
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN NAMES DISAPPEAR: REVEALING WHAT LLMS
ACTUALLY UNDERSTAND ABOUT CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) achieve strong results on code tasks, but how
they derive program meaning remains unclear. We argue that code communi-
cates through two channels: structural semantics, which define formal behavior,
and human-interpretable naming, which conveys intent. Removing the naming
channel severely degrades intent-level tasks such as summarization, where mod-
els regress to line-by-line descriptions. Surprisingly, we also observe consis-
tent reductions on execution tasks that should depend only on structure, reveal-
ing that current benchmarks reward memorization of naming patterns rather than
genuine semantic reasoning. To disentangle these effects, we introduce a suite
of semantics-preserving obfuscations and show that they expose identifier leak-
age across both summarization and execution. Building on these insights, we
release CLASSEVAL-OBF, an obfuscation-enhanced benchmark that systemati-
cally suppresses naming cues while preserving behavior. Our results demonstrate
that CLASSEVAL-OBF reduces inflated performance gaps, weakens memorization
shortcuts, and provides a more reliable basis for assessing LLMs’ code under-
standing and generalization.

1 INTRODUCTION

Large language models (LLMs) now achieve striking results across code intelligence—program
synthesis, repair, summarization, and test generation. Yet how these models derive meaning from
source code remains unclear. We posit that code communicates through two channels: a struc-
tural/semantic channel (syntax, control/data flow, execution behavior) and a human–naturalness
channel (identifier names, docstrings, and other linguistic signals). If an LLM truly understands a
program’s intent, its behavior should remain stable when human-interpretable names are perturbed
while semantics stay fixed; conversely, strong performance drops would indicate an overreliance on
surface cues rather than semantic reasoning.

To probe this question, we move beyond a single perturbation (e.g., α-renaming) and introduce a
suite of semantics-preserving obfuscations that progressively weaken the naturalness channel while
preserving executable behavior. Our suite includes 1) simple structural renaming (alpha-renaming):
replace identifiers with role-preserving placeholders; 2) Ambiguous identifiers: replace identifiers
with visually ambiguous tokens; 3) Cross-domain terms: substitute identifiers with terms from unre-
lated fields to break semantic cues in the application domains; and 4) Misleading semantics: assign
names that imply incorrect behaviors.

These transformations define a rename–obfuscation spectrum from minimally disruptive (syn-
onyms) to strongly disruptive (opaque tokens), enabling a graded analysis of robustness. We then
evaluate models on complementary task families that stress distinct facets of “understanding”: in-
tent summarization (what/why) and execution/IO prediction. We stratify data across intent-rich,
real-world code (where names and headers carry domain semantics) and algorithmic, competitive-
programming code (where identifiers are already minimal and structure is highly diagnostic).

This design yields three core observations. First, on intent-rich code, class- and method-level
summarization degrades sharply under strong obfuscation (especially entity-level renaming), of-
ten collapsing into line-by-line narration. Second, on competitive-programming solutions, sum-
maries remain intent-faithful under obfuscation, consistent with the view that structure alone is suf-
ficient when algorithmic patterns are canonical and naming is sparse. Third, and most surprisingly,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

even execution-oriented tasks—ostensibly dependent only on program semantics—show non-trivial
drops after obfuscation, suggesting that existing benchmarks permit shortcuts in which identifiers
act as retrieval cues for memorized patterns rather than triggering genuine reasoning. Our additional
stress tests with input augmentation indicate that removing names reduces these retrieval effects,
narrowing the gap between the appearance of step-wise reasoning and actual generalization.

Our study contributes a principled framework for disentangling the two channels of code understand-
ing and for diagnosing where models rely on names versus structure. Methodologically, we pair a
capture-avoiding obfuscation harness with semantics-invariance checks (execution correctness) and
report human-aligned intent metrics via code summarization. Finally, we also release CLASSEVAL-
OBF, an obfuscation-enhanced variant of class- and function-level benchmarks to promote evalua-
tions that are less susceptible to naming leakage, available at https://classeval-obf.site

2 RELATED WORK

Structure-aware and execution-grounded modeling. Modern code models increasingly fuse
structural program information and execution signals. Guo et al. (2021) pre-train GraphCode-
BERT with data-flow edges and variable alignment, showing that incorporating semantic structure
improves downstream code understanding tasks (search, clone detection, translation, refinement).
Tehrani Jamsaz et al. (2023) introduce PerfoGraph, a program-graph representation that injects nu-
merical and aggregate-structure information to better capture program behavior. Li et al. (2023) pro-
pose SANTA, a structure-aware dense retrieval model that aligns structured and unstructured data
via contrastive pretraining and entity-masked prediction. Wu et al. (2024) introduce a plug-and-play
method that leverages AST-based structure loss during fine-tuning to enhance pretrained code LLMs,
particularly under limited training data. Le et al. (2022) propose CodeRL, which grounds genera-
tion in unit-test execution feedback via reinforcement learning to optimize functional correctness.
Together, these lines suggest that beyond token sequences, structure- and execution-aware learning
is essential to robust code understanding—an assumption our study probes from a complementary
angle by isolating the role of human-interpretable naming.

Identifier naming, robustness, and obfuscation. A growing body of work shows that model pre-
dictions can be sensitive to identifier naming and obfuscation. Gao et al. (2023) demonstrate sub-
stantial performance drops from simple identifier renaming and propose Cream, a counterfactual
framework to separate helpful from misleading identifier signals across code understanding tasks.
In a related direction, Yang et al. (2022) study natural adversarial attacks on code models (including
variable renaming) and document brittleness to lexical changes that preserve semantics. Lam et al.
(2025) introduce a unified benchmark that applies logic-preserving perturbations—ranging from
systematic renaming and conditional rewrites to misleading comments and garbage code—to reveal
overreliance on natural-language cues and reasoning collapse in LLMs. Our obfuscating renaming
experiments build directly on these observations: by holding program semantics fixed while remov-
ing human-interpretable names, we quantify how much intent-level understanding depends on the
“naturalness” channel versus program semantics.

