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ABSTRACT

Low-bit quantization has achieved significant progress in image super-resolution.
However, existing quantization methods show evident limitations in handling the
heterogeneity of different components. Particularly under extreme low-bit com-
pression, the issue of information loss becomes especially pronounced. In this
work, we present a novel low-bit post-training quantization method, namely static
priority-based rectifier routing quantization (SPR2Q). The starting point of this
work is to attempt to inject rich and comprehensive compensation information
into the model before the quantization , thereby enhancing the model’s inference
performance after quantization. Firstly, we constructed a low-rank rectifier group
and embedded it into the model’s fine-tuning process. By integrating weight in-
crements learned from each rectifier, the model enhances the backbone network
while minimizing information loss during the lightweighting process. Further-
more, we introduce a static rectifier priority routing mechanism that evaluates
the offline capability of each rectifier and generates a fixed routing table. Dur-
ing quantization, it updates weights based on each rectifier’s priority, enhancing
the model’s capacity and representational power without introducing additional
overhead during inference. Extensive experiments demonstrate that the proposed
SPR2Q significantly outperforms the state-of-the-arts in five benchmark datasets,
achieving PSNR improvements of 0.55 and 1.31 dB on the Set5(x2) dataset under
4-bit and 2-bit settings, respectively.

1 INTRODUCTION

With the rapid development of deep learning, image super-resolution (SR) models have achieved re-
markable breakthroughs in performance (Dong et al.,|[2016;|Guo et al.,|2024a). However, their high
computational and storage costs severely limit deployment on real-world devices. Consequently,
how to achieve efficient inference while maintaining accuracy has become a critical research fo-
cus, among which low-bit quantization stands out as a highly promising solution (Han et al.| 2016
Courbariaux et al.|[2016; |Gholami et al.l 2021). Low-bit quantization compresses floating-point pa-
rameters of neural networks into lower-bit representations, thereby reducing model size and latency
while preserving accuracy and enabling hardware acceleration.

Quantization methods can generally be divided into quantization-aware training (QAT) and post-
training quantization (PTQ) (Choi et al.l [2017} Jacob et al., 2018b). Although QAT is widely rec-
ognized for minimizing accuracy loss (Mishra & Marr, [2018)), it often requires high training costs
and long training time—sometimes even heavier than training the original full-precision model. In
contrast, PTQ completes quantization after training by adjusting quantizer parameters or calibrating
weights/activations (Nagel et al., |2019; [Banner et al., 2019), without retraining the model. Thus,
PTQ offers low training cost and fast deployment, but it tends to suffer from significant accuracy
degradation under ultra-low-bit settings (Nahshan et al.,|2020; L1 et al., 2021)).

Despite the progress of post-training quantization (PTQ) methods across diverse architectures such
as Transformers and Mamba (Gholami et al.l 2025)), existing solutions exhibit significant shortcom-
ings in their adaptability across different architectures and domains. This is primarily manifested
in two aspects: First, while current low-bit quantization methods have been successfully applied to
Transformer-based super-resolution (SR) models like SwinIR (Liang et al., 2021} [Liu et al.,|[2024),
they fail to adapt to the unique computational paradigm of the Mamba architecture (Gu & Dao)
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2023)). Specifically, these methods struggle to address the error accumulation and numerical sensi-
tivity issues arising from Mamba’s recurrent state and dynamic gating mechanisms. This ultimately
leads to a substantial degradation in the ability of the quantized model to restore fine image details.
Second, most existing Mamba quantization methods have been validated primarily on tasks such as
classification or language modeling (Xu et al., 2025; (Cho et al., 2025). Super-resolution, however,
is exceptionally sensitive to pixel-level precision and the fidelity of local textures. Consequently,
porting these methods to the SR domain often yields unsatisfactory results, as illustrated in Figure[2}
where they fail to meet the stringent fidelity requirements and cause blurred details and texture loss.

