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Abstract

Large language models (LLMs) can perform001
complex reasoning by generating intermedi-002
ate thoughts under zero-shot or few-shot set-003
tings. However, zero-shot prompting always004
encounters low performance, and the supe-005
rior performance of few-shot prompting hinges006
on the manual-crafted demonstrations. In007
this paper, we present RoSE (Reasoning with008
Orchestrated Streaming Experiences), a gen-009
eral framework for solving reasoning tasks that010
can self-improve without complex external ef-011
forts. To enable RoSE, we describe an architec-012
ture that extends an LLM to store all answered013
questions and their thoughts in a streaming ex-014
perience pool then orchestrates helpful ques-015
tions from the pool to assist in answering new016
questions. To set up a question-aware orches-017
tration mechanism, RoSE first calculates the018
similarity of each question in the pool with a019
new test question. Since the solution to each020
answered question is not always correct, RoSE021
will sort the questions according to their sim-022
ilarity with the new question, and then uni-023
formly divide them into multiple buckets. It024
finally extracts one question from each bucket025
to make these extracted questions more diverse.026
To make these extracted questions help RoSE027
answer new questions as much as possible, we028
introduce two other attributes of uncertainty029
and complexity for each question. RoSE will030
preferentially select the questions with low un-031
certainty and high complexity from each bucket.032
We evaluate the versatility of RoSE in various033
reasoning tasks, LLMs, and CoT methods.034

1 Introduction035

Large language models (LLMs) (Brown et al.,036

2020; Thoppilan et al., 2022; Chowdhery et al.,037

2022; Hoffmann et al., 2022; Ouyang et al., 2022;038

Zeng et al., 2023; Touvron et al., 2023a; OpenAI,039

2023) have an emerged ability on performing vari-040

ous complex reasoning tasks. Recently, the chain-041

of-thought (CoT) prompting technique (Wei et al.,042

2022) was proposed to have LLMs generate inter- 043

mediate reasoning paths before generating the fi- 044

nal answers. The prompting makes LLMs think 045

deeply before giving an answer and further en- 046

hances the reasoning power of LLMs. Besides, 047

the zero-shot CoT prompt (Kojima et al., 2022) 048

"Let’s think step by step" also enhances the reason- 049

ing power of LLMs without any manual-crafting 050

demonstrations. After the CoT prompting was pro- 051

posed, more studies tried to manually design better 052

prompts (Zhou et al., 2023; Wang et al., 2023a; Yao 053

et al., 2023a) to further improve the performance 054

of LLMs in reasoning. However, no matter how the 055

prompts change, the goal is to have LLMs generate 056

intermediate reasoning steps. 057

Recent works such as ReAct (Yao et al., 058

2023b), Reflexion (Shinn et al., 2023), REMEM- 059

BERER (Zhang et al., 2023a), and ExpeL (Zhao 060

et al., 2023) were presented and have demonstrated 061

the feasibility of autonomous agents that are built 062

on top of an LLM core. These methods use LLMs 063

to generate reasoning paths and “actions”. These 064

"actions" can be used in API calls and executed in 065

an environment. Besides, some golden feedback 066

will be presented to LLMs during the reasoning 067

process (Shinn et al., 2023; Zhang et al., 2023a) 068

or labeled samples are needed to collect correct or 069

false experiences (Zhao et al., 2023). Overall, these 070

methods still require humans to carefully design 071

some demonstrations and need golden feedback, 072

labeled samples, or external tools to improve the 073

reasoning performance of LLMs. 074

We investigate how to improve the reasoning per- 075

formance of LLMs in a more challenging streaming 076

setting without any labeled data, pre-set unlabeled 077

data, feedback signals, and other external help. In- 078

spired by the observation that humans constantly 079

do various exercises to construct a large experi- 080

ence pool in their minds and use the pool to help 081

them quickly and better answer questions in ex- 082

ams, we present RoSE, a general framework for 083
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solving reasoning tasks with only streaming ex-084

