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Abstract

Non-smooth communication-efficient federated optimization is crucial for many practical machine
learning applications, yet it remains largely unexplored theoretically. Recent advancements in
communication-efficient methods have primarily focused on smooth convex and non-convex regimes,
leaving a significant gap in our understanding of the more challenging non-smooth convex setting.
Additionally, existing federated optimization literature often overlooks the importance of efficient
server-to-worker communication (downlink), focusing primarily on worker-to-server communication
(uplink). In this paper, we consider a setup where uplink communication costs are negligible and
focus on optimizing downlink communication by improving the efficiency of recent state-of-the-art
downlink schemes such as EF21-P [Gruntkowska et al., 2023] and MARINA-P [Gruntkowska et al.,
2024] in the non-smooth convex setting. We address these gaps through several key contributions.
First, we extend the non-smooth convex theory of EF21-P [Anonymous, 2024], originally developed
for single-node scenarios, to the distributed setting. Second, we extend existing results for MARINA-P
to the non-smooth convex setting. For both algorithms, we prove an optimal 𝒪 (1/

√
𝑇) convergence

rate under standard assumptions and establish communication complexity bounds that match those
of classical subgradient methods. Furthermore, we provide theoretical guarantees for both EF21-P
and MARINA-P under constant, decreasing, and adaptive (Polyak-type) stepsizes. Our experiments
demonstrate that MARINA-P, when used with correlated compressors, outperforms other methods not
only in smooth non-convex settings (as originally shown by Gruntkowska et al. [2024]) but also in
non-smooth convex regimes. To the best of our knowledge, this work presents the first theoretical
results for distributed non-smooth optimization incorporating server-to-worker compression, along
with comprehensive analysis for various stepsize schemes.
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1 Introduction

In recent years, the machine learning community has witnessed a paradigm shift towards larger models
and more extensive datasets, driving significant advancements in model performance and practical utility
[LeCun et al., 2015]. However, this “big model” and “big data” approach introduce new challenges in
hardware requirements, algorithmic design, and software infrastructure necessary for efficient model
training [Bottou et al., 2018, Kaplan et al., 2020, Deng et al., 2009].

The Rise of Big Data and Distributed Systems. The sheer volume of data required for state-of-the-art
models has necessitated the adoption of distributed computing systems [Dean et al., 2012, Khirirat et al.,
2018, Lin et al., 2018]. Traditional single-machine approaches are no longer feasible due to storage
and computational limitations, leading to the distribution of datasets across multiple parallel workers.
This distributed paradigm is particularly evident in supervised learning problems [Hastie et al., 2009,
Shalev-Shwartz and Ben-David, 2014, Vapnik, 2013], which can be formulated as:

min
𝑥∈R𝑑

{︃
𝑓(𝑥) :=

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑥)

}︃
, (1)

where 𝑛 is the number of clients (or devices), 𝑥 denotes the 𝑑-dimensional parameter vector of the machine
learning model, and 𝑓𝑖(𝑥) represents the loss of model 𝑥 on the training data stored on client 𝑖. In this
work, we assume that the functions 𝑓𝑖 are convex (possibly non-smooth) for all 𝑖 ∈ [𝑛] := {1, . . . , 𝑛}.

The distributed nature of data collection and processing has given rise to federated learning (FL)
[McMahan et al., 2016, Konečný et al., 2016b,a, McMahan et al., 2017], a paradigm where heterogeneous
clients collaboratively train a model using diverse, decentralized data while preserving privacy. This
approach aims to eliminate the need for centralized data aggregation, addressing privacy concerns in
sensitive applications. In the federated learning setup, devices link directly to a central server that
manages the optimization procedure [Konečný et al., 2016b, Kairouz et al., 2021]. The devices conduct
local calculations on their individual datasets and transmit the outcomes (such as model modifications) to
the server. The server then aggregates the incoming data, executes global calculations, and returns the
updated model parameters to the devices. This cycle continues until the model reaches convergence or
achieves a satisfactory level of performance.
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Communication Challenges in Large-scale Model Training. While distributing data across workers
addresses storage and compute limitations, it introduces significant communication overhead. Modern
gradient-based training methods [Bottou, 2012, Kingma and Ba, 2014, Demidovich et al., 2023, Duchi
et al., 2011, Robbins and Monro, 1951] require iterative updates to all 𝑑 model parameters, making the
communication of high-dimensional gradients prohibitively expensive as models scale. Researchers
have proposed two main approaches to mitigate this challenge: performing multiple local gradient steps
before communication, exemplified by algorithms such as LocalSGD [Stich, 2020, Khaled et al., 2020,
Woodworth et al., 2020, Yi et al., 2024, Sadiev et al., 2022, Richtárik et al., 2024], and applying lossy
transformations to gradient information to reduce data transfer volumes [Khirirat et al., 2018, Alistarh
et al., 2018b, Mishchenko et al., 2020, 2019, Li et al., 2020, Li and Richtárik, 2021, Richtárik et al., 2021,
Fatkhullin et al., 2021, Richtárik et al., 2022, Seide et al., 2014, Alistarh et al., 2017, Panferov et al.,
2024].

While worker-to-server communication has been extensively studied, server-to-worker communi-
cation often receives less attention. However, studies of 4G LTE and 5G networks [Huang et al., 2012,
Narayanan et al., 2021] demonstrate that upload and download speeds in mobile environments are often
comparable, with differences rarely exceeding an order of magnitude. This observation necessitates
optimization strategies that address communication efficiency in both directions.

Prevalence of Non-smooth Objectives in Machine Learning Applications. While distributed opti-
mization has made significant progress, theoretical analysis has primarily focused on smooth objectives,
leaving non-smooth optimization understudied in federated settings. Non-smoothness is inherent in many
machine learning applications: ReLU activation functions in deep learning [Glorot et al., 2011, Nair
and Hinton, 2010], L1 regularization for parameter sparsity [Tibshirani, 1996, Zou and Hastie, 2005],
hinge loss in support vector machines [Cortes, 1995], and total variation regularization in computer
vision [Rudin et al., 1992, Chambolle, 2004]. Additional examples include quantile regression [Koenker
and Bassett Jr, 1978], max-pooling layers in convolutional networks [Scherer et al., 2010], submodular
function minimization [Bach, 2013], Huber loss in robust optimization [Huber, 1964], and graph-based
learning algorithms [Hallac et al., 2015].

Adaptive Stepsizes are Widely Used in Practice. Since theoretically assumed constants, such as those
for L-Lipschitz continuity or smoothness, are often infeasible to determine for deep neural networks,
adaptive learning rate methods have become ubiquitous in training. Popular algorithms include AdaGrad
[Duchi et al., 2011], RMSProp, Adam [Kingma and Ba, 2014], and AMSGrad [Reddi et al., 2018], which
dynamically adjust learning rates for each parameter based on observed gradients. Modern deep learning
frameworks like PyTorch [Paszke et al., 2019] offer a variety of learning rate schedulers, such as StepLR,
MultiStepLR, ExponentialLR, and CosineAnnealingLR [Schmidt et al., 2021], facilitating
easy implementation of diverse learning rate strategies.

Addressing Key Challenges in Federated Learning Simultaneously. Practical implementation of
federated learning necessitates addressing three critical aspects simultaneously: non-smooth of the loss
function, adaptive stepsizes, and communication efficiency. By addressing these challenges concurrently,
we aim to expand federated learning’s applicability to a broader range of real-world problems with
non-differentiable loss functions.

1.1 Notation and Assumptions

We denote the set {1,2, · · · , 𝑛} by [𝑛]. For vectors, ‖·‖2 represents the Euclidean norm, while for
matrices, it denotes the spectral norm. The inner product of vectors 𝑢 and 𝑣 is denoted by ⟨𝑢, 𝑣⟩. We use
𝒪(·) to hide absolute constants. We denote 𝑅0 :=

⃦⃦
𝑥0 − 𝑥*

⃦⃦
2
.
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Our analysis relies on the following standard assumptions:

Assumption 1. The function 𝑓 has at least one minimizer, denoted by 𝑥*.

Assumption 2. The functions 𝑓𝑖 are convex for all 𝑖 ∈ [𝑛].

In the distributed setting, assuming convexity for individual functions 𝑓𝑖 is sufficient, as it implies
convexity for 𝑓 itself.

Assumption 3 (Lipschitz continuity of 𝑓𝑖). Functions 𝑓𝑖 are 𝐿0,𝑖-Lipschitz continuous for all 𝑖 ∈ [𝑛].
That is, for all 𝑖 ∈ [𝑛], there exists 𝐿0,𝑖 > 0 such that |𝑓𝑖(𝑥)− 𝑓𝑖(𝑦)| ≤ 𝐿0,𝑖 ‖𝑥− 𝑦‖2 , ∀𝑥, 𝑦 ∈ R𝑑.

If each 𝑓𝑖 is Lipschitz continuous, then by Jensen’s inequality, 𝑓 is 𝐿0-Lipschitz with 𝐿0 :=
1
𝑛

∑︀𝑛
𝑖=1 𝐿0,𝑖 [Nesterov, 2013].

Both convexity and Lipschitz continuity of 𝑓 are standard assumptions in non-smooth optimization
[Vorontsova et al., 2021, Nesterov, 2013, Bubeck, 2015, Beck, 2017, Duchi, 2018, Lan, 2020, Drusvy-
atskiy, 2020]. Moreover, 𝐿0 and 𝐿0,𝑖-Lipschitz continuity imply uniformly bounded subgradients [Beck,
2017], a property that will be useful in our proofs:

‖𝜕𝑓(𝑥)‖2 ≤ 𝐿0 ∀𝑥 ∈ R𝑑, (2)

‖𝜕𝑓𝑖(𝑥)‖2 ≤ 𝐿0,𝑖 ∀𝑥 ∈ R𝑑 and ∀𝑖 ∈ [𝑛]. (3)

We define ̃︀𝐿0 :=
√︁

1
𝑛

∑︀𝑛
𝑖=1 𝐿

2
0,𝑖 and 𝐿0 := 1

𝑛

∑︀𝑛
𝑖=1 𝐿0,𝑖. By the arithmetic-quadratic mean inequality,

we have 𝐿0 ≤ ̃︀𝐿0.
Following classical optimization literature [Nemirovski et al., 2009, Beck, 2017, Duchi, 2018, Lan,

2020, Drusvyatskiy, 2020], for non-smooth convex objectives, we aim to find an 𝜀-suboptimal solution: a
random vector �̂� ∈ R𝑑 satisfying

E [𝑓(�̂�)− 𝑓(𝑥*)] ≤ 𝜀, (4)

where E [·] denotes the expectation over algorithmic randomness.
To assess the efficiency of distributed subgradient-based algorithms, we primarily use two metrics:
1. Communication complexity (alternatively, communication cost): The expected total number of

floats per worker required to communicate to reach an 𝜀-suboptimal solution. In this paper, we focus on
server-to-worker communication compression.

2. Iteration complexity: The number of communication rounds needed to achieve an 𝜀-suboptimal
solution.

1.2 Related work

Subgradient Methods in Non-smooth Convex Optimization. Subgradient methods, originating in the
1960s, are fundamental for solving non-smooth convex optimization problems [Shor et al., 1985, Polyak,
1987]. Classical convergence analysis establishes optimal [Nesterov, 2013, Vorontsova et al., 2021]
rates of 𝒪 (1/

√
𝑇) in the general convex case [Nesterov, 2013, Vorontsova et al., 2021, Boyd et al., 2003,

Bubeck, 2015, Beck, 2017, Duchi, 2018, Lan, 2020, Drusvyatskiy, 2020], and 𝒪 (1/𝑇) for strongly convex
functions [Beck, 2017, Lan, 2020, Drusvyatskiy, 2020]. For stochastic settings, Nemirovski et al. [2009]
developed robust mirror descent stochastic approximation methods achieving non-asymptotic 𝒪 (1/

√
𝑇)

convergence rates. These rates assume a known iteration count 𝑇 with constant stepsizes proportional
to 1/

√
𝑇 (convex case) and 1/𝑇 (strongly convex case). For unknown 𝑇 , decreasing stepsizes of order

𝒪 (1/
√
𝑡) and 𝒪 (1/𝑡) introduce an additional logarithmic factor, yielding rates of 𝒪 (log 𝑇/

√
𝑇) [Nesterov,

2013] and 𝒪 (log 𝑇/𝑇) [Hazan et al., 2007, Hazan and Kale, 2014], respectively. Recent advances have
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eliminated these logarithmic factors: Zhu et al. [2024] achieved the optimal 𝒪 (1/
√
𝑇) rate for convex

functions, while Lacoste-Julien et al. [2012] and Rakhlin et al. [2011] established the optimal 𝒪 (1/𝑇) rate
for strongly convex functions. Beyond ergodic convergence, several works [Jain et al., 2019, Zamani and
Glineur, 2023] have provided tight analyses for last-iterate convergence. In machine learning, subgradient
methods have demonstrated practical relevance in large-scale problems such as support vector machines
and structured prediction [Shalev-Shwartz et al., 2007, Ratliff et al., 2007].

Communication Compression. Before discussing more advanced optimization methods, let us consider
the simplest baseline: the standard subgradient method (SM) 1 , which iteratively performs updates 2

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡
𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 , (5)

where 𝑔𝑡𝑖 = 𝜕𝑓𝑖(𝑥
𝑡) is a subgradient of 𝑓𝑖 at 𝑥𝑡. In the distributed setting, the method can be implemented

as follows: each worker calculates 𝑔𝑡𝑖 and sends it to the server, where the subgradients are aggregated.
The server takes the step and broadcasts 𝑥𝑡+1 back to the workers. With stepsize 𝛾𝑡 := 𝑅0/𝐿0

√
𝑇 ,

where 𝑅0 :=
⃦⃦
𝑥0 − 𝑥*

⃦⃦
2

and 𝑇 is the total number of iterations, SM finds an 𝜀-approximate solution
after 𝒪 (𝐿2

0𝑅
2
0/𝜀2) steps [Nesterov, 2013, Drusvyatskiy, 2020]. Since at each step the workers and the

server send Θ(𝑑) coordinates/floats, the worker-to-server and server-to-worker communication costs are
𝒪 (𝑑𝐿2

0𝑅
2
0/𝜀2) . To formally quantify communication costs, we introduce the following definition.

Definition 1. The worker-to-server (w2s, uplink) and server-to-worker (s2w, downlink) communication
complexities of a method are the expected number of coordinates/floats that a worker sends to the server
and that the server sends to a worker, respectively, to find an 𝜀–solution.

Communication compression techniques, such as sparsification [Wang et al., 2018, Mishchenko et al.,
2020, Alistarh et al., 2018b, Wangni et al., 2018, Konečnỳ and Richtárik, 2018] and quantization [Alistarh
et al., 2017, Wen et al., 2017, Zhang et al., 2016, Horváth et al., 2022, Wu et al., 2018, Mishchenko et al.,
2019], are known to be immensely powerful for reducing the communication overhead of gradient-type
methods. Existing literature primarily considers two main classes of compression operators: unbiased
and biased (contractive) compressors.

