SPR²Q: STATIC PRIORITY-BASED RECTIFIER ROUTING QUANTIZATION FOR IMAGE SUPER-RESOLUTION

Anonymous authors

000

001

003 004 005

006

007 008 009

010 011

012

013

014

016

017

018

021

023

024

025

026

027

028

029

031

032

034

035

037

038

040 041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Low-bit quantization has achieved significant progress in image super-resolution. However, existing quantization methods show evident limitations in handling the heterogeneity of different components. Particularly under extreme low-bit compression, the issue of information loss becomes especially pronounced. In this work, we present a novel low-bit post-training quantization method, namely static priority-based rectifier routing quantization (SPR²Q). The starting point of this work is to attempt to inject rich and comprehensive compensation information into the model before the quantization, thereby enhancing the model's inference performance after quantization. Firstly, we constructed a low-rank rectifier group and embedded it into the model's fine-tuning process. By integrating weight increments learned from each rectifier, the model enhances the backbone network while minimizing information loss during the lightweighting process. Furthermore, we introduce a static rectifier priority routing mechanism that evaluates the offline capability of each rectifier and generates a fixed routing table. During quantization, it updates weights based on each rectifier's priority, enhancing the model's capacity and representational power without introducing additional overhead during inference. Extensive experiments demonstrate that the proposed SPR²Q significantly outperforms the state-of-the-arts in five benchmark datasets, achieving PSNR improvements of 0.55 and 1.31 dB on the Set5(\times 2) dataset under 4-bit and 2-bit settings, respectively.

1 Introduction

With the rapid development of deep learning, image super-resolution (SR) models have achieved remarkable breakthroughs in performance (Dong et al., 2016; Guo et al., 2024a). However, their high computational and storage costs severely limit deployment on real-world devices. Consequently, how to achieve efficient inference while maintaining accuracy has become a critical research focus, among which low-bit quantization stands out as a highly promising solution (Han et al., 2016; Courbariaux et al., 2016; Gholami et al., 2021). Low-bit quantization compresses floating-point parameters of neural networks into lower-bit representations, thereby reducing model size and latency while preserving accuracy and enabling hardware acceleration.

Quantization methods can generally be divided into quantization-aware training (QAT) and post-training quantization (PTQ) (Choi et al., 2017; Jacob et al., 2018b). Although QAT is widely recognized for minimizing accuracy loss (Mishra & Marr, 2018), it often requires high training costs and long training time—sometimes even heavier than training the original full-precision model. In contrast, PTQ completes quantization after training by adjusting quantizer parameters or calibrating weights/activations (Nagel et al., 2019; Banner et al., 2019), without retraining the model. Thus, PTQ offers low training cost and fast deployment, but it tends to suffer from significant accuracy degradation under ultra-low-bit settings (Nahshan et al., 2020; Li et al., 2021).

Despite the progress of post-training quantization (PTQ) methods across diverse architectures such as Transformers and Mamba (Gholami et al., 2025), existing solutions exhibit significant shortcomings in their adaptability across different architectures and domains. This is primarily manifested in two aspects: First, while current low-bit quantization methods have been successfully applied to Transformer-based super-resolution (SR) models like SwinIR (Liang et al., 2021; Liu et al., 2024), they fail to adapt to the unique computational paradigm of the Mamba architecture (Gu & Dao,

2023). Specifically, these methods struggle to address the error accumulation and numerical sensitivity issues arising from Mamba's recurrent state and dynamic gating mechanisms. This ultimately leads to a substantial degradation in the ability of the quantized model to restore fine image details. Second, most existing Mamba quantization methods have been validated primarily on tasks such as classification or language modeling (Xu et al., 2025; Cho et al., 2025). Super-resolution, however, is exceptionally sensitive to pixel-level precision and the fidelity of local textures. Consequently, porting these methods to the SR domain often yields unsatisfactory results, as illustrated in Figure 2, where they fail to meet the stringent fidelity requirements and cause blurred details and texture loss.

These limitations indicate that PTQ, which merely optimizes quantizer parameters, is insufficient to overcome the challenges posed by aggressive low-bit compression. We argue that achieving extreme low-bit performance requires not only better quantizers but, more importantly, enabling the model itself to actively adapt to the quantization process through a small set of trainable parameters. By injecting complementary information into the model before quantization, the substantial information loss introduced by aggressive compression can be effectively mitigated.