periences. The greatest characteristic of RoSE is085

that it can self-improve by constantly collecting086

and orchestrating streaming experiences like hu-087

mans. We build an experience pool for RoSE to088

store the answered questions and corresponding089

reasoning paths. We expect these questions can090

assist LLMs in answering new questions, and con-091

struct a novel experience orchestration mechanism092

to extract helpful questions from the pool for each093

new reasoning question. To achieve this, we con-094

sider three attributes for each question in the pool095

when orchestrating. First, the solution to each ques-096

tion may be incorrect. If we randomly select some097

answered questions as demonstrations, LLMs may098

directly copy the incorrect labels of these questions099

when they are similar to the questions to be an-100

swered. This phenomenon is also known as the101

copy effect (Lyu et al., 2023; Zhang et al., 2023b).102

To avoid this, we introduce diversity so that the103

extracted questions are distributed from the highest104

to lowest similarity to the question to be answered.105

Second, before a question is appended to the pool,106

we calculate uncertainty for it according to the107

outputs of LLMs. The lower the uncertainty, the108

more confident RoSE is about its prediction. We109

first filter questions with higher uncertainty in the110

pool. However, since the pool is a dynamic system,111

we also set the dynamic uncertainty threshold to112

only filter the questions with relatively higher un-113

certainty in a pool snapshot. Third, one intuition114

is that the more complex the question, the more115

it can help RoSE learn how to answer other ques-116

tions (Fu et al., 2023). Therefore, we introduce the117

complexity as the final attribute. After filtering the118

questions with high uncertainty, we select the most119

complex questions as the final demonstrations.120

We evaluate the versatility of RoSE on 9 rea-121

soning tasks, 2 LLMs, and different CoT methods.122

Experimental results show that RoSE significantly123

improves the reasoning performance of LLMs. The124

analysis experiments verify the importance of each125

experience orchestration process and the stability126

of RoSE across various experimental settings. We127

summarize our contribution as follows:128

• We present RoSE, a general framework for129

better solving reasoning tasks. We build a130

novel experience orchestration mechanism by131

introducing diversity, uncertainty, and com-132

plexity to extract more helpful questions to as-133

sist LLMs in answering new questions. RoSE134

can self-improve by constantly answering new 135

questions without complex external effort. 136

• We verify the versatility of RoSE on 9 reason- 137

ing tasks, 2 LLMs, and different CoT methods. 138

Experimental results show that RoSE can sig- 139

nificantly improve the reasoning performance 140

of LLMs. 141

• We conduct extensive further analyses and 142

show that each component of RoSE con- 143

tributes critically to the improvements and 144

also verify the stability of RoSE across vari- 145

ous experimental settings. 146

2 Related Work 147

2.1 Chain-of-Thought Prompting 148

Wei et al. (2022) formally presented the CoT 149

prompting in large language models. This tech- 150

nique elicits LLMs to generate a series of interme- 151

diate reasoning steps that lead to the final answer to 152

a question using some manual-crafting demonstra- 153

tions with reasoning steps, so we name it Few-Shot- 154

CoT. Kojima et al. (2022) presented that LLMs can 155

also perform CoT reasoning when prompted by a 156

"magic spell" of "Let’s think step by step" without 157

any other manual-crafting demonstrations, so we 158

name it Zero-Shot-CoT. We categorize prompting 159

methods as zero- and few-shot settings. 160

Zero-shot Setting Some studies tried to first use 161

zero-shot CoT prompting to obtain the reasoning 162

chain for each unlabeled question and build a re- 163

trieval mechanism to retrieve some helpful ques- 164

tions to construct a few-shot prompt. For example, 165

Auto-CoT (Zhang et al., 2023b) uses the k-means 166

clustering method to cluster all the test questions 167

except the current question to be answered, then 168

takes all the questions near each cluster center to 169

construct a few-shot prompt using zero-shot CoT 170

prompting. Plan-and-Solve prompting (Wang et al., 171

2023a) uses a different zero-shot CoT prompt to 172

elicit LLMs to first decompose a question into sub- 173

questions and then solve each sub-question. 174

Few-shot Setting Few-shot CoT prompting 175

achieves better performance by eliciting the CoT 176

reasoning ability with effective manual demonstra- 177

tions. However, designing suitable prompts for 178

all test questions is difficult. Some recent stud- 179

ies mainly focus on manual-crafting more well- 180

designed prompts instead of addressing this limi- 181

tation. Zhou et al. (2023) and Khot et al. (2023) 182
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presented similar CoT prompts to first decompose a183

complex question into multiple sub-questions and184

then solve them one by one. PoT (Chen et al.,185

2022) uses a CoT prompt to elicit LLMs to gen-186

erate text and programming language statements187

where the generated program can be executed by188

a program interpreter to get the final answer. Fu189

et al. (2023) presented a complexity-based few-shot190

CoT prompting method that uses more complex191

demonstrations (i.e., with more reasoning steps)192

to obtain better performance than a random few-193

shot CoT prompt. Yao et al. (2023a) presented a194

Tree-of-Thought (ToT) prompting method by con-195

sidering multiple different reasoning paths and self-196

evaluating choices to decide the next course of ac-197

tion. MoT (Li and Qiu, 2023) obtains the reasoning198

paths for each unlabeled question using few-shot199

CoT prompting and filters the questions with low200

confidence. MemPrompt (Madaan et al., 2022) also201

uses few-shot prompting to query LLMs and gath-202

ers the interaction histories with user feedback to203

concatenate with the original prompt.204

2.2 Reasoning with Language Agents205

Some studies built agents to solve reasoning and206

decision-making tasks. ReAct (Yao et al., 2023b)207

explores the use of LLMs to generate both reason-208

ing traces and task-specific actions in an interleaved209

manner. Reflexion (Shinn et al., 2023) is an agent210

with memory and self-reflection and can be used211

to solve reasoning and decision-making tasks. Ex-212

peL (Zhao et al., 2023) is an agent that can learn213

from experiences and insights. However, it needs214

labeled data to construct experiences and insights.215

Compared with these agents, RoSE does not re-216

quire external environments or feedback.217

3 Methodology218

In this paper, we present RoSE, a framework for219

collecting and orchestrating streaming experiences220

to make LLMs self-improve in various reason-221

ing tasks. Our setting is zero-shot (i.e., without222

any manual-crafting demonstrations) and stream-223

ing (i.e., test questions arrive one by one and there224

are no pre-set unlabeled questions). Figure 1 shows225

the overview of the proposed framework. RoSE226

incorporates a streaming experience pool to store227

the answered questions and their reasoning paths.228

RoSE will orchestrate the experiences using multi-229

ple attributes to extract helpful questions to assist230

itself in better answering new questions. We con-231

struct a novel experience orchestration mechanism 232

for RoSE that considers the diversity, uncertainty, 233

and complexity of questions. In this section, we in- 234

troduce how RoSE collects streaming experiences 235

and how it orchestrates the collected experiences. 236

3.1 Streaming Experience Pool 237

The streaming experience pool is a dynamic system 238

to store the answered questions and their reason- 239

ing paths. After answering a new question, RoSE 240

will store it and its reasoning path in the streaming 241

experience pool. Each answered question has two 242

attached attributes of uncertainty and complexity 243

according to the predictions of RoSE. The two at- 244

tributes will be regarded as important measures to 245

filter collected experiences. 246

Uncertainty The uncertainty attribute indicates 247

how confident RoSE is in answering a question. As 248

shown in Figure 2, the lower the uncertainty, the 249

more confident RoSE answers the question. RoSE 250

will filter the questions in the experience pool with 251

higher uncertainty to guarantee the correctness of 252

extracted questions. To calculate uncertainty, we 253

make LLMs generate multiple reasoning paths for 254

each question. Each reasoning path has a corre- 255

sponding predicted answer. Following Li and Qiu 256

(2023), We calculate an entropy to estimate uncer- 257

tainty according to all predicted answers A: 258

A∗ = Unique(A), (1) 259

p(a∗i ) =
∑m

j=1
I(a∗i = aj)/m, (2) 260

uqt = −
∑|A∗|

i=1
p(a∗i ) log p(a∗i ), (3) 261

where m is the number of reasoning paths and 262

A = [a1, a2, ..., am] is the corresponding answers 263

of each reasoning path for the test question qt. 264

A∗ = [a∗1, a∗2, ...] is the set of answers A. uqt 265

represents the uncertainty of test question qt and 266

the higher uqt is, the more uncertain the LLM is 267

about the question. 268

Complexity An intuition is that the more com- 269

plex a question, the more it includes the details 270

of the reasoning that can better teach LLMs how 271

to reason. Therefore, we introduce the complex- 272

ity attribute for each question as another important 273

measure when filtering experiences. A natural idea 274

is to use the average complexity of the reasoning 275

paths to represent the complexity of a question. 276

The higher the average path complexity, the more 277

complex the question. For example, when a math 278
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Q: Keith has 20 books. Jason has 21 books. How many books do they 

have together ?

