

000 001 SPR²Q: STATIC PRIORITY-BASED RECTIFIER ROUT- 002 ING QUANTIZATION FOR IMAGE SUPER-RESOLUTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Low-bit quantization has achieved significant progress in image super-resolution.
012 However, existing quantization methods show evident limitations in handling the
013 heterogeneity of different components. Particularly under extreme low-bit com-
014 pression, the issue of information loss becomes especially pronounced. In this
015 work, we present a novel low-bit post-training quantization method, namely static
016 priority-based rectifier routing quantization (SPR²Q). The starting point of this
017 work is to attempt to inject rich and comprehensive compensation information
018 into the model before the quantization, thereby enhancing the model’s inference
019 performance after quantization. Firstly, we constructed a low-rank rectifier group
020 and embedded it into the model’s fine-tuning process. By integrating weight in-
021 crements learned from each rectifier, the model enhances the backbone network
022 while minimizing information loss during the lightweighting process. Further-
023 more, we introduce a static rectifier priority routing mechanism that evaluates
024 the offline capability of each rectifier and generates a fixed routing table. Dur-
025 ing quantization, it updates weights based on each rectifier’s priority, enhancing
026 the model’s capacity and representational power without introducing additional
027 overhead during inference. Extensive experiments demonstrate that the proposed
028 SPR²Q significantly outperforms the state-of-the-arts in five benchmark datasets,
029 achieving PSNR improvements of 0.55 and 1.31 dB on the Set5($\times 2$) dataset under
030 4-bit and 2-bit settings, respectively.

031 1 INTRODUCTION 032

033 With the rapid development of deep learning, image super-resolution (SR) models have achieved re-
034 markable breakthroughs in performance (Dong et al., 2016; Guo et al., 2024a). However, their high
035 computational and storage costs severely limit deployment on real-world devices. Consequently,
036 how to achieve efficient inference while maintaining accuracy has become a critical research fo-
037 cus, among which low-bit quantization stands out as a highly promising solution (Han et al., 2016;
038 Courbariaux et al., 2016; Gholami et al., 2021). Low-bit quantization compresses floating-point pa-
039 rameters of neural networks into lower-bit representations, thereby reducing model size and latency
040 while preserving accuracy and enabling hardware acceleration.

041 Quantization methods can generally be divided into quantization-aware training (QAT) and post-
042 training quantization (PTQ) (Choi et al., 2017; Jacob et al., 2018b). Although QAT is widely rec-
043 ognized for minimizing accuracy loss (Mishra & Marr, 2018), it often requires high training costs
044 and long training time—sometimes even heavier than training the original full-precision model. In
045 contrast, PTQ completes quantization after training by adjusting quantizer parameters or calibrating
046 weights/activations (Nagel et al., 2019; Banner et al., 2019), without retraining the model. Thus,
047 PTQ offers low training cost and fast deployment, but it tends to suffer from significant accuracy
048 degradation under ultra-low-bit settings (Nahshan et al., 2020; Li et al., 2021).

049 Despite the progress of post-training quantization (PTQ) methods across diverse architectures such
050 as Transformers and Mamba (Gong et al., 2025), existing solutions exhibit significant shortcom-
051 ings in their adaptability across different architectures and domains. This is primarily manifested
052 in two aspects: First, while current low-bit quantization methods have been successfully applied to
053 Transformer-based super-resolution (SR) models like SwinIR (Liang et al., 2021; Liu et al., 2024),
they fail to adapt to the unique computational paradigm of the Mamba architecture (Gu & Dao,

054 2023). Specifically, these methods struggle to address the error accumulation and numerical sensitivity issues arising from Mamba’s recurrent state and dynamic gating mechanisms. This ultimately leads to a substantial degradation in the ability of the quantized model to restore fine image details. 055 Second, most existing Mamba quantization methods have been validated primarily on tasks such as 056 classification or language modeling (Xu et al., 2025; Cho et al., 2025). Super-resolution, however, 057 is exceptionally sensitive to pixel-level precision and the fidelity of local textures. Consequently, 058 porting these methods to the SR domain often yields unsatisfactory results, as illustrated in Figure 2, 059 where they fail to meet the stringent fidelity requirements and cause blurred details and texture loss. 060

061 These limitations indicate that PTQ, which merely optimizes quantizer parameters, is insufficient to 062 overcome the challenges posed by aggressive low-bit compression. We argue that achieving extreme 063 low-bit performance requires not only better quantizers but, more importantly, enabling the model 064 itself to actively adapt to the quantization process through a small set of trainable parameters. By 065 injecting complementary information into the model before quantization, the substantial information 066 loss introduced by aggressive compression can be effectively mitigated. 067

068 To this end, our SPR²Q framework achieves this active model adaptation on two fronts. First, inspired by the idea of LoRA (Hu et al., 2022), we fuse the weight increments from low-rank rectifier 069 modules into the backbone network pre-quantization. This design ensures that the supplementary 070 information, learned to compensate for quantization error, is incorporated into the quantization process 071 as prior knowledge, fundamentally mitigating information loss while preserving the full inference 072 acceleration benefits. Furthermore, to enhance the diversity of compensation information, SPR²Q 073 introduces a rectifier priority routing strategy. In this design, multiple rectifier modules are trained 074 as a rich group of information compensators. A static routing table is then constructed through 075 offline evaluation, assigning priorities to each rectifier. During inference, the model updates its 076 weights according to the rectifier priorities, thereby expanding its representational space and achieving 077 significant performance improvements without incurring any additional computational cost. Our 078 contributions can be summarized as follows: 079