These limitations indicate that PTQ, which merely optimizes quantizer parameters, is insufficient to
overcome the challenges posed by aggressive low-bit compression. We argue that achieving extreme
low-bit performance requires not only better quantizers but, more importantly, enabling the model
itself to actively adapt to the quantization process through a small set of trainable parameters. By
injecting complementary information into the model before quantization, the substantial information
loss introduced by aggressive compression can be effectively mitigated.

To this end, our SPR?Q framework achieves this active model adaptation on two fronts. First,
inspired by the idea of LoRA (Hu et al.l [2022), we introduce fuse the weight increments from low-
rank rectifier modules into the backbone network pre-quantization. This design ensures that the
supplementary information, learned to compensate for quantization error, is incorporated into the
quantization process as prior knowledge, fundamentally mitigating information loss while preserv-
ing the full inference acceleration benefits. Furthermore, to enhance the diversity of compensation
information, SPR2Q introduces a rectifier priority routing strategy. In this design, multiple recti-
fier modules are trained as a rich group of information compensators. A static routing table is then
constructed through offline evaluation, assigning priorities to each rectifier. During inference, the
model updates its weights according to the rectifier priorities, thereby expanding its representational
space and achieving significant performance improvements without incurring any additional com-
putational cost. Our contributions can be summarized as follows:

» We introduce SPR?Q, a novel quantization method addressing low-bit quantization chal-
lenges in super-resolution. Its architecture is composed of two synergistic components: a
pre-quantization fusion rectifier module for injecting learnable compensation, and a static
rectifier priority routing that injects pre-evaluated compensation into the model.

» SPR2Q’s methodology begins with pre-quantization fusion, embedding rectifier-learned
compensation into the backbone to mitigate information loss. Subsequently, a Rectifier
group is constructed, and the static rectifier priority routing mechanism updates weights by
rectifier priority, providing the model with diverse information for complex detail recovery.

* Extensive experiments validate our state-of-the-art performance on challenging low-bit
super-resolution tasks. On the MambalRv2 model, SPR?Q significantly outperforms mul-
tiple leading techniques, achieving PSNR improvements of up to 0.55 and 1.31 dB on Set5
(%2), under 4-bit and 2-bit quantization.

2 RELATED WORK

2.1 IMAGE SUPER-RESOLUTION

Deep learning has significantly advanced the field of image super-resolution (SR). Early approaches
were dominated by convolutional neural networks (CNNs), ranging from the pioneering SRCNN
(Dong et al.|[2016) to EDSR (Lim et al.}2017)), which improved performance by introducing resid-
ual connections and increasing model capacity. Subsequent works further explored the potential of
CNNs with more sophisticated architectures. For instance, RDN (Zhang et al., 2018b) leverages
residual dense blocks to fully exploit hierarchical features, while RCAN (Zhang et al. [2018a)) in-
troduces channel attention mechanisms to learn more discriminative features, both significantly en-
hancing reconstruction quality. As research progressed, the limitations of CNNs in capturing long-
range dependencies and global context became evident. To address this, Transformers (Vaswani
et al.,2017) were introduced into the SR domain. Early attempts, IPT (Chen et al., 2020), demon-
strated the great potential of pure Transformer architectures for image processing tasks, though their
high computational cost limited practical applicability. Later works, including SwinIR (Liang et al.,
2021) and ATD (Gu et al.} 2024), incorporated efficient designs such as window attention to model
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long-range dependencies while substantially reducing computational overhead, achieving state-of-
the-art performance across multiple benchmarks. The success of Transformer-based SR models
highlights the advantages of self-attention mechanisms in capturing spatial correlations over large
receptive fields. More recently, the emergence of the Mamba (Gu & Daol [2023) architecture has
driven SR research toward state space model (SSM)-based frameworks. Representative works, in-
cluding MambalR (Guo et al., 2024b) and MambalRv2 (Guo et al., 2024a), exploit the efficient
sequence modeling capabilities of state space models to capture long-range dependencies, achiev-
ing high-quality reconstruction with reduced computational overhead. TThese Mamba-architecture
models achieve superior reconstruction quality compared to Transformer-based methods while sig-
nificantly reducing computational overhead, showcasing Mamba’s unique advantage in balancing
efficiency and performance.