A: Let’s think step by step. 

……

Diversity

Complexity

Uncertainty

Keith has 20 books and Jason has 21 books.

We can add up the number of books they

have: 20 + 21 = 41 books. So, they have 41

books together.

We need to add up the number of books that

Keith and Jason own: 20 + 21=43. So, they

have 43 books together.

Streaming Experience Pool

Q: Sam had 9 dimes in his bank. His dad

gave him 7 dimes. How many dimes does

Sam have ?

A: Let’s think step by step. To find the

total .... So, Sam has totally 16 dims now.

Q: Sandy grew 6 carrots. Sam grew 3 carrots.

How many carrots did they grow in total?

A: Let’s think step by step. To find the

total ... So, they grew a total of 9 carrots.

Q: Sam had 9 dimes in his bank. His dad gave him 7

dimes. How many dimes does Sam have ?

A: Let’s think step by step. To find the total number of

dims, we add these two quantities together: 9 dims + 7

dims = 16 dims. So, Sam has totally 16 dims now.

Q: Sandy grew 6 carrots. Sam grew 3 carrots. How many

carrots did they grow in total?

A: Let’s think step by step. To find the total number of

carrots they grew, we add: 6 + 3 = 9. So, they grew a total

of 9 carrots.

Q: Keith has 20 books. Jason has 21 books. How many 

books do they have together?

A: Let’s think step by step. 

……

Keith has 20 books and Jason has 21 books.

We can add up the number of books they

have: 20 + 21 = 41 books. So, they have 41

books together.
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Figure 1: The overview of RoSE
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Figure 2: The relation between accuracy and the mag-
nitude of uncertainty value on SVAMP dataset. We
normalize the range of uncertainty to [0, 1].

word problem is more complex, it may require279

more columns of equations, resulting in more com-280

plex reasoning paths. Therefore, we measure the281

complexity of a question q as follows:282

cq =
∑|R∗|

i=1
CountSteps(ri)/ |R∗| , (4)283

where R∗ is the set of reasoning paths correspond-284

ing to the most frequent predicted answer and285

CountSteps(·) is a function to obtain the number286

of steps in a reasoning path r. Following Fu et al.287

(2023), we see a line as one reasoning step.288

Experience Collection As just discussed, RoSE289

generates m reasoning paths for each test question.290

However, we only select one reasoning path and291

add it to the streaming experience pool. To guaran-292

tee more reasoning details, we select the path with293

the most reasoning steps:294

r∗ = max(R∗, key = CountSteps). (5)295

Table 1 depicts a demonstration of the collected296

experiences. RoSE will orchestrate these experi-297

ences to better assist itself in answering new ques- 298

tions. 299

Question Rationale Answer Uncertainty Complexity

q1 r1 a1 u1 c1

q2 r2 a2 u2 c2

q3 r3 a3 u3 c3

...
...

...
...

...

Table 1: An example of the experiences stored in the
experience pool.

3.2 Experience Orchestration 300

RoSE will orchestrate the collected experiences to 301

assist itself in answering new questions. It first con- 302

siders the diversity of experiences, and then filters 303

useless questions using the attached attributes of 304

uncertainty and complexity sequentially. Finally, 305

it constructs a CoT prompt using the orchestrated 306

experiences. 307

Diversity Recent studies found that LLMs will 308

directly copy the wrong labels from the ICL demon- 309

strations (Lyu et al., 2023) or be misled by the 310

wrong predictions in demonstrations (Zhang et al., 311

2023b) if the demonstrations in prompts are very 312

similar to test questions. Therefore, some recently 313

proposed methods (Zhang et al., 2023b; Li and 314

Qiu, 2023) consider diversity when constructing 315

demonstrations using unlabeled questions. Differ- 316

ent from these methods that use k-means clustering, 317

we propose a question-aware approach to maintain 318

diversity. Specifically, given a test question qt and 319

the answered questions (q1, q2, ..., qj) in the expe- 320

rience pool, we first obtain their embedding rep- 321

resentations using an off-shelf semantic embedder. 322

Then we calculate the semantic similarity between 323

the answered questions and the test question using 324

their embedding representations. The answered 325

questions are sorted from low to high semantic sim- 326
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ilarity and uniformly partitioned into k buckets at327

the dimension of similarity, where k is the num-328

ber of demonstrations. The process of partitioning329

is summarized in Algorithm 1. RoSE will select330

one question in each bucket. This makes the se-331

lected questions distribute from low similarity to332

high similarity to the test question and guarantees333

the diversity of selected questions. We show that334

this can perform better than Auto-CoT which uses335

the k-means clustering method in the latter section.336

Uncertainty-based Filtering After partitioning337

the answered questions into k buckets, RoSE will338

filter the answered questions with high uncertainty339

in each bucket. The streaming experience pool is340

a dynamic system and the uncertainty distribution341

among all buckets is different in different snapshots.342

Moreover, the uncertainty distribution is also differ-343

ent for different tasks. Therefore, a fixed filtering344

threshold does not necessarily work well for every345

bucket and we can not find an applicable threshold346

for each task. To ease the awkward situation, we347

propose to set a dynamic uncertainty threshold for348

each bucket to guarantee that RoSE only filters out349

the questions with relatively high uncertainty in350

each bucket and there are no empty buckets after351

filtering. Specifically, for each bucket, we adopt the352

λ times of minimal uncertainty value in the bucket353

as the threshold and filter out the questions whose354

uncertainty is higher than the threshold:355

f(bi) = {q ∈ bi | uq <= λ · umin
i }, (6)356

umin
i = min{q ∈ bi | uq}, (7)357

where bi indicates bucket i and umin
i indicates the358

minimum uncertainty value of the bucket i.359

Complexity-based Filtering The final filtering360

is complexity-based. As mentioned before, the361

more complex a question, the more it includes the362

details of the reasoning that can better teach LLMs363

how to reason. Therefore, we select the question364

with the highest complexity from each bucket:365

qi = max(bi, key = cq). (8)366

3.3 Inference367

Given a test question qt, RoSE orchestrates the ex-368

periences to extract k experiences from the stream-369

ing experience pool and the unit of each experience370

is a triplet (question, rationale, answer). Finally, it371

answers the test question in the following manner:372

ot = LLM(q1, r1, a1, ..., qk, rk, ak, qt) (9)373

rt, at = ParseAnswer(ot) (10)374

Algorithm 1 Partition

Require: qt, Qa = [q1, q2, ..., qj ] and k
1: Calculate the similarity of each question pair