Definition 2. (Unbiased compressor). A stochastic mapping 𝒬 : R𝑑 → R𝑑 is called an unbiased
compressor/compression operator if there exists 𝜔 ≥ 0 such that for any 𝑥 ∈ R𝑑:

E[𝒬(𝑥)] = 𝑥, E
[︁
‖𝒬(𝑥)− 𝑥‖22

]︁
≤ 𝜔 ‖𝑥‖22 . (6)

This definition encompasses a wide range of well-known compression techniques, including Rand𝐾
sparsification [Stich et al., 2018], random dithering [Roberts, 1962, Goodall, 1951], and natural compres-
sion [Horváth et al., 2022]. Notable examples of methods employing compressor (6) are QSGD [Alistarh
et al., 2017], DCGD [Khirirat et al., 2018], MARINA [Gorbunov et al., 2021], DIANA [Mishchenko et al.,
2019], VR-DIANA [Horváth et al., 2019], DASHA [Tyurin and Richtárik, 2023], FedCOMGATE [Haddadpour
et al., 2021], FedPAQ [Reisizadeh et al., 2020], FedSTEPH [Das et al., 2020], FedCOM [Haddadpour et al.,
2021], ADIANA [Li et al., 2020], NEOLITHIC [Huang et al., 2022a], ACGD [Li et al., 2020], and CANITA [Li
and Richtárik, 2021]. However, Definition 2 does not cover another important class of practically more
favorable compressors, called contractive, which are usually biased.

1In this paper, we use the non-normalized form (5) of the subgradient method studied in [Vorontsova et al., 2021, Bubeck,
2015, Beck, 2017, Duchi, 2018, Lan, 2020, Drusvyatskiy, 2020, Nemirovski et al., 2009]. Earlier works [Shor et al., 1985,
Polyak, 1987] typically employed SM in the form 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡

‖𝜕𝑓(𝑥𝑡)‖𝜕𝑓(𝑥
𝑡), which includes an additional normalization

term
⃦⃦
𝜕𝑓(𝑥𝑡)

⃦⃦
.

2For constrained optimization problems, the subgradient method typically operates through projections onto a convex set 𝒳
(see [Bubeck, 2015, Lacoste-Julien et al., 2012, Beck, 2017, Duchi, 2018]). However, when optimizing over an unbounded
domain, i.e., 𝒳 = R𝑑, projections are not needed.
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Definition 3. (Contractive compressor). A stochastic mapping 𝒞 : R𝑑 → R𝑑 is called a contractive
compressor/compression operator if there exists 𝛼 ∈ (0,1] such that for any 𝑥 ∈ R𝑑:

E
[︁
‖𝒞(𝑥)− 𝑥‖22

]︁
≤ (1− 𝛼) ‖𝑥‖22 . (7)

We denote the families of compressors satisfying Definitions 2 and 3 by U(𝜔) and B(𝛼), respectively.
Notably, it can easily be verified (see Lemma 8 in [Richtárik et al., 2021]) that if 𝒬 ∈ U(𝜔), then
(𝜔 + 1)−1𝒬 ∈ B

(︀
(𝜔 + 1)−1

)︀
, indicating that the family of biased compressors is wider.

Inequality (7) is satisfied by a vast array of compressors considered in the literature, including
numerous variants of sparsification operators, such as Top𝐾 compressors [Ström, 2015, Dryden et al.,
2016, Aji and Heafield, 2017, Alistarh et al., 2018b], quantization operators [Alistarh et al., 2017, Horváth
et al., 2022], low-rank approximation [Vogels et al., 2019, 2020, Safaryan et al., 2021], count-sketches
[Ivkin et al., 2019, Rothchild et al., 2020], and more. For a comprehensive overview of biased and
unbiased compressors, we refer readers to the summary by [Beznosikov et al., 2023, Demidovich et al.,
2023, Safaryan et al., 2022].

However, naive implementation of distributed SGD with biased compression (e.g., TopK) can lead to
exponential divergence [Beznosikov et al., 2023]. Error Feedback (hereafter EF14), first proposed as a
heuristic by Seide et al. [2014], emerged as a crucial technique to address these divergence issues. Initial
theoretical analysis of EF14 focused on single-node settings [Stich et al., 2018, Alistarh et al., 2018a, Stich
and Karimireddy, 2019] before extending to distributed data regimes [Cordonnier, 2018, Beznosikov
et al., 2023, Koloskova et al., 2020]. Richtárik et al. [2021] re-engineered EF14 into a new method called
EF21, achieving optimal 𝒪 (1/𝑇) convergence rates for smooth non-convex problems under standard
assumptions, improving upon the previous best-known rate of 𝒪 (1/𝑇 2/3) [Koloskova et al., 2020].

The EF21 framework spawned several algorithms [Richtárik et al., 2022, Fatkhullin et al., 2021],
including extensions for bidirectional (s2w and w2s) biased compression. Gruntkowska et al. [2023]
introduced EF21-P, which combines biased s2w and unbiased w2s compression to achieve improved
complexity bounds in the smooth strongly convex setting. More recently, Gruntkowska et al. [2024]
developed MARINA-P for smooth non-convex optimization, leveraging correlated unbiased compressors
on the server side to obtain tighter complexity bounds than both EF21 and EF21-P. In parallel, Anonymous
[2024] provided the first non-smooth convergence results for EF21-P, though limited to the single-node
setting.

In order to express communication complexities, we will further need the following quantities.

Definition 4 (Expected density). For the given compression operators 𝒬(𝑥) and 𝒞(𝑥), we define the
expected density as 𝜁𝒬 = sup𝑥∈R𝑑 E [‖𝒬(𝑥)‖0] and 𝜁𝒞 = sup𝑥∈R𝑑 E [‖𝒞(𝑥)‖0], where ‖𝑦‖0 is the
number of non-zero components of 𝑦 ∈ R𝑑.

Notice that the expected density is well-defined for any compression operator since ‖𝒬(𝑥)‖0 ≤ 𝑑
and ‖𝒞(𝑥)‖0 ≤ 𝑑.

1.2.1 Communication-efficient Federated Methods for Non-smooth Optimization

The landscape of communication-efficient federated methods for non-smooth optimization remains largely
unexplored, with most existing research focusing on smooth objectives or single-node scenarios. We
discuss the current state of the field and identify the gaps our work aims to address.

Majority of Results on Distributed Optimization with s2w Compression are for Smooth Functions.
While there is an abundance of work studying compression techniques to reduce s2w communication
cost [Zheng et al., 2019, Gruntkowska et al., 2023, Fatkhullin et al., 2021, Philippenko and Dieuleveut,
2021, Liu et al., 2020, Gorbunov et al., 2020, Safaryan et al., 2022, Huang et al., 2022b, Horváth et al.,
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Method Non-smooth Distributed
Compressed

communications
Compression

type
Adaptive
stepsizes

EF14
[Karimireddy et al., 2019]

✓ ✗ ✓ w2s ✗

EF21-P
[Anonymous, 2024]

✓ ✗ ✓ s2w ✓

MARINA-P
[Gruntkowska et al., 2024]

✗ ✓ ✓ s2w ✗

SM with Polyak Stepsize
[Hazan and Kakade, 2019]

✓ ✗ ✗ - ✓

SM with Quantization
[Xia et al., 2023]

✓ ✓ ✓ w2s ✗

EF21-P
[OURS]

✓ ✓ ✓ s2w ✓

MARINA-P
[OURS]

✓ ✓ ✓ s2w ✓

Table 1: Summary of optimization methods employing worker-to-server (w2s) or server-to-worker (s2w)
compression schemes.

2022, Tang et al., 2019, Tyurin and Richtarik, 2023, Gruntkowska et al., 2024], these studies primarily
focus on smooth objectives. In the context of Error Feedback methods, to the best of our knowledge, only
two works [Karimireddy et al., 2019, Anonymous, 2024] offer non-smooth convex guarantees, and these
are limited to the single-node regime, which has limited practical interest in federated learning contexts.

Existing Literature on Distributed Subgradient Methods Focuses Primarily on w2s Compression.
While distributed parallel subgradient methods have been extensively studied, existing results either
do not offer compressed communications [Nedic and Ozdaglar, 2009, Kiwiel and Lindberg, 2001,
Hishinuma and Iiduka, 2015, Zheng et al., 2022], or restrict analysis to specific compression operators
like quantization [Xia et al., 2023, Doan et al., 2020, 2018, Xia et al., 2022, Emiola and Enyioha, 2022],
without covering other notable examples from classes (7) or (6). Moreover, these works consider only
w2s compression, neglecting the s2w direction. To our knowledge, there are no comprehensive results
addressing non-smooth distributed optimization with s2w compression.

Adaptive Stepsizes in Non-smooth Settings Lack Distributed Guarantees. Recent works on adaptive
stepsizes in non-smooth convex optimization [Khaled et al., 2023, Defazio et al., 2023, 2024, Mishchenko
and Defazio, Defazio and Mishchenko, 2023] have shown promising practical results. However, these
studies primarily focus on single-node scenarios and are not directly applicable to federated learning.
Polyak stepsizes [Polyak, 1987, Hazan and Kakade, 2019], in particular, have gained popularity among
theoreticians, but the majority of recent results [Loizou et al., 2021, Oikonomou and Loizou, 2024,
Jiang and Stich, 2024] assume smoothness and are again limited to single-node settings. The few results
available for non-smooth convex settings [Hazan and Kakade, 2019, Schaipp et al., 2023] are also confined
to single-node scenarios.

Summary and Our Goal. In summary, the intersection of non-smooth optimization, communication
efficiency, and federated learning remains underexplored. Our work aims to address this gap by providing
the first comprehensive study of distributed non-smooth optimization with server-to-worker compression
and support for adaptive stepsizes while maintaining optimal convergence rates.
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2 Contributions

We now summarize our main contributions:
∙ Extension of EF21-P to distributed non-smooth settings. We extend the theory of EF21-P,

originally developed for single-node scenarios [Anonymous, 2024], to the distributed setting. We prove
optimal rates of 𝒪 (1/

√
𝑇) for Polyak and constant stepsizes, and a suboptimal rate of 𝒪 (log 𝑇/

√
𝑇) for

decreasing stepsizes, while establishing communication complexity bounds that match those of classical
distributed subgradient methods. This addresses a crucial gap in the theoretical understanding of Error
Feedback methods in non-smooth distributed optimization.

∙ Introduction of MARINA-P for non-smooth objectives. Building upon the recent work of Grun-
tkowska et al. [2024], we extend the applicability of MARINA-P beyond smooth non-convex problems to
non-smooth convex settings. We establish optimal rates of 𝒪 (1/

√
𝑇) for Polyak and constant stepsizes,

and a suboptimal rate of 𝒪 (log 𝑇/
√
𝑇) for decreasing stepsizes.

∙ Superior performance of MARINA-P with correlated compressors. Through our empirical studies,
we demonstrate that MARINA-P, when used with correlated compressors, outperforms EF21-P in the
non-smooth regime. This result extends the superiority of correlated compressors, previously established
for smooth non-convex problems, to non-smooth convex optimization, providing with efficient tools for
handling non-smooth objectives in federated settings.

∙ Support for diverse stepsize schedules. We provide theoretical guarantees for both EF21-P and
MARINA-P with constant, decreasing, and Polyak stepsizes. This contribution bridges the gap between
theoretical advances and practical deep learning scenarios, where adaptive learning rates are commonplace,
while maintaining optimal convergence rates.

To the best of our knowledge, our work presents the first theoretical results for distributed non-smooth
optimization incorporating s2w compression and adaptive stepsizes, while achieving provably optimal
convergence rates.

3 EF21-P

We now present the first major contribution of our paper: a distributed version of EF21-P for the non-
smooth setting.

Let us first recap the standard single-node EF21-P algorithm, which aims to solve (1) via the iterative
process:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡∇𝑓(𝑤𝑡) (8)

𝑤𝑡+1 = 𝑤𝑡 + 𝒞𝑡
(︀
𝑥𝑡+1 − 𝑤𝑡

)︀
,

where 𝛾𝑡 > 0 is a stepsize, 𝑥0 ∈ R𝑑 is the initial iterate, 𝑤0 = 𝑥0 ∈ R𝑑 is the initial iterate shift, and
𝒞𝑡 is an instantiation of a randomized contractive compressor 𝒞 sampled at time 𝑡. This method was
proposed as a primal3 counterpart to the standard EF21. It has proven particularly useful in bidirectional
settings where primal compression is performed on the server side, allowing for the decoupling of primal
and dual compression parameter constants. For more details, we refer the reader to the original paper
[Gruntkowska et al., 2023]. Anonymous [2024] first extended EF21-P to the non-smooth setting. Their
key modification was replacing the "smooth" update step with a "non-smooth" one:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡𝜕𝑓(𝑤
𝑡). (9)

They proved an optimal rates of 𝒪 (1/
√
𝑇) for Polyak and constant stepsizes, and a suboptimal rate of

𝒪 (log 𝑇/
√
𝑇) for decreasing stepsizes, but only for the single-node regime. In Algorithm 1, we extend

these results to the distributed setting, allowing for parallel computation of subgradients 𝜕𝑓(𝑤𝑡).
3Since it operates in the primal space of model parameters
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Algorithm 1 EF21-P (distributed version)

1: Input: initial points 𝑤0 = 𝑥0 ∈ R𝑑, stepsize 𝛾0 > 0
2: for 𝑡 = 0, 1, 2, . . . , 𝑇 do
3: for 𝑖 = 1, . . . , 𝑛 on Workers in parallel do
4: Receive compressed difference Δ𝑡 from server
5: Compute local subgradient 𝑔𝑡𝑖 = 𝜕𝑓𝑖(𝑤

𝑡) and send it to server
6: end for
7: On Server:
8: Receive 𝑔𝑡𝑖 from workers
9: Choose stepsize 𝛾𝑡 (can be set according to (11), (13), or (15))

10: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡
1
𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡
𝑖

11: Compute Δ𝑡+1 = 𝒞(𝑥𝑡+1 − 𝑤𝑡) and broadcast it to workers
12: 𝑤𝑡+1 = 𝑤𝑡 +Δ𝑡+1

13: for 𝑖 = 1, . . . , 𝑛 on Workers in parallel do
14: 𝑤𝑡+1 = 𝑤𝑡 +Δ𝑡+1

15: end for
16: end for
17: Output: 𝑥𝑇

At each iteration of distributed EF21-P, the workers calculate 𝜕𝑓𝑖(𝑤
𝑡) and transmit it to the server.

The server then averages the subgradients and updates the global model 𝑥𝑡. Subsequently, it computes
the compressed difference Δ𝑡+1 = 𝒞𝑡

𝑖 (𝑥
𝑡+1 − 𝑤𝑡) and broadcasts the same vector Δ𝑡+1 to all workers.

Both the server and workers then use Δ𝑡+1 to update their internal states 𝑤𝑡. Note that this procedure
ensures that the states 𝑤𝑡 remain synchronized between workers and the server.