- 080 • We introduce SPR²Q, a novel quantization method addressing low-bit quantization challenges 081 in super-resolution. Its architecture is composed of two synergistic components: a 082 pre-quantization fusion rectifier module for injecting learnable compensation, and a static 083 rectifier priority routing that injects pre-evaluated compensation into the model.
- 084 • SPR²Q’s methodology begins with pre-quantization fusion, embedding rectifier-learned 085 compensation into the backbone to mitigate information loss. Subsequently, a Rectifier 086 group is constructed, and the static rectifier priority routing mechanism updates weights by 087 rectifier priority, providing the model with diverse information for complex detail recovery.
- 088 • Extensive experiments validate our state-of-the-art performance on challenging low-bit 089 super-resolution tasks. On the MambaRv2 model, SPR²Q significantly outperforms multiple 090 leading techniques, achieving PSNR improvements of up to 0.55 and 1.31 dB on Set5 091 ($\times 2$), under 4-bit and 2-bit quantization.

092 2 RELATED WORK

093 2.1 IMAGE SUPER-RESOLUTION

094 Deep learning has significantly advanced the field of image super-resolution (SR). Early approaches 095 were dominated by convolutional neural networks (CNNs), ranging from the pioneering SRCNN 096 (Dong et al., 2016) to EDSR (Lim et al., 2017), which improved performance by introducing residual 097 connections and increasing model capacity. Subsequent works further explored the potential of 098 CNNs with more sophisticated architectures. For instance, RDN (Zhang et al., 2018b) leverages 099 residual dense blocks to fully exploit hierarchical features, while RCAN (Zhang et al., 2018a) 100 introduces channel attention mechanisms to learn more discriminative features, both significantly 101 enhancing reconstruction quality. As research progressed, the limitations of CNNs in capturing long- 102 range dependencies and global context became evident. To address this, Transformers (Vaswani 103 et al., 2017) were introduced into the SR domain. Early attempts, IPT (Chen et al., 2020), 104 demonstrated the great potential of pure Transformer architectures for image processing tasks, though 105 their high computational cost limited practical applicability. Later works, including SwinIR (Liang 106 et al., 2021) and ATD (Zhang et al., 2024), incorporated efficient designs such as window attention 107

108 to model long-range dependencies while substantially reducing computational overhead, achieving
 109 state-of-the-art performance across multiple benchmarks. The success of Transformer-based SR
 110 models highlights the advantages of self-attention mechanisms in capturing spatial correlations over
 111 large receptive fields. More recently, the emergence of the Mamba (Gu & Dao, 2023) architecture
 112 has driven SR research toward state space model (SSM)-based frameworks. Representative works,
 113 including MambaIR (Gu et al., 2024b) and MambaIRv2 (Gu et al., 2024a), exploit the efficient
 114 sequence modeling capabilities of state space models to capture long-range dependencies, achiev-
 115 ing high-quality reconstruction with reduced computational overhead. These Mamba-architecture
 116 models achieve superior reconstruction quality compared to Transformer-based methods while sig-
 117 nificantly reducing computational overhead, showcasing Mamba’s unique advantage in balancing
 118 efficiency and performance.
 119

120 2.2 MODEL QUANTIZATION

121 Quantization methods can be broadly categorized into quantization-aware training (QAT) and post-
 122 training quantization (PTQ). QAT is capable of minimizing performance degradation and was thus
 123 widely adopted in early studies. Representative works such as PAMS (Hirano et al., 2023) and
 124 CADyQ (Hong et al., 2022) primarily focused on lightweight compression for CNNs, aiming to
 125 reduce computational and storage overhead while preserving reconstruction quality. However, these
 126 approaches typically incur substantial training costs, often requiring as much or even more training
 127 time than the original models. To address this challenge, PTQ methods were introduced, which di-
 128 rectly operate on pretrained models and only require boundary calibration of quantizers. DBDC+Pac
 129 (Tu et al., 2023) is the first PTQ method specifically designed for image super-resolution, achieving
 130 superior performance on EDSR (Lim et al., 2017) and SRResNet (Ledig et al., 2017), thereby
 131 demonstrating the potential of PTQ for SR tasks. With the rise of Transformer-based SR models,
 132 researchers have also begun exploring PTQ tailored to these architectures. For instance, 2DQuant
 133 (Liu et al., 2024) achieves excellent results on SwinIR, showing that carefully designed boundary
 134 calibration and quantization strategies can effectively mitigate the accuracy degradation caused by
 135 low-bit quantization in Transformers. Nevertheless, for more complex and emerging architectures
 136 such as Mamba-based SR models, existing quantization research still mainly focuses on large lan-
 137 guage models and image classification, leaving quantization for SR largely underexplored.
 138

139 3 METHOD

140 The core principle of existing Post-Training Quantization (PTQ) methods for Super-Resolution (SR)
 141 is to find optimal quantizer parameters for a given set of fixed, pre-trained weights. This process is
 142 typically modeled using a Quantization-Decquantization (QDQ) function (Jacob et al., 2018a):
 143

$$144 \hat{x} = \text{clip}(x, a, b), \quad s = \frac{b - a}{2^n - 1}, \quad x_q = \text{round}\left(\frac{\hat{x} - a}{s}\right) \cdot s + a, \quad (1)$$