To this end, our SPR²Q framework achieves this active model adaptation on two fronts. First, inspired by the idea of LoRA (Hu et al., 2022), we introduce fuse the weight increments from low-rank rectifier modules into the backbone network pre-quantization. This design ensures that the supplementary information, learned to compensate for quantization error, is incorporated into the quantization process as prior knowledge, fundamentally mitigating information loss while preserving the full inference acceleration benefits. Furthermore, to enhance the diversity of compensation information, SPR²Q introduces a rectifier priority routing strategy. In this design, multiple rectifier modules are trained as a rich group of information compensators. A static routing table is then constructed through offline evaluation, assigning priorities to each rectifier. During inference, the model updates its weights according to the rectifier priorities, thereby expanding its representational space and achieving significant performance improvements without incurring any additional computational cost. Our contributions can be summarized as follows:

- We introduce SPR²Q, a novel quantization method addressing low-bit quantization challenges in super-resolution. Its architecture is composed of two synergistic components: a pre-quantization fusion rectifier module for injecting learnable compensation, and a static rectifier priority routing that injects pre-evaluated compensation into the model.
- SPR²Q's methodology begins with pre-quantization fusion, embedding rectifier-learned compensation into the backbone to mitigate information loss. Subsequently, a Rectifier group is constructed, and the static rectifier priority routing mechanism updates weights by rectifier priority, providing the model with diverse information for complex detail recovery.
- Extensive experiments validate our state-of-the-art performance on challenging low-bit super-resolution tasks. On the MambaIRv2 model, SPR²Q significantly outperforms multiple leading techniques, achieving PSNR improvements of up to 0.55 and 1.31 dB on Set5 (×2), under 4-bit and 2-bit quantization.

2 Related Work

2.1 IMAGE SUPER-RESOLUTION

Deep learning has significantly advanced the field of image super-resolution (SR). Early approaches were dominated by convolutional neural networks (CNNs), ranging from the pioneering SRCNN (Dong et al., 2016) to EDSR (Lim et al., 2017), which improved performance by introducing residual connections and increasing model capacity. Subsequent works further explored the potential of CNNs with more sophisticated architectures. For instance, RDN (Zhang et al., 2018b) leverages residual dense blocks to fully exploit hierarchical features, while RCAN (Zhang et al., 2018a) introduces channel attention mechanisms to learn more discriminative features, both significantly enhancing reconstruction quality. As research progressed, the limitations of CNNs in capturing long-range dependencies and global context became evident. To address this, Transformers (Vaswani et al., 2017) were introduced into the SR domain. Early attempts, IPT (Chen et al., 2020), demonstrated the great potential of pure Transformer architectures for image processing tasks, though their high computational cost limited practical applicability. Later works, including SwinIR (Liang et al., 2021) and ATD (Gu et al., 2024), incorporated efficient designs such as window attention to model

long-range dependencies while substantially reducing computational overhead, achieving state-of-the-art performance across multiple benchmarks. The success of Transformer-based SR models highlights the advantages of self-attention mechanisms in capturing spatial correlations over large receptive fields. More recently, the emergence of the Mamba (Gu & Dao, 2023) architecture has driven SR research toward state space model (SSM)-based frameworks. Representative works, including MambaIR (Guo et al., 2024b) and MambaIRv2 (Guo et al., 2024a), exploit the efficient sequence modeling capabilities of state space models to capture long-range dependencies, achieving high-quality reconstruction with reduced computational overhead. These Mamba-architecture models achieve superior reconstruction quality compared to Transformer-based methods while significantly reducing computational overhead, showcasing Mamba's unique advantage in balancing efficiency and performance.

2.2 MODEL QUANTIZATION

Quantization methods can be broadly categorized into quantization-aware training (QAT) and posttraining quantization (PTQ). QAT is capable of minimizing performance degradation and was thus widely adopted in early studies. Representative works such as PAMS (Hirano et al., 2023) and CADyQ (Hong et al., 2022) primarily focused on lightweight compression for CNNs, aiming to reduce computational and storage overhead while preserving reconstruction quality. However, these approaches typically incur substantial training costs, often requiring as much or even more training time than the original models. To address this challenge, PTQ methods were introduced, which directly operate on pretrained models and only require boundary calibration of quantizers. DBDC+Pac (Tu et al., 2023) is the first PTQ method specifically designed for image super-resolution, achieving superior performance on EDSR (Lim et al., 2017) and SRResNet (Ledig et al., 2017), thereby demonstrating the potential of PTQ for SR tasks. With the rise of Transformer-based SR models, researchers have also begun exploring PTQ tailored to these architectures. For instance, 2DQuant (Liu et al., 2024) achieves excellent results on SwinIR, showing that carefully designed boundary calibration and quantization strategies can effectively mitigate the accuracy degradation caused by low-bit quantization in Transformers. Nevertheless, for more complex and emerging architectures such as Mamba-based SR models, existing quantization research still mainly focuses on large language models and image classification, leaving quantization for SR largely underexplored.

3 METHOD

The core principle of existing Post-Training Quantization (PTQ) methods for Super-Resolution (SR) is to find optimal quantizer parameters for a given set of fixed, pre-trained weights. This process is typically modeled using a Quantization-Dequantization (QDQ) function (Jacob et al., 2018a):

$$\hat{x} = \text{clip}(x, a, b), \quad s = \frac{b - a}{2^n - 1}, \quad x_q = \text{round}\left(\frac{\hat{x} - a}{s}\right) \cdot s + a,$$
 (1)

where n denotes the number of quantization bits, and a and b define the quantization range. This function clips the input to [a, b], normalizes and rounds it to the nearest discrete level according to the scale factor s, and dequantizes it back to the floating-point domain. Existing PTQ methods primarily differ in how they select the clipping bounds a and b. Whether based on static statistics (Nagel et al., 2019) or iterative optimization (Li et al., 2021), the goal is to minimize the quantization error $\|x-x_q\|$ by carefully adjusting these quantization parameters. This "quantizer-only" paradigm, however, overlooks the model's potential to proactively adapt to quantization. To address this limitation, we propose SPR 2 Q, which introduces learnable compensation information via lightweight rectifiers to enable the model to actively adjust its weights for quantization. Furthermore, we design a mechanism for diverse selection of compensation information, significantly enhancing the performance of low-bit quantization. Crucially, this mechanism employs static routing during inference, adding virtually no extra overhead.