2.2 MODEL QUANTIZATION

Quantization methods can be broadly categorized into quantization-aware training (QAT) and post-
training quantization (PTQ). QAT is capable of minimizing performance degradation and was thus
widely adopted in early studies. Representative works such as PAMS (Hirano et al.l 2023) and
CADyQ (Hong et al [2022) primarily focused on lightweight compression for CNNs, aiming to
reduce computational and storage overhead while preserving reconstruction quality. However, these
approaches typically incur substantial training costs, often requiring as much or even more training
time than the original models. To address this challenge, PTQ methods were introduced, which di-
rectly operate on pretrained models and only require boundary calibration of quantizers. DBDC+Pac
(Tu et al., 2023) is the first PTQ method specifically designed for image super-resolution, achieving
superior performance on EDSR (Lim et al., [2017) and SRResNet (Ledig et al., 2017), thereby
demonstrating the potential of PTQ for SR tasks. With the rise of Transformer-based SR models,
researchers have also begun exploring PTQ tailored to these architectures. For instance, 2DQuant
(Liu et al., 2024)) achieves excellent results on SwinIR, showing that carefully designed boundary
calibration and quantization strategies can effectively mitigate the accuracy degradation caused by
low-bit quantization in Transformers. Nevertheless, for more complex and emerging architectures
such as Mamba-based SR models, existing quantization research still mainly focuses on large lan-
guage models and image classification, leaving quantization for SR largely underexplored.

3 METHOD

The core principle of existing Post-Training Quantization (PTQ) methods for Super-Resolution (SR)
is to find optimal quantizer parameters for a given set of fixed, pre-trained weights. This process is
typically modeled using a Quantization-Dequantization (QDQ) function (Jacob et al., 2018al):

h— &
Z = clip(z,a,b), s= ﬁ, x4 = round (:c a) s+ a, (1)

where n denotes the number of quantization bits, and a and b define the quantization range. This
function clips the input to [a, b], normalizes and rounds it to the nearest discrete level according to
the scale factor s, and dequantizes it back to the floating-point domain. Existing PTQ methods pri-
marily differ in how they select the clipping bounds a and b. Whether based on static statistics (Nagel
et al.,[2019)) or iterative optimization (L1 et al., 2021), the goal is to minimize the quantization error
|z — x4|| by carefully adjusting these quantization parameters. This “quantizer-only” paradigm,
however, overlooks the model’s potential to proactively adapt to quantization. To address this lim-
itation, we propose SPR?Q, which introduces learnable compensation information via lightweight
rectifiers to enable the model to actively adjust its weights for quantization. Furthermore, we design
a mechanism for diverse selection of compensation information, significantly enhancing the perfor-
mance of low-bit quantization. Crucially, this mechanism employs static routing during inference,
adding virtually no extra overhead.

3.1 PRE-QUANTIZATION FINE-TUNING WITH FUSED RECTIFIER

To enable proactive model rectification, we introduce a Pre-Quantization Fine-tuning with Fused
Rectifier (PQFR) mechanism. The core idea is to augment the original weights W with a
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lightweight, trainable rectifier, AW, before quantization. This rectifier is parameterized by two low-
rank matrices, A € R"*%n» and B € R%w+*"_ Fusing the rectifier yields a new, more quantization-
robust weight matrix W', which becomes the actual target for quantization. This process is formu-
lated as:

W' =W + AW, AW = BA, 2)

W(; = Qa,b(W/) = Qa,b(W + BA), 3)

where W € R%utXdin represents the frozen pre-trained weights. The pseudo-quantization operator
Qa,b(+) is defined in Eq. |1} featuring trainable clipping bounds a and b.

