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ABSTRACT

Large Language Models (LLMs) achieve strong results on code tasks, but how
they derive program meaning remains unclear. We argue that code communi-
cates through two channels: structural semantics, which define formal behavior,
and human-interpretable naming, which conveys intent. Removing the naming
channel severely degrades intent-level tasks such as summarization, where mod-
els regress to line-by-line descriptions. Surprisingly, we also observe consis-
tent reductions on execution tasks that should depend only on structure, reveal-
ing that current benchmarks reward memorization of naming patterns rather than
genuine semantic reasoning. To disentangle these effects, we introduce a suite
of semantics-preserving obfuscations and show that they expose identifier leak-
age across both summarization and execution. Building on these insights, we
release CLASSEVAL-OBF, an obfuscation-enhanced benchmark that systemati-
cally suppresses naming cues while preserving behavior. Our results demonstrate
that CLASSEVAL-OBF reduces inflated performance gaps, weakens memorization
shortcuts, and provides a more reliable basis for assessing LLMs’ code under-
standing and generalization.

1 INTRODUCTION

Large language models (LLMs) now achieve striking results across code intelligence—program
synthesis, repair, summarization, and test generation. Yet how these models derive meaning from
source code remains unclear. We posit that code communicates through two channels: a struc-
tural/semantic channel (syntax, control/data flow, execution behavior) and a human–naturalness
channel (identifier names, docstrings, and other linguistic signals). If an LLM truly understands a
program’s intent, its behavior should remain stable when human-interpretable names are perturbed
while semantics stay fixed; conversely, strong performance drops would indicate an overreliance on
surface cues rather than semantic reasoning.

To probe this question, we move beyond a single perturbation (e.g., α-renaming) and introduce a
suite of semantics-preserving obfuscations that progressively weaken the naturalness channel while
preserving executable behavior. Our suite includes 1) simple structural renaming (alpha-renaming):
replace identifiers with role-preserving placeholders; 2) Ambiguous identifiers: replace identifiers
with visually ambiguous tokens; 3) Cross-domain terms: substitute identifiers with terms from unre-
lated fields to break semantic cues in the application domains; and 4) Misleading semantics: assign
names that imply incorrect behaviors.

These transformations define a rename–obfuscation spectrum from minimally disruptive (syn-
onyms) to strongly disruptive (opaque tokens), enabling a graded analysis of robustness. We then
evaluate models on complementary task families that stress distinct facets of “understanding”: in-
tent summarization (what/why) and execution/IO prediction. We stratify data across intent-rich,
real-world code (where names and headers carry domain semantics) and algorithmic, competitive-
programming code (where identifiers are already minimal and structure is highly diagnostic).

This design yields three core observations. First, on intent-rich code, class- and method-level
summarization degrades sharply under strong obfuscation (especially entity-level renaming), of-
ten collapsing into line-by-line narration. Second, on competitive-programming solutions, sum-
maries remain intent-faithful under obfuscation, consistent with the view that structure alone is suf-
ficient when algorithmic patterns are canonical and naming is sparse. Third, and most surprisingly,
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even execution-oriented tasks—ostensibly dependent only on program semantics—show non-trivial
drops after obfuscation, suggesting that existing benchmarks permit shortcuts in which identifiers
act as retrieval cues for memorized patterns rather than triggering genuine reasoning. Our additional
stress tests with input augmentation indicate that removing names reduces these retrieval effects,
narrowing the gap between the appearance of step-wise reasoning and actual generalization.

Our study contributes a principled framework for disentangling the two channels of code understand-
ing and for diagnosing where models rely on names versus structure. Methodologically, we pair a
capture-avoiding obfuscation harness with semantics-invariance checks (execution correctness) and
report human-aligned intent metrics via code summarization. Finally, we also release CLASSEVAL-
OBF, an obfuscation-enhanced variant of class- and function-level benchmarks to promote evalua-
tions that are less susceptible to naming leakage, available at https://classeval-obf.site

2 RELATED WORK

Structure-aware and execution-grounded modeling. Modern code models increasingly fuse
structural program information and execution signals. Guo et al. (2021) pre-train GraphCode-
BERT with data-flow edges and variable alignment, showing that incorporating semantic structure
improves downstream code understanding tasks (search, clone detection, translation, refinement).
Tehrani Jamsaz et al. (2023) introduce PerfoGraph, a program-graph representation that injects nu-
merical and aggregate-structure information to better capture program behavior. Li et al. (2023) pro-
pose SANTA, a structure-aware dense retrieval model that aligns structured and unstructured data
via contrastive pretraining and entity-masked prediction. Wu et al. (2024) introduce a plug-and-play
method that leverages AST-based structure loss during fine-tuning to enhance pretrained code LLMs,
particularly under limited training data. Le et al. (2022) propose CodeRL, which grounds genera-
tion in unit-test execution feedback via reinforcement learning to optimize functional correctness.
Together, these lines suggest that beyond token sequences, structure- and execution-aware learning
is essential to robust code understanding—an assumption our study probes from a complementary
angle by isolating the role of human-interpretable naming.

Identifier naming, robustness, and obfuscation. A growing body of work shows that model pre-
dictions can be sensitive to identifier naming and obfuscation. Gao et al. (2023) demonstrate sub-
stantial performance drops from simple identifier renaming and propose Cream, a counterfactual
framework to separate helpful from misleading identifier signals across code understanding tasks.
In a related direction, Yang et al. (2022) study natural adversarial attacks on code models (including
variable renaming) and document brittleness to lexical changes that preserve semantics. Lam et al.
(2025) introduce a unified benchmark that applies logic-preserving perturbations—ranging from
systematic renaming and conditional rewrites to misleading comments and garbage code—to reveal
overreliance on natural-language cues and reasoning collapse in LLMs. Our obfuscating renaming
experiments build directly on these observations: by holding program semantics fixed while remov-
ing human-interpretable names, we quantify how much intent-level understanding depends on the
“naturalness” channel versus program semantics.

