). A key limitation of this dataset
is its highly skewed HLA distribution towards well studied
alleles (A*02:01, A*03:01, A*11:01, etc).

2.3. Model Training

For our experiments, we considered three model training
regimes. The baseline model was trained on the pMHC
→ TCR direction, a bidirectional model was trained on
both directions, and finally a multi-task model was trained
on both directions as well a masked language modeling
objective for both TCR and pMHC sequences. All models
were trained using the standard categorical cross entropy
loss function (Equation 1), favored in seq2seq tasks for its
desired effect of maximizing the conditional likelihoods
over target sequences (Sutskever et al., 2014; Cho et al.,
2014).

L = CE(y, ŷ) = −
n∑

i=1

yi log ŷi

= −
n∑

i=1

k∑
j−1

yij log pθ(yij |x)
(1)

The baseline models were trained using the above cross en-
tropy objective for three epochs as training for longer epochs
resulted in worse validation loss and accuracy. The bidirec-
tional and multi-task models were trained on a mutli-term
objective, comprising of a linear combination of individ-
ual loss terms corresponding to each task/direction. This
was achieved using a batch processing algorithm (Algo-
rithm 1), where each batch was rearranged into one of four
sequence-to-sequence mapping possibilities and the model
was trained on target reconstruction. For the bidirectional
model this was straightforward as we could swap the input
and output tensors during training to get the individual loss
contributions of the Lpmhc→tcrandLtcr→pmhc (Equation 2).
For the multi-task model, the mapping possibilities are: 1)
pMHC → TCR 2) pMHC → TCR 3) Corrupted pMHC* →
pMHC 4) Corrupted TCR* → TCR, which combine to to
form Lmulti (Equation 3). For the purposes of comparison
against the baseline models, the bidirectional and multitask
models were trained for 3 epochs per task/direction. As
such the bidirectional model was trained for 6 epochs, and
the multi-task model was trained for a total of 12 epochs.
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Lbidxn = Lpmhc→tcr + Ltcr→pmhc (2)

Lmulti = LMLM + Lpmhc→tcr + Ltcr→pmhc (3)

Algorithm 1 Multi-Task Training Step

Batched Input: source pMHCs: X, target TCRs: Y
Sample a ∼ Bernoulli(0.5)
if a > 0.5 then

Swap X and Y
Compute attention masks

end if
Sample b ∼ Bernoulli(0.5)
if b > 0.5 then

Set X = X* and Y = X
Compute attention masks

end if
do Predict Ŷ = ϕ(X) and gradient updates on CE(y, ŷ)

2.4. Conditional Sampling

Given its marked performance gains over other sampling
methods in the TCR:pMHC sequence space (Karthikeyan
et al., 2023), we fix beam-search as our chosen method
of sequence generation, and use greedy decoding for cal-
culating the BLEU-score. These methods, as well as the
broader class of mode-seeking decoding methods, aim to
maximize for the highest probability conditional sequence.
Recently, however, mode-seeking algorithms have come
under scrutiny for sampling only a small portion of the
true target distribution, as noted in (Eikema & Aziz, 2020).
Instead of sampling tokens directly from the whole con-
ditional distribution: yt ∼ P (yt|y<t, x, θ), given source
sequence x and model parameters θ, they try to approximate
the yMAP = argmaxy∈Y log p(y|x, θ) which explores the
conditional distribution about the mode. However, com-
bined with the ability to assess and maintain longer high
probability subsequences, the use of beam search results
in a powerful method for sampling native sequence-like
predictions.

2.5. Evaluation

To evaluate model performance in a holistic manner, we
sought to assess both the fidelity of the conditional dis-
tributions learned by the model, as well as the decoding
algorithm’s ability to recapitulate the diversity of reference
sequences using the following metrics:

• Char-BLEU: Character-level weighted n-gram pre-
cision calculated on the greedy decoding sequences
against the k = 20 closest reference sequences. We

use the NLTK’s ‘sentence bleu‘ function to calculate a
single translation’s BLEU score and the ‘corpus bleu‘
function to compute the BLEU score over an entire
dataset. Standard BLEU-4 metric was used for both
(Papineni et al., 2002).

• Perplexity: Perplexity as a standard measure of lan-
guage model performance, using the cross entropy loss
calculated over the validation corpus.

• Precision, Recall, and F1@K: Precision, recall, and
F1 measures exact whole sequence recovery, computed
after sampling K times (not K separate sequences).