Benchmarks, evaluation scope, and SE perspectives. Benchmarks for evaluating large language
models (LLMs) on code tasks have evolved from short snippet assessments to more realistic soft-
ware engineering scenarios. Early benchmarks such as HUMANEVAL (Chen et al., 2021), MBPP
(Austin et al., 2021), EVALPLUS (Liu et al., 2023), CodeXGlue (Lu et al., 2021), CodeApex (Fu
et al., 2023), CodeMMLU (Nguyen et al., 2025), and BigCodeBench (Zhuo et al., 2024) primarily
target function- or snippet-level tasks. In contrast, LiveCodeBench (Jain et al., 2025) and Code-
Contests (Li et al., 2022) emphasize competitive programming. More recent efforts—including
ClassEval (Du et al., 2024a), SWE-Bench (Jimenez et al., 2024), SWE-Gym (Pan et al., 2025),
SWE-Bench-live (Zhang et al., 2025), Defects4J (Just et al., 2014), and BugsInPy (Widyasari et al.,
2020)—extend evaluation to class- and repository-level settings, revealing capability gaps not cap-
tured by function-only benchmarks. Parallel research has advanced execution-grounded evaluation.
CruxEval (Gu et al., 2024) formalized input–output prediction, while LiveCodeBench (Jain et al.,
2025) expanded this to human-written solutions. Benchmarks such as REval (Chen et al., 2025) and
CACP (Hooda et al., 2024) identified concept-level reasoning failures, and execution-based frame-
works including LEVER (Ni et al., 2023), CodeScore (Dong et al., 2025), and XCODEEVAL (Khan
et al., 2024) refined evaluation methodology. Robustness has also been studied through semantic-

2

https://classeval-obf.site

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

preserving transformations, such as ReCode (Wang et al., 2022). From the synthesis perspective,
reinforcement learning and feedback-based methods emphasize behavior-grounded evaluation (Le
et al., 2022; Pham et al., 2025; Yang et al., 2025; Gehring et al., 2024). Complementary surveys and
empirical studies further highlight concerns about robustness and validity in developer-facing tasks
(Gao et al., 2023; Lam et al., 2025). Our work complements these trends by proposing α-renaming
as a controlled stress test that distinguishes intent-level summarization from behavior-level execu-
tion, and by recommending reporting protocols (e.g., pre/post renaming deltas and uncertainty).

3 PRELIMINARY EXPERIMENT AND MOTIVATION

Unlike natural languages, programming languages allow developers to write programs that instruct
machines to perform specific tasks. Source code conveys program meaning through two comple-
mentary channels: program semantics, which captures the formal behavior of a program via program
constructs, and human-interpretable naming (naturalness channel Hindle et al. (2012)), where iden-
tifiers and comments convey program intent (we focus on identifiers since not all programs have
comments). While program constructs may be sufficient to recover canonical algorithms, intent-
level understanding in real-world code often relies on naming. If LLMs truly reason and have full
comprehension on source code, removing the naming channel should primarily affect tasks that re-
quire intent inference, such as summarization, while leaving execution-oriented tasks largely intact.

JudgeJudge

Original Program
class MinesweeperGame:
def __init__(self, n, k) -> None:
self.n = n
self.k = k
self.minesweeper_map = self.generate_mine_sweeper_map()
self.player_map = self.generate_playerMap()
self.score = 0

def generate_mine_sweeper_map(self):
arr = [[0 for row in range(self.n)] for column in range(self.n)]
for num in range(self.k):
x = random.randint(0, self.n-1)
...

def generate_playerMap(self): ...
def check_won(self, map): ...
def sweep(self, x, y): ...

class Class1:
def __init__(self, var1, var2) -> None:
self.var1 = var1
self.var2 = var2
self.var3 = self.method1()
self.var4 = self.method2()
self.var5 = 0

def method1(self):
var6 = [[0 for var7 in range(self.var1)] for var8 in range(self.var1)]
for var9 in range(self.var2):
var10 = random.randint(0, self.var1 - 1)
...

def method2(self): ...
def method3(self, var12): ...
def method4(self, var10, var11): ...

Alpha Renaming

This Python class
implements the logic for a
game, including setting up
the minefield, managing the
player's map, and handling
player moves while
checking for win conditions.

Summary
The class creates a square grid where some
cells are randomly marked. It involves
initializing this grid and another similar grid
with placeholders, processing the grids to
increment numbers around marked cells,
and providing functionalities to check if the
second grid has been correctly marked
based on the first grid's configuration. The
primary utility seems to be related to a grid-
based game or puzzle where cells can
contain markers, and numbers around them
denote the count of adjacent markers.

Summary

This is a class that
implements mine sweeping
games including
minesweeping and winning
judgment.

Groundtruth Summary

obfuscate

The generated summary captures the main
functionality of implementing a minesweeping
game and checking win conditions as described in
the reference.

Result
The generated summary does not
mention minesweeping or winning
judgment.

Result

Figure 1: Names as semantic anchors for summarization. LLM produces an intent-level summary
with the original identifiers (left), but collapses to line-by-line narration after name-only obfuscation
(right), despite identical structure and behavior.

As a first step, we focus on code summarization because it explicitly targets program intent rather
than detail-level program constructs. To isolate the role of the human-interpretable channel, we ob-
fuscated variable and method names while preserving the program’s structure. Figure 1 illustrates
this using a Python CLASSEVAL dataset Du et al. (2024b) example implementing a Minesweeper
game. In the original version, names such as MinesweeperGame, sweep, check won, and coor-
dinates x,y serve as semantic anchors that strongly hint at the domain and gameplay logic. After
obfuscation, these anchors were removed, though the control and data flows remained unchanged.

When prompted to generate a summary, the model’s behavior diverged sharply. On the original code,
the GPT-4o correctly identified a Minesweeper game, describing initialization, gameplay logic, and
winning conditions. On the obfuscated version, it failed to capture the concept, instead degenerating
into line-by-line descriptions of grid updates and neighbor increments without naming the task or
intent. This contrast suggests that identifiers are disproportionately influential for summarization,
anchoring structural patterns to high-level human concepts.

This example illustrates that identifiers serve as critical semantic anchors for summarization, a task
that depends on program intent. Once obfuscated, the model loses these anchors and collapses

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

into surface-level, line-by-line narration despite identical structure and behavior. While compelling,
this example alone is anecdotal. To rigorously evaluate the role of naming in intent-level under-
standing, we next conduct systematic experiments across datasets and models in Section 4, includ-
ing both intent-rich code (CLASSEVAL) and competitive programming tasks (LIVECODEBENCH)
where naming plays a smaller role due to the nature of challenges in algorithms and data structures.

From the first example, we observed that removing identifiers strongly impairs LLMs on summariza-
tion, a task that requires recovering program intent through the naturalness channel. We now shift to
a different task: code execution prediction. Unlike summarization, this task mainly requires rea-
soning about program semantics and line-by-line behavior. Since our obfuscation preserves syntax,
control flow, and data flow, model performance should in principle remain stable if predictions truly
rely on program structure alone.

Table 1: Motivating experiment on output prediction tasks. We compare model performance
(Pass@1 and Pass@3) on CLASSEVAL and LIVECODEBENCH with original vs. obfuscated code.

Dataset Pass@1 Pass@3

Original Obfuscated Original Obfuscated

ClassEval 85.7 76.1 89.2 83.3
LiveCodeBench 85.4 71.2 97.9 80.1

Table 1 summarizes the results. Contrary to expectation, program execution prediction performance
degrades in both datasets after identifiers were removed. On CLASSEVAL, Pass@1 drops from 85.7
to 76.1 and Pass@3 from 89.2 to 83.3. Even more striking, on LIVECODEBENCH—where naming
conventions are sparse and implementations emphasize algorithmic structure—we still observed
sharp declines: Pass@1 falls from 85.4 to 71.2, and Pass@3 from 97.9 to 80.1.