147 where n denotes the number of quantization bits, and a and b define the quantization range. This
 148 function clips the input to $[a, b]$, normalizes and rounds it to the nearest discrete level according to
 149 the scale factor s , and dequantizes it back to the floating-point domain. Existing PTQ methods pri-
 150 marily differ in how they select the clipping bounds a and b . Whether based on static statistics (Nagel
 151 et al., 2019) or iterative optimization (Li et al., 2021), the goal is to minimize the quantization error
 152 $\|x - x_q\|$ by carefully adjusting these quantization parameters. This “quantizer-only” paradigm,
 153 however, overlooks the model’s potential to proactively adapt to quantization. To address this lim-
 154 itation, we propose SPR²Q, which introduces learnable compensation information via lightweight
 155 rectifiers to enable the model to actively adjust its weights for quantization. Furthermore, we design
 156 a mechanism for diverse selection of compensation information, significantly enhancing the per-
 157 formance of low-bit quantization. Crucially, this mechanism employs static routing during inference,
 158 adding virtually no extra overhead.

159 3.1 PRE-QUANTIZATION FINE-TUNING WITH FUSED RECTIFIER

160 To enable proactive model rectification, we introduce a Pre-Quantization Fine-tuning with Fused
 161 Rectifier (PQFR) mechanism. The core idea is to augment the original weights W with a

162 lightweight, trainable rectifier, ΔW , before quantization. This rectifier is parameterized by two low-
 163 rank matrices, $A \in \mathbb{R}^{r \times d_{in}}$ and $B \in \mathbb{R}^{d_{out} \times r}$. Fusing the rectifier yields a new, more quantization-
 164 robust weight matrix W' , which becomes the actual target for quantization. This process is formulated as:
 165

$$W' = W + \Delta W, \quad \Delta W = BA, \quad (2)$$

$$W'_q = Q_{a,b}(W') = Q_{a,b}(W + BA), \quad (3)$$

169 where $W \in \mathbb{R}^{d_{out} \times d_{in}}$ represents the frozen pre-trained weights. The pseudo-quantization operator
 170 $Q_{a,b}(\cdot)$ is defined in Eq. 1, featuring trainable clipping bounds a and b .

171 We jointly optimize the rectifier parameters (A, B) and quantizer parameters (a, b) using a hybrid
 172 loss function. This loss integrates a pixel-level reconstruction objective with a fine-grained block-
 173 level feature alignment objective, enabling compensation at both global and local levels.

174 The first component, the pixel-level loss function (Dong et al., 2016), ensures reconstruction fidelity
 175 by minimising the difference between the quantised model output and the full-precision model out-
 176 put image:

$$\mathcal{L}_{\text{pixel}} = \mathbb{E}_{(x, y_{\text{FP}}) \sim \mathcal{D}_{\text{train}}} [\|f_{\text{q}}(x) - y_{\text{FP}}\|_1], \quad (4)$$

179 The second component, the block-wise feature alignment loss, encourages the quantized model to
 180 mimic the full-precision (FP) model at the level of individual computational blocks (Hinton et al.,
 181 2015). Instead of applying feature distillation only at coarse or stage-level granularity, we impose
 182 alignment constraints on each block, ensuring that local discrepancies are compensated progres-
 183 sively across network depth. Formally:

$$\mathcal{L}_{\text{feature}} = \mathbb{E}_{x \sim \mathcal{D}_{\text{train}}} \left[\sum_{l=1}^L \|\phi_l(f_{\text{q}}(x)) - \phi_l(f_{\text{FP}}(x))\|_2^2 \right], \quad (5)$$

187 where $\phi_l(\cdot)$ denotes the feature map extracted from the l -th block, and L is the total number of
 188 distilled blocks. This design not only captures channel-level statistical consistency, but also provides
 189 fine-grained alignment at the block level, thereby mitigating distortions introduced by quantization
 190 at a more microscopic scale.

191 The final training objective is a weighted combination of the pixel-level reconstruction loss and the
 192 block-wise feature alignment loss:

$$\mathcal{L} = \mathcal{L}_{\text{pixel}} + \lambda \mathcal{L}_{\text{feature}}, \quad (6)$$

196 This design ensures that the model simultaneously preserves output fidelity while progressively
 197 reducing quantization-induced discrepancies across intermediate blocks.

198 During backpropagation, we adopt the Straight-Through Estimator (STE) (Bengio et al., 2013) to
 199 approximate the gradient of the non-differentiable rounding function in $Q_{a,b}(\cdot)$. This allows gradi-
 200 ents to flow through the quantizer while optimizing both the rectifiers and the clipping bounds.

201 The gradients of \mathcal{L} then update both the rectifier parameters and the quantizer parameters in a unified
 202 manner. For the low-rank rectifier matrices (A, B), the gradients are computed as:

$$\frac{\partial \mathcal{L}}{\partial A} = B^{\top} \frac{\partial \mathcal{L}}{\partial W'}, \quad \frac{\partial \mathcal{L}}{\partial B} = \frac{\partial \mathcal{L}}{\partial W'} A^{\top}, \quad (7)$$

206 These updates allow the rectifier to directly absorb error signals and provide effective compensation
 207 for the perturbed quantized weights.