3.1 PRE-QUANTIZATION FINE-TUNING WITH FUSED RECTIFIER

To enable proactive model rectification, we introduce a Pre-Quantization Fine-tuning with Fused Rectifier (PQFR) mechanism. The core idea is to augment the original weights W with a

lightweight, trainable rectifier, ΔW , before quantization. This rectifier is parameterized by two low-rank matrices, $A \in \mathbb{R}^{r \times d_{in}}$ and $B \in \mathbb{R}^{d_{out} \times r}$. Fusing the rectifier yields a new, more quantization-robust weight matrix W', which becomes the actual target for quantization. This process is formulated as:

$$W' = W + \Delta W, \quad \Delta W = BA, \tag{2}$$

$$W'_{q} = Q_{a,b}(W') = Q_{a,b}(W + BA),$$
 (3)

where $W \in \mathbb{R}^{d_{out} \times d_{in}}$ represents the frozen pre-trained weights. The pseudo-quantization operator $Q_{a,b}(\cdot)$ is defined in Eq. 1, featuring trainable clipping bounds a and b.

We jointly optimize the rectifier parameters (A, B) and quantizer parameters (a, b) using a hybrid loss function. This loss integrates a pixel-level reconstruction objective with a fine-grained block-level feature alignment objective, enabling compensation at both global and local levels.

The first component—the pixel-level loss function (Dong et al., 2016)—ensures reconstruction fidelity by minimising the difference between the quantised model output and the full-precision model output image:

$$\mathcal{L}_{\text{pixel}} = \mathbb{E}_{(x, y_{\text{FP}}) \sim \mathcal{D}_{\text{train}}} \left[\| f_{\mathbf{q}}(x) - y_{\text{FP}} \|_1 \right], \tag{4}$$

The second component, the block-wise feature alignment loss, encourages the quantized model to mimic the full-precision (FP) model at the level of individual computational blocks (Hinton et al., 2015). Instead of applying feature distillation only at coarse or stage-level granularity, we impose alignment constraints on each block, ensuring that local discrepancies are compensated progressively across network depth. Formally:

$$\mathcal{L}_{\text{feature}} = \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \left[\sum_{l=1}^{L} \|\phi_l(f_{\mathbf{q}}(x)) - \phi_l(f_{\text{FP}}(x))\|_2^2 \right], \tag{5}$$

where $\phi_l(\cdot)$ denotes the feature map extracted from the l-th block, and L is the total number of distilled blocks. This design not only captures channel-level statistical consistency, but also provides fine-grained alignment at the block level, thereby mitigating distortions introduced by quantization at a more microscopic scale.

The final training objective is a weighted combination of the pixel-level reconstruction loss and the block-wise feature alignment loss:

$$\mathcal{L} = \mathcal{L}_{\text{pixel}} + \lambda \mathcal{L}_{\text{feature}},\tag{6}$$

This design ensures that the model simultaneously preserves output fidelity while progressively reducing quantization-induced discrepancies across intermediate blocks.

During backpropagation, we adopt the Straight-Through Estimator (STE) (Bengio et al., 2013) to approximate the gradient of the non-differentiable rounding function in $Q_{a,b}(\cdot)$. This allows gradients to flow through the quantizer while optimizing both the rectifiers and the clipping bounds.

The gradients of \mathcal{L} then update both the rectifier parameters and the quantizer parameters in a unified manner. For the low-rank rectifier matrices (A, B), the gradients are computed as:

$$\frac{\partial \mathcal{L}}{\partial A} = B^{\top} \frac{\partial \mathcal{L}}{\partial W'}, \quad \frac{\partial \mathcal{L}}{\partial B} = \frac{\partial \mathcal{L}}{\partial W'} A^{\top}, \tag{7}$$

These updates allow the rectifier to directly absorb error signals and provide effective compensation for the perturbed quantized weights.

At the same time, the trainable clipping bounds (a,b) are also refined through gradient-based updates:

$$\frac{\partial \mathcal{L}}{\partial v} = \frac{\partial \mathcal{L}}{\partial W'_q} \cdot \frac{\partial W'_q}{\partial v}, \quad \frac{\partial W'_q}{\partial v} = \frac{\partial \hat{W}'}{\partial v} + \sigma \cdot \frac{1}{2^n - 1} \operatorname{round}\left(\frac{\hat{W}' - a}{s}\right) - \sigma \cdot \frac{\hat{W}' - a}{b - a}, \quad (8)$$

Here, v denotes a trainable clipping bound, either the lower bound a or the upper bound b. $\hat{W}' = \text{clip}(W', a, b)$ is the clipped weight matrix that governs how the quantizer adapts its effective range, and σ is a sign factor that equals -1 when v = a and +1 when v = b.