• Native Sequence Recovery: In the de novo protein
design space, native sequence recovery is a useful in-
dicator of model performance. Here, for each model
prediction, the index-matched exact amino acid recov-
ery with the closest match of the same sequence length
is calculated.

3. Results
As shown in Figure 1, we first evaluate the performance of
the models trained in the various methods on TCR genera-
tions against the holdout dataset comprising the top-20 most
well represented, real pMHCs. Of the models tested, the T5
multi-task model performed the best on all but one of the
metrics with a character BLEU (CharBLEU) score of 99.1,
a perplexity of 2.44, an F1 score of .072 and a sequence re-
covery rate of 85.1%. The second best model, which scored
the highest on CharBLEU was the baseline BART model
with a near perfect CharBLEU score of 99.8, a perplexity
of 2.45, and F1 score of .06 and a sequence recovery rate
of 84.2 %. Interestingly, we see opposite dynamics emerge
between the BART and T5 models with the addition of aux-
iliary tasks. Whereas the T5 model sees an improvement
in the native sequence recovery for the multi-task regime,
the BART model’s performance consistently decreases go-
ing from the baseline model to the bidirectional version,
with the multi-task model performing the worst. This trend
roughly holds true or for the CharBLEU and F1@100 as
well. These results highlight the potential importance of the
task prefix for boosting model performance in a relatively
small number of epochs.

To understand and further characterize the performance on
individual pMHCs and their contribution to the global per-
formance of the models, we computed the same metrics
and stratified them by pMHC (Table 3). For the sake of
brevity, we report on just baseline and multi-task models.
When independently evaluating the different pMHCs, we
observe that the performances of the models are largely
consistent across models within each pMHC. The pMHC
EAAGIGILTV-A*02:01 was the worst performing pMHC
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MODEL CHARBLEU PPL F1@100 % REC.

BART 99.8 2.45 .060 84.2
BART (BD) 98.8 2.45 .032 82.8
BART (M) 98.9 2.49 .035 79.7

T5 96.2 2.58 .033 82.6
T5 (BD) 99.2 2.45 .039 82.3
T5 (M) 99.1 2.44 .072 85.1

Figure 1: Average Model Performance across Top-20
Dataset a) Multiple bar chart showing the native sequence
recovery and F1@100 score of the benchmarked models. b)
Table of values for percent sequence recovery and F1 as well
as additional metrics including Char-BLEU and perplexity
for the base, bidirectional, and multi-task BART and T5
models. Results computed using 100 sequences generated
using the beam search algorithm with num beams set to 300.

of the 20, showing poor model performance on both se-
quence recovery and the F1 score across all models. In con-
trast, KLGGALQAK-A*03:01 and NLVPMVATV-A*02:01,
among others, stand out as examples where all models per-
formed well. Given the cross-model consistency in perfor-
mance, we sought to better understand the 20 epitopes in
the context of the metrics and the training data (Figure 2).

Since the metrics all implicitly or explicitly rely on held-
out sequences, we first checked for a correlation between
the number of TCRs for a held-out example and its perfor-
mance. Unsurprisingly, we observed a weak positive trend
between the number of reference CDR3b sequences and all
performance metrics. Additionally, to better understand the
generalization capacity of the models, we computed the edit
distance to the closest training epitope and the CDR3b over-
lap between pairs, looking for correlations with the metrics.
Here, the trends were far less pronounced (R2 ≈ 0).

Using a qualitative lens, we can begin to contextualize per-
formance as marked by sparks or failures of both memo-
rization and generalization. Take for example, the SARS-
Cov-2 epitope YLQPRTFLL had the best performance by

the T5 multi-task model and baseline BART model, with a
sequence recovery of over 96% and an F1 score nearly 10x
greater than the mean. This is likely explained by the pres-
ence of an epitope in the training set that shares 841 CDR3b
sequences and has dedit = 1. However, a low edit distance
and high overlap do not guarantee outstanding performance,
as evidenced by another SARS-Cov-2 epitope LLLDRL-
NQL. Remarkably, the second-best performing epitope was
KLGGALQAK, with a >90% sequence recovery rate, de-
spite the closest training sequence being six edits away and
having an overlap of zero. While these results highlight the
models’ capability to generate antigen-specific sequences,
they also underscore the importance of the training data’s
composition and its relationship to the test data. The mixed
results suggest that both memorization and generalization
play roles in model performance.