208 At the same time, the trainable clipping bounds (a, b) are also refined through gradient-based up-
 209 dates:

$$\frac{\partial \mathcal{L}}{\partial v} = \frac{\partial \mathcal{L}}{\partial W'_q} \cdot \frac{\partial W'_q}{\partial v}, \quad \frac{\partial W'_q}{\partial v} = \frac{\partial \hat{W}'}{\partial v} + \sigma \cdot \frac{1}{2^n - 1} \text{round} \left(\frac{\hat{W}' - a}{s} \right) - \sigma \cdot \frac{\hat{W}' - a}{b - a}, \quad (8)$$

214 Here, v denotes a trainable clipping bound, either the lower bound a or the upper bound b . $\hat{W}' =$
 215 $\text{clip}(W', a, b)$ is the clipped weight matrix that governs how the quantizer adapts its effective range,
 and σ is a sign factor that equals -1 when $v = a$ and $+1$ when $v = b$.

Figure 1: Overview of the SPR²Q framework, showing its three stages: (a) Rectifier group Training, learning rectifiers with diverse complementary information via dynamic routing; (b) Offline Static Routing Calibration, generating the SPR²Q Table to assign optimal increment for each layer; (c) Inference stage, performing computation using the updated and quantized weights.

Overall, this dual collaborative optimization enables two complementary effects: the rectifier ΔW learns to proactively counteract distortions introduced by quantization, while the clipping bounds (a, b) dynamically refine the quantization mapping itself. After fine-tuning, the rectifier parameters are fused into the original weights, resulting in negligible inference overhead without altering the model’s structure.

3.2 STATIC PRIORITY-BASED RECTIFIER ROUTING

To further enhance the model’s quantization compensation capability and mitigate the homogenization issue caused by a single low-rank rectifier, we extend the single rectifier introduced in the previous section into an *rectifier group* composed of N distinct rectifiers:

$$\mathcal{E} = \{\Delta W_1, \Delta W_2, \dots, \Delta W_N\}. \quad (9)$$

Within this mechanism, input information is routed to select the most suitable rectifier for augmentation, providing the model with a diverse set of alternative strategies for quantization compensation. Figure 1 illustrates the overall SPR²Q framework and its three stages. Unlike traditional dynamic rectifier routing, which may introduce additional computational overhead and disrupt the original inference structure, we propose Static Priority-Based Rectifier Routing (SPR²) module. In this framework, an offline evaluation stage pre-assigns the optimal, fixed rectifier to each component of the model. This design preserves the benefits of multiple rectifiers while avoiding extra inference cost and dynamic structural modifications.

Rectifier group training. To construct a group of N distinct and high-performance rectifiers, we introduce a dynamic routing training stage. The goal of this stage is to encourage diverse rectifiers to be sufficiently engaged and optimized during training, enabling them to acquire specialized capabilities for handling heterogeneous information and compensating for different types of quantization errors.

Specifically, we employ a lightweight gating network that assigns input-dependent routing weights to each rectifier. Based on these weights, the increments ΔW_i produced by individual rectifiers are aggregated into a fused increment, which is then added to the base weights. The quantized effective weights used in the forward pass are given by:

$$\Delta W_i = B_i A_i, \quad W'_q = Q_{a,b} \left(W + \sum_{i=1}^N g_i \cdot \Delta W_i \right). \quad (10)$$

270 Here, each rectifier generates a rank-decomposed weight update ΔW_i through the product of its
 271 rectifier matrices A_i and B_i . The gating network assigns a dynamic weight g_i to each rectifier based
 272 on the input, and the weighted sum of all rectifier increments forms the fused update. This fused
 273 update is then added to the original weights W and passed through the quantizer $Q_{a,b}$ to obtain the
 274 final quantized weights W'_q used for inference.

275 With the effective weights W'_q computed, the model output is obtained by a standard linear transfor-
 276 mation of the input X_q :

$$277 \quad Y = X_q W'_q. \quad (11)$$

279 During training, we minimize the hybrid loss function \mathcal{L} (Eq. 6) to jointly optimize all rectifiers
 280 $\{(A_i, B_i)\}_{i=1}^N$. This strategy enables the rectifiers, under the guidance of the gating network, to learn
 281 input-dependent, specialized compensation. By doing so, each rectifier can handle different types of
 282 information, allowing diverse selections within the module to mitigate information loss caused by
 283 quantization. This not only enhances the model’s representational capacity but also provides a range
 284 of compensation strategies, improving robustness to quantization errors.

285 **Offline Static Routing Calibration.** Following the Rectifier group training, we introduce the Of-
 286 fline Static Routing Calibration stage. The goal is to consolidate the diverse capabilities of the
 287 rectifiers learned during dynamic training into a fixed configuration. Specifically, we adopt the same
 288 loss function as used in the Rectifier group training stage, but with the pre-trained backbone weights
 289 and the learned rectifier parameters frozen. We employ a gradient descent-based method to calibrate
 290 and learn the weighting factors corresponding to each rectifier to obtain the optimal static weighting
 291 factors. Formally, given the permissible gating weight space \mathcal{G} , the optimization objective is:

$$292 \quad \hat{g} = \arg \min_{g \in \mathcal{G}} \mathcal{L} \left(f(X, Q_{a,b}(W + \sum_{i=1}^N g_i \Delta W_i)) \right), \quad (12)$$

295 Here, \hat{g} represents the optimal static weighting factors for combining multiple rectifiers, effectively
 296 capturing the diverse compensation strategies learned during dynamic training. The collected opti-
 297 mal static weighting factors are used to compute a weighted combination of the rectifier increments,
 298 resulting in the optimal increments, which are then organized to form the SPR²Q Table shown in
 299 Figure 1.