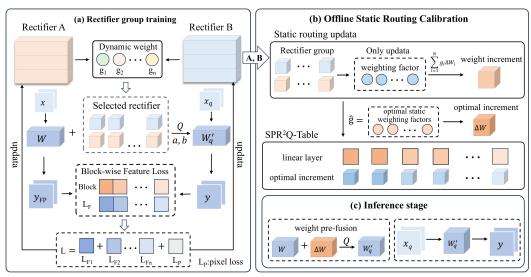


Figure 1: Overview of the SPR²Q framework, showing its three stages: (a) Rectifier group Training, learning rectifiers with diverse complementary information via dynamic routing; (b) Offline Static Routing Calibration, generating the SPR²Q Table to assign optimal increment for each layer; (c) Inference stage, performing computation using the updated and quantized weights.

Overall, this dual collaborative optimization enables two complementary effects: the rectifier ΔW learns to proactively counteract distortions introduced by quantization, while the clipping bounds (a,b) dynamically refine the quantization mapping itself. After fine-tuning, the rectifier parameters are fused into the original weights, resulting in negligible inference overhead without altering the model's structure.

3.2 STATIC PRIORITY-BASED RECTIFIER ROUTING

To further enhance the model's quantization compensation capability and mitigate the homogenization issue caused by a single low-rank rectifier, we extend the single rectifier introduced in the previous section into an *rectifier group* composed of N distinct rectifiers:

$$\mathcal{E} = \{ \Delta W_1, \Delta W_2, \dots, \Delta W_N \}. \tag{9}$$

Within this mechanism, input information is routed to select the most suitable rectifier for augmentation, providing the model with a diverse set of alternative strategies for quantization compensation. Figure 1 illustrates the overall SPR²Q framework and its three stages. Unlike traditional dynamic rectifier routing, which may introduce additional computational overhead and disrupt the original inference structure, we propose Static Priority-Based Rectifier Routing (SPR²) module. In this framework, an offline evaluation stage pre-assigns the optimal, fixed rectifier to each component of the model. This design preserves the benefits of multiple rectifiers while avoiding extra inference cost and dynamic structural modifications.

Rectifier group training. To construct a group of N distinct and high-performance rectifiers, we introduce a dynamic routing training stage. The goal of this stage is to encourage diverse rectifiers to be sufficiently engaged and optimized during training, enabling them to acquire specialized capabilities for handling heterogeneous information and compensating for different types of quantization errors.

Specifically, we employ a lightweight gating network that assigns input-dependent routing weights to each rectifier. Based on these weights, the increments ΔW_i produced by individual rectifiers are aggregated into a fused increment, which is then added to the base weights. The quantized effective weights used in the forward pass are given by:

$$\Delta W_i = B_i A_i, \quad W_q' = Q_{a,b} \left(W + \sum_{i=1}^N g_i \cdot \Delta W_i \right). \tag{10}$$

Here, each rectifier generates a rank-decomposed weight update ΔW_i through the product of its rectifier matrices A_i and B_i . The gating network assigns a dynamic weight g_i to each rectifier based on the input, and the weighted sum of all rectifier increments forms the fused update. This fused update is then added to the original weights W and passed through the quantizer $Q_{a,b}$ to obtain the final quantized weights W'_a used for inference.

With the effective weights W'_q computed, the model output is obtained by a standard linear transformation of the input X_q :

$$Y = X_q W_q'. (11)$$

During training, we minimize the hybrid loss function \mathcal{L} (Eq. 6) to jointly optimize all rectifiers $\{(A_i, B_i)\}_{i=1}^N$. This strategy enables the rectifiers, under the guidance of the gating network, to learn input-dependent, specialized compensation. By doing so, each rectifier can handle different types of information, allowing diverse selections within the module to mitigate information loss caused by quantization. This not only enhances the model's representational capacity but also provides a range of compensation strategies, improving robustness to quantization errors.

Offline Static Routing Calibration. Following the Rectifier group training, we introduce the Offline Static Routing Calibration stage. The goal is to consolidate the diverse capabilities of the rectifiers learned during dynamic training into a fixed configuration. Specifically, in linear layer, we integrate the SPR²Q mechanism, where the rectifier group is combined using the precomputed optimal static weighting factors from the static routing table. The resulting weight increment is fused with the original weights to form the corrected weights for the module, which are directly used for computation during inference. To maximize performance under this fixed routing constraint without altering the original model structure, we optimize a set of static gating weights, \hat{g} , which selectively integrate the contributions of the different rectifiers. Formally, given the permissible gating weight space \mathcal{G} , the optimization objective is:

$$\hat{g} = \arg\min_{g \in \mathcal{G}} \mathcal{L}\left(f(X, Q_{a,b}(W + \sum_{i=1}^{N} g_i \Delta W_i))\right), \tag{12}$$

Here, \hat{g} represents the optimal static weighting factors for combining multiple rectifiers, effectively capturing the diverse compensation strategies learned during dynamic training. The collected optimal static weighting factors are used to compute a weighted combination of the rectifier increments, resulting in the optimal increments, which are then organized to form the SPR²Q Table shown in Figure 1.