We jointly optimize the rectifier parameters (A, B) and quantizer parameters (a, b) using a hybrid
loss function. This loss integrates a pixel-level reconstruction objective with a fine-grained block-
level feature alignment objective, enabling compensation at both global and local levels.

The first component—the pixel-level loss function (Dong et al., 2016)—ensures reconstruction fi-
delity by minimising the difference between the quantised model output and the full-precision model
output image:

»Cpixel = E(m,yFP)NDzmin [ |fq (ZL’) - prHl] ’ 4)
The second component, the block-wise feature alignment loss, encourages the quantized model to
mimic the full-precision (FP) model at the level of individual computational blocks (Hinton et al.,
2015). Instead of applying feature distillation only at coarse or stage-level granularity, we impose
alignment constraints on each block, ensuring that local discrepancies are compensated progres-
sively across network depth. Formally:

L
Lteaure = EwNDmm Z||¢l(fq(x)) - (bl(fFP(x))H% ) @)

=1

where ¢;(-) denotes the feature map extracted from the I-th block, and L is the total number of
distilled blocks. This design not only captures channel-level statistical consistency, but also provides
fine-grained alignment at the block level, thereby mitigating distortions introduced by quantization
at a more microscopic scale.

The final training objective is a weighted combination of the pixel-level reconstruction loss and the
block-wise feature alignment loss:

L= £pixel + )\Efealurea (6)

This design ensures that the model simultaneously preserves output fidelity while progressively
reducing quantization-induced discrepancies across intermediate blocks.

During backpropagation, we adopt the Straight-Through Estimator (STE) (Bengio et al.l [2013) to
approximate the gradient of the non-differentiable rounding function in @, ;(-). This allows gradi-
ents to flow through the quantizer while optimizing both the rectifiers and the clipping bounds.

The gradients of £ then update both the rectifier parameters and the quantizer parameters in a unified
manner. For the low-rank rectifier matrices (A, B), the gradients are computed as:

oL oL oL oL

= _gT = = AT 7
0A ow'’ 9B oW’ ™
These updates allow the rectifier to directly absorb error signals and provide effective compensation
for the perturbed quantized weights.

At the same time, the trainable clipping bounds (a, ) are also refined through gradient-based up-
dates:
oL oL ow] oW, oW N 1
—_— = . P— o -
v oW, ov’ v Ov 2n — 1

W’fa)ig’W’fa )

1
roun T

S

Here, v denotes a trainable clipping bound, either the lower bound «a or the upper bound b. W’ =
clip(W’, a, b) is the clipped weight matrix that governs how the quantizer adapts its effective range,
and o is a sign factor that equals —1 when v = a and +1 when v = b.
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Figure 1: Overview of the SPR?Q framework, showing its three stages: (a) Rectifier group Training,
learning rectifiers with diverse complementary information via dynamic routing; (b) Offline Static
Routing Calibration, generating the SPR?QQ Table to assign optimal increment for each layer; (c)
Inference stage, performing computation using the updated and quantized weights.

Opverall, this dual collaborative optimization enables two complementary effects: the rectifier AW
learns to proactively counteract distortions introduced by quantization, while the clipping bounds
(a,b) dynamically refine the quantization mapping itself. After fine-tuning, the rectifier parameters
are fused into the original weights, resulting in negligible inference overhead without altering the
model’s structure.

3.2 STATIC PRIORITY-BASED RECTIFIER ROUTING

To further enhance the model’s quantization compensation capability and mitigate the homogeniza-
tion issue caused by a single low-rank rectifier, we extend the single rectifier introduced in the
previous section into an rectifier group composed of N distinct rectifiers:

£ ={AWy,AW,,...,AWx}. 9)

Within this mechanism, input information is routed to select the most suitable rectifier for augmen-
tation, providing the model with a diverse set of alternative strategies for quantization compensation.
Figure illustrates the overall SPR?Q framework and its three stages. Unlike traditional dynamic
rectifier routing, which may introduce additional computational overhead and disrupt the original
inference structure, we propose Static Priority-Based Rectifier Routing (SPR?) module. In this
framework, an offline evaluation stage pre-assigns the optimal, fixed rectifier to each component of
the model. This design preserves the benefits of multiple rectifiers while avoiding extra inference
cost and dynamic structural modifications.