300 **Inference stage.** Since the Offline Static Routing Calibration obtains the optimal increment for each
 301 module through the precomputed optimal gating weights, each module retrieves its corresponding
 302 optimal increment from the SPR²Q Table and fuses it with the pretrained weights. The augmented
 303 weights are then quantized to produce the final weights used for forward computation. This design
 304 ensures that each module applies a fixed, optimal increment while preserving the original model
 305 structure, without requiring dynamic routing or introducing additional computational overhead.

307 4 EXPERIMENTS

309 4.1 EXPERIMENTAL SETTINGS

311 **Datasets and Evaluation.** In this work, we use DF2K (Agustsson & Timofte, 2017; Timofte et al.,
 312 2017) as the training set. This dataset consists of the DIV2K (Agustsson & Timofte, 2017) and
 313 Flickr2K (Timofte et al., 2017). We then employed five widely used benchmark datasets for eval-
 314 uation: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001), Ur-
 315 ban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017). These are composed of 5, 14,
 316 100, 100, and 109 images, respectively. In the benchmark evaluation, low-resolution inputs are
 317 fed into the quantization model for high-resolution image reconstruction, after which these recon-
 318 structed images are compared with the reference images. Performance is reported using PSNR and
 319 SSIM (Wang et al., 2004), measured on the Y channel of the YCbCr space.

320 **Training Details.** We adopt MambaIRv2-light (Guo et al., 2024a) as the backbone and conduct
 321 experiments with scale factors of $\times 2$ and $\times 4$, evaluating all quantized models at 4-bit, and 2-bit
 322 precision. Hyperparameter settings are kept consistent across experiments. For optimization, we use
 323 the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1×10^{-2} and $\beta = (0.9, 0.999)$,
 while the learning rate schedule follows a Cosine Annealing strategy (Loshchilov & Hutter, 2017)

324 Table 1: comparison with SOTA Mamba quantization methods on benchmark datasets for SR.
325

326 Method	327 Bit	328 Set5($\times 2$)		329 Set14($\times 2$)		330 B100($\times 2$)		331 Urban100($\times 2$)		332 Manga109($\times 2$)	
		333 PSNR	334 SSIM	335 PSNR	336 SSIM	337 PSNR	338 SSIM	339 PSNR	340 SSIM	341 PSNR	342 SSIM
MambaIRv2-light	32	38.26	0.9615	34.09	0.9221	32.36	0.9019	33.26	0.9378	39.35	0.9785
PTQ4VM	4	37.17	0.9549	32.86	0.9099	31.57	0.8900	30.47	0.9084	37.22	0.9706
Quamba	4	37.07	0.9544	32.77	0.9092	31.47	0.8896	30.54	0.9107	36.94	0.9699
MambaQuant	4	36.67	0.9495	31.76	0.8899	30.85	0.8756	28.08	0.8407	33.47	0.9186
Ours (SPR²Q)	4	37.72	0.9589	33.27	0.9156	31.94	0.8964	31.53	0.9223	38.03	0.9754
PTQ4VM	2	34.38	0.9328	31.05	0.8886	30.21	0.8660	27.61	0.8603	32.04	0.9399
Quamba	2	34.66	0.9339	31.26	0.8899	30.38	0.8687	27.80	0.8613	32.50	0.9407
MambaQuant	2	34.65	0.9337	31.22	0.8885	30.36	0.8685	27.78	0.8610	32.43	0.9395
Ours (SPR²Q)	2	35.97	0.9495	31.98	0.9020	30.95	0.8827	28.55	0.8819	34.39	0.9599
335 Method	336 Bit	337 Set5($\times 4$)		338 Set14($\times 4$)		339 B100($\times 4$)		340 Urban100($\times 4$)		341 Manga109($\times 4$)	
		342 PSNR	343 SSIM	344 PSNR	345 SSIM	346 PSNR	347 SSIM	348 PSNR	349 SSIM	350 PSNR	351 SSIM
MambaIRv2-light	32	32.51	0.8992	28.84	0.7878	27.75	0.7426	26.82	0.8079	31.24	0.9182
PTQ4VM	4	30.82	0.8670	27.69	0.7546	26.95	0.7115	24.76	0.7321	28.19	0.8660
Quamba	4	31.01	0.8715	27.77	0.7585	26.99	0.7149	25.01	0.7470	28.57	0.8752
MambaQuant	4	30.74	0.8650	27.17	0.7413	26.37	0.6920	23.28	0.6694	26.73	0.8186
Ours (SPR²Q)	4	31.60	0.8844	28.27	0.7725	27.33	0.7274	25.64	0.7713	29.60	0.8959
PTQ4VM	2	28.77	0.8162	26.36	0.7167	26.16	0.6802	23.37	0.6704	25.26	0.7943
Quamba	2	28.88	0.8080	26.45	0.7131	26.20	0.6752	23.48	0.6651	25.43	0.7818
MambaQuant	2	28.84	0.8079	26.41	0.7114	26.18	0.6739	23.45	0.6648	25.38	0.7829
Ours (SPR²Q)	2	29.37	0.8327	26.73	0.7319	26.42	0.6949	23.69	0.6874	25.77	0.8096

345
346 to ensure stable convergence. Specifically, the Rectifier group training is performed for 12,000
347 iterations, while the Offline Static Routing Calibration stage is conducted for 500 iterations. Both
348 stages employ a batch size of 8. The rank of each rectifier module is set to $r = 8$. During the
349 Rectifier group training stage, each group is configured with $N = 4$ parallel rectifiers. This is
350 a trade-off we adopt to improve performance while maintaining training efficiency. This work is
351 implemented based on the PaddlePaddle framework, and experiments are conducted on an NVIDIA
352 RTX 4090 GPU.