We now present the convergence result for our distributed EF21-P algorithm.

Theorem 1. Let Assumptions 1, 2 and 3 hold. Define a Lyapunov function 𝑉 𝑡 :=
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+

1
𝜆*𝜃

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
, where 𝜆* :=

√
1−𝛼

1−
√
1−𝛼

and 𝜃 := 1−
√
1− 𝛼. Define also a constant 𝐵* := 1+2

√
1−𝛼

1−
√
1−𝛼

.

Let
{︀
𝑤𝑡
}︀

be the sequence produced by EF21-P (Algorithm 1). Define 𝑤𝑇 := 1
𝑇

∑︀𝑇−1
𝑡=0 𝑤𝑡 and ̂︀𝑤𝑇 :=

1∑︀𝑇−1
𝑡=0 𝛾𝑡

∑︀𝑇−1
𝑡=0 𝛾𝑡𝑤

𝑡.

1. (Constant stepsize). If 𝛾𝑡 := 𝛾 > 0, then

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝑉 0

2𝛾𝑇
+

𝐵*𝐿
2
0𝛾

2
. (10)

If, moreover, optimal 𝛾 is chosen i.e.

𝛾 :=
1√
𝑇

√︃
𝑉 0

𝐵*𝐿2
0

, (11)

then

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤
√︀

𝐵*𝐿2
0𝑉

0

√
𝑇

. (12)

2. Polyak stepsize. If 𝛾𝑡 is chosen as

𝛾𝑡 :=
𝑓(𝑤𝑡)− 𝑓(𝑥*)

𝐵* ‖𝜕𝑓 (𝑤𝑡)‖22
, (13)

9



then

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤
√︀

𝐵*𝐿2
0𝑉

0

√
𝑇

. (14)

3. (Decreasing stepsize). If 𝛾𝑡 is chosen as

𝛾𝑡 :=
𝛾0√
𝑡+ 1

, (15)

then

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝑉 0 + 2𝛾20𝐵*𝐿

2
0 log(𝑇 + 1)

𝛾0
√
𝑇

. (16)

If, moreover, optimal 𝛾0 is chosen i.e.

𝛾0 :=

√︃
𝑉0

2𝐵*𝐿2
0 log(𝑇 + 1)

, (17)

then

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 2
√︁
2𝐵*𝐿2

0𝑉0

√︂
log(𝑇 + 1)

𝑇
. (18)

Let us analyze the obtained results. The constant 𝐵* := 1+2
√
1−𝛼

1−
√
1−𝛼

≤ 4
𝛼−1 is a decreasing function

in 𝛼, which aligns with intuition since larger values of 𝛼 correspond to less aggressive compression
regimes. For both constant (11) and Polyak (13) stepsizes, we achieve the optimal rate of 𝒪 (1/

√
𝑇) known

for uncompressed subgradient methods [Nesterov, 2013, Arjevani and Shamir, 2015]. However, achieving
this rate requires either knowing the total number of iterations 𝑇 in advance (for constant stepsize) or
knowing the optimal value 𝑓(𝑥*) (for Polyak stepsize), which may be impractical in many applications.
When neither 𝑇 nor 𝑓(𝑥*) is known, one can employ the decreasing stepsize strategy (15). This approach
leads to a suboptimal convergence rate of 𝒪 (log 𝑇/

√
𝑇) – a well-known limitation of subgradient methods

[Nesterov, 2013, Anonymous, 2024].
For both constant and Polyak stepsizes, the following corollary provides explicit complexity bounds,

characterizing both the number of iterations and the total communication cost needed to obtain an
𝜀-approximate solution.

Corollary 1. Let the conditions of the Theorem 1 are met. If 𝛾𝑡 is set according to (11) or (13) (constant
or Polyak stepsizes) then EF21-P (Algorithm 1) requires

𝑇 = 𝒪
(︂
𝐿2
0𝑅

2
0

𝛼𝜀2

)︂
(19)

iterations/communication rounds in order to achieve E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝜀 , and the expected total

communication cost per worker is 𝒪 (𝑑+ 𝜁𝒞𝑇 ).

Let us analyze the implications of Corollary 1. In the uncompressed case (𝛼 = 1), our algorithm
achieves the optimal rate of standard Subgradient Methods (SM) [Nesterov, 2013] for first-order non-
smooth optimization. With Top𝐾 compression (𝜁𝒞 = 𝐾), the communication complexity becomes
𝒪 (𝑑𝐿2

0𝑅
2
0/𝜀2), matching the worst-case complexity of distributed SM. This indicates that EF21-P with

Top𝐾 compression cannot improve upon SM’s complexity regardless of the compression parameter 𝛼 – a
fundamental limitation in communication-compressed non-smooth optimization. Our findings align with
Balkanski and Singer [2018], who demonstrated that parallelization provides no worst-case benefits for
non-smooth optimization.

From a practical perspective, EF21-P’s main limitation stems from broadcasting identical compressed
differences Δ𝑡 to all workers, potentially leading to poor approximations of 𝑥𝑡+1 by 𝑤𝑡 + Δ𝑡. The
MARINA-P algorithm [Gruntkowska et al., 2024], originally developed for smooth non-convex problems,
addresses this limitation. In the following section, we extend MARINA-P to the non-smooth setting.
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4 MARINA-P

Building upon the foundations of the standard MARINA algorithm [Gorbunov et al., 2021, Szlendak et al.,
2022], Gruntkowska et al. [2024] introduced MARINA-P, a primal counterpart designed to operate in
the model parameter space. This section presents an extension of MARINA-P to the non-smooth convex
setting.

Algorithm 2 MARINA-P

1: Input: initial point 𝑥0 ∈ R𝑑, initial model shifts 𝑤0
𝑖 = 𝑥0 for all 𝑖 ∈ [𝑛], stepsize 𝛾0 > 0, probability

0 < 𝑝 ≤ 1, compressors 𝒬𝑡
𝑖 ∈ U(𝜔) for all 𝑖 ∈ [𝑛]

2: for 𝑡 = 0, 1, . . . , 𝑇 do
3: for 𝑖 = 1, . . . , 𝑛 on Workers in parallel do
4: Compute local subgradient 𝑔𝑡𝑖 = 𝜕𝑓𝑖(𝑤

𝑡
𝑖) and send it to server

5: end for
6: On Server:
7: Receive 𝑔𝑡𝑖 from workers
8: Choose stepsize 𝛾𝑡 (can be set according to (21), (23), or (25))
9: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡

1
𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡
𝑖

10: Sample 𝑐𝑡 ∼ Bernoulli(𝑝)
11: if 𝑐𝑡 = 0 then
12: Send 𝒬𝑡

𝑖(𝑥
𝑡+1 − 𝑥𝑡) to worker 𝑖 for 𝑖 ∈ [𝑛]

13: else
14: Send 𝑥𝑡+1 to all workers
15: end if
16: for 𝑖 = 1, . . . , 𝑛 on Workers in parallel do

17: 𝑤𝑡+1
𝑖 =

{︃
𝑥𝑡+1 if 𝑐𝑡 = 1

𝑤𝑡
𝑖 +𝒬𝑡

𝑖(𝑥
𝑡+1 − 𝑥𝑡) if 𝑐𝑡 = 0

18: end for
19: end for
20: Output: 𝑥𝑇

At each iteration, workers compute subgradients 𝜕𝑓𝑖(𝑤𝑡
𝑖) and transmit them to the server. The server

aggregates these subgradients and updates the global model 𝑥𝑡. With probability 𝑝 (typically small), the
server sends the uncompressed updated model 𝑥𝑡+1 to all workers. Otherwise, each worker 𝑖 receives a
compressed vector 𝒬𝑡

𝑖(𝑥
𝑡+1 − 𝑥𝑡). Workers then update their local models 𝑤𝑡+1

𝑖 based on the received
information. A key feature of MARINA-P is that the compressed vectors 𝒬𝑡

1(𝑥
𝑡+1−𝑥𝑡), . . . ,𝒬𝑡

𝑛(𝑥
𝑡+1−𝑥𝑡)

can differ across workers. This distinction is crucial for the algorithm’s practical superiority, as it allows
for potentially better approximations of 𝑥𝑡+1 compared to methods like EF21-P, especially when the
compressors 𝒬1, . . . ,𝒬𝑛 are correlated.

We now present the main convergence results for MARINA-P in the non-smooth convex setting.

Theorem 2. Let Assumptions 1, 2 and 3 hold. Define a Lyapunov function 𝑉 𝑡 :=
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+

1
𝜆*𝑝

1
𝑛

∑︀𝑛
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
, where 𝜆* :=

𝐿0̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 . Define also a constant ̃︀𝐵* := 𝐿
2
0 + 2𝐿0

̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 .

Let
{︀
𝑤𝑡
𝑖

}︀
be the sequence produced by MARINA-P (Algorithm 2). Define 𝑤𝑇

𝑖 := 1
𝑇

∑︀𝑇−1
𝑡=0 𝑤𝑡

𝑖 and̂︀𝑤𝑇
𝑖 := 1∑︀𝑇−1

𝑡=0 𝛾𝑡

∑︀𝑇−1
𝑡=0 𝛾𝑡𝑤

𝑡
𝑖 for all 𝑖 ∈ [𝑛].
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1. (Constant stepsize). If 𝛾𝑡 := 𝛾 > 0, then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 𝑉 0

2𝛾𝑇
+
̃︀𝐵*𝛾

2
. (20)

If, moreover, optimal 𝛾 is chosen i.e.

𝛾 :=
1√
𝑇

√︃
𝑉 0̃︀𝐵*

, (21)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤

√︁̃︀𝐵*𝑉 0

√
𝑇

. (22)

2. Polyak stepsize. If 𝛾𝑡 is chosen as

𝛾𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*)⃦⃦

1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦2
2

(︃
1 + 2

√︁
1
𝑛

∑︀𝑛
𝑖=1‖𝜕𝑓𝑖(𝑤𝑡

𝑖)‖2

2

‖ 1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖(𝑤𝑡

𝑖)‖2

√︁
(1−𝑝)𝜔

𝑝

)︃ , (23)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤

√︁̃︀𝐵*𝑉 0

√
𝑇

. (24)

3. (Decreasing stepsize). If 𝛾𝑡 is chosen as

𝛾𝑡 :=
𝛾0√
𝑡+ 1

, (25)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖( ̂︀𝑤𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 𝑉 0 + 2𝛾20

̃︀𝐵* log(𝑇 + 1)

𝛾0
√
𝑇

. (26)

If, moreover, optimal 𝛾0 is chosen i.e.

𝛾0 :=

√︃
𝑉0

2 ̃︀𝐵* log(𝑇 + 1)
, (27)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖( ̂︀𝑤𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 2

√︁
2 ̃︀𝐵*𝑉0

√︂
log(𝑇 + 1)

𝑇
. (28)

Remark 1. For both EF21-P and MARINA-P, the Polyak stepsize can be efficiently implemented in
the distributed setting without additional per-iteration communication overhead. This is because the
subgradient values 𝜕𝑓𝑖

(︀
𝑤𝑡
)︀

(for EF21-P) and 𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
(for MARINA-P) are already computed by the

clients and transmitted to the server as part of the algorithm’s regular operations.
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Let us analyze these results. The constant ̃︀𝐵* := 𝐿
2
0 +2𝐿0

̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 depends on both compression
parameters 𝜔 and 𝑝. Smaller values of 𝜔 correspond to less aggressive compression, while larger values of
𝑝 indicate more frequent uncompressed communication – both cases lead to smaller ̃︀𝐵* and consequently
faster convergence. For both constant (21) and Polyak (23) stepsizes, we obtain the optimal rate of
𝒪 (1/

√
𝑇) [Nesterov, 2013, Arjevani and Shamir, 2015]. As with EF21-P, achieving this rate requires

either knowing the total iterations 𝑇 (for constant stepsize) or the optimal value 𝑓(𝑥*) (for Polyak
stepsize) in advance. When such knowledge is unavailable, the decreasing stepsize strategy offers a
practical alternative, though it results in a suboptimal 𝒪 (log 𝑇/

√
𝑇) convergence rate – a characteristic

limitation of subgradient methods [Nesterov, 2013]. It is worth noting that implementing the Polyak
stepsize only requires an estimate of 𝑓(𝑥*), rather than knowledge of the Lipschitz constant 𝐿0. This
characteristic is common among Polyak stepsizes [Loizou et al., 2021].

For the constant and Polyak stepsize regimes, the following corollary establishes complexity bounds
and characterizes the communication costs required to achieve an 𝜀-approximate solution.

Corollary 2. Let the conditions of the Theorem 2 are met and 𝑝 = 𝜁𝒬/𝑑. If 𝛾𝑡 is set according to (21) or
(23) (constant or Polyak stepsizes) then MARINA-P (Algorithm 2) requires

𝑇 = 𝒪
(︃
𝑅2

0

𝜀2

(︃
𝐿
2
0 + 𝐿0

̃︀𝐿0

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂)︃)︃
(29)

iterations/communication rounds in order to achieve E
[︀
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑇
𝑖 )− 𝑓(𝑥*)

]︀
≤ 𝜀 , and the expected

total communication cost per worker is 𝒪 (𝑑+ 𝜁𝒬𝑇 ).

This corollary reveals several important properties. With Rand𝐾 compression (𝜁𝒬 = 𝐾, 𝜔 = 𝑑/𝐾−1)
[Beznosikov et al., 2023], MARINA-P achieves communication complexity 𝒪

(︀
𝑑̃︀𝐿2

0𝑅
2
0/𝜀2
)︀
. Under the

condition ̃︀𝐿2
0 = 𝒪 (𝐿0), this matches the optimal per-worker complexity of standard SM, up to constant

factors [Nesterov, 2013]. A notable feature of our complexity result is its independence from the number
of workers 𝑛 in the non-smooth setting – a known phenomenon in subgradient methods [Arjevani and
Shamir, 2015, Balkanski and Singer, 2018]. This contrasts with MARINA-P’s behavior in smooth non-
convex settings [Gruntkowska et al., 2024], where complexity scales as 𝒪( 1𝑛). The absence of theoretical
bounds predicting such scaling behavior in non-smooth distributed settings presents an interesting
direction for future research.

MARINA-P’s primary advantage over EF21-P lies in its ability to employ worker-specific compression
operators 𝒬𝑖, enabling more accurate approximations of the global model, particularly when using
correlated compressors. The following section examines various constructions of 𝒬𝑖 that leverage this
flexibility to enhance practical performance.

4.1 Three Ways to Compress: A Recap

In our experiments, we will examine three distinct approaches to constructing the compressors {𝒬𝑖} in
MARINA-P, as outlined in [Gruntkowska et al., 2024]:

1. Same Compressor. The conventional method where the server broadcasts an identical compressed
message to all workers. Using a single Rand𝐾 compressor 𝒬, we have 𝒬𝑡

1(𝑥
𝑡+1 − 𝑥𝑡) = · · · =

𝒬𝑡
𝑛(𝑥

𝑡+1 − 𝑥𝑡) = 𝒬𝑡(𝑥𝑡+1 − 𝑥𝑡) for all workers 𝑖 ∈ [𝑛]. This approach, while simple, limits the amount
of information conveyed.