Inference stage. Since the Offline Static Routing Calibration obtains the optimal increment for each module through the precomputed optimal gating weights, each module retrieves its corresponding optimal increment from the SPR²Q Table and fuses it with the pretrained weights. The augmented weights are then quantized to produce the final weights used for forward computation. This design ensures that each module applies a fixed, optimal increment while preserving the original model structure, without requiring dynamic routing or introducing additional computational overhead.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation. In this work, we use DF2K (Agustsson & Timofte, 2017; Timofte et al., 2017) as the training set. Which dataset consists of the DIV2K (Agustsson & Timofte, 2017) and Flickr2K (Timofte et al., 2017). We then employed five widely used benchmark datasets for evaluation: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017). These are composed of 5, 14, 100, 100, and 109 images, respectively. In the benchmark evaluation, low-resolution inputs are fed into the quantization model for high-resolution image reconstruction, after which these reconstructed images are compared with the reference images. Performance is reported using PSNR and SSIM (Wang et al., 2004), measured on the Y channel of the YCbCr space.

Training Details. We adopt MambaIRv2-light (Guo et al., 2024a) as the backbone and conduct experiments with scale factors of $\times 2$ and $\times 4$, evaluating all quantized models at 4-bit, and 2-bit

Table 1: comparison with SOTA Mamba quantization methods on benchmark datasets for SR.

M.411	Bit	Set5(×2)		Set14(×2)		B100(×2)		Urban100(×2)		Manga109(×2)	
Method		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
MambaIRv2-light	32	38.26	0.9615	34.09	0.9221	32.36	0.9019	33.26	0.9378	39.35	0.9785
PTQ4VM	4	37.17	0.9549	32.86	0.9099	31.57	0.8900	30.47	0.9084	37.22	0.9706
Quamba	4	37.07	0.9544	32.77	0.9092	31.47	0.8896	30.54	0.9107	36.94	0.9699
MambaQuant	4	36.67	0.9495	31.76	0.8899	30.85	0.8756	28.08	0.8407	33.47	0.9186
Ours (SPR ² Q)	4	37.72	0.9589	33.27	0.9156	31.94	0.8964	31.53	0.9223	38.03	0.9754
PTQ4VM	2	34.38	0.9328	31.05	0.8886	30.21	0.8660	27.61	0.8603	32.04	0.9399
Quamba	2	34.66	0.9339	31.26	0.8899	30.38	0.8687	27.80	0.8613	32.50	0.9407
MambaQuant	2	34.65	0.9337	31.22	0.8885	30.36	0.8685	27.78	0.8610	32.43	0.9395
Ours (SPR ² Q)	2	35.97	0.9495	31.98	0.9020	30.95	0.8827	28.55	0.8819	34.39	0.9599
		<u> </u>									
Mathad	Die	Set:	5(x4)	Set1	4(x4)	B10	0(x4)	Urban	100(x4)	Manga	109(x4)
Method	Bit	Set:	5(x4) SSIM	Set1 PSNR	4(x4) SSIM	B10 PSNR	0(x4) SSIM	Urban PSNR	100(x4) SSIM	Manga PSNR	109(x4) SSIM
Method MambaIRv2-light	Bit 32			l	` /		` /		` ′		
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
MambaIRv2-light	32	PSNR 32.51	SSIM 0.8992	PSNR 28.84	SSIM 0.7878	PSNR 27.75	SSIM 0.7426	PSNR 26.82	SSIM 0.8079	PSNR 31.24	SSIM 0.9182
MambaIRv2-light PTQ4VM	32	PSNR 32.51 30.82	SSIM 0.8992 0.8670	PSNR 28.84 27.69	SSIM 0.7878 0.7546	PSNR 27.75 26.95	SSIM 0.7426 0.7115	PSNR 26.82 24.76	0.8079 0.7321	PSNR 31.24 28.19	SSIM 0.9182 0.8660
MambaIRv2-light PTQ4VM Quamba	32	PSNR 32.51 30.82 31.01	SSIM 0.8992 0.8670 0.8715	PSNR 28.84 27.69 27.77	SSIM 0.7878 0.7546 0.7585	PSNR 27.75 26.95 26.99	SSIM 0.7426 0.7115 0.7149	PSNR 26.82 24.76 25.01	SSIM 0.8079 0.7321 0.7470	PSNR 31.24 28.19 28.57	0.9182 0.8660 0.8752
MambaIRv2-light PTQ4VM Quamba MambaQuant	32	PSNR 32.51 30.82 31.01 30.74	SSIM 0.8992 0.8670 0.8715 0.8650	PSNR 28.84 27.69 27.77 27.17	SSIM 0.7878 0.7546 0.7585 0.7413	PSNR 27.75 26.95 26.99 26.37	SSIM 0.7426 0.7115 0.7149 0.6920	PSNR 26.82 24.76 25.01 23.28	SSIM 0.8079 0.7321 0.7470 0.6694	PSNR 31.24 28.19 28.57 26.73	SSIM 0.9182 0.8660 0.8752 0.8186
MambaIRv2-light PTQ4VM Quamba MambaQuant Ours (SPR ² Q)	32 4 4 4 4 4	PSNR 32.51 30.82 31.01 30.74 31.60	SSIM 0.8992 0.8670 0.8715 0.8650 0.8844	PSNR 28.84 27.69 27.77 27.17 28.27	SSIM 0.7878 0.7546 0.7585 0.7413 0.7725	PSNR 27.75 26.95 26.99 26.37 27.33	SSIM 0.7426 0.7115 0.7149 0.6920 0.7274	PSNR 26.82 24.76 25.01 23.28 25.64	SSIM 0.8079 0.7321 0.7470 0.6694 0.7713	PSNR 31.24 28.19 28.57 26.73 29.60	SSIM 0.9182 0.8660 0.8752 0.8186 0.8959
MambaIRv2-light PTQ4VM Quamba MambaQuant Ours (SPR ² Q) PTQ4VM	32 4 4 4 4 4 4 4	PSNR 32.51 30.82 31.01 30.74 31.60 28.77	0.8992 0.8670 0.8715 0.8650 0.8844 0.8162	PSNR 28.84 27.69 27.77 27.17 28.27 26.36	0.7878 0.7546 0.7585 0.7413 0.7725	PSNR 27.75 26.95 26.99 26.37 27.33 26.16	SSIM 0.7426 0.7115 0.7149 0.6920 0.7274 0.6802	PSNR 26.82 24.76 25.01 23.28 25.64 23.37	0.8079 0.7321 0.7470 0.6694 0.7713	PSNR 31.24 28.19 28.57 26.73 29.60 25.26	0.9182 0.8660 0.8752 0.8186 0.8959 0.7943