Benchmarks, evaluation scope, and SE perspectives. Benchmarks for evaluating large language
models (LLMs) on code tasks have evolved from short snippet assessments to more realistic soft-
ware engineering scenarios. Early benchmarks such as HUMANEVAL (Chen et al., 2021), MBPP
(Austin et al., 2021), EVALPLUS (Liu et al., 2023), CodeXGlue (Lu et al., 2021), CodeApex (Fu
et al., 2023), CodeMMLU (Nguyen et al., 2025), and BigCodeBench (Zhuo et al., 2024) primarily
target function- or snippet-level tasks. In contrast, LiveCodeBench (Jain et al., 2025) and Code-
Contests (Li et al., 2022) emphasize competitive programming. More recent efforts—including
ClassEval (Du et al., 2024a), SWE-Bench (Jimenez et al., 2024), SWE-Gym (Pan et al., 2025),
SWE-Bench-live (Zhang et al., 2025), Defects4J (Just et al., 2014), and BugsInPy (Widyasari et al.,
2020)—extend evaluation to class- and repository-level settings, revealing capability gaps not cap-
tured by function-only benchmarks. Parallel research has advanced execution-grounded evaluation.
CruxEval (Gu et al., 2024) formalized input–output prediction, while LiveCodeBench (Jain et al.,
2025) expanded this to human-written solutions. Benchmarks such as REval (Chen et al., 2025) and
CACP (Hooda et al., 2024) identified concept-level reasoning failures, and execution-based frame-
works including LEVER (Ni et al., 2023), CodeScore (Dong et al., 2025), and XCODEEVAL (Khan
et al., 2024) refined evaluation methodology. Robustness has also been studied through semantic-
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preserving transformations, such as ReCode (Wang et al., 2022). From the synthesis perspective,
reinforcement learning and feedback-based methods emphasize behavior-grounded evaluation (Le
et al., 2022; Pham et al., 2025; Yang et al., 2025; Gehring et al., 2024). Complementary surveys and
empirical studies further highlight concerns about robustness and validity in developer-facing tasks
(Gao et al., 2023; Lam et al., 2025). Our work complements these trends by proposing α-renaming
as a controlled stress test that distinguishes intent-level summarization from behavior-level execu-
tion, and by recommending reporting protocols (e.g., pre/post renaming deltas and uncertainty).

3 PRELIMINARY EXPERIMENT AND MOTIVATION

Unlike natural languages, programming languages allow developers to write programs that instruct
machines to perform specific tasks. Source code conveys program meaning through two comple-
mentary channels: program semantics, which captures the formal behavior of a program via program
constructs, and human-interpretable naming (naturalness channel Hindle et al. (2012)), where iden-
tifiers and comments convey program intent (we focus on identifiers since not all programs have
comments). While program constructs may be sufficient to recover canonical algorithms, intent-
level understanding in real-world code often relies on naming. If LLMs truly reason and have full
comprehension on source code, removing the naming channel should primarily affect tasks that re-
quire intent inference, such as summarization, while leaving execution-oriented tasks largely intact.

JudgeJudge

Original Program
class MinesweeperGame:
def __init__(self, n, k) -> None:
self.n = n
self.k = k
self.minesweeper_map = self.generate_mine_sweeper_map()
self.player_map = self.generate_playerMap()
self.score = 0

def generate_mine_sweeper_map(self):
arr = [[0 for row in range(self.n)] for column in range(self.n)]
for num in range(self.k):
x = random.randint(0, self.n-1)
... 

def generate_playerMap(self): ...
def check_won(self, map): ...
def sweep(self, x, y): ...

class Class1:
def __init__(self, var1, var2) -> None:
self.var1 = var1
self.var2 = var2
self.var3 = self.method1()
self.var4 = self.method2()
self.var5 = 0

def method1(self):
var6 = [[0 for var7 in range(self.var1)] for var8 in range(self.var1)]
for var9 in range(self.var2):
var10 = random.randint(0, self.var1 - 1)
...

def method2(self): ...
def method3(self, var12): ...
def method4(self, var10, var11): ...

Alpha Renaming

This Python class 
implements the logic for a 
game, including setting up 
the minefield, managing the 
player's map, and handling 
player moves while 
checking for win conditions.

Summary
The class creates a square grid where some 
cells are randomly marked. It involves 
initializing this grid and another similar grid 
with placeholders, processing the grids to 
increment numbers around marked cells, 
and providing functionalities to check if the 
second grid has been correctly marked 
based on the first grid's configuration. The 
primary utility seems to be related to a grid-
based game or puzzle where cells can 
contain markers, and numbers around them 
denote the count of adjacent markers.

Summary

This is a class that 
implements mine sweeping 
games including 
minesweeping and winning 
judgment.

Groundtruth Summary

obfuscate

The generated summary captures the main 
functionality of implementing a minesweeping 
game and checking win conditions as described in 
the reference.

Result
The generated summary does not 
mention minesweeping or winning 
judgment.

Result

Figure 1: Names as semantic anchors for summarization. LLM produces an intent-level summary
with the original identifiers (left), but collapses to line-by-line narration after name-only obfuscation
(right), despite identical structure and behavior.

As a first step, we focus on code summarization because it explicitly targets program intent rather
than detail-level program constructs. To isolate the role of the human-interpretable channel, we ob-
fuscated variable and method names while preserving the program’s structure. Figure 1 illustrates
this using a Python CLASSEVAL dataset Du et al. (2024b) example implementing a Minesweeper
game. In the original version, names such as MinesweeperGame, sweep, check won, and coor-
dinates x,y serve as semantic anchors that strongly hint at the domain and gameplay logic. After
obfuscation, these anchors were removed, though the control and data flows remained unchanged.

When prompted to generate a summary, the model’s behavior diverged sharply. On the original code,
the GPT-4o correctly identified a Minesweeper game, describing initialization, gameplay logic, and
winning conditions. On the obfuscated version, it failed to capture the concept, instead degenerating
into line-by-line descriptions of grid updates and neighbor increments without naming the task or
intent. This contrast suggests that identifiers are disproportionately influential for summarization,
anchoring structural patterns to high-level human concepts.