(qt, q
1), ..., (qt, q

j)
2: Sort q1, q2, ..., qj through the magnitude of

similarity
3: Uniformly partition Qa into k buckets at the

dimension of similarity, represented by B =
[b1, b2, ..., bk]

4: Remove empty buckets in B
5: while len(B) < k do
6: Select the bucket with the highest number

of questions and uniformly partition it into
2 buckets.

7: end while
8: return B

4 Experiments 375

We conduct a series of experiments to compare the 376

proposed RoSE with existing approaches on vari- 377

ous reasoning tasks. We find that RoSE robustly 378

improves reasoning capability in different experi- 379

mental settings and each process of orchestrating 380

experiences is important. 381

4.1 Experimental Settings 382

Models We conduct all the main ex- 383

periments on two large language mod- 384

els including gpt-3.5-turbo-16k-0613 385

and LLaMA2-13B-Chat (Touvron et al., 386

2023b). For the semantic embedder, we use 387

all-mpnet-base-v2 (Reimers and Gurevych, 388

2019). To save the cost, we conduct the most 389

analysis experiments on LLaMA2-13B-Chat unless 390

otherwise specified. 391

Tasks and Datasets We evaluate RoSE on 9 rea- 392

soning tasks. By default, we use the test split for 393

all datasets if the labels are available for evaluation. 394

For StrategyQA, we randomly select 800 samples 395

from test sets to be evaluated. The detailed statis- 396

tics of each dataset can be found in Appendix A. 397

Method Comparison Since we mainly focus on 398

the streaming setting without any labeled data and 399

pre-set unlabeled data, we compare RoSE with 400

Zero-Shot-CoT, Few-Shot-CoT, and Auto-CoT. To 401

make a more fair comparison, we also compare 402

the self-consistency (Wang et al., 2023b) version 403

of these baseline methods. For Auto-CoT, we also 404

adopt the same streaming setting as RoSE. 405
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Method Arithmetic Common Sense AVG
AddSub AQuA GSM8K SingleEq SingleOp SVAMP CSQA Strategy Date

GPT-3.5-Turbo-16k-0613

Zero-Shot-CoT 83.5 55.5 75.8 90.9 90.9 77.5 67.6 65.5 67.5 75.0
Few-Shot-CoT 88.6 55.1 75.4 93.7 90.9 80.6 66.7 68.0 78.3 77.5
Auto-CoT 91.4 52.8 74.4 91.5 93.6 84.9 74.8 62.0 56.6 75.8
Zero-Shot-CoT-SC 85.1 61.8 77.6 93.3 92.5 84.3 72.1 66.3 75.1 78.7
Few-Shot-CoT-SC 89.1 58.7 82.0 94.5 94.8 86.4 68.8 69.9 79.9 80.5
Auto-CoT-SC 89.4 61.8 80.0 92.5 91.6 88.5 77.0 63.9 78.0 80.3
RoSE (Ours) 90.9 70.9 83.9 92.2 95.6 89.2 67.8 71.3 88.6 83.4

LLaMA2-13B-Chat

Zero-Shot-CoT 14.7 14.2 9.0 18.5 16.2 17.3 33.1 57.4 37.7 24.2
Few-Shot-CoT 37.5 26.0 16.6 43.1 53.2 38.2 24.0 68.1 58.3 40.6
Auto-CoT 58.5 22.4 35.9 69.5 81.0 38.2 61.7 63.0 56.6 54.1
Zero-Shot-CoT-SC 52.4 19.3 31.1 58.9 45.6 50.0 39.1 63.6 36.0 44.0
Few-Shot-CoT-SC 57.5 26.8 31.4 62.6 70.5 57.7 26.1 68.0 54.2 50.5
Auto-CoT-SC 69.9 24.4 48.1 79.9 86.3 63.5 54.7 60.3 55.0 60.2
RoSE (Ours) 79.5 31.5 50.2 81.3 89.5 64.3 62.2 69.4 63.7 65.7

Table 2: Main results for RoSE. "SC" represents self-consistency (Wang et al., 2023b).

Implementation Settings We use the tempera-406

ture T = 1.0 when generating diverse reasoning407

paths and 20 reasoning paths will be generated for408

each question. We adopt λ = 1.2 times of minimal409

uncertainty value in each bucket as the threshold410

unless otherwise specified. For the methods that411

do not need to generate multiple diverse reasoning412

paths, we use the temperature T = 0. We con-413

ducted all experiments on 8 Nvidia A100 GPUs.414

4.2 Main Results415

AddSub SingleEq Strategy Date
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Figure 3: The impact of each orchestration process.

According to the comparison results in Table 2,416

RoSE performs better than all baselines overall.417

For the results on GPT-3.5-Turbo, RoSE exceeds418

Zero-Shot-CoT and Few-Shot-CoT by 8.4 and 5.9419

points respectively and exceeds Zero-Shot-CoT-SC420

and Few-Shot-CoT-SC by 4.7 and 2.9 points re- 421

spectively. This directly demonstrates that RoSE 422

can self-improve by only the collected stream- 423

ing experiences. While Few-Shot-CoT prompting 424

uses demonstrations with human annotations, these 425

demonstrations do not necessarily work for all test 426

questions. However, RoSE has a big advantage 427

over Few-Shot-CoT prompting by orchestrating 428

helpful demonstrations from the experience pool 429

for each test question. RoSE also shows significant 430

improvements to Auto-CoT that only considers the 431

diversity of demonstrations, and this indicates the 432

importance of our proposed well-designed experi- 433

ence orchestration mechanism. 434

Compared to GPT-3.5-Turbo, LLaMA2-13B- 435

Chat has a big capacity gap on all reasoning tasks. 436

However, RoSE also performs better than all base- 437

line methods overall on LLaMA2-13B-Chat model 438

and the improvement becomes larger than it on 439

GPT-3.5-Turbo. After equipping with RoSE, the 440

performance of LLaMA2-13B-Chat on multiple 441

tasks approaches GPT-3.5-Turbo, such as SingleEq 442

and StrategyQA. 443

4.3 Analyses 444

The Effect of Each Orchestration Process To 445

better understand the contribution of each experi- 446

ence orchestration process, we conduct comprehen- 447

sive ablation studies on four tasks. The ablation 448

results are shown in Figure 3. We can observe 449

that through the gradual orchestration process from 450
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Dynamic Threshold Fixed Threshold