Rectifier group training. To construct a group of N distinct and high-performance rectifiers, we
introduce a dynamic routing training stage. The goal of this stage is to encourage diverse rectifiers
to be sufficiently engaged and optimized during training, enabling them to acquire specialized capa-
bilities for handling heterogeneous information and compensating for different types of quantization
errors.

Specifically, we employ a lightweight gating network that assigns input-dependent routing weights
to each rectifier. Based on these weights, the increments AW; produced by individual rectifiers are
aggregated into a fused increment, which is then added to the base weights. The quantized effective
weights used in the forward pass are given by:

N
AWZ = BZA“ W(; = Qa,b w + Zgl . AWZ . (10)

i=1
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Here, each rectifier generates a rank-decomposed weight update AW; through the product of its
rectifier matrices A; and B;. The gating network assigns a dynamic weight g; to each rectifier based
on the input, and the weighted sum of all rectifier increments forms the fused update. This fused
update is then added to the original weights W and passed through the quantizer (), ; to obtain the
final quantized weights W, used for inference.

With the effective weights W, computed, the model output is obtained by a standard linear transfor-
mation of the input X :
Y = X,W,. (11)

During training, we minimize the hybrid loss function £ (Eq. [6) to jointly optimize all rectifiers
{(A;, B;)}Y.,. This strategy enables the rectifiers, under the guidance of the gating network, to learn
input-dependent, specialized compensation. By doing so, each rectifier can handle different types of
information, allowing diverse selections within the module to mitigate information loss caused by
quantization. This not only enhances the model’s representational capacity but also provides a range
of compensation strategies, improving robustness to quantization errors.

Offline Static Routing Calibration. Following the Rectifier group training, we introduce the Of-
fline Static Routing Calibration stage. The goal is to consolidate the diverse capabilities of the
rectifiers learned during dynamic training into a fixed configuration. Specifically, in linear layer, we
integrate the SPR?Q mechanism, where the rectifier group is combined using the precomputed op-
timal static weighting factors from the static routing table. The resulting weight increment is fused
with the original weights to form the corrected weights for the module, which are directly used for
computation during inference. To maximize performance under this fixed routing constraint without
altering the original model structure, we optimize a set of static gating weights, g, which selectively
integrate the contributions of the different rectifiers. Formally, given the permissible gating weight
space G, the optimization objective is:

N
§ = argmin £( (X, Qup(W + ;gz-AWm), (12)

Here, g represents the optimal static weighting factors for combining multiple rectifiers, effectively
capturing the diverse compensation strategies learned during dynamic training. The collected opti-
mal static weighting factors are used to compute a weighted combination of the rectifier increments,
resulting in the optimal increments, which are then organized to form the SPR2Q Table shown in
Figure

Inference stage. Since the Offline Static Routing Calibration obtains the optimal increment for each
module through the precomputed optimal gating weights, each module retrieves its corresponding
optimal increment from the SPR2Q Table and fuses it with the pretrained weights. The augmented
weights are then quantized to produce the final weights used for forward computation. This design
ensures that each module applies a fixed, optimal increment while preserving the original model
structure, without requiring dynamic routing or introducing additional computational overhead.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation. In this work, we use DF2K (Agustsson & Timoftel, 2017} [Timofte et al.,
2017) as the training set. Which dataset consists of the DIV2K (Agustsson & Timofte, 2017) and
Flickr2K (Timofte et al., 2017). We then employed five widely used benchmark datasets for eval-
uation: Set5 (Bevilacqua et al., 2012)), Setl4 (Zeyde et al., 2010), B100 (Martin et al.| [2001), Ur-
ban100 (Huang et al., 2015), and Mangal09 (Matsui et al., [2017). These are composed of 5, 14,
100, 100, and 109 images, respectively. In the benchmark evaluation, low-resolution inputs are
fed into the quantization model for high-resolution image reconstruction, after which these recon-
structed images are compared with the reference images. Performance is reported using PSNR and
SSIM (Wang et al.| |2004), measured on the Y channel of the YCbCr space.