Finally, with regards to the TCR de-orphanization prob-
lem, we found that both bidirectional and multi-task models
fared substantially worse. Interestingly, while the peptide-
only CharBLEU scores was near 0, the models generated
plausible-looking MHC pseudosequences. We believe that
the disparity in performance between tasks is due to combi-
nation of lack of tuning for generating longer sequences as
well as the asymmetric number of pMHCs than TCRs in the
training data. As such we hold off on reporting the standard
metrics for this iteration of our study. Instead we calculated
the exact pseudo-sequence recovery (F1@1) score using
beam search decoding as a litmus test for reverse direction
performance. The average F1@1 scores were .02, .04, .13,
and .29 for the BART (M), BART (BD), T5(M), and T5
(BD) models, respectively.

4. Discussion
In this study we set out to investigate the effect of multi-task
training in improving the mapping quality between TCR and
their corresponding pMHCs. We showed opposite dynam-
ics between the BART and T5 models, rediscovering the
importance of T5’s prefix tokens. While the baseline BART
model and multi-task T5 model showed similar performance
in the TCR generation task, the T5 model proved to be su-
perior when considering the TCR to pMHC direction. The
performance of the T5 multi-task model in generating ac-
curate TCR sequences suggests that jointly learning both
directions of the TCR-pMHC sequence mapping, along with
the unconditional distributions of both modalities, enhances
model generalization and captures intricate sequence pat-
terns. However, the observed variability in performance
across different pMHC epitopes highlights the critical role
of training data composition and its relationship to the test
set. Future work will explore leveraging monolingual data
for iterative back-translation and other techniques, such as
label smoothing, to further improve model robustness and
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applicability across diverse TCR-pMHC interactions.
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A. Appendix
A.1. Supplementary Methods

A.1.1. DATA PROCESSING

First, to aggregate the data spanning various sources, formats, and nomenclature, we mapped the columns from each
individual dataset to a common consensus schema and concatenated the data along the consensus columns. In the interest of
data retention, missing values were reasonably imputed according to other information for that data instance. To keep only
the cytotoxic (CD8+) T-cells, we filtered the instances wherever the cell-type was provided or where the HLA-Allele was
of MHC-class I. In cases where an HLA-haplotype was provided instead of the specific HLA-allele, as was the case for
the MIRA data, we used MHCFlurry2.0 (O’Donnell et al., 2020) to predict the best presenting allele for the given epitope
among the potential options from the haplotype information. This data augmentation step resulted in a 5-fold expansion of
our training data. An key caveat to note is that the additional training examples are all derived from a single disease context
(SARS-Cov-2), skewing the training data’s distribution. Additionally there is room for slight error given the peptide-MHC
assignment in-silico and not validated experimentally. However, given the merits of including examples with thousands of
TCRs against an epitope, we argue for its inclusion. Where the granularity of the HLA-information or TR genes was at
the serotype level, we inferred the canoncial gene/allele by starting off with the subgroup ’*01’ and incremented it until
a matching IMGT gene was found. This step has the potential of introducing minor differences between the unknown
ground truth and the imputed pseudo-sequence, as the pseudosequence is well conserved within serotype. Once the data was
aggregated and values were imputed, we applied the following column-level standardization for each source of information:

• Complementarity Determining Region (CDR3b), Epitope, and MHC Pseudo-Sequence: All amino acid represen-
tations were normalized used the tidytcells.aa.standardise function found in the TidyTcells python package (Nagano &
Chain, 2023).

• TR Genes: The TidyTcells package (Nagano & Chain, 2023) was once again used to standardize the nomenclature
surrounding the T-Cell Receptor genes (e.g. TRB-V and TRB-J).

• HLA-Allele: HLA alleles were imputed where allele level information when necessary and then normalized using the
MHCgnomes package to the standard HLA-[A,B,C]*XX:YY format.
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A.2. Model/Training Hyperparameters

Table 1: Model Architecture Hyperparameters

BART T5

Parameters 46M 42M
dmodel 768 256
Vocab Size 28 128
Encoder Layers 6 10
Decoder Layers 6 10
Max Position Embedding 512 512
Attention Heads 16 16
Feed Forward Dim 128 1024
Cross Attention ✓ ✓

Table 2: Model Training Parameters

BART T5

Epochs 3 3
Batch Size 128 128

Baseline Learning Rate 5e-05 3e-04
Weight Decay 0.01 0.001

Optimizer AdamW AdamW

Epochs 6 6
Batch Size 128 128

Bidirectional Training Learning Rate 5e-05 3e-04
Weight Decay 0.01 0.001

Optimizer AdamW AdamW

Epochs 12 12
Batch Size 128 128

Multitask Training Learning Rate 5e-05 3e-04
Weight Decay 0.01 0.001

pMLM 0.15 0.15
Optimizer AdamW AdamW
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A.3. Extended Data Tables