precision. Hyperparameter settings are kept consistent across experiments. For optimization, we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1×10^{-2} and $\beta=(0.9,0.999)$, while the learning rate schedule follows a Cosine Annealing strategy (Loshchilov & Hutter, 2017) to ensure stable convergence. Training is performed for 12,000 iterations with a batch size of 8. The rank of each rectifier module is set to r=8. During the Rectifier group training stage, each group is configured with N=4 parallel rectifiers. This is a trade-off we adopt to improve performance while maintaining training efficiency. This work is implemented based on the PaddlePaddle framework, and experiments are conducted on an NVIDIA RTX 4090 GPU.

4.2 Comparison with State-of-the-Art Methods

We compare against PTQ4VM (Cho et al., 2025), Quamba (Chiang et al., 2025), and MambaQuant (Xu et al., 2025), which represent the strongest existing methods in the Mamba quantization literature. PTQ4VM is among the first methods specifically designed for post-training quantization of Visual Mamba. Quamba provides an effective baseline by combining quantization with architecture adaptation. MambaQuant employs variance-aligned rotation, effectively preserving performance across visual tasks—including image classification, object detection, and semantic segmentation—and language tasks. To enable a fair comparison, we report the performance of the full-precision MambaIRv2-light (Guo et al., 2024a) model directly from the original paper. This is because none of these methods had previously been evaluated on the MambaIRv2-light superresolution model. We applied them to the Mamba module within MambaIRv2-light, whilst all non-Mamba modules underwent uniform quantization using our method. This ensured all comparisons occurred within a consistent framework, enabling a fair assessment of performance variations arising from different quantization strategies.

Quantitative results. The table 1 presents a comprehensive comparison of various quantization methods at 4-bit and 2-bit depths, alongside scaling factors of $\times 2$ and $\times 4$. It can be observed that existing Mamba quantization methods, including PTQ4VM, Quamba, and MambaQuant, exhibit significant performance degradation when bit width is reduced, particularly on datasets rich in high-frequency details such as Urban100 and Manga109. For instance, PTQ4VM and MambaQuant show a marked decline in PSNR when transitioning from 4-bit to 2-bit quantization, highlighting their limited capacity to compensate for quantization errors in complex textured regions. In contrast, SPR 2 Q consistently outperforms existing quantization methods across all evaluation scenarios. In the 4-bit precision test on the Set5 ($\times 2$) dataset, SPR 2 Q achieves a PSNR value 0.55 dB higher than PTQ4VM and 1.05 dB higher than MambaQuant. More importantly, on the challenging Urban100

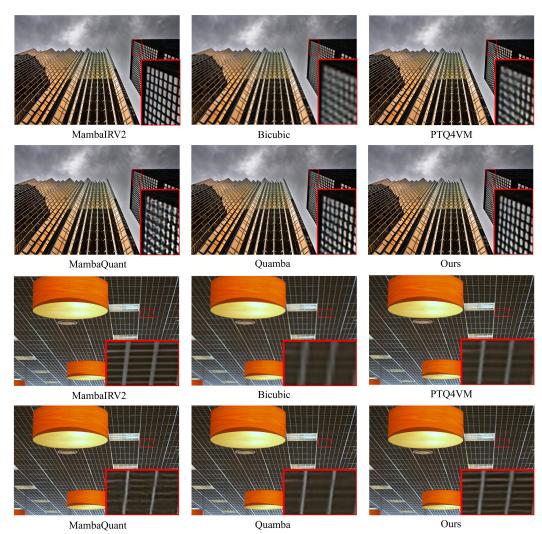


Figure 2: Visual comparison for image SR (×4) on Urban100(img019 and img044).

dataset, SPR²Q outperforms existing baseline methods by approximately 1 dB in the 4-bit setting. Even when precision is reduced to 2 bits, SPR²Q maintains competitive performance, showing only a 1.75 dB degradation compared to its 4-bit counterpart on Set5 while achieving a significant 1.31 dB improvement over other state-of-the-art methods.