Training Details. We adopt MambalRv2-light (Guo et al., 2024a) as the backbone and conduct
experiments with scale factors of X2 and x4, evaluating all quantized models at 4-bit, and 2-bit
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Table 1: comparison with SOTA Mamba quantization methods on benchmark datasets for SR.

Set5(x2) Set14(x2) B100(x2) Urban100(x2) | Mangal09(x2)
PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM

MambalRv2-light | 32 | 38.26  0.9615 | 34.09 0.9221 | 32.36 0.9019 | 3326 0.9378 | 39.35 0.9785

Method ‘ Bit ‘

PTQ4VM 4 | 37.17 09549 | 32.86 0.9099 | 31.57 0.8900 | 30.47 0.9084 | 37.22 0.9706
Quamba 4 | 37.07 09544 | 32777 09092 | 31.47 0.8896 | 30.54 0.9107 | 36.94 0.9699
MambaQuant 4 | 36.67 09495 | 31.76 0.8899 | 30.85 0.8756 | 28.08 0.8407 | 33.47 0.9186
Ours (SPR2Q) 4 | 3772 09589 | 33.27 0.9156 | 31.94 0.8964 | 31.53 0.9223 | 38.03 0.9754
PTQ4VM 2 | 3438 0.9328 | 31.05 0.8886 | 30.21 0.8660 | 27.61 0.8603 | 32.04 0.9399
Quamba 2 | 3466 0.9339 | 31.26 0.8899 | 30.38 0.8687 | 27.80 0.8613 | 32.50 0.9407
MambaQuant 2 | 3465 09337 | 31.22 0.8885 | 30.36 0.8685 | 27.78 0.8610 | 32.43  0.9395
Ours (SPR2Q) 2 | 3597 09495 | 31.98 0.9020 | 30.95 0.8827 | 28.55 0.8819 | 34.39 0.9599

PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
MambaIRvZ—light‘ 32 ‘ 3251  0.8992

Method ‘ Bit ‘ Set5(x4) Set14(x4) B100(x4) Urban100(x4) | Mangal09(x4)

28.84 0.7878 31.24 09182

2775 0.7426 | 26.82  0.8079

PTQ4VM 4 | 30.82 0.8670 | 27.69 0.7546 | 26.95 0.7115 | 24.76 0.7321 | 28.19 0.8660
Quamba 4 | 31.01 08715 | 27.77 0.7585 | 2699 0.7149 | 25.01 0.7470 | 28.57 0.8752
MambaQuant 4 | 3074 0.8650 | 27.17 0.7413 | 26.37 0.6920 | 23.28 0.6694 | 26.73 0.8186
Ours (SPR2Q) 4 | 31.60 0.8844 | 28.27 0.7725 | 27.33 0.7274 | 25.64 0.7713 | 29.60 0.8959
PTQ4VM 2 | 2877 08162 | 26.36 0.7167 | 26.16 0.6802 | 23.37 0.6704 | 25.26 0.7943
Quamba 2 | 28.88 0.8080 | 2645 0.7131 | 26.20 0.6752 | 23.48 0.6651 | 25.43 0.7818
MambaQuant 2 | 2884 0.8079 | 2641 0.7114 | 26.18 0.6739 | 23.45 0.6648 | 25.38 0.7829
Ours (SPR2Q) 2 | 2937 08327 | 26.73 0.7319 | 26.42 0.6949 | 23.69 0.6874 | 25.77 0.8096