This example illustrates that identifiers serve as critical semantic anchors for summarization, a task
that depends on program intent. Once obfuscated, the model loses these anchors and collapses
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into surface-level, line-by-line narration despite identical structure and behavior. While compelling,
this example alone is anecdotal. To rigorously evaluate the role of naming in intent-level under-
standing, we next conduct systematic experiments across datasets and models in Section 4, includ-
ing both intent-rich code (CLASSEVAL) and competitive programming tasks (LIVECODEBENCH)
where naming plays a smaller role due to the nature of challenges in algorithms and data structures.

From the first example, we observed that removing identifiers strongly impairs LLMs on summariza-
tion, a task that requires recovering program intent through the naturalness channel. We now shift to
a different task: code execution prediction. Unlike summarization, this task mainly requires rea-
soning about program semantics and line-by-line behavior. Since our obfuscation preserves syntax,
control flow, and data flow, model performance should in principle remain stable if predictions truly
rely on program structure alone.

Table 1: Motivating experiment on output prediction tasks. We compare model performance
(Pass@1 and Pass@3) on CLASSEVAL and LIVECODEBENCH with original vs. obfuscated code.

Dataset Pass@1 Pass@3

Original Obfuscated Original Obfuscated

ClassEval 85.7 76.1 89.2 83.3
LiveCodeBench 85.4 71.2 97.9 80.1

Table 1 summarizes the results. Contrary to expectation, program execution prediction performance
degrades in both datasets after identifiers were removed. On CLASSEVAL, Pass@1 drops from 85.7
to 76.1 and Pass@3 from 89.2 to 83.3. Even more striking, on LIVECODEBENCH—where naming
conventions are sparse and implementations emphasize algorithmic structure—we still observed
sharp declines: Pass@1 falls from 85.4 to 71.2, and Pass@3 from 97.9 to 80.1.

These preliminary findings indicate that LLMs exploit statistical correlations between identifiers and
functionality even for tasks that should be un-affected by renaming. This contradicts the common
assumption that execution benchmarks cleanly capture structural reasoning about program behavior.
Why do identifiers matter so much in execution prediction? We address this puzzle in Section 5,
where we analyze obfuscation strategies, disentangle memorization from genuine reasoning, and
study how naming biases shape execution performance. Building on these insights, we then propose
in Section 6 new obfuscation-based benchmarks that more reliably measure code understanding by
separating structural semantics from memorization effects.

4 PROGRAM INTENT CHANNEL: CODE SUMMARIZATION

4.1 EXPERIMENTAL SETUP

We design our experiment to evaluate models’ ability to capture program intent rigorously.

Datasets: We select two diverse corpora that complement each other in focus and complexity. The
CLASSEVAL benchmark targets class- and method-level summarization, focusing on developers’
intent beyond code constructs. In contrast, LIVECODEBENCH provides algorithmically oriented
competitive programming tasks, which challenge models to capture procedural structure rather than
high-level intent. This combination allows us to probe the impacts of both naturalness and program
semantic channels on LLM code comprehension.

Models: We evaluate a set of advanced LLMs that span a range of scales and architectures: GPT-
4o, Qwen3-Coder 480B, DeepSeek V3 0324, and Llama 4 Maverick. By including both top-tier and
mid-scale models, we examine how model capacity influences understanding of program intent and
structural fidelity.

Metrics: For CLASSEVAL, we report class-level and method-level scores, reflecting both holistic
and fine-grained comprehension. For LIVECODEBENCH, we compute method-level accuracy that
measures alignment with algorithmic correctness. In all cases, scores are averaged across samples
to provide consistent, comparable metrics.

LLM-as-a-judge: Summaries are evaluated using rubric-based scoring derived from the BigGen-
Bench framework Kim et al., which emphasizes semantic fidelity and comprehensive understand-
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ing. We employ GPT-4o as the evaluation model, chosen for its stability and self-consistency across
repeated judgments. Each summary is rated along five dimensions—intent capture, behavioral cov-
erage, algorithmic adequacy, faithfulness, and clarity—on a 1–5 scale, then normalized to 0–100.
This setup ensures that metrics reflect semantic reasoning rather than superficial lexical overlap.

Pipeline: For each sample, the target model generates a summary, which is then scored by the GPT-
4o judge according to the rubrics. Results are aggregated across obfuscation strategies, enabling
direct comparison between original and obfuscated variants. This pipeline provides a rigorous,
semantically grounded measure of summarization performance.

4.2 EXPERIMENTAL RESULT

Table 2: Summarization performance under name obfuscation. We report class-level and
method-level accuracy on CLASSEVAL, and method-level accuracy on LIVECODEBENCH.

Model
ClassEval LiveCodeBench

Class Acc. Method Acc. Method Acc.

Original Obfuscated Original Obfuscated Original Obfuscated

GPT-4o 87.3 58.7 65.9 44.6 73.4 70.1
Qwen3–Coder 480B 87.2 72.1 55.9 49.6 87.7 82.1
DeepSeek V3 87.7 76.7 56.2 51.9 83.6 78.4
Llama 4 Maverick 86.2 66.4 56.0 48.1 77.5 78.2

Analysis. Summarization performance diverges sharply across the two benchmarks. On CLASSE-
VAL, class-level accuracy collapses after obfuscation, with drops ranging from 11 points (DeepSeek
V3: 87.7 → 76.7) to almost 29 points (GPT-4o: 87.3 → 58.7). Method-level summarization is
also affected, though to a lesser extent, with declines averaging around 9–12 points across mod-
els. These results confirm that summarization relies heavily on the naturalness channel—especially
entity names—at the class level, where names and headers carry substantial intent.