1.2 1.4 1.6 0.6 1.2 1.8

AddSub 79.5 78.2 77.7 69.4 73.6 73.4
SingleEq 81.3 80.9 79.7 79.9 81.1 79.8
Strategy 69.4 69.3 68.1 67.1 68.9 68.2
Date 63.7 61.5 62.1 57.7 60.9 60.1

Table 3: The impact of uncertainty threshold.

diversity to uncertainty to complexity, the overall451

performance of RoSE on four datasets is gradu-452

ally improved. This means that each process we453

propose increases the helpfulness of the extracted454

experiences in answering new questions. RoSE455

that takes uncertainty into account shows a jump456

in performance compared to the one that does not457

because the former generates multiple reasoning458

paths for each question and makes a majority vote459

among all predicted answers. Besides, RoSE which460

only considers diversity performs better than Auto-461

CoT overall. This represents the proposed question-462

aware diversity maintaining method is superior to463

the methods that the k-means clustering method464

used by Auto-CoT.465
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Hard

Figure 4: The impact of complexity.

Method AddSub SingleEq Strategy Date AVG

Temperature = 0.8

Zero-Shot-CoT-SC 50.1 57.9 61.6 36.0 51.4
Few-Shot-CoT-SC 54.4 59.8 67.3 53.1 58.7
Auto-CoT-SC 64.1 76.9 63.3 51.3 63.9
RoSE (Ours) 75.4 80.3 68.4 63.4 71.9

Temperature = 1.2

Zero-Shot-CoT-SC 54.4 59.6 64.3 34.4 53.2
Few-Shot-CoT-SC 62.0 65.2 68.2 55.3 62.7
Auto-CoT-SC 73.1 77.2 60.9 57.8 67.3
RoSE (Ours) 80.3 81.9 69.8 65.9 74.5

Table 4: The results on different temperatures.

Method AddSub SingleEq Strategy Date AVG

Resoning Paths = 10

Zero-Shot-CoT-SC 49.4 56.7 59.2 33.3 49.7
Few-Shot-CoT-SC 57.0 58.7 63.3 53.9 58.2
Auto-CoT-SC 69.0 74.9 57.3 51.3 63.1
RoSE (Ours) 77.2 76.6 67.8 63.7 71.3

Resoning Paths = 15

Zero-Shot-CoT-SC 51.1 57.7 61.8 35.8 51.6
Few-Shot-CoT-SC 59.5 60.0 66.2 52.6 59.6
Auto-CoT-SC 73.9 76.3 58.9 53.6 65.7
RoSE (Ours) 77.9 79.4 69.1 62.3 72.2

Table 5: The results on different numbers of reasoning
paths.

The Impact of Different Uncertainty Thresholds 466

As shown in Table 3, we compare the performance 467

of RoSE with different uncertainty thresholds. As 468

introduced in the previous section, we adopt λ 469

times the minimal value of uncertainty in a bucket 470

as the uncertainty threshold of the bucket. We first 471

compare the performance of RoSE when adopting 472

different values for λ. We find that the value of 473

lambda values should not be too large, or RoSE 474

may retrieve ones with high uncertainty, resulting 475

in lower performance. Moreover, we also evaluate 476

the performance of RoSE with a fixed uncertainty 477

threshold for each bucket. Using a fixed thresh- 478

old leads to lower performance than RoSE with 479

a dynamic uncertainty threshold. This represents 480

selecting a suitable fixed threshold for different 481

buckets is difficult and also proves that the adopted 482

dynamic threshold is robust. 483

The Impact of Different Complexity Thresholds 484

As shown in Figure 4, we also compare the per- 485

formance of selecting the questions with different 486

complexity and find that the more complex the ex- 487

tracted questions, the more helpful they are. This is 488

also consistent with our initial intuition mentioned 489

in Sec 3.1, that the more complex a question, the 490

more it includes the details of the reasoning that 491

can better teach LLMs how to reason. 492

Results on Different Temperature Values In 493

this section, we evaluate RoSE under different tem- 494

perature values. Table 4 shows the results. We 495

observe that RoSE consistently outperforms base- 496

line methods across different temperature values, 497

which shows the stability of RoSE. Besides, RoSE 498

performs worse when adopting a temperature of 499

0.8 than a temperature of 1.0 or 1.2. This is be- 500

cause lower temperatures result in less diversity of 501

model-generating inference paths. 502
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Figure 5: Results on different demonstration quantities.