precision. Hyperparameter settings are kept consistent across experiments. For optimization, we use
the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1 x 1072 and 8 = (0.9, 0.999),
while the learning rate schedule follows a Cosine Annealing strategy (Loshchilov & Hutter, [2017)
to ensure stable convergence. Training is performed for 12,000 iterations with a batch size of 8. The
rank of each rectifier module is set to » = 8. During the Rectifier group training stage, each group is
configured with N = 4 parallel rectifiers. This is a trade-off we adopt to improve performance while
maintaining training efficiency. This work is implemented based on the PaddlePaddle framework,
and experiments are conducted on an NVIDIA RTX 4090 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare against PTQ4VM (Cho et al., 2025), Quamba (Chiang et all 2025, and Mam-
baQuant (Xu et al., 2025), which represent the strongest existing methods in the Mamba quan-
tization literature. PTQ4VM is among the first methods specifically designed for post-training
quantization of Visual Mamba. Quamba provides an effective baseline by combining quantization
with architecture adaptation. MambaQuant employs variance-aligned rotation, effectively preserv-
ing performance across visual tasks—including image classification, object detection, and semantic
segmentation—and language tasks. To enable a fair comparison, we report the performance of the
full-precision MambalRv2-light (Guo et al., |2024a) model directly from the original paper. This
is because none of these methods had previously been evaluated on the MambalRv2-light super-
resolution model. We applied them to the Mamba module within MambalRv2-light, whilst all non-
Mamba modules underwent uniform quantization using our method. This ensured all comparisons
occurred within a consistent framework, enabling a fair assessment of performance variations arising
from different quantization strategies.

Quantitative results. The table [1| presents a comprehensive comparison of various quantization
methods at 4-bit and 2-bit depths, alongside scaling factors of x2 and x4. It can be observed that
existing Mamba quantization methods, including PTQ4VM, Quamba, and MambaQuant, exhibit
significant performance degradation when bit width is reduced, particularly on datasets rich in high-
frequency details such as Urban100 and Mangal09. For instance, PTQ4VM and MambaQuant show
a marked decline in PSNR when transitioning from 4-bit to 2-bit quantization, highlighting their
limited capacity to compensate for quantization errors in complex textured regions. In contrast,
SPR?Q consistently outperforms existing quantization methods across all evaluation scenarios. In
the 4-bit precision test on the Set5 (x2) dataset, SPR?Q achieves a PSNR value 0.55 dB higher than
PTQ4VM and 1.05 dB higher than MambaQuant. More importantly, on the challenging Urban100
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MambaQuant Ours

Figure 2: Visual comparison for image SR (x4) on Urban100(img019 and img044).

dataset, SPR2Q outperforms existing baseline methods by approximately 1 dB in the 4-bit setting.
Even when precision is reduced to 2 bits, SPR?Q maintains competitive performance, showing only
a 1.75 dB degradation compared to its 4-bit counterpart on Set5S while achieving a significant 1.31
dB improvement over other state-of-the-art methods.

These results demonstrate the effectiveness of the rectified group and static priority routing mecha-
nism in mitigating quantization performance degradation. Meanwhile, SPR?Q demonstrates strong
performance across different datasets and scaling factors, highlighting its robustness in handling
diverse texture distributions and complex scenarios.

Qualitative results.We present the visual comparison results for x4 (see Figure 2). It can be ob-
served that the three contrast-based quantization methods exhibit significant shortcomings in detail
recovery. The images appear blurred overall, with severe loss of texture and fine structure, and
edges often show diffusion and misalignment. Our method restores texture and edge details more
clearly while preserving the overall structure, enabling the images to present richer high-frequency
information.

4.3 ABLATION STUDY

PQFR and SPR? Modules. We investigated the impact of different modules on performance, with
results presented in Table Introducing only the PQFR module already improved the baseline
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Table 2: Ablation studies. Models are trained on DF2K, and tested on Set5 (x2) and Urban100 (x2).