In contrast, performance on LIVECODEBENCH remains remarkably stable. The average reduction
is below three points, and in one case (Llama 4 Maverick) obfuscation even produces a slight im-
provement (77.5 → 80.2). This resilience stems from the nature of competitive programming tasks:
identifiers are typically generic (a, b, n), and the program’s purpose is communicated through struc-
tural and algorithmic cues rather than naming. To quantify this difference, we compare the lengths
of variable names in the two datasets. As shown in Figure 2, CLASSEVAL exhibits substantially
longer and more descriptive identifiers (median length ≈ 8, with many exceeding 15 characters),
whereas LIVECODEBENCH identifiers are extremely short (median length ≈ 2), often restricted to
one-letter variables. This statistical contrast supports the observation that models trained on com-
petitive programming data cannot rely heavily on naming cues, explaining their robustness under
obfuscation.

ClassEval LiveCodeBench
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Figure 2: Distribution of variable name lengths in CLASSEVAL and LIVECODEBENCH.

Model scale and training diversity also matter. Qwen3–Coder 480B and DeepSeek V3 both maintain
higher robustness, dropping less than smaller counterparts. However, GPT-4o, while very strong
on the original code, shows the steepest decline once identifiers are removed—indicating that its
advantage is partly tied to exploiting semantic-rich naming rather than purely structural reasoning.
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Qualitative inspection reinforces this view. On CLASSEVAL, the summaries of original code typ-
ically capture high-level intent (e.g., “implements caching mechanism”), whereas obfuscated ver-
sions often degrade into verbose, line-by-line narrations of control flow. This discrepancy highlights
how strongly models depend on naming cues when inferring intent-level meaning. In contrast, on
LIVECODEBENCH, the difference is minimal: summaries of both original and obfuscated programs
remain essentially intact. For instance, the function below—regardless of whether variables are
renamed—is consistently summarized as “the code converts a given string into a palindrome by
modifying characters symmetrically.” Unlike in CLASSEVAL, there is no regression into line-by-
line paraphrasing, confirming that when summarizing the competitive programming code, a model
tends to rely more on algorithmic structure than on naming cues.

def makeSmallestPalindrome(s: str) -> str:
s = list(s)
n = len(s)
for i in range(n):

c = min(s[i], s[n - 1 - i])
s[i] = c
s[n - 1 - i] = c

return "".join(s)

Key Findings. Name-obfuscation evaluation indicates that benchmarks like CLASSEVAL better
measure model performance on intent-understanding tasks, whereas low-naturalness settings (e.g.,
competitive-programming code in LIVECODEBENCH) may under-challenge LLMs and mask lim-
itations. Accordingly, incorporating identifier obfuscation into benchmark design is essential for
robust assessment of program intent-level tasks such as code summarization or code review.

5 PROGRAM SEMANTIC CHANNEL: CODE EXECUTION PREDICTION

5.1 EXPERIMENTAL SETUP

We establish the following experimental setup to rigorously assess the ability of LLMs to perform
code execution reasoning under varying naming conventions.

Datasets. We evaluate on two complementary benchmarks as in the experiment in Section 4. To fo-
cus on non-trivial execution behavior, we filter CLASSEVAL to retain only samples with Cyclomatic
Complexity ≥ 15, and LIVECODEBENCH to retain only samples with Cyclomatic Complexity ≥ 6.
After filtering, the evaluation set comprises 37 CLASSEVAL instances and 96 LIVECODEBENCH
solutions. This high-complexity selection ensures the tasks demand substantial code reasoning and
emphasize any meaningful effects of obfuscation.

Models. We evaluate a representative set of state-of-the-art LLMs, including GPT-4o, Qwen3-Coder
480B, and DeepSeek V3, ensuring that we include frontier-scale and mid-scale models.

Metrics. For each sample, we ran 5 times and calculate the average Pass@1 and Pass@3 values.

Obfuscation strategies. To probe how naming affects LLM reasoning while preserving program
behavior, we apply four deterministic, name-only obfuscation strategies:

• Simple structural renaming (alpha-renaming): replace identifiers with role-preserving
placeholders such as class1, class2, method1, var1, var2, . . . .

• Ambiguous identifiers: replace identifiers with visually ambiguous tokens (examples:
llllIII, IlllIllllIlI).

• Cross-domain terms: substitute identifiers with terms from unrelated fields (e.g., medical:
adrenaline fd, glucagon d6) to break semantic cues in the application domains.

• Misleading semantics: assign names that imply incorrect behaviors (e.g., a summing func-
tion named compute max).

All obfuscations, as illustrated in Figure 3, are deterministic, reproducible, and change only the
naturalness channel of the code and do not change program semantics.
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Original Program
class MinesweeperGame:

def __init__(self, n, k) -> None:
self.n = n; self.k = k
self.minesweeper_map = self.generate_mine_sweeper_map()
...

def generate_mine_sweeper_map(self):
arr = [[0 for row in range(self.n)]

for column in range(self.n)]
for num in range(self.k):

x = random.randint(0, self.n-1)
...

class IllI:
def __init__(self, llIIl, llIIlIl) -> None:

self.llIIl = llIIl; self.llIIlIl = llIIlIl
self.llllIII = self.IIIIII()
...

def IIIIII(self):
IlllIllllIlI = [[0 for IIlIIIIl in range(self.llIIl)]

for IIlIIl in range(self.llIIl)]
for IIIlIl in range(self.llIIlIl):

IIllIIIl = random.randint(0, self.llIIl - 1)
...

Ambiguous identifiers

class Lymph_55:
def __init__(self, lymph_2a, antibody_0d) -> None:

self.lymph_2a = lymph_2a; self.antibody_0d = antibody_0d
self.gonad_20 = self.bronchiole_ef()
... 

def bronchiole_ef(self):
pituitary_22 = [[0 for thrombocyte_98 in range(self.lymph_2a)]

for oligodendrocyte_86 in range(self.lymph_2a)]
for glucagon_14 in range(self.antibody_0d):

ureter_91 = random.randint(0, self.lymph_2a - 1)
...