2. Independent Compressors. This strategy employs a set of independent Rand𝐾 compressors
𝒬𝑖, 𝑖 ∈ [𝑛], generating distinct, independent sparse vectors 𝒬1(𝑥), . . . ,𝒬𝑛(𝑥) for input 𝑥 ∈ R𝑑. This
method allows for more diverse information transmission but lacks coordination between compressors.

3. Correlated Compressors. Introduced by Szlendak et al. [2022], this approach uses coordinated
compressors, with Perm𝐾 being a key example. For 𝑑 ≥ 𝑛 and 𝑑 = 𝑞𝑛, 𝑞 ∈ N>0, Perm𝐾 is defined as:
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Figure 1: Performance comparison of EF21-P with Top𝐾 and MARINA-P with sameRand𝐾, indRand𝐾,
and Perm𝐾 compressors (𝐾 = 𝑑/𝑛). The left column of the legend corresponds to experiments with
constant stepsizes, while the right column shows results with Polyak stepsizes. All stepsizes were set to
the largest theoretically acceptable value multiplied by an individually tuned constant factor, selected
from the set {2−9, 2−8, . . . , 27}.

Definition 5 (Perm𝐾). Let 𝜋 = (𝜋1, . . . ,𝜋𝑑) be a random permutation of {1, . . . , 𝑑}. For 𝑥 ∈ R𝑑 and
𝑖 ∈ [𝑛]:

𝒬𝑖(𝑥) := 𝑛×
𝑞𝑖∑︁

𝑗=𝑞(𝑖−1)+1

𝑥𝜋𝑗𝑒𝜋𝑗 . (30)

Perm𝐾 ensures 1
𝑛

∑︀𝑛
𝑖=1𝒬𝑖(𝑥) = 𝑥 deterministically, offering superior theoretical and practical

performance in MARINA-P compared to the other two approaches. This method exploits correlation
between compressors to achieve better approximation of the global model and improved communication
efficiency.

5 Experiments

To verify our theoretical results, we conducted experiments comparing MARINA-P with different compres-
sor configurations from Section 4.1 (sameRand𝐾, indRand𝐾, and Perm𝐾) against EF21-P with Top𝐾
compression. We consider a synthetic non-smooth convex finite sum function 𝑓(𝑥) = 1

𝑛

∑︀𝑛
𝑖=1 ‖A𝑖𝑥‖1,

where A𝑖 ∈ R𝑑×𝑑. We set the dimension 𝑑 = 1000 and tested scenarios with different numbers of nodes
𝑛 ∈ {10, 100} and different data heterogeneity regimes, controlled by the data dissimilarity measure

𝜎𝐴 :=

⎯⎸⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

‖A𝑖‖22 −

⎛⎝ 1

𝑛

𝑛∑︁
𝑗=1

‖A𝑗‖2

⎞⎠2

. (31)
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For all configurations, we set 𝐾 = 𝑑/𝑛 to ensure a fair comparison of communication costs. Figure
1 presents our results, showing that MARINA-P with correlated compressors (indRand𝐾 and Perm𝐾)
consistently outperforms other configurations across different node counts and data heterogeneity levels.
This performance advantage is particularly pronounced for a large number of clients (e.g., 𝑛 = 100). For
a more detailed description of the experimental setup, we refer readers to Appendix A.

6 Conclusion and Future Directions

In this paper, we have presented a comprehensive analysis of distributed non-smooth optimization with
server-to-worker compression. We extended EF21-P to the distributed setting and introduced a non-smooth
version of MARINA-P, providing theoretical guarantees for both algorithms under constant, decreasing,
and Polyak stepsizes. To the best of our knowledge, this work presents the first theoretical results for
distributed non-smooth optimization that incorporate server-to-worker compression and adaptive stepsizes.
Our empirical studies demonstrate the superior performance of MARINA-P with correlated compressors in
non-smooth settings.

While our work advances non-smooth federated optimization with server-to-worker compression,
several important avenues remain unexplored. Future research could address worker-to-server compres-
sion or bidirectional compression schemes. Additionally, incorporating local update steps [Demidovich
et al., 2024] into our framework could further reduce communication overhead.
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APPENDIX
A Experiments: Missing Details and Extra Results

In this section, we provide missing details on the experimental setting from Section 5. The source
code is available in the following GitHub repository: https://anonymous.4open.science/r/
MARINA-[]P_project_source_code-[]670F/.

To verify our theoretical results, we conducted experiments comparing MARINA-P with different
compressor configurations from Section 4.1 (sameRand𝐾, indRand𝐾, and Perm𝐾) against EF21-P with
Top𝐾 compression.

Hardware and Software. All algorithms were implemented in Python 3.10. We utilized three different
CPU cluster node types:

1. AMD EPYC 7702 64-Core;

2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz;

3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Algorithm 3 Synthetic datasets generation routine

1: Parameters: number nodes 𝑛, dimension 𝑑, parameter 𝜇 = 10−6, and noise scale 𝑠.
2: for 𝑖 = 1, . . . , 𝑛 do
3: Generate random noises 𝜈𝑠𝑖 = 1 + 𝑠𝜉𝑠𝑖 , i.i.d. 𝜉𝑠𝑖 ∼ 𝒩 (0, 1)
4: Take the initial tridiagonal matrix

A𝑖 =
𝜈𝑠𝑖
4

⎛⎜⎜⎜⎜⎝
2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

⎞⎟⎟⎟⎟⎠ ∈ R𝑑×𝑑

5: end for
6: Take the mean of matrices A = 1

𝑛

∑︀𝑛
𝑖=1A𝑖

7: Find the minimum eigenvalue 𝜆min(A)
8: for 𝑖 = 1, . . . , 𝑛 do
9: Update matrix A𝑖 = A𝑖 + (𝜇− 𝜆min(A))I

10: end for
11: Sample starting point 𝑥0 ∼ 𝒩 (0, I)
12: Output: matrices A1, · · · ,A𝑛, starting point 𝑥0

Objective and Datasets. The primary goal of these numerical experiments is to illustrate our theoretical
findings and motivate further practical comparisons of MARINA-P against other baselines.

We consider a finite sum function 𝑓(𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑥), consisting of synthetic non-smooth convex

functions
𝑓𝑖(𝑥) := ‖A𝑖𝑥‖1 ,

where A𝑖 ∈ R𝑑×𝑑 and A𝑖 = A⊤
𝑖 is the training data that belongs to the device/worker 𝑖. This objective

was chosen for its simplicity to synthetically emulate the behavior of distributed training and to collect all
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required theoretical metrics, such as function suboptimality 𝑓(𝑤𝑡)− 𝑓(𝑥*). For this function, it is known
that 𝑥* = (0,0, . . . ,0)⊤, 𝑓(𝑥*) = 0. Each subgradient 𝜕𝑓𝑖 (𝑥) can be explicitly written (and computed)
as 𝜕𝑓𝑖 (𝑥) = A⊤

𝑖 sign (A𝑖𝑥) (see Example 3.44 of the book [Beck, 2017] for proof details), where sign
is the componentwise sign operator, i.e.

sign(𝑥)𝑖 =

{︃
1, 𝑥𝑖 ≥ 0

−1, 𝑥𝑖 < 0
. (32)

Note, that 𝜕𝑓 (𝑥) can be computed as 𝜕𝑓 (𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑥). In all experiments of this section, we

have 𝑑 = 1000.
We generated synthetic matrices {A𝑖}𝑛𝑖=1 (training data) via Algorithm 3 This data generation

routine was inspired by a similar one used for solving synthetic quadratic problems (see Algorithm 11 in
[Richtárik et al., 2022]). However, we introduced several minor modifications to the original algorithm
for the needs of this project. We generated optimization problems having different numbers of nodes
𝑛 ∈ {10, 100} and different data heterogeneity regimes, controlled by the empirically proposed data
dissimilarity measure

𝜎𝐴 :=

⎯⎸⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

‖A𝑖‖22 −

⎛⎝ 1

𝑛

𝑛∑︁
𝑗=1

‖A𝑗‖2

⎞⎠2

. (33)

From the definition, it follows that the case of similar (or even identical) functions 𝑓𝑖 relates to the small
(or even 0) value of 𝜎𝐴, whereas in the case of completely different 𝑓𝑖 (which relate to heterogeneous
data regime) 𝜎𝐴 can be large. In our experiments, homogeneity of each optimization task is controlled
by noise scale 𝑠 introduced in Algorithm 3. Indeed, for the noise scale 𝑠 = 0, all matrices A𝑖 are equal,
whereas with the increase of the noise scale, functions become less "similar" and 𝜎𝐴 rises. We take noise
scales 𝑠 ∈ {0.1, 1.0, 10.0}. Table 2 summarizes the 𝜎𝐴 values corresponding to these noise scales for
𝑛 ∈ {10, 100}.

𝑛 𝑠 0.1 1.0 10.0

10 0.09 0.88 5.60
100 0.10 0.83 5.91

Table 2: Summary of the data heterogeneity 𝜎𝐴 values for different number of nodes 𝑛 and various noise
scales 𝑠.

Baselines and Hyperparameters. For each dataset (determined by values 𝑛 and 𝜎𝐴), we run the
following baselines:

1. EF21-P with Top𝐾 compressor;

2. MARINA-P with sameRand𝐾 compressor;

3. MARINA-P with indRand𝐾 compressors;

4. MARINA-P with Perm𝐾 compressors.

where sameRand𝐾, indRand𝐾, and Perm𝐾 are defined as described in subsection 4.1.
In all experiments, we set 𝐾 = 𝑑/𝑛 and for MARINA-P we additionally choose 𝑝 = 𝐾/𝑑 to ensure a fair

comparison of communication costs. Indeed, whereas for EF21-P with Top𝐾, parameter 𝐾 (and therefore
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Method

Stepsize type
Constant Decreasing Polyak Reference

EF21-P 1√
𝑇

√︁
𝑉 0

𝐵*𝐿2
0

𝛾0√
𝑡+1

𝑓(𝑤𝑡)−𝑓(𝑥*)
𝐵*‖𝜕𝑓(𝑤𝑡)‖22

(11), (13)

MARINA-P 1√
𝑇

√︁
𝑉 0̃︀𝐵*

𝛾0√
𝑡+1

1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)−𝑓(𝑥*)

‖ 1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖(𝑤𝑡

𝑖)‖2

2

⎛⎜⎝1+2

√︂
1
𝑛

∑︀𝑛
𝑖=1‖𝜕𝑓𝑖(𝑤𝑡

𝑖)‖2

2

‖ 1
𝑛

∑︀𝑛
𝑖=1

𝜕𝑓𝑖(𝑤𝑡
𝑖)‖2

√︂
(1−𝑝)𝜔

𝑝

⎞⎟⎠
(21), (23)

1 For the decreasing stepsize, optimal 𝛾0 =
√︁

𝑉0

2𝐵*𝐿2
0 log(𝑇+1)

for EF21-P and 𝛾0 =
√︁

𝑉0

2 ̃︀𝐵* log(𝑇+1)
for MARINA-P;

2 𝐵*, ̃︀𝐵*, and other constants are defined in the respective theorems.

Table 3: Summary of theoretical stepsize formulas for EF21-P and MARINA-P algorithms.

𝜁𝒬 = 𝐾) is deterministic and fixed throughout the optimization process, in the case of MARINA-P, 𝐾 is
random, but 𝜁𝒬 = 𝑑𝑝+ (1− 𝑝)𝐾 = 𝑑 (𝐾/𝑑) + (1− 𝐾/𝑑)𝐾 ≤ 2𝐾 = 𝒪(𝐾), meaning that the choice of
𝑝 = 𝐾/𝑑 on expectation guarantees similar communication costs for EF21-P and MARINA-P.

For all algorithms, at each iteration (communication round) we updated the following metrics being
tracked throughout the whole optimization procedure:

1. Function suboptimality 𝑓(𝑥𝑡)− 𝑓(𝑥*);

2. Number of bits per worker send from server to clients (titled as “bits/n” on corresponding Figure
7).

We employed 64-bit precision in our experiments. Our communication model assumes that the server
transfers (65 + log2(𝑑))𝑞 bits to each worker, where 𝑞 represents the number of non-zero entries retained
after sparsification. This total is broken down as follows:

• 64 bits allocated for each non-zero value;

• 1 bit for the sign of each entry;

• log2(𝑑) bits to encode the position of each non-zero entry.

The same communication model was also used in [Horváth et al., 2022].

For each value of 𝑛 ∈ {10, 100}, we allocated an individual communication budget: 3.5 · 108 bits
for 𝑛 = 10 and 3.5 · 107 bits for 𝑛 = 100. Each algorithm was terminated upon reaching its respective
budget.

In experiments utilizing constant stepsizes, we set the stepsize to the largest theoretically acceptable
value, multiplied by an individually tuned factor. This factor was selected from the set {2−9, 2−8, . . . , 27}.
For experiments employing adaptive stepsizes, we similarly tuned a constant factor. During the optimiza-
tion procedure, this factor was multiplied by the theoretically defined adaptive stepsize at each iteration.
Tables 3 and 6 summarize the theoretical stepsize formulas and optimal tuned stepsize multiplicative
factors.
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Figure 2: Constant stepsize; 𝑛 = 10.

Method
𝑠

0.1 1.0 10.0

EF21-P with Top𝐾 0.5 1.0 1.0
MARINA-P sameRand𝐾 0.03125 0.03125 0.03125
MARINA-P indRand𝐾 0.03125 0.03125 0.03125
MARINA-P Perm𝐾 0.03125 0.03125 0.03125

Figure 3: Constant stepsize; 𝑛 = 100.

Method
𝑠

0.1 1.0 10.0

EF21-P with Top𝐾 4.0 4.0 8.0
MARINA-P sameRand𝐾 0.03125 0.03125 0.03125
MARINA-P indRand𝐾 0.03125 0.0625 0.0625
MARINA-P Perm𝐾 0.03125 0.0625 0.0625

Figure 4: Polyak stepsize; 𝑛 = 10.

Method

𝑠
0.1 1.0 10.0

EF21-P with Top𝐾 16.0 16.0 16.0
MARINA-P sameRand𝐾 2.0 2.0 2.0
MARINA-P indRand𝐾 2.0 2.0 2.0
MARINA-P Perm𝐾 2.0 2.0 2.0

Figure 5: Polyak stepsize; 𝑛 = 100.

Method
𝑠

0.1 1.0 10.0

EF21-P with Top𝐾 16.0 16.0 16.0
MARINA-P sameRand𝐾 2.0 2.0 2.0
MARINA-P indRand𝐾 2.0 2.0 2.0
MARINA-P Perm𝐾 2.0 2.0 2.0

Figure 6: Optimal stepsize multiplicative factors for different methods, number of nodes, and heterogene-
ity levels.