PQFR SPR? SetS Urban100 size Set5 Urban100

PSNR SSIM |PSNR SSIM PSNR SSIM |PSNR SSIM

37.20 0.9554|30.69 0.9112 2 37.50 0.9578|31.31 0.9196

v 37.44 0.9567|31.25 0.9188 4 37.72 0.9589| 31.56 0.9223

v v 37.72 0.9589 | 31.53 0.9223 8 37.82 0.9595| 31.73 0.9249
(a) PQFR and SPR? module (b) Rectifier group size

Table 3: Exploration of our SPR?Q method under 1-bit quantization.

Set5 Set14 B100 Urban100 Mangal09
Method scale
PSNR SSIM |PSNR SSIM |PSNR SSIM |PSNR SSIM | PSNR SSIM
Ours (SPR?Q) | x2 | 34.82 0.9428 | 31.27 0.8956 | 30.41 0.8754| 27.76 0.8690 | 32.38 0.9505
Ours (SPR?Q) | x4 | 28.84 0.8213 | 26.41 0.7215 | 26.21 0.6852 | 23.41 0.6751 | 25.31 0.7995

by 0.24 dB on the Set5 dataset and by 0.56 dB on the Urban100 dataset. This demonstrates that
fusing learnable rectifiers prior to quantization successfully injects a compensation mechanism into
the backbone network, significantly mitigating the information loss caused by discretisation. Upon
further enabling the SPR? module, performance improved by an additional 0.28 dB on the Set5
dataset and 0.28 dB on the Urban100 dataset. This further demonstrates that static rectifier routing
effectively expands the representation space, injecting diverse information compensation into the
model.

Rectifier group Size. We further investigated the impact of rectifier group size, as shown in Table
Expanding the group size from 2 to 4 yielded a significant 0.22 dB PSNR improvement on the
Set5 dataset and a 0.25 dB gain on the Urban100 dataset. This demonstrates that increasing the
group size effectively enhances the model’s ability to select optimal rectifier paths and improves
its representational capacity. Furthermore, increasing the group size to 8 yielded only a 0.10 dB
PSNR improvement on the Set5 dataset and a 0.17 dB gain on Urban100. While the improvement
diminishes, it substantially increases training overhead. Balancing training cost against accuracy
gains, we adopt N = 4 as our experimental setting, achieving a favourable equilibrium between
performance enhancement and training efficiency.

Extreme 1-bit Quantization. Finally, we evaluate SPR2Q under extreme 1-bit quantization, with
the results shown in Tabl For x2 scaling, the model achieves a PSNR of 34.82 dB, and for x4
scaling, 28.84 dB. Compared to the 2-bit results, the performance drop is moderate, demonstrating
that SPR2Q remains effective in preserving reconstruction quality even under extreme quantization.

5 CONCLUSION

In this work, we advance the study of low-bit quantization for super-resolution models built on the
Mamba architecture. We first identify that existing Mamba uantization methods exhibit significant
domain adaptation issues under low-bit SR settings. To address this, we propose SPR?Q, a quan-
tization framework specifically designed for low-bit SR. SPR2Q employs rectifiers to compensate
for information loss introduced by quantization and jointly optimizes both the rectifier and quan-
tizer parameters, enabling the model to adapt effectively to the quantization process. Moreover, we
introduce the Static Priority-Based Rectifier Routing mechanism to provide diverse compensation
strategies and calibrate a static routing table, allowing the model to efficiently obtain optimal incre-
ments from the rectifier group during inference. This design preserves the original model structure
while incurring negligible additional computational overhead. Extensive experiments demonstrate
that SPR2Q consistently outperforms existing Mamba SOTA quantization methods across various
low-bit settings, significantly improving reconstruction quality and detail fidelity, and offering a
novel and effective approach for low-bit SR quantization.
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