Table 3: Individual Top-20 pMHC Performance Metrics

Evaluation Metrics

Model Char-BLEU P@100 R@100 F1@100 % Recovery

BART 0.96 0.00 0.00 0.00 84.3
AVFDRKSDAK-A*11:01 BART (M) 0.93 0.00 0.00 0.00 84.4

(n=1798, dtrain = 6) T5 0.88 0.03 0.03 0.03 87.2
T5 (M) 0.98 0.01 0.01 0.01 86.0

BART 0.89 0.00 0.00 0.00 77.8
CRVLCCYVL-C*07:02 BART (M) 0.82 0.00 0.00 0.00 73.0

(n=497, dtrain = 6) T5 0.77 0.00 0.00 0.00 76.4
T5 (M) 0.83 0.00 0.00 0.00 77.0

BART 0.85 0.00 0.00 0.00 67.2
EAAGIGILTV-A*02:01 BART (M) 0.73 0.00 0.00 0.00 64.7

(n=506, dtrain = 1) T5 0.75 0.00 0.00 0.00 59.8
T5 (M) 0.81 0.00 0.00 0.00 65.3

BART 0.92 0.00 0.00 0.00 84.3
ELAGIGILTV-A*02:01 BART (M) 1.00 0.01 0.1 0.01 84.4

(n=2035, dtrain = 1) T5 0.93 0.00 0.00 0.00 77.6
T5 (M) 1.00 0.02 0.02 0.02 84.2

BART 0.91 0.02 0.02 0.02 84.9
GILGFVFTL-A*02:01 BART (M) 1.00 0.03 0.03 0.03 86.3
(n=11619, dtrain = 2) T5 0.93 0.01 0.01 0.01 83.2

T5 (M) 0.93 0.02 0.02 0.02 83.9

BART 1.00 0.02 0.02 0.02 86.3
GLCTLVAML-A*02:01 BART (M) 1.00 0.04 0.04 0.04 86.9
(n=12254, dtrain = 6) T5 0.93 0.01 0.01 0.01 81.8

T5 (M) 1.00 0.01 0.01 0.01 85.3

BART 0.90 0.0 0.0 0.0 81.4
IVTDFSVIK-A*11:01 BART (M) 0.78 0.01 0.01 0.01 79.1

(n=792, dtrain = 6) T5 0.92 0.01 0.01 0.01 82.5
T5 (M) 0.73 0.0 0.0 0.0 81.6

BART 0.97 0.24 0.24 0.24 93.5
KLGGALQAK-A*03:01 BART (M) 1.00 0.10 0.10 0.10 90.6

(n=13937, dtrain = 6) T5 0.92 0.14 0.14 0.14 92.7
T5 (M) 1.00 0.14 0.14 0.14 92.7

BART 1.00 0.01 0.01 0.01 78.9
LLLDRLNQL-A*02:01 BART (M) 0.87 0.0 0.0 0.0 79.3

(n=2151, dtrain = 1) T5 0.78 0.01 0.01 0.01 78.0
T5 (M) 0.87 0.01 0.01 0.01 79.8

BART 0.81 0.04 0.04 0.04 86.5
LLWNGPMAV-A*02:01 BART (M) 0.89 0.06 0.06 0.06 87.4

(n=2870, dtrain = 4) T5 0.92 0.08 0.08 0.08 87.4
T5 (M) 0.95 0.05 0.05 0.05 87.3

BART 0.97 0.03 0.03 0.03 86.2
LPRRSGAAGA-B*07:02 BART (M) 0.91 0.08 0.08 0.08 85.7
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Table 3: (continued)

Evaluation Metrics

Model Char-BLEU P@100 R@100 F1@100 % Recovery

(n=2299, dtrain = 5) T5 0.95 0.13 0.13 0.13 88.4
T5 (M) 0.77 0.01 0.01 0.01 84.4

BART 0.97 0.03 0.03 0.03 86.2
LVVDFSQFSR-A*11:01 BART (M) 1.00 0.02 0.02 0.02 85.1

(n=1906, dtrain = 7) T5 1.00 0.01 0.01 0.01 84.2
T5 (M) 0.97 0.01 0.01 0.01 86.2

BART 1.00 0.08 0.08 0.08 88.9
NLVPMVATV-A*02:01 BART (M) 0.89 0.1 0.1 0.1 89.5

(n=9911, dtrain = 1) T5 0.90 0.11 0.11 0.11 89.3
T5 (M) 1.00 0.09 0.09 0.09 90.0

BART 1.00 0.01 0.01 0.01 79.1
RAKFKQLL-B*08:01 BART (M) 0.98 0.01 0.01 0.01 73.6
(n=1837, dtrain = 4) T5 0.84 0.01 0.01 0.01 82.6