Results on Different Number of Reasoning Paths503

Since RoSE needs to generate multiple reasoning504

paths for each question to estimate the uncertainty,505

we also evaluate RoSE under different numbers of506

reasoning paths. Table 5 shows the results and we507

can see that the performance of RoSE increases508

with the increase of the number of reasoning paths.509

Moreover, RoSE consistently outperforms base-510

line methods across different numbers of reasoning511

paths, which shows the stability of RoSE.512

Results on Different Numbers of Demonstra-513

tions We also evaluate RoSE under different num-514

bers of demonstrations. According to the results515

in Figure 5, we see that RoSE consistently outper-516

forms Few-Shot-CoT-SC and Auto-CoT-SC across517

different numbers of demonstrations, which shows518

the stability of RoSE. Besides, we can find that519

Few-Shot-CoT-SC is very unstable across differ-520

ent numbers of demonstrations, which also indi-521

cates that dynamically extracting demonstrations522

for each test question is more suitable than manual-523

crafting demonstrations.524

Transferability on Different CoT methods525

RoSE is a relatively general framework that can526

be adapted to many CoT prompting methods. To527

verify the versatility of RoSE, we evaluate the per-528

formance of RoSE on two additional advanced CoT529

prompting methods: Plan-and-Solve (Wang et al.,530

2023a) and ToT (Yao et al., 2023a). The detailed531

implementation settings are listed in Appendix C.532

Results on four ablation datasets are shown in533

Table 6. We observe that RoSE leads to consistent534

improvements, which shows its generality across535

various CoT methods. Moreover, when using the536

more advanced CoT methods, RoSE can get fur-537

ther performance improvements, which shows its538

potential in the future when the more powerful CoT539

method is proposed.540

Stability Analysis on Different Test Orders541

The order of test questions will influence the perfor-542

mance because this can lead to different states of543

Method AddSub SingleEq Strategy Date AVG

Zero-Shot-CoT 83.5 90.9 65.5 67.5 76.9
+ RoSE 90.9 92.2 71.3 88.6 85.8

Plan-and-Solve 85.6 91.8 65.9 68.6 78.0
+ RoSE 90.6 94.5 70.7 89.4 86.3

ToT 85.8 90.1 67.9 70.1 78.5
+ RoSE 91.5 93.9 71.7 88.9 86.5

Table 6: Comparison of various CoT methods on "gpt-
3.5-turbo-16k-0613" model.
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Figure 6: Results on different test orders.

the experience pool. To verify the stability of RoSE, 544

we conduct 10 evaluations on different test orders, 545

and the distribution of results is shown in Figure 6. 546

Performance fluctuates as the test order changes, 547

but it is generally better than the baselines. 548

5 Conclusion 549

We present RoSE, a general framework for im- 550

proving the performance of LLMS on reasoning 551

tasks. RoSE can self-improve by constantly col- 552

lecting questions into an experience pool and does 553

not need other complex external help. To extract 554

more helpful experience from the experience pool, 555

we propose a systematic and novel experience or- 556

chestration mechanism that sequentially regards 557

diversity, uncertainty, and complexity of questions 558

in the pool as important measures to filter expe- 559

riences. The comprehensive experimental results 560

on 9 reasoning tasks and 2 LLMs show that RoSE 561

significantly improves the reasoning performance 562

of LLMs. Moreover, we conduct extensive analy- 563

sis experiments and verify the importance of each 564

process and the stability of RoSE across various 565

experimental settings. 566
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6 Limitations567

Since we estimate the complexity of a question568

using the number of reasoning steps and extract569

the most complex questions in the final filtering570

process, this may lead to a longer length of demon-571

strations and thus lead to slower efficiency.572

7 Ethics Statement573

In this paper, we let LLMs self-improve on reason-574

ing tasks. only by the collected streaming expe-575

riences. All datasets used are reasoning type and576

have no unsafe samples. Moreover, the LLM can-577

not access the internet and control external tools.578

Hence we think the proposed method and all ex-579

periments are safe enough, which will not cause580

serious impact and unrecoverable consequences on581

society.582
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A Dataset Details876

We evaluate RoSE on the following reasoning877

tasks.878

• Arithmetic reasoning. We consider 6879

Math Word Problem datasets, including880

AddSub (Hosseini et al., 2014), AQuA (Ling881

et al., 2017), GSM8K (Cobbe et al., 2021),882

SingleEq (Koncel-Kedziorski et al., 2015),883

SingleOp (Roy et al., 2015), and SVAMP (Pa-884

tel et al., 2021).885

• Commonsense reasoning. We use Common-886

senseQA (CSQA) (Talmor et al., 2019), Strat-887

egyQA (Strategy) (Geva et al., 2021), and888

one dataset from BIG-bench (Srivastava et al.,889

2022): Date Understanding (Date).890

The detailed statistics of each task are shown in891

Table 7892

B Examples of Few Shot Methods893

For AddSub, AQuA, GSM8K, SingleEq, SVAMP,894

CommonsenseQA, and StrategyQA, we use the895

same few-shot demonstrations as Wei et al. (2022).896

We manual-crafted few-shot demonstrations for897

other datasets. We list all demonstrations of each898

task for Few-Shot-CoT and Few-Shot-CoT-SC899

methods in Table 8 - 16.900

C Implementation Details of Different901

CoT Methods902

We verify the versatility of RoSE on two other903

CoT prompting methods: Plan-and-Solve (Wang904

et al., 2023a) and ToT (Yao et al., 2023a). We also905

maintain a zero-shot setting for these two methods,906

i.e. there are no manual-crafted demonstrations.907

After combining the two methods with RoSE, we908

add each question and the corresponding thoughts909

into the streaming experience pool and orchestrate910

these collected experiences to assist in answering911

each new question. Although a zero-shot setting is912

adopted, these two methods have relatively more913

complex zero-shot prompts than traditional CoT914

methods. To take full advantage of these methods,915

we completed the analysis experiment on the gpt-916

3.5-turbo-16k-0613 model.917

For the Plan-and-Solve method, we follow the918

prompts in the original paper and use the same919

uncertainty and complexity measures as the tradi-920

tional CoT method.921

For ToT methods, we implement a zero-shot 922

ToT-BFS that samples multiple thoughts using a 923

CoT prompt and makes a vote for the best one 924

among all thoughts. We set the step limit T to 2 and 925

generate 5 thoughts every step. To combine with 926

our RoSE framework, we sum the percentage of the 927

total votes for each best thought as the uncertainty 928

measure and sum the number of steps in each best 929

thought as the complexity measure. The prompt 930

template for ToT is listed in Table 17 931
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Dataset Reasoning Type Answer Type # Demonstration # Test License

AddSub Arithmetic Number 8 395 Unspecified
AQuA Arithmetic Multi-choice 4 254 Apache-2.0
GSM8K Arithmetic Number 8 1319 MIT License
SingleEq Arithmetic Number 8 508 Unspecified
SingleOp Arithmetic Number 8 562 Unspecified
SVAMP Arithmetic Number 8 1000 MIT License

CommonsenseQA Commonsense Multi-choice 7 1221 Unspecified
StrategyQA Commonsense yes / no 6 800 MIT license
Date Understanding Commonsense Multi-choice 6 369 MIT license

Table 7: Detailed statistics of the datasets utilized in our experiment.