For MARINA-P, we initialize 𝑤0
𝑖 = 𝑥0 for all 𝑖 ∈ [𝑛], and 𝑤0 = 𝑥0 for EF21-P. This choice results in

𝑉 0 = 𝑅2 =
⃦⃦
𝑥0 − 𝑥*

⃦⃦2
2
=
⃦⃦
𝑥0
⃦⃦2
2
, allowing explicit computation of 𝑉 0 constants in all cases.

In our experiments, we estimated the Lipschitz smoothness constants 𝐿0,𝑖 as 𝐿0,𝑖 ∼ ‖A𝑖‖2. Although
this approximation is not theoretically precise, we adopted it primarily for computational simplicity.
Moreover, our constant multiplier tuning process compensates for any inaccuracies in the estimated
𝐿0,𝑖. It’s worth noting that the 𝐿0,𝑖 ∼ ‖A𝑖‖2 estimation is reasonably close to the worst-case bound, as
demonstrated by:

‖𝜕𝑓𝑖 (𝑥)‖2 =
⃦⃦⃦
A⊤

𝑖 sign (A𝑖𝑥)
⃦⃦⃦
2
≤
⃦⃦⃦
A⊤

𝑖

⃦⃦⃦
2
‖sign (A𝑖𝑥)‖2 ≤ ‖A𝑖‖2

√
𝑑.

We also defined 𝐿0 as 𝐿0 =
1
𝑛

∑︀𝑛
𝑖=1 𝐿𝑖,0.

Comparison of Convergence Behavior. We now present a more detailed version of the convergence
comparison initially introduced in Section 5 of the main draft. Our experiments compare the performance
of EF21-P with Top𝐾 and MARINA-P with sameRand𝐾, indRand𝐾, and Perm𝐾 compressors across the
different datasets described in the previous section. Figure 7 illustrates the following key observations:

1. Superiority of correlated compressors in the non-smooth convex setting. For both constant
and Polyak stepsizes, MARINA-P with Perm𝐾 compressors slightly outperforms MARINA-P with
indRand𝐾 compressors, showing significant improvement over the conventional approach using
the sameRand𝐾 scheme. This observation suggests that correlated compressors indeed ensure
better approximation of the compressed difference 1

𝑛

∑︀𝑛
𝑖=1𝒬𝑖(𝑥

𝑡+1 − 𝑥𝑡) ≈ 𝑥𝑡+1 − 𝑥𝑡 (with
equality in the case of Perm𝐾), leading to superior convergence performance in practice. This
behavior aligns well with experiments in the smooth non-convex setting from [Gruntkowska et al.,
2024].

2. Superior convergence behavior with adaptive stepsizes. Each pair of experiments differing
only in stepsize strategy (e.g., EF21-P with Top𝐾, represented in Figure 7 with the same color and
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EF21-P(TopK); const

MARINA-P(sameRandK); const

MARINA-P(indRandK); const

MARINA-P(PermK); const

EF21-P(TopK); polyak

MARINA-P(sameRandK); polyak

MARINA-P(indRandK); polyak

MARINA-P(PermK); polyak

Figure 7: Performance comparison of EF21-P with Top𝐾 and MARINA-P with sameRand𝐾, indRand𝐾,
and Perm𝐾 compressors (𝐾 = 𝑑/𝑛). The left column of the legend corresponds to experiments with
constant stepsizes, while the right column shows results with Polyak stepsizes. All stepsizes were set to
the largest theoretically acceptable value multiplied by an individually tuned constant factor, selected
from the set {2−9, 2−8, . . . , 27}.

marker but different linestyles) demonstrates the practical efficiency of adaptive stepsize schemes.
This marks the first time in the literature that such behavior has been experimentally confirmed in
the communication-efficient distributed non-smooth convex setting.

3. MARINA-P with correlated compressors and Polyak stepsize outperforms for all datasets. Figure
7 reveals that while all algorithms under constant stepsizes exhibit similar convergence behavior
(slightly outperformed by EF21-P with Polyak stepsize), MARINA-P with correlated compressors
and Polyak stepsize demonstrates superior performance. This advantage is particularly pronounced
when 𝑛 = 100.

These experimental results validate our theoretical findings and highlight the practical advantages
of MARINA-P with correlated compressors and adaptive stepsizes in the non-smooth convex distributed
optimization setting.

29



B Basic Facts and Inequalities

Useful inequalities: For all 𝑥, 𝑦, 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, 𝑠 > 0 and 𝛼 ∈ (0, 1], we have:⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑥𝑖

⃦⃦⃦⃦
⃦
2

≤ 1

𝑛

𝑛∑︁
𝑖=1

‖𝑥𝑖‖2 , (34)

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝑥𝑖

⃦⃦⃦⃦
⃦
2

2

≤ 1

𝑛

𝑛∑︁
𝑖=1

‖𝑥𝑖‖22 , (35)

‖𝑥+ 𝑦‖22 ≤ (1 + 𝑠) ‖𝑥‖22 + (1 + 𝑠−1) ‖𝑦‖22 , (36)

‖𝑥+ 𝑦‖22 ≤ 2 ‖𝑥‖22 + 2 ‖𝑦‖22 , (37)

⟨𝑥, 𝑦⟩ ≤ ‖𝑥‖22
2𝑠

+
𝑠 ‖𝑦‖22

2
, (38)

(1− 𝛼)
(︁
1 +

𝛼

2

)︁
≤ 1− 𝛼

2
, (39)

(1− 𝛼)

(︂
1 +

4

𝛼

)︂
≤ 4

𝛼
, (40)

⟨𝑎, 𝑏⟩ =
1

2

(︁
‖𝑎‖22 + ‖𝑏‖22 − ‖𝑎− 𝑏‖22

)︁
. (41)

Tower property: For any random variables 𝑋 and 𝑌 , we have

E [E [𝑋 | 𝑌 ]] = E [𝑋] . (42)

Cauchy-Bunyakovsky-Schwarz inequality: For any random variables 𝑋 and 𝑌 , we have

|E [𝑋𝑌 ]| ≤
√︀
E [𝑋2]E [𝑌 2]. (43)

Variance decomposition: For any random vector 𝑋 ∈ R𝑑 and any non-random 𝑐 ∈ R𝑑, we have

E
[︁
‖𝑋 − 𝑐‖22

]︁
= E

[︁
‖𝑋 − E [𝑋]‖22

]︁
+ ‖E [𝑋]− 𝑐‖22 . (44)

Jensen’s inequality: For any random vector 𝑋 ∈ R𝑑 and any convex function 𝑔 : R𝑑 ↦→ R, we have

𝑔(E [𝑋]) ≤ E [𝑔(𝑋)] . (45)

Lemma 1 (Lemma 3 of Richtárik et al. [2021]). Let 0 < 𝑝 < 1 and for 𝑠 > 0 let 𝜃(𝑠) and 𝛽(𝑠) be
defined as

𝜃(𝑠) := 1− (1− 𝑝)(1 + 𝑠), 𝛽(𝑠) := (1− 𝑝)(1 + 𝑠−1).

Then the solution of the optimization problem

min
𝑠

{︂
𝛽(𝑠)

𝜃(𝑠)
: 0 < 𝑠 <

𝑝

1− 𝑝

}︂
(46)

is given by 𝑠* = 1√
1−𝑝

− 1. Furthermore, 𝜃(𝑠*) = 1−√
1− 𝑝, 𝛽(𝑠*) = 1−𝑝

1−
√
1−𝑝

and√︃
𝛽(𝑠*)

𝜃(𝑠*)
=

1√
1− 𝑝

− 1 =
1

𝑝
+

√
1− 𝑝

𝑝
− 1 ≤ 2

𝑝
− 1. (47)

In the trivial case 𝑝 = 1, we have 𝛽(𝑠)
𝜃(𝑠) = 0 for any 𝑠 > 0, and (47) is satisfied.
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C Missing Proofs For EF21-P

In this section, we present the detailed proofs for the theoretical results of EF21-P (Algorithm 1). Before
delving into the proofs, we first discuss how our contribution extends the original results [Anonymous,
2024] on EF21-P for the non-smooth convex setting.

Recall that the standard single-node EF21-P algorithm [Gruntkowska et al., 2023] in the smooth case
takes the form:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡∇𝑓(𝑤𝑡) (48)

𝑤𝑡+1 = 𝑤𝑡 + 𝒞𝑡
(︀
𝑥𝑡+1 − 𝑤𝑡

)︀
.

The key modification introduced by Anonymous [2024] was to replace the "smooth" update step (48)
with a "non-smooth" one:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡𝜕𝑓(𝑤
𝑡), (49)

resulting in Algorithm 4.

Algorithm 4 EF21-P (single-node version)

1: Input: initial points 𝑤0, 𝑥0 ∈ R𝑑, step-
size 𝛾0 > 0

2: for 𝑡 = 0, 1, 2, . . . , 𝑇 do
3: Compute subgradient 𝑔𝑡 = 𝜕𝑓(𝑤𝑡)
4: Choose stepsize 𝛾𝑡 (can be set ac-

cording to (11), (13), or (15))
5: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡𝑔

𝑡

6: Compute Δ𝑡+1 = 𝒞
(︀
𝑥𝑡+1 − 𝑤𝑡

)︀
7: 𝑤𝑡+1 = 𝑤𝑡 +Δ𝑡+1

8: end for
9: Output: 𝑥𝑇

Algorithm 5 EF21-P (distributed version)

1: Input: initial points 𝑤0 = 𝑥0 ∈ R𝑑, stepsize 𝛾0 > 0
2: for 𝑡 = 0, 1, 2, . . . , 𝑇 do
3: for 𝑖 = 1, . . . , 𝑛 on Workers in parallel do
4: Receive compressed difference Δ𝑡 from

server
5: Compute local subgradient 𝑔𝑡𝑖 = 𝜕𝑓𝑖(𝑤

𝑡)
and send it to server

6: end for
7: On Server:
8: Receive 𝑔𝑡𝑖 from workers
9: Choose stepsize 𝛾𝑡 (can be set according to (11),

(13), or (15))
10: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡

1
𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡
𝑖

11: Compute Δ𝑡+1 = 𝒞(𝑥𝑡+1 − 𝑤𝑡) and broadcast
it to workers

12: 𝑤𝑡+1 = 𝑤𝑡 +Δ𝑡+1

13: for 𝑖 = 1, . . . , 𝑛 on Workers in parallel do
14: 𝑤𝑡+1 = 𝑤𝑡 +Δ𝑡+1

15: end for
16: end for
17: Output: 𝑥𝑇

As outlined in Section 3 of the main text, our primary contribution to the exploration of EF21-P
is algorithmic. In Algorithm 5, we extend these results to the distributed setting, allowing for parallel
computation of subgradients 𝜕𝑓(𝑤𝑡). However, in both Algorithm 4 and 5, the gradient-like step (49)
and state update step

𝑤𝑡+1 = 𝑤𝑡 +Δ𝑡+1 (50)

remain fundamentally the same.
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Given that both single-node and distributed regimes result in the same update steps (49) and (50), the
original proof by Anonymous [2024] for Algorithm 4 remains applicable to our Algorithm 5. Nevertheless,
for completeness, we provide proofs for all necessary lemmas and theorems, following the approach in
[Anonymous, 2024].

Our proof technique proceeds as follows: we first establish two key bounds in Lemma 2. We then
combine these bounds to obtain a descent lemma (Lemma 3). Finally, we leverage this descent lemma to
establish convergence results (Theorem 3 and Corollary 3) for different stepsize schedules.

Lemma 2 (Key bounds). Let Assumptions 1 and 2 hold. Define 𝑊 𝑡 :=
{︀
𝑤𝑡
1, . . . , 𝑤

𝑡
𝑛

}︀
. Then, for a single

iteration of EF21-P (Algorithm 1) with 𝛾𝑡 > 0, we have the following bounds:
1.

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥*
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+

1

𝜆

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2

+(1 + 𝜆)𝛾2𝑡
⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
, (51)

where 𝜆 > 0;
2.

E
[︁⃦⃦

𝑤𝑡+1 − 𝑥𝑡+1
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝜃)

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡 𝛽

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
, (52)

where 𝜃 := 1−
√
1− 𝛼 and 𝛽 := 1−𝛼

1−
√
1−𝛼

.

Proof. We prove each bound separately.
1. To establish the first bound, we begin by applying the definition of subgradient:

𝑓(𝑥*) ≥ 𝑓(𝑤𝑡) +
⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑥* − 𝑤𝑡

⟩︀
, (53)

which implies: ⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑤𝑡 − 𝑥*

⟩︀
≥ 𝑓(𝑤𝑡)− 𝑓(𝑥*). (54)

Next, we apply (38) with 𝑠 := 𝜆𝛾𝑡:

2𝛾𝑡
⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑤𝑡 − 𝑥𝑡

⟩︀
≤ 𝜆𝛾2𝑡

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
+

1

𝜆

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
. (55)

where 𝜆 > 0 is a constant to be specified later.
Using the linearity of inner product, we derive:

−2𝛾𝑡
⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑥* − 𝑥𝑡

⟩︀
= −2𝛾𝑡

⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑤𝑡 − 𝑥*

⟩︀
+ 2𝛾𝑡

⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑤𝑡 − 𝑥𝑡

⟩︀
(55)
≤ −2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+ 𝜆𝛾2𝑡

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
+

1

𝜆

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
. (56)

Finally, we establish the first bound (51):

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥*
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
= E

[︁⃦⃦
𝑥𝑡 − 𝛾𝑡𝜕𝑓

(︀
𝑤𝑡
)︀
− 𝑥*

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
=

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

⟨︀
𝜕𝑓
(︀
𝑤𝑡
)︀
, 𝑥𝑡 − 𝑥*

⟩︀
+ 𝛾2𝑡

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

(56)
≤

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+

1

𝜆

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2

+(1 + 𝜆)𝛾2𝑡
⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
. (57)
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2. For the second bound, we proceed as follows:

E
[︁⃦⃦

𝑤𝑡+1 − 𝑥𝑡+1
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
= E

[︁⃦⃦
𝑤𝑡 − 𝒞(𝑥𝑡+1 − 𝑤𝑡)− 𝑥𝑡+1

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝛼)

⃦⃦
𝑤𝑡 − 𝑥𝑡+1

⃦⃦2
2

= (1− 𝛼)
⃦⃦
𝑤𝑡 − 𝑥𝑡 + 𝛾𝑡𝜕𝑓

(︀
𝑤𝑡
)︀⃦⃦2

2

≤ (1− 𝛼)(1 + 𝑠)
⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡 (1− 𝛼)(1 + 𝑠−1)

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

≤ (1− 𝜃(𝑠))
⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡 𝛽(𝑠)

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
,

(58)

where 𝜃(𝑠) := 1− (1− 𝛼)(1 + 𝑠) and 𝛽(𝑠) := (1− 𝛼)(1 + 𝑠−1).
Following [Richtárik et al., 2021], the optimal 𝑠, minimizing (1−𝛼)(1+1/𝑠)

1−(1−𝛼)(1+𝑠) , is 𝑠* = 1√
1−𝛼

− 1,

resulting in 𝜃 := 1− (1− 𝛼)(1 + 𝑠*) = 1−
√
1− 𝛼 and 𝛽 := (1− 𝛼)(1 + 1/𝑠*) =

1−𝛼
1−

√
1−𝛼

.
Therefore, we can establish the second bound (52):

E
[︁⃦⃦

𝑤𝑡+1 − 𝑥𝑡+1
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝜃)

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡 𝛽

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
. (59)

With these two key bounds established in Lemma 2, we can now proceed to the descent lemma. This
lemma describes the one-step behavior of Algorithm 1 for any 𝛾𝑡 > 0 and will be crucial in establishing
our convergence rates.