353 354 4.2 COMPARISON WITH STATE-OF-THE-ART METHODS 355

356 We compare against PTQ4VM (Cho et al., 2025), Quamba (Chiang et al., 2025), and MambaQuant
357 (Xu et al., 2025), which represent the strongest existing methods in the Mamba quantization
358 literature. PTQ4VM is among the first methods specifically designed for post-training
359 quantization of Visual Mamba. Quamba provides an effective baseline by combining quantization
360 with architecture adaptation. MambaQuant employs variance-aligned rotation, effectively preserving
361 performance across visual tasks—including image classification, object detection, and semantic
362 segmentation—and language tasks. To enable a fair comparison, we report the performance of the
363 full-precision MambaIRv2-light (Guo et al., 2024a) model directly from the original paper. This
364 is because none of these methods had previously been evaluated on the MambaIRv2-light super-
365 resolution model. We applied them to the Mamba module within MambaIRv2-light, whilst all non-
366 Mamba modules underwent uniform quantization using our method. This ensured all comparisons
367 occurred within a consistent framework, enabling a fair assessment of performance variations arising
368 from different quantization strategies.

369 **Quantitative results.** The table 1 presents a comprehensive comparison of various quantization
370 methods at 4-bit and 2-bit depths, alongside scaling factors of $\times 2$ and $\times 4$. It can be observed that
371 existing Mamba quantization methods, including PTQ4VM, Quamba, and MambaQuant, exhibit
372 significant performance degradation when bit width is reduced, particularly on datasets rich in high-
373 frequency details such as Urban100 and Manga109. For instance, PTQ4VM and MambaQuant show
374 a marked decline in PSNR when transitioning from 4-bit to 2-bit quantization, highlighting their
375 limited capacity to compensate for quantization errors in complex textured regions. In contrast,
376 SPR²Q consistently outperforms existing quantization methods across all evaluation scenarios. In
377 the 4-bit precision test on the Set5 ($\times 2$) dataset, SPR²Q achieves a PSNR value 0.55 dB higher than
378 PTQ4VM and 1.05 dB higher than MambaQuant. More importantly, on the challenging Urban100
379 dataset, SPR²Q outperforms existing baseline methods by approximately 1 dB in the 4-bit setting.

Figure 2: Visual comparison for image SR ($\times 4$) on Urban100(img019 and img044).

Even when precision is reduced to 2 bits, SPR²Q maintains competitive performance, showing only a 1.75 dB degradation compared to its 4-bit counterpart on Set5 while achieving a significant 1.31 dB improvement over other state-of-the-art methods.

These results demonstrate the effectiveness of the rectified group and static priority routing mechanism in mitigating quantization performance degradation. Meanwhile, SPR²Q demonstrates strong performance across different datasets and scaling factors, highlighting its robustness in handling diverse texture distributions and complex scenarios.

Qualitative results. We present the visual comparison results for $\times 4$ (see Figure 2). It can be observed that the three contrast-based quantization methods exhibit significant shortcomings in detail recovery. The images appear blurred overall, with severe loss of texture and fine structure, and edges often show diffusion and misalignment. Our method restores texture and edge details more clearly while preserving the overall structure, enabling the images to present richer high-frequency information.

4.3 ABLATION STUDY

Impact of Component Modules. The effect of different modules on performance is analyzed in Table 2a. First, the Pre-Quantization Fine-tuning with Fused Rectifier (PQFR) utilizes a single set of learnable low-rank parameters to proactively compensate for quantization errors. Introducing

432 Table 2: Ablation studies. Models are trained on DF2K, and tested on Set5 (x2) and Urban100 (x2).
433

434	PQFR	RGT	OSRC	Set5		Urban100		r	Set5		Urban100	
				PSNR	SSIM	PSNR	SSIM		PSNR	SSIM	PSNR	SSIM
436				37.20	0.9554	30.69	0.9112	2	37.63	0.9585	31.36	0.9208
437	✓			37.44	0.9567	31.25	0.9188	4	37.67	0.9588	31.48	0.9221
438	✓	✓		37.60	0.9581	31.24	0.9170	8	37.72	0.9589	31.53	0.9223
439	✓	✓	✓	37.72	0.9589	31.53	0.9223	16	37.74	0.9591	31.70	0.9240

440 (a) Impact of component modules
441442 (b) Rectifier rank
443444 Table 3: Rectifier group size
445

446	size	Set5 (x2)		Urban100 (x2)	
		PSNR	SSIM	PSNR	SSIM
447	2	37.50	0.9578	31.31	0.9196
448	4	37.72	0.9589	31.56	0.9223
449	8	37.82	0.9595	31.73	0.9249