Cross-domain terms
class HttpServer:

def __init__(self, index_map, avg) -> None:
self.index_map = index_map; self.avg = avg
self.mutex = self.find_min()
...

def find_min(self):
count_map = [[0 for enabled1 in range(self.index_map)]

for enabled2 in range(self.index_map)]
for error in range(self.avg):

error1 = random.randint(0, self.index_map - 1)
...

Misleading semantics

class Class1:
def __init__(self, var1, var2) -> None:

self.var1 = var1; self.var2 = var2
self.var3 = self.method1()
...

def method1(self):
var6 = [[0 for var7 in range(self.var1)]

for var8 in range(self.var1)]
for var9 in range(self.var2):

var10 = random.randint(0, self.var1 - 1)
...

Alpha Renaming

Figure 3: Illustration of the four obfuscation strategies applied in our study.

Table 3: Execution prediction performance across original code and four obfuscation strategies.
Values in green equal or exceed the model’s Orig for that dataset; red are lower.

ClassEval

Model Orig Alpha Ambiguity CrossDomain Misleading

Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3

GPT-4o 76.6 84.6 70.2 75.4 74.7 81.0 75.1 84.6 71.1 76.5
Qwen3–Coder 480B 92.6 98.7 86.4 90.0 87.3 90.9 88.2 92.7 83.7 88.2
DeepSeek V3 90.0 92.7 85.5 92.5 69.3 73.8 89.8 91.8 88.8 91.6
Llama 4 Maverick 81.1 85.5 83.4 86.1 72.0 76.5 79.9 85.3 80.8 86.2

LiveCodeBench

Model Orig Alpha Ambiguity CrossDomain Misleading

Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3 Pass@1 Pass@3

GPT-4o 82.9 95.9 75.5 90.4 68.7 78.9 72.1 85.7 82.3 92.5
Qwen3–Coder 480B 99.3 100 94.5 98.6 88.4 96.5 89.7 93.1 93.8 97.9
DeepSeek V3 99.3 100 98.6 99.3 91.8 95.2 98.6 100 97.2 97.9
Llama 4 Maverick 80.2 90.4 65.3 78.9 56.4 69.3 63.9 76.8 75.5 88.4

5.2 EXPERIMENTAL RESULTS

Analysis. Table 3 provides the central quantitative evidence of our study. Intuitively, one would
expect that the name obfuscation does not affect a model’s reasoning on the execution semantics of
the obfuscated code. Surprisingly, across both benchmarks, name obfuscation consistently reduces
accuracy, though the magnitude varies by model and dataset. On CLASSEVAL, the degradation is
moderate but widespread. For instance, GPT-4o drops from 76.6% to 70.2% Pass@1 under Alpha,
and DeepSeek V3 falls drastically from 90.0% to 69.3% under Ambiguity. These results reveal that
even large, high-performing models are vulnerable once surface cues are altered. Still, a few cases
conform to intuition: Llama 4 Maverick surpasses its original performance under Alpha. Such cases
suggest that when the reasoning pathway is unaffected, identifier names function only as replaceable
placeholders. Figure 4 is an illustration of such cases where the model still reasons well on heavily
name-obfuscated code.

The picture is more dramatic in LIVECODEBENCH. Nearly all models suffer double-digit drops,
with reductions exceeding 20–30% in several obfuscation settings. For example, Llama 4 Maverick
falls from 80.2% to just 56.4%. Even GPT-4o and Qwen3-Coder 480B, which remain strong overall,
show consistent declines. Only isolated cases (CrossDomain for DeepSeek V3) yield equal or higher
scores, and these are rare exceptions rather than the dominant trend.

If obfuscation only renames variables without changing program semantics, the table is expected to
be dominated with green cells (equal or better than original). Instead, red cells are overwhelmingly
prevalent, showing that accuracy is tightly linked to naming cues. Figure 4 shows that reasoning
remains stable and unaffected by renaming, yet the aggregate outcomes collapse under obfuscation.

This tension—stable per-step reasoning but degraded aggregate accuracy—raises critical questions
about the reliability of LLM performance. Specifically, if the model can reason line-by-line as
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Thinking

obfuscate

Original Program

class Calculator: ...

Ambiguous identifiers

class IIlIlllIII: ...

1. Instantiate the Calculator class.
2. Call the calculate method with the expression '1+2*3'.
Within the calculate method:

- Initialize operand_stack as an empty list, operand_stack as an empty 
list, and num_buffer as an empty string.

- Iterate over each character in the expression '1+2*3':
'1': - It's a digit, so add it to num_buffer ('1').
'+': - num_buffer contains '1'; convert it to float and add 1.0 to 

operand_stack. 
- Clear num_buffer.
- operand_stack is now [1.0].
- Add '+' to operator_stack; now operator_stack is ['+'].

'2': - It's a digit, so add it to num_buffer ('2').
'*': - num_buffer contains '2'; convert it to float and add 2.0 to 

operand_stack.
- Clear num_buffer.
- operand_stack is now [1.0, 2.0].
- The operator '*' has higher precedence (2) compared to '+', 

which has lower precedence (1).
- Add '*' to operator_stack; now operator_stack is ['+', '*'].

'3': - It's a digit, so add it to num_buffer ('3').
- End of iteration:

- num_buffer contains '3'; convert it to float and add 3.0 to 
operand_stack.

- operand_stack is now [1.0, 2.0, 3.0].
- Apply operators remaining in operator_stack:

- Operator '*' is applied:
- Pop 2 and 3 from operand_stack and pop '*' from operator_stack.
- Compute 2.0 * 3.0 = 6.0.
- Add 6.0 back to operand_stack; now operand_stack is [1.0, 6.0].

- Operator '+' is applied:
- Pop 1.0 and 6.0 from operand_stack and pop '+' from operator_stack.
- Compute 1.0 + 6.0 = 7.0.
- Add 7.0 back to operand_stack; now operand_stack is [7.0].

- operand_stack should have one element left, 7.0, which is the result.
Answer: the final output of calculator.calculate('1+2*3') is 7.0.