Lemma 3 (Descent lemma). Let the conditions of Lemma 2 hold. Define the Lyapunov function

𝑉 𝑡
𝜆 :=

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+

1

𝜆𝜃

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
, (60)

where 𝜆 > 0 and 𝜃 := 1−
√
1− 𝛼. Then

E
[︀
𝑉 𝑡+1
𝜆 | 𝑥𝑡,𝑊 𝑡

]︀
≤ 𝑉 𝑡

𝜆 − 2𝛾𝑡
(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+

(︂
1 + 𝜆+

𝛽

𝜆𝜃

)︂
𝛾2𝑡
⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
, (61)

where 𝛽 := 1−𝛼
1−

√
1−𝛼

.

Proof. Recall that Lemma 2 provides us with two key bounds:

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥*
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+

1

𝜆

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2

+(1 + 𝜆)𝛾2𝑡
⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
, (62)

and

E
[︁⃦⃦

𝑤𝑡+1 − 𝑥𝑡+1
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝜃)

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡 𝛽

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
. (63)

To obtain our descent lemma, we combine (62) with 1
𝜆𝜃 times (63):
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E
[︀
𝑉 𝑡+1
𝜆 | 𝑥𝑡,𝑊 𝑡

]︀
(60)
= E

[︁⃦⃦
𝑥𝑡+1 − 𝑥*

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
+

1

𝜆𝜃
E
[︁⃦⃦

𝑤𝑡+1 − 𝑥𝑡+1
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+

1

𝜆

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ (1 + 𝜆)𝛾2𝑡

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

+
1

𝜆𝜃

(︁
(1− 𝜃)

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡 𝛽

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

)︁
=
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+

1

𝜆𝜃

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
− 2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+(1 + 𝜆)𝛾2𝑡

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
+

𝛾2𝑡 𝛽

𝜆𝜃

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

= 𝑉 𝑡
𝜆 − 2𝛾𝑡

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+ (1 + 𝜆)𝛾2𝑡

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
+

𝛾2𝑡 𝛽

𝜆𝜃

⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
.

(64)

C.1 Proof of Theorem 1

Having established the descent lemma, we now proceed to the theorem, which characterizes the conver-
gence behavior of EF21-P under various stepsize schedules.

Before we state and prove the theorem, it is important to make a notational remark to avoid confusion.

Remark 2. In Lemmas 2 and 3, we used an auxiliary term 𝜆 > 0 arising from the application of Young’s
inequality. This term also appeared in the definition of the Lyapunov function 𝑉 𝑡

𝜆 . In the following
theorem, we will show how to choose this 𝜆 optimally and denote it as 𝜆*. Consequently, we define a
Lyapunov function 𝑉 𝑡 such that 𝑉 𝑡 := 𝑉 𝑡

𝜆*
. For simplicity of notation, we will use 𝑉 𝑡 instead of 𝑉 𝑡

𝜆*
in

the theorem statement and proof.

Theorem 3 (Theorem 1). Let Assumptions 1, 2 and 3 hold. Define a Lyapunov function 𝑉 𝑡 :=⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+ 1

𝜆*𝜃

⃦⃦
𝑤𝑡 − 𝑥𝑡

⃦⃦2
2
, where 𝜆* :=

√
1−𝛼

1−
√
1−𝛼

and 𝜃 := 1 −
√
1− 𝛼. Define also a con-

stant 𝐵* := 1 + 2
√
1−𝛼

1−
√
1−𝛼

. Let
{︀
𝑤𝑡
}︀

be the sequence produced by EF21-P (Algorithm 1). Define

𝑤𝑇 := 1
𝑇

∑︀𝑇−1
𝑡=0 𝑤𝑡 and ̂︀𝑤𝑇 := 1∑︀𝑇−1

𝑡=0 𝛾𝑡

∑︀𝑇−1
𝑡=0 𝛾𝑡𝑤

𝑡.

1. (Constant stepsize). If 𝛾𝑡 := 𝛾 > 0, then

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝑉 0

2𝛾𝑇
+

𝐵*𝐿
2
0𝛾

2
. (65)

If, moreover, optimal 𝛾 is chosen i.e.

𝛾 :=
1√
𝑇

√︃
𝑉 0

𝐵*𝐿2
0

, (66)

then

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤
√︀

𝐵*𝐿2
0𝑉

0

√
𝑇

. (67)

2. (Polyak stepsize). If 𝛾𝑡 is chosen as

𝛾𝑡 :=
𝑓(𝑤𝑡)− 𝑓(𝑥*)

𝐵* ‖𝜕𝑓 (𝑤𝑡)‖22
, (68)
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then

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤
√︀

𝐵*𝐿2
0𝑉

0

√
𝑇

. (69)

3. (Decreasing stepsize). If 𝛾𝑡 is chosen as

𝛾𝑡 :=
𝛾0√
𝑡+ 1

, (70)

then

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝑉 0 + 2𝛾20𝐵*𝐿

2
0 log(𝑇 + 1)

𝛾0
√
𝑇

. (71)

If, moreover, optimal 𝛾0 is chosen i.e.

𝛾0 :=

√︃
𝑉0

2𝐵*𝐿2
0 log(𝑇 + 1)

, (72)

then

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 2
√︁
2𝐵*𝐿2

0𝑉0

√︂
log(𝑇 + 1)

𝑇
. (73)

Proof. We will prove each part of the theorem separately, starting with some general bounds that will be
useful throughout the proof.

From Assumption 3, we can infer that 𝑓 is 𝐿0-Lipschitz with 𝐿0 ≤ 1
𝑛

∑︀𝑛
𝑖=1 𝐿0,𝑖 and

‖𝜕𝑓(𝑥)‖2 ≤ 𝐿0 ∀𝑥 ∈ R𝑑. (74)

Now, we proceed to prove each part of the theorem.
1. (Constant stepsize). Using (74), Lemma 3, the tower property of expectation (42), and choosing

constant stepsize 𝛾𝑡 := 𝛾 > 0, we obtain

E
[︀
𝑉 𝑡+1

]︀
≤ E

[︀
𝑉 𝑡
]︀
− 2𝛾E

[︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︀
+

(︂
1 + 𝜆+

𝛽

𝜆𝜃

)︂
𝛾2E

[︁⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

]︁
, (75)

where 𝜆 > 0, 𝜃 := 1−
√
1− 𝛼 and 𝛽 := 1−𝛼

1−
√
1−𝛼

.
From the inequality (75), we have

E
[︀
𝑉 𝑡+1

]︀
≤ E

[︀
𝑉 𝑡
]︀
− 2𝛾E

[︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︀
+𝐵𝜆𝐿

2
0𝛾

2, (76)

where 𝐵𝜆 := 1 + 𝜆+ 𝛽
𝜆𝜃 .

Since 𝑓 is convex, by Jensen’s inequality (45), we have

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ E

[︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︃

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︀
(76)
≤ E

[︀
𝑉 0
]︀
− E

[︀
𝑉 𝑇
]︀

2𝛾𝑇
+

𝐵𝜆𝐿
2
0𝛾

2

𝑉 𝑇 ≥ 0
≤ 𝑉 0

2𝛾𝑇
+

𝐵𝜆𝐿
2
0𝛾

2
. (77)
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To optimize this bound, we need to find the optimal 𝜆. Note that 𝜑(𝜆) := 1 + 𝜆 + 𝛽
𝜆𝜃 is a convex

function on (0,+∞) for any fixed values 𝛽 > 0 and 𝜃 ∈ (0,1].
Therefore, we define the optimal 𝜆 value (denoted 𝜆*) as

𝜆* := argmin
𝜆>0

(︂
1 + 𝜆+

𝛽

𝜆𝜃

)︂
=

√︂
𝛽

𝜃
=

√
1− 𝛼

1−
√
1− 𝛼

. (78)

Next, we define the optimal 𝐵𝜆 value (denoted 𝐵*) as

𝐵* := 𝐵𝜆* = 1 + 2

√︂
𝛽

𝜃
= 1 + 2

√
1− 𝛼

1−
√
1− 𝛼

. (79)

Plugging (79) into (77), we get

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇 )− 𝑓(𝑥*)

]︃
(79), (77)

≤ 𝑉 0

2𝛾𝑇
+

𝐵*𝐿
2
0𝛾

2
. (80)

Thus, we have established (65).
To derive the optimal rate (67), we need to find the optimal 𝛾 stepsize (which we denote 𝛾*):

𝛾* := argmin
𝛾

(︂
𝑉 0

2𝛾𝑇
+

𝐵*𝛾

2

)︂
=

1√
𝑇

√︃
𝑉 0

𝐵*𝐿2
0

. (81)

Therefore, choosing 𝛾 := 𝛾*, (80) reduces to

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇 )− 𝑓(𝑥*)

]︃
≤ 𝑉 0

2𝛾*𝑇
+

𝐵*𝛾*
2

=

√︀
𝑉 0𝐵*𝐿2

0√
𝑇

, (82)

which gives us (67).
2. (Polyak stepsize).
Using Lemma 3, we have

E
[︀
𝑉 𝑡+1 | 𝑥𝑡,𝑊 𝑡

]︀
≤ 𝑉 𝑡 − 2𝛾𝑡𝑓(𝑤

𝑡)− 𝑓(𝑥*) +

(︂
1 + 𝜆+

𝛽

𝜆𝜃

)︂
𝛾2𝑡
⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2
, (83)

where 𝜆 > 0, 𝜃 := 1−
√
1− 𝛼 and 𝛽 := 1−𝛼

1−
√
1−𝛼

.
We choose the Polyak stepsize 𝛾𝑡 as the one that minimizes the right-hand side of (83):

𝛾𝑡 := argmin
𝛾

{︂
𝑉 𝑡 − 2𝛾

(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀
+

(︂
1 + 𝜆+

𝛽

𝜆𝜃

)︂
𝛾2
⃦⃦
𝜕𝑓
(︀
𝑤𝑡
)︀⃦⃦2

2

}︂
=

𝑓(𝑤𝑡)− 𝑓(𝑥*)(︁
1 + 𝜆+ 𝛽

𝜆𝜃

)︁
‖𝜕𝑓 (𝑤𝑡)‖22

. (84)

Note that the denominator in (84) is a convex function of 𝜆. Therefore, similar to (78), we can choose
the optimal 𝜆 as

𝜆* := argmin
𝜆>0

(︂
1 + 𝜆+

𝛽

𝜆𝜃

)︂
=

√︂
𝛽

𝜃
, (85)
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and thus

𝐵* = 1 + 𝜆* +
𝛽

𝜆*𝜃
= 1 + 2

√︂
𝛽

𝜃
= 1 + 2

√
1− 𝛼

1−
√
1− 𝛼

. (86)

Therefore, we derive the final expression for our Polyak stepsize:

𝛾𝑡 :=
𝑓(𝑤𝑡)− 𝑓(𝑥*)

𝐵* ‖𝜕𝑓 (𝑤𝑡)‖22
. (87)

Next, plugging (87) into (83) and using the tower property of expectation (42), we obtain

E
[︀
𝑉 𝑡+1

]︀ (84), (87)
≤ E

[︀
𝑉 𝑡
]︀
− E

⎡⎢⎣ (︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀2
‖𝜕𝑓 (𝑤𝑡)‖22 + 2 ‖𝜕𝑓 (𝑤𝑡)‖2

√︁
‖𝜕𝑓 (𝑤𝑡)‖22

√︁
(1−𝑝)𝜔

𝑝

⎤⎥⎦
(74)
≤ E

[︀
𝑉 𝑡
]︀
−

E
[︁(︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

)︀2]︁
𝐿2
0𝐵*

, (88)

Since 𝑓 is convex, by Jensen’s inequality (45) and the Cauchy-Bunyakovsky-Schwarz inequality (43)
with 𝑋 := 𝑓(𝑤𝑡)− 𝑓(𝑥*) and 𝑌 := 1, we have

E
[︀
𝑓𝑖(𝑤

𝑇 )− 𝑓(𝑥*)
]︀ (45)

≤ E

[︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︃

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︀
(43)
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

√︂
E
[︁
(𝑓(𝑤𝑡)− 𝑓(𝑥*))2

]︁

≤

⎯⎸⎸⎷ 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁
(𝑓(𝑤𝑡)− 𝑓(𝑥*))2

]︁
(88)
≤

√︀
𝐵*𝐿2

0√
𝑇

√︁
E [𝑉 0]− E [𝑉 𝑇 ]

≤
√︀
𝑉 0𝐵*𝐿2

0√
𝑇

.

(89)

Thus, we have established (69).
3. (Decreasing stepsize).
By the same arguments as in the analysis for the constant stepsize case, we can get a bound

E
[︀
𝑉 𝑡+1

]︀
≤ E

[︀
𝑉 𝑡
]︀
− 2𝛾𝑡E

[︀
𝑓(𝑤𝑡)− 𝑓(𝑥*)

]︀
+𝐵*𝐿

2
0𝛾

2
𝑡 , (90)

where 𝐵*
(79)
== 1 + 2

√
1−𝛼

1−
√
1−𝛼

.

If 𝛾𝑡 := 𝛾0√
𝑡+1

with 𝛾0 > 0, then we can get the bounds

𝑇−1∑︁
𝑡=0

𝛾𝑡 ≥
𝛾0
√
𝑇

2
, and

𝑇−1∑︁
𝑡=0

𝛾2𝑡 ≤ 2𝛾20 log(𝑇 + 1). (91)
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Since 𝑓 is convex, by Jensen’s inequality (45), we have

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀ (45)
≤ E

[︃
1∑︀𝑇−1

𝑡=0 𝛾𝑡

𝑇−1∑︁
𝑡=0

𝛾𝑡[𝑓(𝑤
𝑡)− 𝑓(𝑥*)]

]︃
(90)
≤ (E

[︀
𝑉 0
]︀
− E

[︀
𝑉 𝑇
]︀
) +𝐵*𝐿

2
0

∑︀𝑇−1
𝑡=0 𝛾2𝑡

2
∑︀𝑇−1

𝑡=0 𝛾𝑡

𝑉 𝑇 ≥ 0
≤ 𝑉 0 +𝐵*𝐿

2
0

∑︀𝑇−1
𝑡=0 𝛾2𝑡

2
∑︀𝑇−1

𝑡=0 𝛾𝑡
(91)
≤ 𝑉 0 + 2𝛾20𝐵*𝐿

2
0 log(𝑇 + 1)

𝛾0
√
𝑇

. (92)

The optimal 𝛾0 can be chosen by minimizing the right-hand side of (92), i.e.,

𝛾* = argmin
𝛾0>0

(︂
𝑉0

𝛾0
√
𝑇

+
2𝛾0𝐵*𝐿

2
0 log(𝑇 + 1)√
𝑇

)︂
=

√︃
𝑉0

2𝐵*𝐿2
0 log(𝑇 + 1)

.