450 Table 4: Efficiency on MambaIRv2-light
451

Metric	FP32	4bit	2bit
Model Size (MB)	3.01	1.20	1.07
Compression Ratio	1.00×	2.51×	2.81×
FLOPs (G)	75.6	22.0	18.2
Speed-up	1.00×	3.44×	4.15×

453 only the PQFR module already improved the baseline by 0.24 dB on the Set5 dataset and by 0.56
454 dB on the Urban100 dataset. This demonstrates that fusing learnable rectifiers prior to quantization
455 successfully injects a compensation mechanism into the backbone network, significantly mitigating
456 the information loss caused by discretisation. Next, we employ Rectifier Group Training (RGT)
457 to extend the single low-rank parameter set into multiple groups for fusion. Upon further enabling
458 RGT, performance improved by an additional 0.16 dB on the Set5 dataset. This demonstrates that
459 using diverse experts effectively expands the representation space. Finally, the Offline Static Routing
460 Calibration (OSRC) is incorporated to calibrate the weighting factors of these multiple low-rank
461 parameter groups. Enabling OSRC yields a further gain of 0.12 dB on Set5. This confirms that
462 refining the fusion weights leads to optimal information compensation.

463 **Rectifier Rank.** We further examine the effect of the rectifier rank r on performance, as shown in
464 Table 2b. The results indicate that reconstruction quality consistently improves as the rank increases
465 from 2 to 8. However, the performance gain begins to saturate beyond this point; for instance, in-
466 creasing r to 16 yields only a marginal 0.02 dB improvement on Set5 but entails higher training
467 parameter costs. Consequently, we select $r = 8$ as the default setting, as the performance improve-
468 ment becomes negligible beyond this point, indicating that a rank of 8 is sufficient for effective
469 quantization compensation.

470 **Rectifier Group Size.** Table 3 reports the impact of varying the rectifier group size. Expanding
471 the group size from 2 to 4 yields significant PSNR improvements of 0.22 dB on Set5 and 0.25 dB
472 on Urban100, demonstrating that a larger group effectively enhances the model’s ability to select
473 optimal rectifier paths and improves its representational capacity. Increasing the group size to 8,
474 however, only brings marginal gains of 0.10 dB (Set5) and 0.17 dB (Urban100), considerably smaller
475 than the improvement from 2 to 4. This indicates that a group size of 4 is sufficient to capture the
476 diverse compensation patterns required for quantization. Therefore, we adopt $N = 4$ as the default
477 setting, representing the saturation point where the model achieves robust compensation capability.

478 4.4 PRACTICAL EFFICIENCY OF SPR²Q

479 To validate the practical efficiency of SPR²Q, we evaluate the model size, computational cost
480 (FLOPs), and inference acceleration compared to the full-precision baseline. All statistics are col-
481 lected based on the MambaIRv2-light model under the $\times 4$ super-resolution setting, using an input
482 resolution of (180, 320). As shown in Table 4, SPR²Q can compress the model to 4 and 2 bits with
483 the compression ratio being 2.51× and 2.81×, and speedup ratio being 3.44× and 4.15×. Crucially,
484 these gains are achieved with zero additional inference cost, as all auxiliary parameters are fused
485 offline.

486 Table 5: Quantitative comparison with SOTA methods on SwinIR-light.
487

488 Method	489 Bit	490 Set5(x2)		491 Set14(x2)		492 B100(x2)		493 Urban100(x2)		494 Manga109(x2)	
		495 PSNR	496 SSIM	497 PSNR	498 SSIM	499 PSNR	500 SSIM	501 PSNR	502 SSIM	503 PSNR	504 SSIM
SwinIR-light	32	38.14	0.9611	33.86	0.9206	32.31	0.9012	32.76	0.9340	39.12	0.9783
2DQuant	2	36.00	0.9497	31.98	0.9012	30.91	0.8810	28.62	0.8819	34.40	0.9602
FIMA-Q	2	36.06	0.9515	32.10	0.9048	31.01	0.8848	28.77	0.8873	34.75	0.9638
APHQ-ViT	2	36.14	0.9517	32.14	0.9049	31.04	0.8850	28.86	0.8885	34.99	0.9644
Ours (SPR²Q)	2	37.28	0.9572	32.83	0.9113	31.63	0.8921	30.20	0.9077	37.08	0.9726

496 Table 6: Exploration of our SPR²Q method under 1-bit quantization.
497

498 Method	499 scale	500 Set5		501 Set14		502 B100		503 Urban100		504 Manga109	
		505 PSNR	506 SSIM	507 PSNR	508 SSIM	509 PSNR	510 SSIM	511 PSNR	512 SSIM	513 PSNR	514 SSIM
Ours (SPR ² Q)	×2	34.82	0.9428	31.27	0.8956	30.41	0.8754	27.76	0.8690	32.38	0.9505
Ours (SPR ² Q)	×4	28.84	0.8213	26.41	0.7215	26.21	0.6852	23.41	0.6751	25.31	0.7995

505 4.5 CROSS-ARCHITECTURE GENERALIZATION

506 We evaluate SPR²Q under extreme low-bit settings on the Transformer-based SwinIR-light (Liang
507 et al., 2021) and compare it with representative SOTA Vision Transformer quantization methods:
508 2DQuant (Liu et al., 2024), FIMA-Q (Wu et al., 2025a), and APHQ-ViT (Wu et al., 2025b). All
509 experiments are conducted under a unified DF2K setting. For FIMA-Q and APHQ-ViT, we align our
510 Rectifier Group Training with their Quantization Reconstruction phase (Batch Size = 16, iterations
511 = 4000); for 2DQuant, we adopt its original settings (Batch Size = 32, iterations = 3000).