1. An instance of the class IIlIlllIII is created in the unittest method lIll.
2. The method llIIlIlII is called with the string '1+2*3'.
3. In llIIlIlII, an empty list lllllIllIlIll and an empty list IIlIIIIlIllIII
are initialized. 
4. The method iterates through the characters of the input string '1+2*3':

- Encounters '1', which is a digit, so it gets appended to IIlIIlIllI.
- Encounters '+', a non-digit:

- IIlIIlIllI contains '1', which is cast to float and appended to 
lllllIllIlIll, resulting in [1.0].

- IIlIIlIllI is reset to an empty string.
- '+' is appended to IIlIIIIlIllIII.

- Encounters '2', which is a digit, appended to IIlIIlIllI.
- Encounters '*', a non-digit:

- IIlIIlIllI contains '2', cast to float and appended to lllllIllIlIll, 
updating it to [1.0, 2.0].

- IIlIIlIllI is reset to an empty string.
- Checks the precedence of '+' (previous operator) and '*'. Since the 

precedence of '*' is higher (2 > 1), no operations are popped from 
IIlIIIIlIllIII.

- '*' is appended to IIlIIIIlIllIII.
- Encounters '3', which is a digit:

- It is appended to IIlIIlIllI.
5. End of string:

- IIlIIlIllI contains '3', cast to float and appended to lllllIllIlIll, 
updating it to [1.0, 2.0, 3.0].
6. Remaining operators in IIlIIIIlIllIII get processed:

- '*' is popped:
- Operands 3.0 and 2.0 are popped from lllllIllIlIll.
- Operation 2.0 * 3.0 is performed, resulting in 6.0.
- Result 6.0 is appended to lllllIllIlIll, updating it to [1.0, 6.0].

- '+' is popped:
- Operands 6.0 and 1.0 are popped from lllllIllIlIll.
- Operation 1.0 + 6.0 is performed, resulting in 7.0.
- Result 7.0 is appended to lllllIllIlIll.

7. The final result [7.0] contains one element 7.0.
Answer: the final computed output is 7.0.

Thinking

Figure 4: Qualitative example: GPT–4o’s step-by-step reasoning on the original (left) and an Am-
biguous identifiers obfuscation (right) of the same program yields the same final correct result (7.0).

illustrated in Figure 4, why does name obfuscation still reduce final accuracy? One possibility is
that LLMs exploit surface-level cues in the original code. Rather than genuinely reasoning in all
cases, the model may occasionally rely on memorized associations keyed by familiar identifiers.
Under this interpretation, obfuscation weakens these cues, revealing a gap between the appearance
of reasoning and actual generalization.

To investigate this hypothesis, we conduct a memorization stress test, augmenting inputs and mea-
suring cases where the model reproduces outputs from the training distribution. If identifier names
act as “access keys” for memorization, obfuscation should disrupt such matches.

Memory effect experiment. Building on the hypothesis raised in the qualitative analysis, we con-
ducted a dedicated experiment to probe whether LLMs rely on memorization rather than genuine
input-driven reasoning.

Setup. We first used GPT-4o to generate new input values for each sample in the datasets, ensuring
the outputs differ from those in the original datasets. We then filtered out cases with small finite
output domains (e.g., True/False) to minimize chance overlap. Model predictions are compared
against both the old dataset outputs and the new ground-truth outputs. The key question is whether
the model adapts to unseen inputs or instead reproduces memorized outputs from prior exposure.

Observation. Table 4 shows that on the original (non-obfuscated) code, models occasionally repro-
duce the old outputs instead of the correct new ones, with GPT-4o and Llama 4 Maverick showing
the strongest signs of this effect on LIVECODEBENCH. The probability of such matches occurring
by chance is negligible, confirming that models sometimes fall back on memorized associations.
Under obfuscation, however, this effect sharply decreases—often to zero—supporting the view that
variable names act as retrieval cues or “keys” for accessing memorized code–output patterns.

Findings. After these analyses, we highlight the following key insights:

• Identifier leakage. Variable names anchor memorized code–output pairs in training data;
obfuscation disrupts this shortcut and pushes the model toward execution reasoning.

• Benchmark inflation. Existing execution benchmarks risk overestimating reasoning abil-
ity, since identifier leakage enables partial memorization to masquerade as generalization.
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Table 4: Memorization check: #Samples where prediction equals the old dataset output across new
augmented inputs.

Model ClassEval LiveCodeBench
Orig Ambiguity Misleading Orig Ambiguity Misleading

GPT-4o 1 0 0 13 5 2
Qwen3-Coder 480B 1 0 0 2 0 0
DeepSeek V3 0324 2 0 0 0 0 0
Llama 4 Maverick 0 0 0 9 5 3

• Toward robust evaluation. Reliable benchmarks for code execution understanding eval-
uation should integrate (i) augmented datasets with novel input–output pairs, and (ii) sys-
tematic obfuscation of identifiers. These measures jointly reduce memory-based shortcuts
and provide a clearer assessment of semantic reasoning ability.

6 CLASSEVAL-OBF: A RELIABLE DATASET FOR EXECUTION PREDICTION

Building on these findings, we release CLASSEVAL-OBF, an obfuscated extension of CLASSEVAL
designed to mitigate identifier leakage and provide a more faithful measure of execution reasoning.
In this dataset, all identifiers are systematically renamed using four complementary strategies (alpha-
renaming, ambiguous identifiers, cross-domain substitutions, misleading semantics), ensuring that
program behavior is preserved while surface-level cues are removed or distorted.

Figure 5: Execution prediction performance on original vs. obfuscated CLASSEVAL (high-
complexity subset)

GPT-4o Qwen3-Coder 480B DeepSeek V3 Llama 4 Maverick

17.5
15.0
12.5
10.0

7.5
5.0
2.5
0.0

De
lta

 (
)

ClassEval
ClassEval-OBF

Evaluation. We re-run execution prediction experiments on the high-complexity subset, compar-
ing original CLASSEVAL with its obfuscated variants. Figure 5 reports the performance delta (∆)
between original and obfuscated code across the four obfuscation strategies, summarized as mini-
mum, maximum, and average values. Smaller deltas indicate higher robustness, as models maintain
accuracy even when identifier names are removed.