(93)

Therefore, choosing 𝛾0 := 𝛾*, (92) reduces to

E
[︀
𝑓( ̂︀𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝑉0

𝛾*
√
𝑇

+
2𝛾* log(𝑇 + 1)√

𝑇
= 2

√︀
2𝑉0

√︁
𝐵*𝐿2

0

√︂
log(𝑇 + 1)

𝑇
,

(94)

and we get (73).

Having established our main theorem, we can now derive a corollary that provides more practical
insights into the performance of EF21-P.

C.2 Proof of Corollary 1

Corollary 3 (Corollary 1). Let the conditions of Theorem 1 be met and 𝑤0 = 𝑥0. If 𝛾𝑡 is set according to
(11) or (13) (constant or Polyak stepsizes) then EF21-P (Algorithm 5) requires

𝑇 = 𝒪
(︂
𝐿2
0𝑅

2
0

𝛼𝜀2

)︂
(95)

iterations/communication rounds in order to achieve E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝜀. Moreover, under the

assumption that the communication cost is proportional to the number of non-zero components of vectors
transmitted from the server to workers, we have that the expected total communication cost per worker
equals

𝑑+ 𝜁𝒞𝑇 = 𝒪
(︂
𝑑+

𝜁𝒞𝐿
2
0𝑅

2
0

𝛼𝜀2

)︂
. (96)

Proof. From (67) and (69), we have the convergence rate

E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤
√︀

𝐵*𝐿2
0𝑉

0

√
𝑇

, (97)

where
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𝑉 0 =
⃦⃦
𝑥0 − 𝑥*

⃦⃦2
2
+ 1

𝜆*𝜃

⃦⃦
𝑤0 − 𝑥0

⃦⃦2
2
, with 𝜆* :=

√
1−𝛼

1−
√
1−𝛼

and 𝜃 := 1−
√
1− 𝛼.

𝐵* := 1 + 2
√
1−𝛼

1−
√
1−𝛼

, resulting in a complexity

𝑇 = 𝒪
(︂
𝐵*𝐿

2
0𝑉

0

𝜀2

)︂
(98)

required to achieve E
[︀
𝑓(𝑤𝑇 )− 𝑓(𝑥*)

]︀
≤ 𝜀. Assuming 𝑤0 = 𝑥0, we get

𝑉 0 = 𝑅2
0 =

⃦⃦
𝑥0 − 𝑥*

⃦⃦2
2
. (99)

Further, note

𝐵* = 1 + 2

√
1− 𝛼

1−
√
1− 𝛼

= 1 + 2

√
1− 𝛼(1 +

√
1− 𝛼)

𝛼

= 1 + 2

(︂√
1− 𝛼+ 1− 𝛼

𝛼

)︂
≤ 4

𝛼
− 1. (100)

Plugging (99) and (100) into (98), we get (95).
The expected total communication cost per worker is

𝑑+ 𝜁𝒞𝑇 = 𝒪
(︂
𝑑+

𝜁𝒞𝐿
2
0𝑅

2
0

𝛼𝜀2

)︂
. (101)

This concludes our analysis of the EF21-P algorithm. We have established its convergence rates for
different stepsize schedules and derived complexity bounds. In the next section, we will proceed to
analyze the MARINA-P algorithm.

D Missing Proofs For MARINA-P

In this section, we present the detailed proofs for the theoretical results for MARINA-P algorithm. Our
proof technique proceeds as follows: we first establish two key bounds in Lemma 4. We then combine
these bounds to obtain a descent lemma (Lemma 5). Finally, we leverage this descent lemma to establish
convergence results (Theorem 4 and Corollary 4) for different stepsize schedules.

Lemma 4 (Key bounds). Let Assumptions 1 and 2 hold. Define 𝑊 𝑡 :=
{︀
𝑤𝑡
1, . . . , 𝑤

𝑡
𝑛

}︀
. Then, for a single

iteration of MARINA-P (Algorithm 2) with 𝛾𝑡 > 0, we have the following bounds:
1.

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥*
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+ 𝜆𝛾2𝑡

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

+
1

𝜆

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ 𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

, (102)
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where 𝜆 > 0;
2.

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤𝑡+1
𝑖 − 𝑥𝑡+1

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ (1− 𝑝)𝜔𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

.

(103)

Proof. We prove each bound separately.
1.
To establish the first bound, we begin by applying the definition of subgradient:

𝑓𝑖(𝑥
*) ≥ 𝑓𝑖(𝑤

𝑡
𝑖) +

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑥* − 𝑤𝑡

𝑖

⟩︀
∀𝑖 ∈ [𝑛]. (104)

Summing over all 𝑖 ∈ [𝑛], we obtain

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑥
*) ≥ 1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖) +

1

𝑛

𝑛∑︁
𝑖=1

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑥* − 𝑤𝑡

𝑖

⟩︀
, (105)

which implies

1

𝑛

𝑛∑︁
𝑖=1

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑤𝑡

𝑖 − 𝑥*
⟩︀
≥ 1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*). (106)

Next, we apply (38) with 𝑠 := 𝜆𝛾𝑡:

2𝛾𝑡
1

𝑛

𝑛∑︁
𝑖=1

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑤𝑡

𝑖 − 𝑥𝑡
⟩︀
≤ 𝜆𝛾2𝑡

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+

1

𝜆

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
, (107)

where 𝜆 > 0 is a constant to be specified later.
Using the linearity of inner product, we derive

−2𝛾𝑡

⟨
1

𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑥𝑡 − 𝑥*

⟩

= −2𝛾𝑡
1

𝑛

𝑛∑︁
𝑖=1

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑥𝑡 − 𝑥*

⟩︀
= −2𝛾𝑡

1

𝑛

𝑛∑︁
𝑖=1

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑤𝑡

𝑖 − 𝑥*
⟩︀
+ 2𝛾𝑡

1

𝑛

𝑛∑︁
𝑖=1

⟨︀
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑤𝑡

𝑖 − 𝑥𝑡
⟩︀

(106), (107)
≤ −2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+ 𝜆𝛾2𝑡

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+

1

𝜆

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
.

(108)
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Finally, we establish the first bound (102):

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥*
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
(9)
= E

⎡⎣⃦⃦⃦⃦⃦𝑥𝑡 − 𝛾𝑡
1

𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
− 𝑥*

⃦⃦⃦⃦
⃦
2

2

| 𝑥𝑡,𝑊 𝑡

⎤⎦
=
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

⟨
1

𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀
, 𝑥𝑡 − 𝑥*

⟩
+ 𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

(108)
≤
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+ 𝜆𝛾2𝑡

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+

1

𝜆

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2

+𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

.

(109)

2.
For the second bound, we consider the definition of 𝑤𝑡+1

𝑖 from step (17) of Algorithm 2:

𝑤𝑡+1
𝑖 =

{︃
𝑥𝑡+1 with probability 𝑝,

𝑤𝑡
𝑖 +𝒬𝑡

𝑖(𝑥
𝑡+1 − 𝑥𝑡) with probability 1− 𝑝.

(110)

Applying the variance decomposition (44) and tower property (42), we establish the second bound (103):

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤𝑡+1
𝑖 − 𝑥𝑡+1

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
(42)
= (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤𝑡
𝑖 +𝒬𝑖(𝑥

𝑡+1 − 𝑥𝑡)− 𝑥𝑡+1
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
= (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑥𝑡 −𝒬𝑖(𝑥

𝑡+1 − 𝑥𝑡)− (𝑥𝑡+1 − 𝑥𝑡)
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
(44)
= (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒬𝑖(𝑥
𝑡+1 − 𝑥𝑡)− (𝑥𝑡+1 − 𝑥𝑡)

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ (1− 𝑝)𝜔

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
2

(9)
= (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ (1− 𝑝)𝜔𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

. (111)

With these two key bounds established in Lemma 4, we can now proceed to the descent lemma. This
lemma describes the one-step behavior of Algorithm 2 for any 𝛾𝑡 > 0 and will be crucial in establishing
our convergence rates.

Lemma 5 (Descent lemma). Let the conditions of Lemma 4 hold. Define the Lyapunov function

𝑉 𝑡
𝜆 :=

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+

1

𝜆𝑝

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
, (112)
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where 𝜆 > 0 is a constant. Then

E
[︀
𝑉 𝑡+1
𝜆 | 𝑥𝑡,𝑊 𝑡

]︀
≤ 𝑉 𝑡

𝜆 − 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+ 𝜆𝛾2𝑡

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

+𝛾2𝑡

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂ ⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

. (113)

Proof. Recall that Lemma 4 provides us with two key bounds:

1.

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥*
⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤

⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+

1

𝜆

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2

+𝜆𝛾2𝑡
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+ 𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

,

(114)

where 𝜆 > 0;

2.

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤𝑡+1
𝑖 − 𝑥𝑡+1

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤ (1− 𝑝)

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ (1− 𝑝)𝜔𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

.

(115)

To obtain our descent lemma, we combine (114) with 1
𝜆𝑝 times (115):

E
[︀
𝑉 𝑡+1
𝜆 | 𝑥𝑡,𝑊 𝑡

]︀
(112)
= E

[︁⃦⃦
𝑥𝑡+1 − 𝑥*

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
+

1

𝜆𝑝

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤𝑡+1
𝑖 − 𝑥𝑡+1

⃦⃦2
2
| 𝑥𝑡,𝑊 𝑡

]︁
≤
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
− 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+

1

𝜆

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2

+𝜆𝛾2𝑡
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+ 𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

+
1

𝜆𝑝

⎛⎝(1− 𝑝)
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
+ (1− 𝑝)𝜔𝛾2𝑡

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

⎞⎠ (116)

42



=
⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+

1

𝜆𝑝

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
− 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃

+𝜆𝛾2𝑡
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+ 𝛾2𝑡

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂ ⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

(112)
= 𝑉 𝑡

𝜆 − 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃

+𝜆𝛾2𝑡
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+ 𝛾2𝑡

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂ ⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

.

(117)

This completes the proof of the descent lemma.

D.1 Proof of the Theorem 2

With the descent lemma established, we can now proceed to the main theoretical result of this paper.
Before we state and prove the theorem, it is important to make a notational remark to avoid confusion.

Remark 3. In Lemmas 4 and 5, we used an auxiliary term 𝜆 > 0 arising from the application of Young’s
inequality. This term also appeared in the definition of the Lyapunov function 𝑉 𝑡

𝜆 . In the following
theorem, we will show how to choose this 𝜆 optimally and denote it as 𝜆*. Consequently, we define a
Lyapunov function 𝑉 𝑡 such that 𝑉 𝑡 := 𝑉 𝑡

𝜆*
. For simplicity of notation, we will use 𝑉 𝑡 instead of 𝑉 𝑡

𝜆*
in

the theorem statement and proof.

Now, let us restate and prove the main theorem.

Theorem 4 (Theorem 2). Let Assumptions 1, 2 and 3 hold. Define a Lyapunov function 𝑉 𝑡 :=⃦⃦
𝑥𝑡 − 𝑥*

⃦⃦2
2
+ 1

𝜆*𝑝
1
𝑛

∑︀𝑛
𝑖=1

⃦⃦
𝑤𝑡
𝑖 − 𝑥𝑡

⃦⃦2
2
, where 𝜆* := 𝐿0̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 . Define also a constant ̃︀𝐵* :=

𝐿
2
0 + 2𝐿0

̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 . Let
{︀
𝑤𝑡
𝑖

}︀
be the sequence produced by MARINA-P (Algorithm 2). Define

𝑤𝑇
𝑖 := 1

𝑇

∑︀𝑇−1
𝑡=0 𝑤𝑡

𝑖 and ̂︀𝑤𝑇
𝑖 := 1∑︀𝑇−1

𝑡=0 𝛾𝑡

∑︀𝑇−1
𝑡=0 𝛾𝑡𝑤

𝑡
𝑖 for all 𝑖 ∈ [𝑛].

1. (Constant stepsize). If 𝛾𝑡 := 𝛾 > 0, then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 𝑉 0

2𝛾𝑇
+
̃︀𝐵*𝛾

2
. (118)

If, moreover, the optimal 𝛾 is chosen, i.e.,

𝛾 :=
1√
𝑇

√︃
𝑉 0̃︀𝐵*

, (119)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤

√︁̃︀𝐵*𝑉 0

√
𝑇

. (120)

2. (Polyak stepsize). If 𝛾𝑡 is chosen as

𝛾𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*)⃦⃦

1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦2
2
+ 2

⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦
2

√︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝜕𝑓𝑖 (𝑤𝑡

𝑖)‖
2
2

√︁
(1−𝑝)𝜔

𝑝

, (121)
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then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤

√︁̃︀𝐵*𝑉 0

√
𝑇

. (122)

3. (Decreasing stepsize). If 𝛾𝑡 is chosen as

𝛾𝑡 :=
𝛾0√
𝑡+ 1

, (123)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 𝑉 0 + 2𝛾20

̃︀𝐵* log(𝑇 + 1)

𝛾0
√
𝑇

. (124)

If, moreover, the optimal 𝛾0 is chosen, i.e.,

𝛾0 :=

√︃
𝑉0

2 ̃︀𝐵* log(𝑇 + 1)
, (125)

then

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 2

√︁
2 ̃︀𝐵*𝑉0

√︂
log(𝑇 + 1)

𝑇
. (126)

Proof. We will prove each part of the theorem separately, starting with some general bounds that will be
useful throughout the proof.

From Assumption 3, we can infer that

‖𝜕𝑓𝑖(𝑥)‖2 ≤ 𝐿0,𝑖 ∀𝑥 ∈ R𝑑 and ∀𝑖 ∈ [𝑛]. (127)

This implies

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

≤ ̃︀𝐿2
0, ∀𝑤𝑡

𝑖 ∈ R𝑑 and 𝑖 ∈ [𝑛], (128)

where ̃︀𝐿0 :=
√︁

1
𝑛

∑︀𝑛
𝑖=1 𝐿

2
0,𝑖, and⃦⃦⃦⃦

⃦ 1𝑛
𝑛∑︁

𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

(34)
≤ 1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦
2
≤ 𝐿0, ∀𝑤𝑡

𝑖 ∈ R𝑑 and 𝑖 ∈ [𝑛], (129)

where 𝐿0 :=
1
𝑛

∑︀𝑛
𝑖=1 𝐿0,𝑖.