These preliminary findings indicate that LLMs exploit statistical correlations between identifiers and
functionality even for tasks that should be un-affected by renaming. This contradicts the common
assumption that execution benchmarks cleanly capture structural reasoning about program behavior.
Why do identifiers matter so much in execution prediction? We address this puzzle in Section 5,
where we analyze obfuscation strategies, disentangle memorization from genuine reasoning, and
study how naming biases shape execution performance. Building on these insights, we then propose
in Section 6 new obfuscation-based benchmarks that more reliably measure code understanding by
separating structural semantics from memorization effects.

4 PROGRAM INTENT CHANNEL: CODE SUMMARIZATION

4.1 EXPERIMENTAL SETUP

We design our experiment to evaluate models’ ability to capture program intent rigorously.

Datasets: We select two diverse corpora that complement each other in focus and complexity. The
CLASSEVAL benchmark targets class- and method-level summarization, focusing on developers’
intent beyond code constructs. In contrast, LIVECODEBENCH provides algorithmically oriented
competitive programming tasks, which challenge models to capture procedural structure rather than
high-level intent. This combination allows us to probe the impacts of both naturalness and program
semantic channels on LLM code comprehension.

Models: We evaluate a set of advanced LLMs that span a range of scales and architectures: GPT-
4o, Qwen3-Coder 480B, DeepSeek V3 0324, and Llama 4 Maverick. By including both top-tier and
mid-scale models, we examine how model capacity influences understanding of program intent and
structural fidelity.

Metrics: For CLASSEVAL, we report class-level and method-level scores, reflecting both holistic
and fine-grained comprehension. For LIVECODEBENCH, we compute method-level accuracy that
measures alignment with algorithmic correctness. In all cases, scores are averaged across samples
to provide consistent, comparable metrics.

LLM-as-a-judge: Summaries are evaluated using rubric-based scoring derived from the BigGen-
Bench framework Kim et al., which emphasizes semantic fidelity and comprehensive understand-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ing. We employ GPT-4o as the evaluation model, chosen for its stability and self-consistency across
repeated judgments. Each summary is rated along five dimensions—intent capture, behavioral cov-
erage, algorithmic adequacy, faithfulness, and clarity—on a 1–5 scale, then normalized to 0–100.
This setup ensures that metrics reflect semantic reasoning rather than superficial lexical overlap.

Pipeline: For each sample, the target model generates a summary, which is then scored by the GPT-
4o judge according to the rubrics. Results are aggregated across obfuscation strategies, enabling
direct comparison between original and obfuscated variants. This pipeline provides a rigorous,
semantically grounded measure of summarization performance.

4.2 EXPERIMENTAL RESULT

Table 2: Summarization performance under name obfuscation. We report class-level and
method-level accuracy on CLASSEVAL, and method-level accuracy on LIVECODEBENCH.

Model
ClassEval LiveCodeBench

Class Acc. Method Acc. Method Acc.

Original Obfuscated Original Obfuscated Original Obfuscated

GPT-4o 87.3 58.7 65.9 44.6 73.4 70.1
Qwen3–Coder 480B 87.2 72.1 55.9 49.6 87.7 82.1
DeepSeek V3 87.7 76.7 56.2 51.9 83.6 78.4
Llama 4 Maverick 86.2 66.4 56.0 48.1 77.5 78.2

Analysis. Summarization performance diverges sharply across the two benchmarks. On CLASSE-
VAL, class-level accuracy collapses after obfuscation, with drops ranging from 11 points (DeepSeek
V3: 87.7 → 76.7) to almost 29 points (GPT-4o: 87.3 → 58.7). Method-level summarization is
also affected, though to a lesser extent, with declines averaging around 9–12 points across mod-
els. These results confirm that summarization relies heavily on the naturalness channel—especially
entity names—at the class level, where names and headers carry substantial intent.

In contrast, performance on LIVECODEBENCH remains remarkably stable. The average reduction
is below three points, and in one case (Llama 4 Maverick) obfuscation even produces a slight im-
provement (77.5 → 80.2). This resilience stems from the nature of competitive programming tasks:
identifiers are typically generic (a, b, n), and the program’s purpose is communicated through struc-
tural and algorithmic cues rather than naming. To quantify this difference, we compare the lengths
of variable names in the two datasets. As shown in Figure 2, CLASSEVAL exhibits substantially
longer and more descriptive identifiers (median length ≈ 8, with many exceeding 15 characters),
whereas LIVECODEBENCH identifiers are extremely short (median length ≈ 2), often restricted to
one-letter variables. This statistical contrast supports the observation that models trained on com-
petitive programming data cannot rely heavily on naming cues, explaining their robustness under
obfuscation.

ClassEval LiveCodeBench
0

5

10

15

20

25

30

Va
ria

bl
e

Na
m

e
Le

ng
th

Figure 2: Distribution of variable name lengths in CLASSEVAL and LIVECODEBENCH.

Model scale and training diversity also matter. Qwen3–Coder 480B and DeepSeek V3 both maintain
higher robustness, dropping less than smaller counterparts. However, GPT-4o, while very strong
on the original code, shows the steepest decline once identifiers are removed—indicating that its
advantage is partly tied to exploiting semantic-rich naming rather than purely structural reasoning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Qualitative inspection reinforces this view. On CLASSEVAL, the summaries of original code typ-
ically capture high-level intent (e.g., “implements caching mechanism”), whereas obfuscated ver-
sions often degrade into verbose, line-by-line narrations of control flow. This discrepancy highlights
how strongly models depend on naming cues when inferring intent-level meaning. In contrast, on
LIVECODEBENCH, the difference is minimal: summaries of both original and obfuscated programs
remain essentially intact. For instance, the function below—regardless of whether variables are
renamed—is consistently summarized as “the code converts a given string into a palindrome by
modifying characters symmetrically.” Unlike in CLASSEVAL, there is no regression into line-by-
line paraphrasing, confirming that when summarizing the competitive programming code, a model
tends to rely more on algorithmic structure than on naming cues.

def makeSmallestPalindrome(s: str) -> str:
s = list(s)
n = len(s)
for i in range(n):

c = min(s[i], s[n - 1 - i])
s[i] = c
s[n - 1 - i] = c

return "".join(s)

Key Findings. Name-obfuscation evaluation indicates that benchmarks like CLASSEVAL better
measure model performance on intent-understanding tasks, whereas low-naturalness settings (e.g.,
competitive-programming code in LIVECODEBENCH) may under-challenge LLMs and mask lim-
itations. Accordingly, incorporating identifier obfuscation into benchmark design is essential for
robust assessment of program intent-level tasks such as code summarization or code review.

5 PROGRAM SEMANTIC CHANNEL: CODE EXECUTION PREDICTION

5.1 EXPERIMENTAL SETUP

We establish the following experimental setup to rigorously assess the ability of LLMs to perform
code execution reasoning under varying naming conventions.