Across models, CLASSEVAL-OBF consistently reduces the magnitude of performance drops com-
pared to the original CLASSEVAL, with most deltas confined within 3–7%. In several cases, the
delta is nearly zero or even slightly positive, suggesting that obfuscation can prevent models from
overfitting to naming cues. This pattern confirms that CLASSEVAL-OBF mitigates identifier leakage
and provides a more stable, semantics-grounded benchmark for execution reasoning.

7 CONCLUSION

We set out to disentangle how LLMs “understand” code by separating a structural/semantic chan-
nel from a human–naturalness channel and evaluating models under a suite of semantics-preserving
obfuscations that progressively suppress names and prose while keeping behavior intact. Across in-
tent summarization and execution prediction—and across real-world and competitive-programming
settings—we observed a consistent, graded pattern: intent-level performance degrades sharply as
naturalness is removed, while behavior-level metrics remain largely invariant except where names
are semantically active. These results provide converging empirical support for a two-channel ac-
count of code understanding and motivate evaluation practices that report pre/post obfuscation deltas
alongside human-aligned intent metrics. We release our obfuscation harness and protocols to en-
courage benchmarks that reward true semantic reasoning over surface cues and to catalyze progress
toward models that capture program intent, not just its narration.
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A APPENDIX

A.1 PROMPT FOR CODE SUMMARIZATION

You are a helpful assistant for code understanding.
Summarize the following Python class at two levels:
1. The overall class.
2. Each method individually.

Return your answer strictly in JSON format:
{

"class_summary": "...",
"methods": [

{"method_name": "method1", "method_summary": "..."},
{"method_name": "method2", "method_summary": "..."}

]
}

Here is the class code:

```python
{code}
```

Figure 6: Prompt used for ClassEval class and method-level summarization.

You are a helpful assistant for code understanding.
Summarize the main functionality of this function.

```python
{code}
```

Figure 7: Prompt used for LiveCodeBench function-level summarization.
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You are an expert code reviewer. Evaluate how well a generated
summary matches the gold reference.

### Scoring Rubric
- 5/5 (Excellent): Semantically equivalent to reference; covers the
main purpose accurately; concise; no major omissions or errors.
- 4/5 (Good): Mostly correct; captures main idea but misses a minor
detail or is slightly imprecise.
- 3/5 (Fair): Partially correct; captures some intent but misses
important elements or includes minor inaccuracies.
- 2/5 (Poor): Only loosely related; major inaccuracies or misses
most key functionality.
- 1/5 (Very poor): Irrelevant or completely wrong.

### Examples
Reference: "Sorts a list of numbers in ascending order."
Generated: "Reverses a list."
Score: 1/5
Justification: Opposite functionality; incorrect.

Reference: "Parses a JSON string into a Python dictionary."
Generated: "Converts JSON text into a dict object."
Score: 5/5
Justification: Same meaning; different wording.

Reference: "Computes factorial of n using recursion."
Generated: "Computes factorial of n."
Score: 4/5
Justification: Correct but missing recursion detail.

---

Now evaluate the following method:

Reference: "{ref_summary}"
Generated: "{gen_summary}"

Output strictly in this format (start with 'Score: X/5'):
Score: X/5
Justification: <one or two sentences>

Figure 8: Prompt for evaluation of generated summaries against gold references.

A.2 PROMPT FOR OUTPUT PREDICTION
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You are given a full Python class and a unittest test case that 
calls its methods. 
Your task is to simulate the program step by step and predict 
the exact output of the test method.
MUST think step by step and provide rationale for each step. 
All the rationale must go inside the <think> tag and must NOT 
mention the final output.

Complete it with the predicted value of the LEFT side of the 
assertion (the exact output), and fill it in on the RIGHT side 
of the assertion, keeping the same provided format of the 
assertion and only replacing ?? with the predicted output.
Do NOT output anything extra.
Provide the completed assertion inside <answer> and </answer>
tags.

<code>
{code}

assert {test} == ??
</code>

<think>
Simulate the execution of the class and the unittest code, 
tracking changes to operands, operators, and attributes. 
Provide the rationale for each step, leading to the final 
computed output.
</think>

<answer>
assert {test} == ??
</answer>

<think>

Figure 9: Prompt for ClassEval output prediction with unittest simulation.

A.3 ADDITIONAL QUALITATIVE EXAMPLES

A.3.1 CODE SUMMARIZATION

Figure 11 shows two LIVECODEBENCH cases where summaries remain correct under obfuscation,
consistently capturing algorithmic intent. Unlike CLASSEVAL, we observe no regression into line-
by-line narrations.
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You are given a Python function and an assertion containing an input to 
the function. Complete the assertion with a literal (no unsimplified 
expressions, no function calls) containing the output when executing 
the provided code on the given input, even if the function is incorrect 
or incomplete. Do NOT output any extra information. Execute the program 
step by step before arriving at an answer, and provide the full 
assertion with the correct output in <answer> and </answer> tags, 
following the examples.

<code>
def performOperation(s):

s = s + s
return "b" + s + "a"

assert performOperation(s = "hi") == ??
</code>
<think>
Let's execute the code step by step:

1. The function performOperation is defined, which takes a single 
argument s.
2. The function is called with the argument "hi", so within the 
function, s is initially "hi".
3. Inside the function, s is concatenated with itself, so s becomes 
"hihi".
4. The function then returns a new string that starts with "b", 
followed by the value of s (which is now "hihi"), and ends with "a".
5. The return value of the function is therefore "bhihia".
</think>
<answer>
assert performOperation(s = "hi") == "bhihia"
</answer>

<code>
{code}
assert {test} == ??
</code>

<think>

Figure 10: Prompt for LiveCodeBench output prediction with function execution.