Now, we proceed to prove each part of the theorem.
1. (Constant stepsize).
Using (128), (129), Lemma 5, the tower property of expectation (42), and choosing constant stepsize

𝛾𝑡 := 𝛾 > 0, we obtain

E
[︀
𝑉 𝑡+1

]︀
≤ E

[︀
𝑉 𝑡
]︀
− 2𝛾E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

]︃
+ 𝜆𝛾2

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

]︁

+

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂
𝛾2E

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

⎤⎦
(128), (129)

≤ E
[︀
𝑉 𝑡
]︀
− 2𝛾E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

]︃
+ ̃︀𝐵𝜆𝛾

2, (130)
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where ̃︀𝐵𝜆 := 𝜆̃︀𝐿2
0 + 𝐿

2
0

(︁
1 + (1−𝑝)𝜔

𝜆𝑝

)︁
.

Since each 𝑓𝑖 for all 𝑖 ∈ [𝑛] is convex, by Jensen’s inequality (45), we have

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
(45)
≤ E

[︃
1

𝑛

𝑛∑︁
𝑖=1

1

𝑇

𝑇−1∑︁
𝑡=0

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

]︃

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤𝑡
𝑖)− 𝑓(𝑥*)

]︃
(130)
≤ E

[︀
𝑉 0
]︀
− E

[︀
𝑉 𝑇
]︀

2𝛾𝑇
+
̃︀𝐵𝜆𝛾

2

𝑉 𝑇 ≥ 0
≤ 𝑉 0

2𝛾𝑇
+
̃︀𝐵𝜆𝛾

2
. (131)

To optimize this bound, we need to find the optimal 𝜆. Note that 𝜑(𝜆) := 𝜆̃︀𝐿2
0 + 𝐿

2
0

(︁
1 + (1−𝑝)𝜔

𝜆𝑝

)︁
is

a convex function on (0,+∞) for any fixed values ̃︀𝐿0 > 0, 𝐿0 > 0, 𝑝 ∈ (0,1], 𝜔 > 0.
Therefore, we define the optimal 𝜆 value (denoted 𝜆*) as

𝜆* := argmin
𝜆>0

(︂
𝜆̃︀𝐿2

0 + 𝐿
2
0

(︂
1 +

(1− 𝑝)𝜔

𝜆𝑝

)︂)︂
=

𝐿0̃︀𝐿0

√︃
(1− 𝑝)𝜔

𝑝
. (132)

Next, we define the optimal ̃︀𝐵 value (denoted ̃︀𝐵*) as

̃︀𝐵* := ̃︀𝐵𝜆* = 𝜆*̃︀𝐿2
0 + 𝐿

2
0

(︂
1 +

(1− 𝑝)𝜔

𝜆*𝑝

)︂
= 𝐿

2
0 + 2𝐿0

̃︀𝐿0

√︃
(1− 𝑝)𝜔

𝑝
. (133)

Plugging (133) into (131), we get

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
(133), (131)

≤ 𝑉 0

2𝛾𝑇
+
̃︀𝐵*𝛾

2
. (134)

Thus, we have established (118).
To derive the optimal rate (120), we need to find the optimal 𝛾 stepsize (which we denote 𝛾*):

𝛾* := argmin
𝛾

(︃
𝑉 0

2𝛾𝑇
+
̃︀𝐵*𝛾

2

)︃
=

1√
𝑇

√︃
𝑉 0̃︀𝐵*

. (135)

Therefore, choosing 𝛾 := 𝛾*, (134) reduces to

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 𝑉 0

2𝛾*𝑇
+
̃︀𝐵*𝛾*
2

=

√︁
𝑉 0 ̃︀𝐵*√
𝑇

, (136)

which gives us (120).
2. (Polyak stepsize). By Lemma 5, we have

E
[︀
𝑉 𝑡+1 | 𝑥𝑡,𝑊 𝑡

]︀
≤ 𝑉 𝑡 − 2𝛾𝑡

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+ 𝜆𝛾2𝑡

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

+𝛾2𝑡

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂ ⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

. (137)

45



We choose the Polyak stepsize 𝛾𝑡 as the one that minimizes the right-hand side of (137):

𝛾𝑡 := argmin
𝛾

{︃
𝑉 𝑡 − 2𝛾

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

)︃
+ 𝜆𝛾2

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

+

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂
𝛾2

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

⎫⎬⎭
=

1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*)

𝜆 1
𝑛

∑︀𝑛
𝑖=1 ‖𝜕𝑓𝑖 (𝑤𝑡

𝑖)‖
2
2 +

(︁
1 + (1−𝑝)𝜔

𝑝𝜆

)︁ ⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦2
2

. (138)

Note that the denominator in (138) is a convex function of 𝜆. Therefore, similar to (132), we can
choose the optimal 𝜆 as

𝜆* := argmin
𝜆>0

⎛⎝𝜆
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆

)︂ ⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

⎞⎠
=

⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖

(︀
𝑤𝑡
𝑖

)︀⃦⃦
2√︁

1
𝑛

∑︀𝑛
𝑖=1 ‖𝜕𝑓𝑖 (𝑤𝑡

𝑖)‖
2
2

√︃
(1− 𝑝)𝜔

𝑝
, (139)

and thus

𝜆*
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2
+

(︂
1 +

(1− 𝑝)𝜔

𝑝𝜆*

)︂ ⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

=

⎛⎝ ⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖

(︀
𝑤𝑡
𝑖

)︀⃦⃦
2√︁

1
𝑛

∑︀𝑛
𝑖=1 ‖𝜕𝑓𝑖 (𝑤𝑡

𝑖)‖
2
2

√︃
(1− 𝑝)𝜔

𝑝

⎞⎠ 1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦2
2

+

⎛⎜⎜⎜⎜⎝1 +
(1− 𝑝)𝜔

𝑝

(︃
‖ 1

𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖(𝑤𝑡

𝑖)‖2√︁
1
𝑛

∑︀𝑛
𝑖=1‖𝜕𝑓𝑖(𝑤𝑡

𝑖)‖2

2

√︁
(1−𝑝)𝜔

𝑝

)︃
⎞⎟⎟⎟⎟⎠
⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

=

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

2

+ 2

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜕𝑓𝑖
(︀
𝑤𝑡
𝑖

)︀⃦⃦⃦⃦⃦
2

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

‖𝜕𝑓𝑖 (𝑤𝑡
𝑖)‖

2
2

√︃
(1− 𝑝)𝜔

𝑝
. (140)

Therefore, we derive the final expression for our Polyak stepsize:

𝛾𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*)⃦⃦

1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦2
2
+ 2

⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦
2

√︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝜕𝑓𝑖 (𝑤𝑡

𝑖)‖
2
2

√︁
(1−𝑝)𝜔

𝑝

. (141)

Next, plugging (141) into (137) and using the tower property of expectation (42), we obtain
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E
[︀
𝑉 𝑡+1

]︀
(137), (141)

≤ E
[︀
𝑉 𝑡
]︀
− E

⎡⎢⎣ (︀
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*)

)︀2⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦2
2
+ 2

⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝜕𝑓𝑖 (𝑤

𝑡
𝑖)
⃦⃦
2

√︁
1
𝑛

∑︀𝑛
𝑖=1 ‖𝜕𝑓𝑖 (𝑤𝑡

𝑖)‖
2
2

√︁
(1−𝑝)𝜔

𝑝

⎤⎥⎦
(128), (129), (133)

≤ E
[︀
𝑉 𝑡
]︀
−

E
[︁(︀

1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*)

)︀2]︁
̃︀𝐵*

, (142)

where ̃︀𝐵*
(133)
= 𝐿

2
0 + 2𝐿0

̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 .

Since each 𝑓𝑖 for all 𝑖 ∈ [𝑛] is convex, by Jensen’s inequality (45) and the Cauchy-Bunyakovsky-
Schwarz inequality (43) with 𝑋 := 1

𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑡
𝑖)− 𝑓(𝑥*) and 𝑌 := 1, we have

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
(45)
≤ E

[︃
1

𝑛

𝑛∑︁
𝑖=1

1

𝑇

𝑇−1∑︁
𝑡=0

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

]︃

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

]︃

(43)
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

⎯⎸⎸⎸⎷E

⎡⎣(︃ 1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤𝑡
𝑖)− 𝑓(𝑥*)

)︃2
⎤⎦

≤

⎯⎸⎸⎸⎷ 1

𝑇

𝑇−1∑︁
𝑡=0

E

⎡⎣(︃ 1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤𝑡
𝑖)− 𝑓(𝑥*)

)︃2
⎤⎦

(142)
≤

√︀̃︀𝐵√
𝑇

√︁
E [𝑉 0]− E [𝑉 𝑇 ]

≤
√︀̃︀𝐵√

𝑉 0

√
𝑇

.

(143)

Thus, we have established (122).
3. (Decreasing stepsize). By the same arguments as in the analysis for the constant stepsize case, we

can get a bound

E
[︀
𝑉 𝑡+1

]︀ (133)
≤ E

[︀
𝑉 𝑡
]︀
− 2𝛾𝑡E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)

]︃
+ ̃︀𝐵*𝛾

2
𝑡 , (144)

where ̃︀𝐵*
(133)
= 𝐿

2
0 + 2𝐿0

̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 .

If 𝛾𝑡 := 𝛾0√
𝑡+1

with 𝛾0 > 0, then we can get the bounds

𝑇−1∑︁
𝑡=0

𝛾𝑡 ≥
𝛾0
√
𝑇

2
, and

𝑇−1∑︁
𝑡=0

𝛾2𝑡 ≤ 2𝛾20 log(𝑇 + 1). (145)

Since each 𝑓𝑖 for all 𝑖 ∈ [𝑛] is convex, by Jensen’s inequality (45), we have
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E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖( ̂︀𝑤𝑇
𝑖 )− 𝑓(𝑥*)

]︃
(45)
≤ E

[︃
1

𝑛

𝑛∑︁
𝑖=1

1∑︀𝑇−1
𝑡=0 𝛾𝑡

𝑇−1∑︁
𝑡=0

𝛾𝑡[𝑓𝑖(𝑤
𝑡
𝑖)− 𝑓(𝑥*)]

]︃
(144)
≤ (E

[︀
𝑉 0
]︀
− E

[︀
𝑉 𝑇
]︀
) + ̃︀𝐵*

∑︀𝑇−1
𝑡=0 𝛾2𝑡

2
∑︀𝑇−1

𝑡=0 𝛾𝑡

𝑉 𝑇 ≥ 0
≤ 𝑉 0 + ̃︀𝐵*

∑︀𝑇−1
𝑡=0 𝛾2𝑡

2
∑︀𝑇−1

𝑡=0 𝛾𝑡

(145)
≤ 𝑉 0 + 2𝛾20

̃︀𝐵* log(𝑇 + 1)

𝛾0
√
𝑇

. (146)

The optimal 𝛾0 can be chosen by minimizing the right-hand side of (146), i.e.,

𝛾* = argmin
𝛾0>0

(︃
𝑉0

𝛾0
√
𝑇

+
2𝛾0 ̃︀𝐵* log(𝑇 + 1)√

𝑇

)︃
=

√︃
𝑉0

2 ̃︀𝐵* log(𝑇 + 1)
,

(147)

Therefore, choosing 𝛾0 := 𝛾*, (146) reduces to

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖( ̂︀𝑤𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤ 𝑉0

𝛾*
√
𝑇

+
2𝛾* log(𝑇 + 1)√

𝑇
= 2

√︀
2𝑉0

√︁̃︀𝐵*

√︂
log(𝑇 + 1)

𝑇
,

(148)

and we get (126).

Having established our main theorem, we can now derive a corollary that provides more practical
insights into the performance of MARINA-P.

D.2 Proof of the Corollary 2

Corollary 4 (Corollary 2). Let the conditions of Theorem 2 be met, 𝑝 = 𝜁𝒬
𝑑 and 𝑤0

𝑖 = 𝑥0 for all 𝑖 ∈ [𝑛].
If 𝛾𝑡 is set according to (21) or (23) (constant or Polyak stepsizes) then MARINA-P (Algorithm 2) requires

𝑇 = 𝒪
(︃
𝑅2

0

𝜀2

(︃
𝐿
2
0 + 𝐿0

̃︀𝐿0

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂)︃)︃
(149)

iterations/communication rounds in order to achieve E
[︀
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑇
𝑖 )− 𝑓(𝑥*)

]︀
≤ 𝜀. Moreover, under

the assumption that the communication cost is proportional to the number of non-zero components of
vectors transmitted from the server to workers, we have that the expected total communication cost per
worker equals

𝒪
(︃
𝑑+

̃︀𝐿2
0𝑅

2
0𝜁𝒬

𝜀2

(︃
1 +

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂)︃)︃
. (150)

Proof. From (120) and (122), we have the convergence rate

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖(𝑤
𝑇
𝑖 )− 𝑓(𝑥*)

]︃
≤

√︁̃︀𝐵*𝑉 0

√
𝑇

, (151)
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where 𝑉 0 =
⃦⃦
𝑥0 − 𝑥*

⃦⃦2
2
+ 1

𝜆*𝑝
1
𝑛

∑︀𝑛
𝑖=1

⃦⃦
𝑤0
𝑖 − 𝑥0

⃦⃦2
2

and ̃︀𝐵* = 𝐿
2
0 + 2𝐿0

̃︀𝐿0

√︁
(1−𝑝)𝜔

𝑝 , resulting in a
complexity

𝑇 = 𝒪
(︃ ̃︀𝐵*𝑉

0

𝜀2

)︃
(152)

required to achieve E
[︀
1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑤

𝑇
𝑖 )− 𝑓(𝑥*)

]︀
≤ 𝜀.

Assuming 𝑤0
𝑖 = 𝑥0 for all 𝑖 ∈ [𝑛] and 𝑝 = 𝜁𝒬

𝑑 , we get

𝑉 0 = 𝑅2
0 =

⃦⃦
𝑥0 − 𝑥*

⃦⃦2
2

and ̃︀𝐵* = 𝐿
2
0 + 𝐿0

̃︀𝐿0

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂
. (153)

Plugging (153) into (152), we get (149).
The expected total communication cost per worker is

𝑑+ (𝑑𝑝+ 𝜁𝒬(1− 𝑝))𝑇 ≤ 𝑑+
̃︀𝐿2
0𝑅

2
0

𝜀2
(𝑑𝑝+ 𝜁𝒬(1− 𝑝))

(︃
1 + 2

√︃
(1− 𝑝)𝜔

𝑝

)︃

= 𝑑+
̃︀𝐿2
0𝑅

2
0

𝜀2
(𝑑𝑝+ 𝜁𝒬(1− 𝑝))

(︃
1 + 2

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂)︃

≤ 𝑑+
2̃︀𝐿2

0𝑅
2
0

𝜀2
𝜁𝒬

(︃
1 + 2

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂)︃

= 𝒪
(︃
𝑑+

̃︀𝐿2
0𝑅

2
0𝜁𝒬

𝜀2

(︃
1 +

√︃
𝜔

(︂
𝑑

𝜁𝒬
− 1

)︂)︃)︃
, (154)

where we used the bound 𝑝+ 𝜁𝒬(1− 𝑝) ≤ 2𝜁𝒬.
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