Datasets. We evaluate on two complementary benchmarks as in the experiment in Section 4. To fo-
cus on non-trivial execution behavior, we filter CLASSEVAL to retain only samples with Cyclomatic
Complexity ≥ 15, and LIVECODEBENCH to retain only samples with Cyclomatic Complexity ≥ 6.
After filtering, the evaluation set comprises 37 CLASSEVAL instances and 96 LIVECODEBENCH
solutions. This high-complexity selection ensures the tasks demand substantial code reasoning and
emphasize any meaningful effects of obfuscation.

Models. We evaluate a representative set of state-of-the-art LLMs, including GPT-4o, Qwen3-Coder
480B, and DeepSeek V3, ensuring that we include frontier-scale and mid-scale models.

Metrics. For each sample, we ran 5 times and calculate the average Pass@1 and Pass@3 values.

Obfuscation strategies. To probe how naming affects LLM reasoning while preserving program
behavior, we apply four deterministic, name-only obfuscation strategies:

• Simple structural renaming (alpha-renaming): replace identifiers with role-preserving
placeholders such as class1, class2, method1, var1, var2,

• Ambiguous identifiers: replace identifiers with visually ambiguous tokens (examples:
llllIII, IlllIllllIlI).

• Cross-domain terms: substitute identifiers with terms from unrelated fields (e.g., medical:
adrenaline fd, glucagon d6) to break semantic cues in the application domains.

• Misleading semantics: assign names that imply incorrect behaviors (e.g., a summing func-
tion named compute max).

All obfuscations, as illustrated in Figure 3, are deterministic, reproducible, and change only the
naturalness channel of the code and do not change program semantics.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Original Program
class MinesweeperGame:

def __init__(self, n, k) -> None:
self.n = n; self.k = k
self.minesweeper_map = self.generate_mine_sweeper_map()
...

def generate_mine_sweeper_map(self):
arr = [[0 for row in range(self.n)]

for column in range(self.n)]
for num in range(self.k):

x = random.randint(0, self.n-1)
...

class IllI:
def __init__(self, llIIl, llIIlIl) -> None:

self.llIIl = llIIl; self.llIIlIl = llIIlIl
self.llllIII = self.IIIIII()
...

def IIIIII(self):
IlllIllllIlI = [[0 for IIlIIIIl in range(self.llIIl)]

for IIlIIl in range(self.llIIl)]
for IIIlIl in range(self.llIIlIl):

IIllIIIl = random.randint(0, self.llIIl - 1)
...

Ambiguous identifiers

class Lymph_55:
def __init__(self, lymph_2a, antibody_0d) -> None:

self.lymph_2a = lymph_2a; self.antibody_0d = antibody_0d
self.gonad_20 = self.bronchiole_ef()
...

def bronchiole_ef(self):
pituitary_22 = [[0 for thrombocyte_98 in range(self.lymph_2a)]

for oligodendrocyte_86 in range(self.lymph_2a)]
for glucagon_14 in range(self.antibody_0d):

ureter_91 = random.randint(0, self.lymph_2a - 1)
...

Cross-domain terms
class HttpServer:

def __init__(self, index_map, avg) -> None:
self.index_map = index_map; self.avg = avg
self.mutex = self.find_min()
...

def find_min(self):
count_map = [[0 for enabled1 in range(self.index_map)]

for enabled2 in range(self.index_map)]
for error in range(self.avg):

error1 = random.randint(0, self.index_map - 1)
...

Misleading semantics

class Class1:
def __init__(self, var1, var2) -> None:

self.var1 = var1; self.var2 = var2
self.var3 = self.method1()
...

def method1(self):
var6 = [[0 for var7 in range(self.var1)]

for var8 in range(self.var1)]
for var9 in range(self.var2):

var10 = random.randint(0, self.var1 - 1)
...

Alpha Renaming

Figure 3: Illustration of the four obfuscation strategies applied in our study.

Table 3: Execution prediction performance across original code and four obfuscation strategies.
Values in green equal or exceed the model’s Orig for that dataset; red are lower.

ClassEval

Model Orig Alpha Ambiguity CrossDomain Misleading

Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3

GPT-4o 76.6 84.6 70.2 75.4 74.7 81.0 75.1 84.6 71.1 76.5
Qwen3–Coder 480B 92.6 98.7 86.4 90.0 87.3 90.9 88.2 92.7 83.7 88.2
DeepSeek V3 90.0 92.7 85.5 92.5 69.3 73.8 89.8 91.8 88.8 91.6
Llama 4 Maverick 81.1 85.5 83.4 86.1 72.0 76.5 79.9 85.3 80.8 86.2

LiveCodeBench

Model Orig Alpha Ambiguity CrossDomain Misleading

Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3

GPT-4o 82.9 95.9 75.5 90.4 68.7 78.9 72.1 85.7 82.3 92.5
Qwen3–Coder 480B 99.3 100 94.5 98.6 88.4 96.5 89.7 93.1 93.8 97.9
DeepSeek V3 99.3 100 98.6 99.3 91.8 95.2 98.6 100 97.2 97.9
Llama 4 Maverick 80.2 90.4 65.3 78.9 56.4 69.3 63.9 76.8 75.5 88.4

5.2 EXPERIMENTAL RESULTS

Analysis. Table 3 provides the central quantitative evidence of our study. Intuitively, one would
expect that the name obfuscation does not affect a model’s reasoning on the execution semantics of
the obfuscated code. Surprisingly, across both benchmarks, name obfuscation consistently reduces
accuracy, though the magnitude varies by model and dataset. On CLASSEVAL, the degradation is
moderate but widespread. For instance, GPT-4o drops from 76.6% to 70.2% Pass@1 under Alpha,
and DeepSeek V3 falls drastically from 90.0% to 69.3% under Ambiguity. These results reveal that
even large, high-performing models are vulnerable once surface cues are altered. Still, a few cases
conform to intuition: Llama 4 Maverick surpasses its original performance under Alpha. Such cases
suggest that when the reasoning pathway is unaffected, identifier names function only as replaceable
placeholders. Figure 4 is an illustration of such cases where the model still reasons well on heavily
name-obfuscated code.

The picture is more dramatic in LIVECODEBENCH. Nearly all models suffer double-digit drops,
with reductions exceeding 20–30% in several obfuscation settings. For example, Llama 4 Maverick
falls from 80.2% to just 56.4%. Even GPT-4o and Qwen3-Coder 480B, which remain strong overall,
show consistent declines. Only isolated cases (CrossDomain for DeepSeek V3) yield equal or higher
scores, and these are rare exceptions rather than the dominant trend.

If obfuscation only renames variables without changing program semantics, the table is expected to
be dominated with green cells (equal or better than original). Instead, red cells are overwhelmingly
prevalent, showing that accuracy is tightly linked to naming cues. Figure 4 shows that reasoning
remains stable and unaffected by renaming, yet the aggregate outcomes collapse under obfuscation.