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
A: Let’s think step by step. There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: Let’s think step by step. There are 15 trees originally. Then there were 21 trees after some more
were planted. So there must have been 21 - 15 = 6. The answer is 6.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
A: Let’s think step by step. Originally, Leah had 32 chocolates. Her sister had 42. So in total, they had
32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
A: Let’s think step by step. Jason started with 20 lollipops. Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?
A: Let’s think step by step. There are 15 trees originally. Shawn started with 5 toys. If he got 2 toys
each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day, from
Monday to Thursday. How many computers are now in the server room?
A: Let’s think step by step. There were originally 9 computers. For each of 4 days, 5 more computers
were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost 2 more. How
many golf balls did he have at the end of Wednesday?
A: Let’s think step by step. There are 15 trees originally. Michael started with 58 golf balls. After
losing 23 on Tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The
answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Let’s think step by step. Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Table 8: Few-Shot Demonstrations for AddSub.
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Q: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of
the numbers is?
Answer Choices: (A) 50 (B) 45 (C) 65 (D) 78 (E) 64
A: Let’s think step by step. If 10 is added to each number, then the mean of the numbers also increases
by 10. So the new mean would be 50. The answer is A.
Q: If a / b = 3/4 and 8a + 5b = 22, then find the value of a.
Answer Choices: (A) 1/2 (B) 3/2 (C) 5/2 (S) 4/2 (E) 7/2
A: Let’s think step by step. If a / b = 3/4, then b = 4a / 3. So 8a + 5(4a / 3) = 22. This simplifies to 8a +
20a / 3 = 22, which means 44a / 3 = 22. So a is equal to 3/2. The answer is B.
Q: A person is traveling at 20 km/hr and reached his destiny in 2.5 hr then find the distance?
Answer Choices: (A) 53 km (B) 55 km (C) 52 km (D) 60 km (E) 50 km
A: Let’s think step by step. The distance that the person traveled would have been 20 km/hr * 2.5 hrs =
50 km. The answer is E.
Q: How many keystrokes are needed to type the numbers from 1 to 500?
Answer Choices: (A) 1156 (B) 1392 (C) 1480 (D) 1562 (E) 1788
A: Let’s think step by step. There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers
from 10 to 99. There are 401 three-digit numbers from 100 to 500. 9 + 90(2) + 401(3) = 1392. The
answer is B.

Table 9: Few-Shot Demonstrations for AQuA.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
A: Let’s think step by step. There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: Let’s think step by step. There are 15 trees originally. Then there were 21 trees after some more
were planted. So there must have been 21 - 15 = 6. The answer is 6.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
A: Let’s think step by step. Originally, Leah had 32 chocolates. Her sister had 42. So in total they had
32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
A: Let’s think step by step. Jason started with 20 lollipops. Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?
A: Let’s think step by step. There are 15 trees originally. Shawn started with 5 toys. If he got 2 toys
each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
A: Let’s think step by step. There were originally 9 computers. For each of 4 days, 5 more computers
were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
A: Let’s think step by step. There are 15 trees originally. Michael started with 58 golf balls. After
losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The
answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Let’s think step by step. Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Table 10: Few-Shot Demonstrations for GSM8K.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
A: Let’s think step by step. There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: Let’s think step by step. There are 15 trees originally. Then there were 21 trees after some more
were planted. So there must have been 21 - 15 = 6. The answer is 6.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
A: Let’s think step by step. Originally, Leah had 32 chocolates. Her sister had 42. So in total they had
32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
A: Let’s think step by step. Jason started with 20 lollipops. Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?
A: Let’s think step by step. There are 15 trees originally. Shawn started with 5 toys. If he got 2 toys
each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
A: Let’s think step by step. There were originally 9 computers. For each of 4 days, 5 more computers
were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
A: Let’s think step by step. There are 15 trees originally. Michael started with 58 golf balls. After
losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The
answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Let’s think step by step. Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Table 11: Few-Shot Demonstrations for SingleEq.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
A: Let’s think step by step. There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: Let’s think step by step. There are 15 trees originally. Then there were 21 trees after some more
were planted. So there must have been 21 - 15 = 6. The answer is 6.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
A: Let’s think step by step. Originally, Leah had 32 chocolates. Her sister had 42. So in total they had
32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
A: Let’s think step by step. Jason started with 20 lollipops. Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?
A: Let’s think step by step. There are 15 trees originally. Shawn started with 5 toys. If he got 2 toys
each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
A: Let’s think step by step. There were originally 9 computers. For each of 4 days, 5 more computers
were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
A: Let’s think step by step. There are 15 trees originally. Michael started with 58 golf balls. After
losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The
answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Let’s think step by step. Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Table 12: Few-Shot Demonstrations for SingleOp.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?
A: Let’s think step by step. There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: Let’s think step by step. There are 15 trees originally. Then there were 21 trees after some more
were planted. So there must have been 21 - 15 = 6. The answer is 6.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?
A: Let’s think step by step. Originally, Leah had 32 chocolates. Her sister had 42. So in total they had
32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?
A: Let’s think step by step. Jason started with 20 lollipops. Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys
does he have now?
A: Let’s think step by step. There are 15 trees originally. Shawn started with 5 toys. If he got 2 toys
each from his mom and dad, then that is 4 more toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
A: Let’s think step by step. There were originally 9 computers. For each of 4 days, 5 more computers
were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
A: Let’s think step by step. There are 15 trees originally. Michael started with 58 golf balls. After
losing 23 on tuesday, he had 58 - 23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The
answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Let’s think step by step. Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