T5 (M) 0.98 0.0 0.0 0.0 81.2

BART 0.98 0.03 0.03 0.03 85.1
SPRWYFYYL-B*07:02 BART (M) 0.74 0.04 0.04 0.04 87.7

(n=4017, dtrain = 2) T5 0.89 0.04 0.04 0.04 86.0
T5 (M) 1.00 0.08 0.08 0.08 88.2

BART 0.94 0.0 0.0 0.0 83.2
STLPETAVVRR-A*11:01 BART (M) 0.91 0.01 0.01 0.01 82.9

(n=943, dtrain = 9) T5 0.77 0.0 0.0 0.0 82.4
T5 (M) 0.83 0.0 0.0 0.0 84.1

BART 1.00 0.09 0.09 0.09 87.7
TPRVTGGGAM-B*07:02 BART (M) 1.00 0.07 0.07 0.07 87.5

(n=2898, dtrain = 6) T5 0.87 0.08 0.08 0.08 88.0
T5 (M) 0.98 0.06 0.06 0.06 87.3

BART 1.00 0.01 0.01 0.01 78.9
TTDPSFLGRY-A*01:01 BART (M) 0.85 0.01 0.01 0.01 78.7

(n=717, dtrain = 1) T5 0.87 0.01 0.01 0.01 81.2
T5 (M) 0.98 0.08 0.08 0.08 88.6

BART 0.84 0.55 0.55 0.55 96.2
YLQPRTFLL-A*02:01 BART (M) 0.95 0.09 0.09 0.09 22.9
(n=2771, dtrain = 1) T5 0.75 0.0 0.0 0.0 78.7

T5 (M) 1.00 0.71 0.71 0.71 97.1

BART 0.86 0.02 0.02 0.02 86.9
YVLDHLIVV-A*02:01 BART (M) 0.92 0.05 0.05 0.05 87.1
(n=16916, dtrain = 6) T5 0.94 0.03 0.03 0.03 86.4

T5 (M) 0.92 0.04 0.04 0.04 87.3
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A.4. Dataset-Based Performance Characterization

Table 4: Characterization of Train/Test Target Overlap

TEST PEPTIDE CLOSEST TRAIN PEPTIDE EDIT DISTANCE CDR3B OVERLAP

AVFDRKSDAK TPAFDKSAF 6 0/1655
CRVLCCYVL LSEFCRVLCCYVLEE 6 0/435
EAAGIGILTV AAGIGILTV 1 3/489
ELAGIGILTV ELAGIGLTV 1 5/1919
GILGFVFTL ILGFVFTLT 2 0/8089
GLCTLVAML YVFCTVNAL 6 0/7388
IVTDFSVIK ITDQVPFSV 6 0/563
KLGGALQAK TRLALIAPK 6 0/12660
LLLDRLNQL LLLLDRLNQL 1 601/2103
LLWNGPMAV LLFGYPVAV 4 0/2458
LPRRSGAAGA LPSYAALAT 5 0/2140
LVVDFSQFSR VYADSFVIR 7 0/1871
NLVPMVATV NLVPVVATV 1 1/8456
RAKFKQLL RLSFKELLV 4 0/916
SPRWYFYYL LSPRWYFYY 2 2815/3390
STLPETAVVRR RSLAPEVRGYW 9 0/925
TPRVTGGGAM TPRDLGACI 6 0/2606
TTDPSFLGRY HTTDPSFLGRY 1 46/451
YLQPRTFLL YLQPRTFL 1 841/1650
YVLDHLIVV YLNDHLEPWI 6 0/8318
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Figure 2: Dataset Characteristic Correlation Plot. Pairwise correlation between performance metrics (CharBLEU, sequence
recovery, F1@100) and potential explanatory variables (number of reference CDR3bs, edit distance to closest training set
epitope, CDR3b overlap between pMHC and closest epitope) shown for all 20 pMHCs with the baseline and multi-task
models (n=80 per plot).
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