This tension—stable per-step reasoning but degraded aggregate accuracy—raises critical questions
about the reliability of LLM performance. Specifically, if the model can reason line-by-line as

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Thinking

obfuscate

Original Program

class Calculator: ...

Ambiguous identifiers

class IIlIlllIII: ...

1. Instantiate the Calculator class.
2. Call the calculate method with the expression '1+2*3'.
Within the calculate method:

- Initialize operand_stack as an empty list, operand_stack as an empty
list, and num_buffer as an empty string.

- Iterate over each character in the expression '1+2*3':
'1': - It's a digit, so add it to num_buffer ('1').
'+': - num_buffer contains '1'; convert it to float and add 1.0 to

operand_stack.
- Clear num_buffer.
- operand_stack is now [1.0].
- Add '+' to operator_stack; now operator_stack is ['+'].

'2': - It's a digit, so add it to num_buffer ('2').
'*': - num_buffer contains '2'; convert it to float and add 2.0 to

operand_stack.
- Clear num_buffer.
- operand_stack is now [1.0, 2.0].
- The operator '*' has higher precedence (2) compared to '+',

which has lower precedence (1).
- Add '*' to operator_stack; now operator_stack is ['+', '*'].

'3': - It's a digit, so add it to num_buffer ('3').
- End of iteration:

- num_buffer contains '3'; convert it to float and add 3.0 to
operand_stack.

- operand_stack is now [1.0, 2.0, 3.0].
- Apply operators remaining in operator_stack:

- Operator '*' is applied:
- Pop 2 and 3 from operand_stack and pop '*' from operator_stack.
- Compute 2.0 * 3.0 = 6.0.
- Add 6.0 back to operand_stack; now operand_stack is [1.0, 6.0].

- Operator '+' is applied:
- Pop 1.0 and 6.0 from operand_stack and pop '+' from operator_stack.
- Compute 1.0 + 6.0 = 7.0.
- Add 7.0 back to operand_stack; now operand_stack is [7.0].

- operand_stack should have one element left, 7.0, which is the result.
Answer: the final output of calculator.calculate('1+2*3') is 7.0.

1. An instance of the class IIlIlllIII is created in the unittest method lIll.
2. The method llIIlIlII is called with the string '1+2*3'.
3. In llIIlIlII, an empty list lllllIllIlIll and an empty list IIlIIIIlIllIII
are initialized.
4. The method iterates through the characters of the input string '1+2*3':

- Encounters '1', which is a digit, so it gets appended to IIlIIlIllI.
- Encounters '+', a non-digit:

- IIlIIlIllI contains '1', which is cast to float and appended to
lllllIllIlIll, resulting in [1.0].

- IIlIIlIllI is reset to an empty string.
- '+' is appended to IIlIIIIlIllIII.

- Encounters '2', which is a digit, appended to IIlIIlIllI.
- Encounters '*', a non-digit:

- IIlIIlIllI contains '2', cast to float and appended to lllllIllIlIll,
updating it to [1.0, 2.0].

- IIlIIlIllI is reset to an empty string.
- Checks the precedence of '+' (previous operator) and '*'. Since the

precedence of '*' is higher (2 > 1), no operations are popped from
IIlIIIIlIllIII.

- '*' is appended to IIlIIIIlIllIII.
- Encounters '3', which is a digit:

- It is appended to IIlIIlIllI.
5. End of string:

- IIlIIlIllI contains '3', cast to float and appended to lllllIllIlIll,
updating it to [1.0, 2.0, 3.0].
6. Remaining operators in IIlIIIIlIllIII get processed:

- '*' is popped:
- Operands 3.0 and 2.0 are popped from lllllIllIlIll.
- Operation 2.0 * 3.0 is performed, resulting in 6.0.
- Result 6.0 is appended to lllllIllIlIll, updating it to [1.0, 6.0].

- '+' is popped:
- Operands 6.0 and 1.0 are popped from lllllIllIlIll.
- Operation 1.0 + 6.0 is performed, resulting in 7.0.
- Result 7.0 is appended to lllllIllIlIll.

7. The final result [7.0] contains one element 7.0.
Answer: the final computed output is 7.0.

Thinking

Figure 4: Qualitative example: GPT–4o’s step-by-step reasoning on the original (left) and an Am-
biguous identifiers obfuscation (right) of the same program yields the same final correct result (7.0).

illustrated in Figure 4, why does name obfuscation still reduce final accuracy? One possibility is
that LLMs exploit surface-level cues in the original code. Rather than genuinely reasoning in all
cases, the model may occasionally rely on memorized associations keyed by familiar identifiers.
Under this interpretation, obfuscation weakens these cues, revealing a gap between the appearance
of reasoning and actual generalization.

To investigate this hypothesis, we conduct a memorization stress test, augmenting inputs and mea-
suring cases where the model reproduces outputs from the training distribution. If identifier names
act as “access keys” for memorization, obfuscation should disrupt such matches.

Memory effect experiment. Building on the hypothesis raised in the qualitative analysis, we con-
ducted a dedicated experiment to probe whether LLMs rely on memorization rather than genuine
input-driven reasoning.

Setup. We first used GPT-4o to generate new input values for each sample in the datasets, ensuring
the outputs differ from those in the original datasets. We then filtered out cases with small finite
output domains (e.g., True/False) to minimize chance overlap. Model predictions are compared
against both the old dataset outputs and the new ground-truth outputs. The key question is whether
the model adapts to unseen inputs or instead reproduces memorized outputs from prior exposure.

Observation. Table 4 shows that on the original (non-obfuscated) code, models occasionally repro-
duce the old outputs instead of the correct new ones, with GPT-4o and Llama 4 Maverick showing
the strongest signs of this effect on LIVECODEBENCH. The probability of such matches occurring
by chance is negligible, confirming that models sometimes fall back on memorized associations.
Under obfuscation, however, this effect sharply decreases—often to zero—supporting the view that
variable names act as retrieval cues or “keys” for accessing memorized code–output patterns.

Findings. After these analyses, we highlight the following key insights:

• Identifier leakage. Variable names anchor memorized code–output pairs in training data;
obfuscation disrupts this shortcut and pushes the model toward execution reasoning.

• Benchmark inflation. Existing execution benchmarks risk overestimating reasoning abil-
ity, since identifier leakage enables partial memorization to masquerade as generalization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Memorization check: #Samples where prediction equals the old dataset output across new
augmented inputs.

Model ClassEval LiveCodeBench
Orig Ambiguity Misleading Orig Ambiguity Misleading

GPT-4o 1 0 0 13 5 2
Qwen3-Coder 480B 1 0 0 2 0 0
DeepSeek V3 0324 2 0 0 0 0 0
Llama 4 Maverick 0 0 0 9 5 3

• Toward robust evaluation. Reliable benchmarks for code execution understanding eval-
uation should integrate (i) augmented datasets with novel input–output pairs, and (ii) sys-
tematic obfuscation of identifiers. These measures jointly reduce memory-based shortcuts
and provide a clearer assessment of semantic reasoning ability.