A.3.2 OUTPUT PREDICTION

Figure 12 illustrates a representative case from LIVECODEBENCH. Both original and obfuscated
code yield the same reasoning trace and correct output, showing that identifier changes do not affect
execution prediction.

A.4 USAGE OF LLM ASSISTANCE

We used large language models (LLMs) to aid in polishing the writing and improving clarity. All
research ideas, experiments, and conclusions are the work of the authors.
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Original Program Alpha Renaming

This function converts the given string 
into the lexicographically smallest 
palindrome possible.

Summary

obfuscate

def makeSmallestPalindrome(s: str) -> str:
s = list(s)
n = len(s)
for i in range(n):
c = min(s[i], s[n - 1 - i])
s[i] = c
s[n - 1 - i] = c

return "".join(s)

The provided code converts a given 
string into a palindrome by modifying 
characters symmetrically.

Summary

def function1(var1: str) -> str:
var1 = list(var1)
var2 = len(var1)
for var3 in range(var2):
var4 = min(var1[var3], var1[var2 - 1 - var3])
var1[var3] = var4
var1[var2 - 1 - var3] = var4

return ''.join(var1)

(a) LiveCodeBench QUESTION ID: 2816

Original Program

Alpha Renamingob
fu

sc
at

e

This code finds and returns the shortest 
substring of a given string that contains 
exactly a specified number of '1' 
characters.

Summary

def shortestBeautifulSubstring(s: str, k: int) -> str:
ans = None
n = len(s)
for i in range(n):
for j in range(i, n):
t = s[i:j+1]
if t.count('1') == k and (ans is None or

len(t) < len(ans) or (len(t) == len(ans) and t < ans)):
ans = t

return "" if ans is None else ans

def function1(var1: str, var2: int) -> str:
var3 = None
var4 = len(var1)
for var5 in range(var4):
for var6 in range(var5, var4):
var7 = var1[var5:var6 + 1]
if var7.count('1') == var2 and (var3 is None or

len(var7) < len(var3) or (len(var7) == len(var3) and var7 < var3)):
var3 = var7

return '' if var3 is None else var3

It finds and returns the smallest 
substring of the input string containing 
exactly a specified number of '1's, or an 
empty string if no such substring exists.

Summary

(b) LiveCodeBench QUESTION ID: 3150

Figure 11: LIVECODEBENCH: consistent summarization under obfuscation. Both cases show that
summaries capture algorithmic intent and remain stable despite identifier changes.
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Thinking

Original Program Ambiguous identifiers

Let's execute the code step-by-step:

1. The function colorTheArray is defined, which takes two 
arguments: n (an integer) and queries (a list of lists containing 
pairs of integers).
2. The function is called with n = 1 and queries = [[0, 100000]].
3. Inside the function:
- An empty list res is initialized.
- The initial array arr with n zeros is created: arr = [0].
- A variable curr is initialized to 0.

4. The function then processes each query (in this case, there is 
only one query [0, 100000]).

- i is assigned the value 0 and v is assigned the value 100000.
- pv is assigned the value at index i in arr: pv = arr[i] = 

arr[0] = 0.
- The array length n is 1, therefore:
- i + 1 < n is 1 < 1, which is false.
- i - 1 >= 0 is -1 >= 0, which is false.
- i + 1 < n and arr[i+1] == pv is 1 < 1, which is false.
- i - 1 >= 0 and arr[i-1] == pv is -1 >= 0, which is false.
- As none of the conditional statements are true, no changes 

are made to the variable curr.
- The value of arr at index i is updated to v: arr[0] = 100000.
- The value of curr (which remains 0) is appended to the 

results list res: res += [0].
5. The function returns the results list res, which in this case 
is [0].

assert colorTheArray(n = 1, queries = [[0, 100000]]) == [0]

Let's execute the code step by step:

1. The function llllIlIlllI is defined, which takes two arguments: 
llIIlIIIIII (an integer) and llllIlIIIlIlllIllllIIIll (a list of lists of 
integers).
2. Empty list lIIIIIIIlIllIIII is initialized and list 
IlllIllllIllIIIlllllIlIlI is initialized with zeros of length llIIlIIIIII.
3. Variable IIllIlllllIlIIII is initialized to 0.
4. For the provided input, llIIlIIIIII=1 and llllIlIIIlIlllIllllIIIll=[[0, 
100000]].
5. There is only one pair (0, 100000) in llllIlIIIlIlllIllllIIIll.
6. For this pair:

- lIIIIIIlllll = 0
- IIIIlllIIIII = 100000
- llllIllllIIIIIIllIIIlllIll is initialized to 0.
- Then following conditions are checked:

- If clause (lIIIIIIlllll + 1 < llIIlIIIIII and 
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll + 1] == IIIIlllIIIII) evaluates to
False.

- If clause (lIIIIIIlllll - 1 >= 0 and 
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll - 1] == IIIIlllIIIII) evaluates to
False.

- If clause (lIIIIIIlllll + 1 < llIIlIIIIII and 
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll + 1] == llllIllllIIIIIIllIIIlllIll 
and llllIllllIIIIIIllIIIlllIll) evaluates to False.

- If clause (lIIIIIIlllll - 1 >= 0 and 
IlllIllllIllIIIlllllIlIlI[lIIIIIIlllll - 1] == llllIllllIIIIIIllIIIlllIll 
and llllIllllIIIIIIllIIIlllIll) evaluates to False.

- IlllIllllIllIIIlllllIlIlI[0] is set to 100000.
- lIIIIIIIlIllIIII is appended with 0.

7. The function returns [0].

So the assertion would be:
assert llllIlIlllI(llIIlIIIIII=1, llllIlIIIlIlllIllllIIIll=[[0, 100000]]) 
== [0]

Thinking

obfuscate

def colorTheArray(n: int, queries: List[List[int]]) -> List[int]: ...
def llllIlIlllI(llIIlIIIIII: int,

llllIlIIIlIlllIllllIIIll: List[List[int]]) -> List[int]: ...

Figure 12: LIVECODEBENCH: stable reasoning and output across obfuscation.
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