These results demonstrate the effectiveness of the rectified group and static priority routing mechanism in mitigating quantization performance degradation. Meanwhile, SPR²Q demonstrates strong performance across different datasets and scaling factors, highlighting its robustness in handling diverse texture distributions and complex scenarios.

Qualitative results. We present the visual comparison results for $\times 4$ (see Figure 2). It can be observed that the three contrast-based quantization methods exhibit significant shortcomings in detail recovery. The images appear blurred overall, with severe loss of texture and fine structure, and edges often show diffusion and misalignment. Our method restores texture and edge details more clearly while preserving the overall structure, enabling the images to present richer high-frequency information.

4.3 ABLATION STUDY

PQFR and SPR² **Modules**. We investigated the impact of different modules on performance, with results presented in Table 2a. Introducing only the PQFR module already improved the baseline

Table 2: Ablation studies. Models are trained on DF2K, and tested on Set5 (x2) and Urban100 (x2).

PQFR	SPR ²	So PSNR	Set5 PSNR SSIM		Urban100 PSNR SSIM		size	Set5 PSNR SSIM		Urban100 PSNR SSIM	
		37.20	0.9554	30.69	0.9112		2	37.50	0.9578	31.31	0.9196
\checkmark		37.44	0.9567	31.25	0.9188		4	37.72	0.9589	31.56	0.9223
✓	✓	37.72	0.9589	31.53	0.9223		8	37.82	0.9595	31.73	0.9249

⁽a) PQFR and SPR² module

(b) Rectifier group size

Table 3: Exploration of our SPR²Q method under 1-bit quantization.

Method	scale	Set5		Set14		B100		Urban100		Manga109	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Ours (SPR ² Q)	$\times 2$	34.82	0.9428	31.27	0.8956	30.41	0.8754	27.76	0.8690	32.38	0.9505
Ours (SPR ² Q)	$\times 4$	28.84	0.8213	26.41	0.7215	26.21	0.6852	23.41	0.6751	25.31	0.7995

by 0.24 dB on the Set5 dataset and by 0.56 dB on the Urban100 dataset. This demonstrates that fusing learnable rectifiers prior to quantization successfully injects a compensation mechanism into the backbone network, significantly mitigating the information loss caused by discretisation. Upon further enabling the SPR² module, performance improved by an additional 0.28 dB on the Set5 dataset and 0.28 dB on the Urban100 dataset. This further demonstrates that static rectifier routing effectively expands the representation space, injecting diverse information compensation into the model.

Rectifier group Size. We further investigated the impact of rectifier group size, as shown in Table 2b. Expanding the group size from 2 to 4 yielded a significant 0.22 dB PSNR improvement on the Set5 dataset and a 0.25 dB gain on the Urban100 dataset. This demonstrates that increasing the group size effectively enhances the model's ability to select optimal rectifier paths and improves its representational capacity. Furthermore, increasing the group size to 8 yielded only a 0.10 dB PSNR improvement on the Set5 dataset and a 0.17 dB gain on Urban100. While the improvement diminishes, it substantially increases training overhead. Balancing training cost against accuracy gains, we adopt N=4 as our experimental setting, achieving a favourable equilibrium between performance enhancement and training efficiency.

Extreme 1-bit Quantization. Finally, we evaluate SPR²Q under extreme 1-bit quantization, with the results shown in Table3. For $\times 2$ scaling, the model achieves a PSNR of 34.82 dB, and for $\times 4$ scaling, 28.84 dB. Compared to the 2-bit results, the performance drop is moderate, demonstrating that SPR²Q remains effective in preserving reconstruction quality even under extreme quantization.

5 CONCLUSION

In this work, we advance the study of low-bit quantization for super-resolution models built on the Mamba architecture. We first identify that existing Mamba uantization methods exhibit significant domain adaptation issues under low-bit SR settings. To address this, we propose SPR²Q, a quantization framework specifically designed for low-bit SR. SPR²Q employs rectifiers to compensate for information loss introduced by quantization and jointly optimizes both the rectifier and quantizer parameters, enabling the model to adapt effectively to the quantization process. Moreover, we introduce the Static Priority-Based Rectifier Routing mechanism to provide diverse compensation strategies and calibrate a static routing table, allowing the model to efficiently obtain optimal increments from the rectifier group during inference. This design preserves the original model structure while incurring negligible additional computational overhead. Extensive experiments demonstrate that SPR²Q consistently outperforms existing Mamba SOTA quantization methods across various low-bit settings, significantly improving reconstruction quality and detail fidelity, and offering a novel and effective approach for low-bit SR quantization.