6 CLASSEVAL-OBF: A RELIABLE DATASET FOR EXECUTION PREDICTION

Building on these findings, we release CLASSEVAL-OBF, an obfuscated extension of CLASSEVAL
designed to mitigate identifier leakage and provide a more faithful measure of execution reasoning.
In this dataset, all identifiers are systematically renamed using four complementary strategies (alpha-
renaming, ambiguous identifiers, cross-domain substitutions, misleading semantics), ensuring that
program behavior is preserved while surface-level cues are removed or distorted.

Figure 5: Execution prediction performance on original vs. obfuscated CLASSEVAL (high-
complexity subset)

GPT-4o Qwen3-Coder 480B DeepSeek V3 Llama 4 Maverick

17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

De
lta

 (
)

ClassEval
ClassEval-OBF

Evaluation. We re-run execution prediction experiments on the high-complexity subset, compar-
ing original CLASSEVAL with its obfuscated variants. Figure 5 reports the performance delta (∆)
between original and obfuscated code across the four obfuscation strategies, summarized as mini-
mum, maximum, and average values. Smaller deltas indicate higher robustness, as models maintain
accuracy even when identifier names are removed.

Across models, CLASSEVAL-OBF consistently reduces the magnitude of performance drops com-
pared to the original CLASSEVAL, with most deltas confined within 3–7%. In several cases, the
delta is nearly zero or even slightly positive, suggesting that obfuscation can prevent models from
overfitting to naming cues. This pattern confirms that CLASSEVAL-OBF mitigates identifier leakage
and provides a more stable, semantics-grounded benchmark for execution reasoning.

7 CONCLUSION

We set out to disentangle how LLMs “understand” code by separating a structural/semantic chan-
nel from a human–naturalness channel and evaluating models under a suite of semantics-preserving
obfuscations that progressively suppress names and prose while keeping behavior intact. Across in-
tent summarization and execution prediction—and across real-world and competitive-programming
settings—we observed a consistent, graded pattern: intent-level performance degrades sharply as
naturalness is removed, while behavior-level metrics remain largely invariant except where names
are semantically active. These results provide converging empirical support for a two-channel ac-
count of code understanding and motivate evaluation practices that report pre/post obfuscation deltas
alongside human-aligned intent metrics. We release our obfuscation harness and protocols to en-
courage benchmarks that reward true semantic reasoning over surface cues and to catalyze progress
toward models that capture program intent, not just its narration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv: 2108.07732, 2021.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime be-
havior of a program with llm: How far are we? In Proceedings of the IEEE/ACM 47th In-
ternational Conference on Software Engineering, ICSE ’25, pp. 1869–1881. IEEE Press, 2025.
ISBN 9798331505691. doi: 10.1109/ICSE55347.2025.00012. URL https://doi.org/10.
1109/ICSE55347.2025.00012.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. Codescore: Evaluating
code generation by learning code execution. ACM Transactions on Software Engineering and
Methodology, 34(3):1–22, 2025.

Xiang Du, Mingwei Liu, et al. Evaluating large language models in class-level code
generation. In Proceedings of the 46th International Conference on Software Engi-
neering (ICSE), 2024a. URL https://mingwei-liu.github.io/assets/pdf/
ICSE2024ClassEval-V2.pdf.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level code
generation. In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering, ICSE ’24, New York, NY, USA, 2024b. Association for Computing Machinery. ISBN
9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.1145/
3597503.3639219.

Lingyue Fu, Huacan Chai, Shuang Luo, Kounianhua Du, Weiming Zhang, Longteng Fan, Jiayi
Lei, Renting Rui, Jianghao Lin, Yuchen Fang, Yifan Liu, Jingkuan Wang, Siyuan Qi, Kangning
Zhang, Weinan Zhang, and Yong Yu. Codeapex: A bilingual programming evaluation benchmark
for large language models. arXiv preprint arXiv: 2309.01940, 2023.

Shuzheng Gao, Cuiyun Gao, Chaozheng Wang, Jun Sun, David Lo, and Yue Yu. Two sides of the
same coin: Exploiting the impact of identifiers in neural code comprehension. In Proceedings
of the 45th International Conference on Software Engineering (ICSE), 2023. URL https:
//yuyue.github.io/res/paper/NeuralCode-ICSE2023.pdf.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv: 2410.02089, 2024.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Daya Guo, Shuo Ren, Shuai Lu, Zhiruo Wang, Alexey Svyatkovskiy, Shengyu Deng, Shujie Fu,
Duyu Tang, Jian Yin, Ming Zhou, et al. Graphcodebert: Pre-training code representations with
data flow. In International Conference on Learning Representations (ICLR), 2021. URL https:
//arxiv.org/abs/2009.08366.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the natu-
ralness of software. In 2012 34th International Conference on Software Engineering (ICSE), pp.
837–847, 2012. doi: 10.1109/ICSE.2012.6227135.

Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and
Somesh Jha. Do large code models understand programming concepts? counterfactual analysis
for code predicates. In Proceedings of the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

10

https://doi.org/10.1109/ICSE55347.2025.00012
https://doi.org/10.1109/ICSE55347.2025.00012
https://mingwei-liu.github.io/assets/pdf/ICSE2024ClassEval-V2.pdf
https://mingwei-liu.github.io/assets/pdf/ICSE2024ClassEval-V2.pdf
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://yuyue.github.io/res/paper/NeuralCode-ICSE2023.pdf
https://yuyue.github.io/res/paper/NeuralCode-ICSE2023.pdf
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC3iL.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014, pp. 437–440, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery. ISBN 9781450326452. doi: 10.1145/2610384.2628055. URL
https://doi.org/10.1145/2610384.2628055.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. Xcodeeval: An execution-based large scale multilingual multitask bench-
mark for code understanding, generation, translation and retrieval. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6766–6805, 2024.

S Kim, J Suk, JY Cho, S Longpre, C Kim, D Yoon, G Son, Y Cho, S Shafayat, J Baek, et al.
The biggen bench: A principled benchmark for fine-grained evaluation of language models with
language models, 2024. URL: https://arxiv. org/abs/2406.05761.

Man Ho Lam, Chaozheng Wang, Jen-tse Huang, and Michael R. Lyu. Codecrash: Stress testing llm
reasoning under structural and semantic perturbations. arXiv preprint arXiv:2504.14119, 2025.

Hung Le, Yue Wang, Yonatan Belinkov, Wee Sun Low, et al. Coderl: Mastering code generation
through pretrained models and deep reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2022. URL https://arxiv.org/abs/2207.01780.

Xinze Li, Zhenghao Liu, Chenyan Xiong, Shi Yu, Yu Gu, Zhiyuan Liu, and Ge Yu. Structure-aware
language model pretraining improves dense retrieval on structured data. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguis-
tics: ACL 2023, pp. 11560–11574, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-acl.734. URL https://aclanthology.org/
2023.findings-acl.734/.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation. CoRR, abs/2102.04664, 2021.