Table 13: Few-Shot Demonstrations for SVAMP.
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Q: What do people use to absorb extra ink from a fountain pen?
Answer Choices: (A) shirt pocket (B) calligrapher’s hand (C) inkwell (D) desk drawer (E) blotter
A: Let’s think step by step. The answer must be an item that can absorb ink. Of the above choices,
only blotters are used to absorb ink. The answer is E.
Q: What home entertainment equipment requires cable?
Answer Choices: (A) radio shack (B) substation (C) television (D) cabinet
A: Let’s think step by step. The answer must require cable. Of the above choices, only television
requires cable. The answer is C.
Q: The fox walked from the city into the forest, what was it looking for?
Answer Choices: (A) pretty flowers (B)hen house (C) natural habitat (D) storybook
A: Let’s think step by step. The answer must be something in the forest. Of the above choices, only
natural habitat is in the forest. The answer is C.
Q: Sammy wanted to go to where the people were. Where might he go?
Answer Choices: (A) populated areas (B) race track (C) desert (D) apartment (E) roadblock
A: Let’s think step by step. The answer must be a place with a lot of people. Of the above choices,
only populated areas have a lot of people. The answer is A.
Q: Where do you put your grapes just before checking out?
Answer Choices: (A) mouth (B) grocery cart (C)super market (D) fruit basket (E) fruit market
A: Let’s think step by step. The answer should be the place where grocery items are placed before
checking out. Of the above choices, grocery cart makes the most sense for holding grocery items. The
answer is B.
Q: Google Maps and other highway and street GPS services have replaced what?
Answer Choices: (A) united states (B) mexico (C) countryside (D) atlas
A: Let’s think step by step. The answer must be something that used to do what Google Maps and GPS
services do, which is to give directions. Of the above choices, only atlases are used to give directions.
The answer is D.
Q: Before getting a divorce, what did the wife feel who was doing all the work?
Answer Choices: (A) harder (B) anguish (C) bitterness (D) tears (E) sadness
A: Let’s think step by step. The answer should be the feeling of someone getting divorced who was
doing all the work. Of the above choices, the closest feeling is bitterness. The answer is C.

Table 14: Few-Shot Demonstrations for CommonsenseQA.
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Q: Do hamsters provide food for any animals?
A: Let’s think step by step. Hamsters are prey animals. Prey are food for predators. Thus, hamsters
provide food for some animals. The answer is yes.
Q: Could Brooke Shields succeed at University of Pennsylvania?
A: Let’s think step by step. Brooke Shields went to Princeton University. Princeton University is about
as academically rigorous as the University of Pennsylvania. Thus, Brooke Shields could also succeed
at the University of Pennsylvania. The answer is yes.
Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?
A: Let’s think step by step. Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice
Girls. Thus, Hydrogen’s atomic number squared is less than 5. The answer is no.
Q: Yes or no: Is it common to see frost during some college commencements?
A: Let’s think step by step. College commencement ceremonies can happen in December, May,
and June. December is in the winter, so there can be frost. Thus, there could be frost at some
commencements. The answer is yes.
Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?
A: Let’s think step by step. The War in Vietnam was 6 months. The gestation period for a llama is
11 months, which is more than 6 months. Thus, a llama could not give birth twice during the War in
Vietnam. The answer is no.
Q: Yes or no: Would a pear sink in water?
A: Let’s think step by step. The density of a pear is about 0.6g/cm3, which is less than water. Objects
less dense than water float. Thus, a pear would float. The answer is no.

Table 15: Few-Shot Demonstrations for StrategyQA.
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Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?
Answer Choices: (A) 01/05/2015 (B) 01/06/2015 (C) 01/04/2015 (D) 02/05/2015 (E) 12/05/2015 (F)
01/05/2016
A: Let’s think step by step. If 2015 is coming in 36 hours, then it is coming in 2 days. 2 days before
01/01/2015 is 12/30/2014, so today is 12/30/2014. So one week from today will be 01/05/2015. The
answer is A.
Q: The first day of 2019 is a Tuesday, and today is the first Monday of 2019. What is the date today in
MM/DD/YYYY?
Answer Choices: (A) 01/08/2019 (B) 01/07/2019 (C) 01/06/2019 (D) 02/07/2019 (E) 12/07/2019 (F)
01/07/2018
A: Let’s think step by step. If the first day of 2019 was Tuesday, then 01/01/2019 was a Tuesday.
Today is the first monday, would be six days later. So today is 01/07/2019. The answer is B.
Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the
date 10 days ago in MM/DD/YYYY?
Answer Choices: (A) 05/22/1943 (B) 05/23/1943 (C) 05/24/1943 (D) 05/25/1943 (E) 05/26/1943 (F)
05/27/1943
A: Let’s think step by step. One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days
before today is 05/23/1943. The answer is B.
Q: It is 4/19/1969 today. What is the date 24 hours later in MM/DD/YYYY?
Answer Choices: (A) 04/23/1969 (B) 04/21/1969 (C) 04/22/1969 (D) 04/20/1969 (E) 04/24/1969 (F)
04/25/1969
A: Let’s think step by step. Today is 04/19/1969. 24 hours later is one day after today, which would be
04/20/1969. The answer is D.
Q: Jane thought today is 3/11/2002, but today is in fact Mar 12, which is 1 day later. What is the date
24 hours later in MM/DD/YYYY?
Answer Choices: (A) 03/17/2002 (B) 03/14/2002 (C) 03/15/2002 (D) 03/16/2002 (E) 03/13/2002 (F)
03/18/2002
A: Let’s think step by step. Today is 03/12/2002. So the date 24 hours later will be 03/13/2002. The
answer is E.
Q: Jane was born on the last day of Feburary in 2001. Today is her 16-year-old birthday. What is the
date yesterday in MM/DD/YYYY?
Answer Choices: (A) 03/04/2017 (B) 02/28/2017 (C) 03/01/2017 (D) 03/02/2017 (E) 03/03/2017 (F)
02/27/2017
A: Let’s think step by step. The last day of February is the 28th, so Jane was born on 02/28/2001.
Today is her 16-year old birthday.So yesterday was 02/27/2017. The answer is F.

Table 16: Few-Shot Demonstrations for Date Understanding.
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Answer Format
addsub_format = ’"the answer is n" where n is a number’
single_format = ’"the answer is n" where n is a number’
strategy_format = ’either "the answer is yes" or "the answer is no"’
date_format = ’"the answer is n" where n is one of "A, B, C, D, E, F"’
Thought Format
Answer the following question: {input}
Make a strategy then write. Your output should be of the following format:
Strategy:
Your strategy about how to answer the question.
Answer:
Your answer to the question. It should end with {format}.
Voting Prompt
Given an instruction and several choices, decide which choice is most promising.
Analyze each choice in detail, then conclude in the last line
"The best choice is {s}", where s is the integer id of the choice.

Table 17: Prompt template for ToT methods.
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