REFERENCES

- Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 126–135, 2017.
- Ron Banner, Yury Nahshan, and Daniel Soudry. Post-training 4-bit quantization of convolutional networks for rapid-deployment. In *Advances in Neural Information Processing Systems* (NeurIPS), 2019.
- Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. In *arXiv preprint arXiv:1308.3432*, 2013.
- Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi-Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In *Proceedings of the British Machine Vision Conference (BMVC)*, 2012.
- Huan Chen, Zhi Wang, Yulun Zhang, Zhiwei Xu, and Yun Fu. Pre-trained image processing transformer. *arXiv preprint arXiv:2012.00364*, 2020.
- Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu. Quamba: A post-training quantization recipe for selective state space models. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025.
- Younghyun Cho, Changhun Lee, Seonggon Kim, and Eunhyeok Park. Ptq4vm: Post-training quantization for visual mamba. In *Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)*, 2025.
- Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, and Karthik Gopalakrishnan. Towards the limit of network quantization. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2017.
- Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 29, 2016.
- Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep convolutional networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(2): 295–307, 2016.
- Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A survey of quantization methods for efficient neural network inference. *arXiv preprint arXiv:2103.13630*, 2021.
- Amir Gholami et al. A survey of low-bit large language models. *Neural Networks*, 2025. Survey on quantization methods across CNNs, Transformers, and Mamba.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
- Shu-Hang Gu, Li Zhang, Zhi Wang, and Yun Fu. Adaptive token dictionary for image super-resolution. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1234–1243, 2024. doi: 10.1109/CVPR.2024.00123.
- Hang Guo, Yong Guo, Yaohua Zha, Yulun Zhang, Wenbo Li, Tao Dai, Shu-Tao Xia, and Yawei Li. Mambairv2: Attentive state space restoration. *arXiv preprint arXiv:2411.15269*, 2024a.
- Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple baseline for image restoration with state-space model. In *European Conference on Computer Vision*, pp. 222–241. Springer, 2024b.
- Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2016.

- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015.
- Masanori Hirano, Ryosuke Takata, and Kiyoshi Izumi. Pams: Platform for artificial market simulations, 2023.
 - Changil Hong, Seungjun Nah, and Kyoung Mu Lee. Cadyq: Content-aware dynamic quantization for image super-resolution. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2022.
 - Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *Proceedings of the International Conference on Learning Representations (ICLR)*. OpenReview.net, 2022.
 - Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed self-exemplars. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5197–5206, 2015.
 - Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2704–2713, 2018a. doi: 10.1109/CVPR.2018. 00286.
 - Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018b.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings* of the 3rd International Conference on Learning Representations (ICLR), 2015.
 - Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Alykhan Aitken, Alykhan Tejani, Zehan Totz, Ziyou Wang, and Wenzhe Shi. Photorealistic single image super-resolution using a generative adversarial network. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4681–4690, July 2017.
 - Shaokai Li, Xin Dong, and Wei Wang. Brecq: Pushing the limit of post-training quantization by block reconstruction. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
 - Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. *arXiv preprint arXiv:2108.10257*, 2021.
 - Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, July 2017.
 - Jiaheng Liu, Haotong Qin, Yunhe Guo, Li Yuan, Ling Kong, Chang Chen, and Mingyuan Zhang. 2dquant: Low-bit post-training quantization for image super-resolution. *arXiv* preprint *arXiv*:2406.06649, 2024.
 - Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*, 2017.
 - David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 416–423, 2001.
 - Yusuke Matsui, Kiyoharu Ito, Yusuke Aramaki, Ayaka Fujimoto, Takahiro Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. *Multimedia Tools and Applications*, 76(20):21811–21838, 2017.

- Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve low-precision network accuracy. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.
- Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through weight equalization and bias correction. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 1325–1334, 2019.
- Yury Nahshan, Adrian Bulat, Markus Nagel, Chaim Baskin, Yasmin Labib, Shady Mourad, Rinon Gal, Paulius Micikevicius, and Daniel Soudry. Loss aware post-training quantization. In *Proceedings of Machine Learning and Systems (MLSys)*, 2020.
- Radu Timofte, Eirikur Agustsson, Luc Van Gool, et al. Ntire 2017 challenge on single image superresolution: Methods and results. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 114–125, 2017.
- Zhijun Tu, Jie Hu, Hanting Chen, and Yunhe Wang. Toward accurate post-training quantization for image super resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5856–5865, June 2023.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
- Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
- Hongzhou Xu, Yuhang Yue, Xiaolin Hu, Li Yuan, et al. Mambaquant: Quantizing the mamba family with variance aligned rotation methods. *arXiv preprint arXiv:2501.13484*, 2025.
- Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations. In *Proceedings of the International Conference on Curves and Surfaces*, pp. 711–730. Springer, 2010.
- Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel attention networks. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 286–301. Springer, 2018a.
- Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2472–2481, 2018b. doi: 10.1109/CVPR.2018.00262.