11

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/2610384.2628055
https://arxiv.org/abs/2207.01780
https://aclanthology.org/2023.findings-acl.734/
https://aclanthology.org/2023.findings-acl.734/
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dung Manh Nguyen, Thang Chau Phan, Nam Le Hai, Tien-Thong Doan, Nam V. Nguyen, Quang
Pham, and Nghi D. Q. Bui. CodeMMLU: A multi-task benchmark for assessing code understand-
ing & reasoning capabilities of codeLLMs. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=CahIEKCu5Q.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pp. 26106–26128. PMLR, 2023.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym. In Proceedings of the 42nd
International Conference on Machine Learning (ICML 2025), 2025. URL https://arxiv.
org/abs/2412.21139. arXiv:2412.21139, accepted at ICML 2025.

Minh V. T. Pham, Huy N. Phan, Hoang N. Phan, Cuong Le Chi, Tien N. Nguyen, and Nghi D. Q.
Bui. Swe-synth: Synthesizing verifiable bug-fix data to enable large language models in resolving
real-world bugs. arXiv preprint arXiv: 2504.14757, 2025.

Ahmad Tehrani Jamsaz et al. Perfograph: A numerical aware program graph for per-
formance modeling. In Advances in Neural Information Processing Systems (NeurIPS),
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/b41907dd4df5c60f86216b73fe0c7465-Paper-Conference.pdf.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code
generation models. arXiv preprint arXiv:2212.10264, 2022.

Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin Tay, Constance
Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, Brian Goh, Ferdian Thung, Hong Jin Kang,
Thong Hoang, David Lo, and Eng Lieh Ouh. Bugsinpy: a database of existing bugs in python
programs to enable controlled testing and debugging studies. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2020, pp. 1556–1560, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3417943.
URL https://doi.org/10.1145/3368089.3417943.

Jiayi Wu, Renyu Zhu, Nuo Chen, Qiushi Sun, Xiang Li, and Ming Gao. Structure-aware fine-
tuning for code pre-trained models. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste,
Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 15362–15372, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.lrec-main.1334/.

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for soft-
ware engineering agents. In Proceedings of the 39th Annual Conference on Neural Information
Processing Systems (NeurIPS 2025 DB Spotlight), 2025. URL https://arxiv.org/abs/
2504.21798. arXiv:2504.21798, accepted at NeurIPS 2025 (Spotlight).

Zhen Yang et al. Natural attack for pre-trained models of code. arXiv preprint arXiv:2201.08698,
2022. URL https://arxiv.org/pdf/2201.08698.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Sar-
avan Rajmohan, and Dongmei Zhang. Swe-bench goes live! arXiv preprint arXiv:2505.23419,
2025.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

12

https://openreview.net/forum?id=CahIEKCu5Q
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://proceedings.neurips.cc/paper_files/paper/2023/file/b41907dd4df5c60f86216b73fe0c7465-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b41907dd4df5c60f86216b73fe0c7465-Paper-Conference.pdf
https://doi.org/10.1145/3368089.3417943
https://aclanthology.org/2024.lrec-main.1334/
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2504.21798
https://arxiv.org/pdf/2201.08698

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROMPT FOR CODE SUMMARIZATION

You are a helpful assistant for code understanding.
Summarize the following Python class at two levels:
1. The overall class.
2. Each method individually.

Return your answer strictly in JSON format:
{

"class_summary": "...",
"methods": [

{"method_name": "method1", "method_summary": "..."},
{"method_name": "method2", "method_summary": "..."}

]
}

Here is the class code:

```python
{code}
```

Figure 6: Prompt used for ClassEval class and method-level summarization.

You are a helpful assistant for code understanding.
Summarize the main functionality of this function.

```python
{code}
```

Figure 7: Prompt used for LiveCodeBench function-level summarization.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

You are an expert code reviewer. Evaluate how well a generated
summary matches the gold reference.

Scoring Rubric
- 5/5 (Excellent): Semantically equivalent to reference; covers the
main purpose accurately; concise; no major omissions or errors.
- 4/5 (Good): Mostly correct; captures main idea but misses a minor
detail or is slightly imprecise.
- 3/5 (Fair): Partially correct; captures some intent but misses
important elements or includes minor inaccuracies.
- 2/5 (Poor): Only loosely related; major inaccuracies or misses
most key functionality.
- 1/5 (Very poor): Irrelevant or completely wrong.

Examples
Reference: "Sorts a list of numbers in ascending order."
Generated: "Reverses a list."
Score: 1/5
Justification: Opposite functionality; incorrect.

Reference: "Parses a JSON string into a Python dictionary."
Generated: "Converts JSON text into a dict object."
Score: 5/5
Justification: Same meaning; different wording.

Reference: "Computes factorial of n using recursion."
Generated: "Computes factorial of n."
Score: 4/5
Justification: Correct but missing recursion detail.

Now evaluate the following method:

Reference: "{ref_summary}"
Generated: "{gen_summary}"

Output strictly in this format (start with 'Score: X/5'):
Score: X/5
Justification: <one or two sentences>

Figure 8: Prompt for evaluation of generated summaries against gold references.

A.2 PROMPT FOR OUTPUT PREDICTION

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are given a full Python class and a unittest test case that
calls its methods.
Your task is to simulate the program step by step and predict
the exact output of the test method.
MUST think step by step and provide rationale for each step.
All the rationale must go inside the <think> tag and must NOT
mention the final output.

Complete it with the predicted value of the LEFT side of the
assertion (the exact output), and fill it in on the RIGHT side
of the assertion, keeping the same provided format of the
assertion and only replacing ?? with the predicted output.
Do NOT output anything extra.
Provide the completed assertion inside <answer> and </answer>
tags.

<code>
{code}

assert {test} == ??
</code>

<think>
Simulate the execution of the class and the unittest code,
tracking changes to operands, operators, and attributes.
Provide the rationale for each step, leading to the final
computed output.
</think>

<answer>
assert {test} == ??
</answer>

<think>

Figure 9: Prompt for ClassEval output prediction with unittest simulation.

A.3 ADDITIONAL QUALITATIVE EXAMPLES

A.3.1 CODE SUMMARIZATION

Figure 11 shows two LIVECODEBENCH cases where summaries remain correct under obfuscation,
consistently capturing algorithmic intent. Unlike CLASSEVAL, we observe no regression into line-
by-line narrations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

You are given a Python function and an assertion containing an input to
the function. Complete the assertion with a literal (no unsimplified
expressions, no function calls) containing the output when executing
the provided code on the given input, even if the function is incorrect
or incomplete. Do NOT output any extra information. Execute the program
step by step before arriving at an answer, and provide the full
assertion with the correct output in <answer> and </answer> tags,
following the examples.

<code>
def performOperation(s):

s = s + s
return "b" + s + "a"

assert performOperation(s = "hi") == ??
</code>
<think>
Let's execute the code step by step:

1. The function performOperation is defined, which takes a single
argument s.
2. The function is called with the argument "hi", so within the
function, s is initially "hi".
3. Inside the function, s is concatenated with itself, so s becomes
"hihi".
4. The function then returns a new string that starts with "b",
followed by the value of s (which is now "hihi"), and ends with "a".
5. The return value of the function is therefore "bhihia".
</think>
<answer>
assert performOperation(s = "hi") == "bhihia"
</answer>

<code>
{code}
assert {test} == ??
</code>

<think>

Figure 10: Prompt for LiveCodeBench output prediction with function execution.

A.3.2 OUTPUT PREDICTION

Figure 12 illustrates a representative case from LIVECODEBENCH. Both original and obfuscated
code yield the same reasoning trace and correct output, showing that identifier changes do not affect
execution prediction.

A.4 USAGE OF LLM ASSISTANCE

We used large language models (LLMs) to aid in polishing the writing and improving clarity. All
research ideas, experiments, and conclusions are the work of the authors.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Original Program Alpha Renaming

This function converts the given string
into the lexicographically smallest
palindrome possible.

Summary

obfuscate

def makeSmallestPalindrome(s: str) -> str:
s = list(s)
n = len(s)
for i in range(n):
c = min(s[i], s[n - 1 - i])
s[i] = c
s[n - 1 - i] = c

return "".join(s)

The provided code converts a given
string into a palindrome by modifying
characters symmetrically.

Summary

def function1(var1: str) -> str:
var1 = list(var1)
var2 = len(var1)
for var3 in range(var2):
var4 = min(var1[var3], var1[var2 - 1 - var3])
var1[var3] = var4
var1[var2 - 1 - var3] = var4

return ''.join(var1)

(a) LiveCodeBench QUESTION ID: 2816

Original Program

Alpha Renamingob
fu

sc
at

e

This code finds and returns the shortest
substring of a given string that contains
exactly a specified number of '1'
characters.

Summary

def shortestBeautifulSubstring(s: str, k: int) -> str:
ans = None
n = len(s)
for i in range(n):
for j in range(i, n):
t = s[i:j+1]
if t.count('1') == k and (ans is None or

len(t) < len(ans) or (len(t) == len(ans) and t < ans)):
ans = t

return "" if ans is None else ans

def function1(var1: str, var2: int) -> str:
var3 = None
var4 = len(var1)
for var5 in range(var4):
for var6 in range(var5, var4):
var7 = var1[var5:var6 + 1]
if var7.count('1') == var2 and (var3 is None or

len(var7) < len(var3) or (len(var7) == len(var3) and var7 < var3)):
var3 = var7

return '' if var3 is None else var3

It finds and returns the smallest
substring of the input string containing
exactly a specified number of '1's, or an
empty string if no such substring exists.

Summary

(b) LiveCodeBench QUESTION ID: 3150

Figure 11: LIVECODEBENCH: consistent summarization under obfuscation. Both cases show that
summaries capture algorithmic intent and remain stable despite identifier changes.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Thinking

Original Program Ambiguous identifiers

Let's execute the code step-by-step:

1. The function colorTheArray is defined, which takes two
arguments: n (an integer) and queries (a list of lists containing
pairs of integers).
2. The function is called with n = 1 and queries = [[0, 100000]].
3. Inside the function:
- An empty list res is initialized.
- The initial array arr with n zeros is created: arr = [0].
- A variable curr is initialized to 0.

4. The function then processes each query (in this case, there is
only one query [0, 100000]).

- i is assigned the value 0 and v is assigned the value 100000.
- pv is assigned the value at index i in arr: pv = arr[i] =

arr[0] = 0.
- The array length n is 1, therefore:
- i + 1 < n is 1 < 1, which is false.
- i - 1 >= 0 is -1 >= 0, which is false.
- i + 1 < n and arr[i+1] == pv is 1 < 1, which is false.
- i - 1 >= 0 and arr[i-1] == pv is -1 >= 0, which is false.
- As none of the conditional statements are true, no changes

are made to the variable curr.
- The value of arr at index i is updated to v: arr[0] = 100000.
- The value of curr (which remains 0) is appended to the

results list res: res += [0].
5. The function returns the results list res, which in this case
is [0].

assert colorTheArray(n = 1, queries = [[0, 100000]]) == [0]

Let's execute the code step by step:

1. The function llllIlIlllI is defined, which takes two arguments:
llIIlIIIIII (an integer) and llllIlIIIlIlllIllllIIIll (a list of lists of
integers).
2. Empty list lIIIIIIIlIllIIII is initialized and list
IlllIllllIllIIIlllllIlIlI is initialized with zeros of length llIIlIIIIII.
3. Variable IIllIlllllIlIIII is initialized to 0.
4. For the provided input, llIIlIIIIII=1 and llllIlIIIlIlllIllllIIIll=[[0,
100000]].
5. There is only one pair (0, 100000) in llllIlIIIlIlllIllllIIIll.
6. For this pair:

- lIIIIIIlllll = 0
- IIIIlllIIIII = 100000
- llllIllllIIIIIIllIIIlllIll is initialized to 0.
- Then following conditions are checked:

- If clause (lIIIIIIlllll + 1 < llIIlIIIIII and
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll + 1] == IIIIlllIIIII) evaluates to
False.

- If clause (lIIIIIIlllll - 1 >= 0 and
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll - 1] == IIIIlllIIIII) evaluates to
False.

- If clause (lIIIIIIlllll + 1 < llIIlIIIIII and
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll + 1] == llllIllllIIIIIIllIIIlllIll
and llllIllllIIIIIIllIIIlllIll) evaluates to False.

- If clause (lIIIIIIlllll - 1 >= 0 and
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll - 1] == llllIllllIIIIIIllIIIlllIll
and llllIllllIIIIIIllIIIlllIll) evaluates to False.

- IlllIllllIllIIIlllllIlIlI[0] is set to 100000.
- lIIIIIIIlIllIIII is appended with 0.

7. The function returns [0].

So the assertion would be:
assert llllIlIlllI(llIIlIIIIII=1, llllIlIIIlIlllIllllIIIll=[[0, 100000]])
== [0]

Thinking

obfuscate

def colorTheArray(n: int, queries: List[List[int]]) -> List[int]: ...
def llllIlIlllI(llIIlIIIIII: int,

llllIlIIIlIlllIllllIIIll: List[List[int]]) -> List[int]: ...

Figure 12: LIVECODEBENCH: stable reasoning and output across obfuscation.

18

	Introduction
	Related work
	Preliminary experiment and Motivation
	Program Intent Channel: Code Summarization
	Experimental Setup
	Experimental Result

	Program Semantic Channel: Code Execution Prediction
	Experimental Setup
	Experimental Results

	ClassEval-Obf: A Reliable Dataset for Execution Prediction
	Conclusion
	Appendix
	Prompt for Code Summarization
	Prompt for Output Prediction
	Additional Qualitative Examples
	Code Summarization
	Output Prediction

	Usage of LLM Assistance