512 Under 2-bit quantization for $\times 2$ super-resolution (Table 5), SPR²Q outperforms all compared base-
513 lines, improving PSNR by 1.14 dB on Set5, with a substantial gain of 1.34 dB on the texture-rich
514 Urban100 dataset. These results indicate that SPR²Q is highly effective at preserving high-frequency
515 details even under extreme low-bit compression, and its performance is robust across different model
516 architectures.

518 4.6 EXTREME 1-BIT QUANTIZATION

519 Evaluation of SPR²Q on MambaIRv2-light under extreme 1-bit quantization is presented in Table 6.
520 For $\times 2$ scaling, the model achieves a PSNR of 34.82 dB, and for $\times 4$ scaling, 28.84 dB. Compared
521 to the 2-bit results, the performance drop is moderate, demonstrating that SPR²Q remains effective
522 in preserving reconstruction quality even under extreme quantization.

523 5 CONCLUSION

524 In this work, we advance the study of low-bit quantization for super-resolution models built on the
525 Mamba architecture. We first identify that existing Mamba quantization methods exhibit significant
526 domain adaptation issues under low-bit SR settings. To address this, we propose SPR²Q, a quanti-
527 zation framework specifically designed for low-bit SR. SPR²Q employs rectifiers to compensate
528 for information loss introduced by quantization and jointly optimizes both the rectifier and quan-
529 tizer parameters, enabling the model to adapt effectively to the quantization process. Moreover, we
530 introduce the Static Priority-Based Rectifier Routing mechanism to provide diverse compensation
531 strategies and calibrate a static routing table, allowing the model to efficiently obtain optimal incre-
532 ments from the rectifier group during inference. This design preserves the original model structure
533 while incurring negligible additional computational overhead. Extensive experiments demonstrate
534 that SPR²Q consistently outperforms existing Mamba SOTA quantization methods across various
535 low-bit settings and exhibits strong cross-model generalization. It substantially improves reconstruc-
536 tion quality and detail fidelity, providing a novel and effective solution for low-bit SR quantization.

540 REFERENCES
541

542 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
543 Dataset and study. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
544 Recognition (CVPR) Workshops*, pp. 126–135, 2017.

545 Ron Banner, Yury Nahshan, and Daniel Soudry. Post-training 4-bit quantization of convolutional
546 networks for rapid-deployment. In *Advances in Neural Information Processing Systems
547 (NeurIPS)*, 2019.

548 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
549 through stochastic neurons for conditional computation. In *arXiv preprint arXiv:1308.3432*, 2013.

550 Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi-Morel. Low-
551 complexity single-image super-resolution based on nonnegative neighbor embedding. In *Pro-
552 ceedings of the British Machine Vision Conference (BMVC)*, 2012.

553 Huan Chen, Zhi Wang, Yulun Zhang, Zhiwei Xu, and Yun Fu. Pre-trained image processing trans-
554 former. *arXiv preprint arXiv:2012.00364*, 2020.

555 Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
556 Quamba: A post-training quantization recipe for selective state space models. In *Proceedings of
557 the International Conference on Learning Representations (ICLR)*, 2025.

558 Younghyun Cho, Changhun Lee, Seonggon Kim, and Eunhyeok Park. Ptq4vm: Post-training quan-
559 tization for visual mamba. In *Proceedings of the IEEE Winter Conference on Applications of
560 Computer Vision (WACV)*, 2025.

561 Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, and Karthik Gopalakrishnan.
562 Towards the limit of network quantization. In *Proceedings of the International Conference on
563 Learning Representations (ICLR)*, 2017.

564 Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
565 neural networks: Training deep neural networks with weights and activations constrained to +1
566 or -1. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 29, 2016.

567 Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
568 convolutional networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(2):
569 295–307, 2016.

570 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
571 A survey of quantization methods for efficient neural network inference. *arXiv preprint
572 arXiv:2103.13630*, 2021.

573 Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Haotong Qin,
574 Jinyang Guo, Michele Magno, and Xianglong Liu. A survey of low-bit large language models:
575 Basics, systems, and algorithms. *Neural Networks*, 192:107856, 2025. doi: 10.1016/j.neunet.
576 2025.107856.

577 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
578 preprint arXiv:2312.00752*, 2023.

579 Hang Guo, Yong Guo, Yaohua Zha, Yulun Zhang, Wenbo Li, Tao Dai, Shu-Tao Xia, and Yawei Li.
580 Mambairv2: Attentive state space restoration. *arXiv preprint arXiv:2411.15269*, 2024a.

581 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
582 baseline for image restoration with state-space model. In *European Conference on Computer
583 Vision*, pp. 222–241. Springer, 2024b.

584 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
585 with pruning, trained quantization and huffman coding. In *Proceedings of the International Con-
586 ference on Learning Representations (ICLR)*, 2016.

594 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 595 *preprint arXiv:1503.02531*, 2015.
 596

597 Masanori Hirano, Ryosuke Takata, and Kiyoshi Izumi. Pams: Platform for artificial market simula-
 598 tions, 2023.

599 Changil Hong, Seungjun Nah, and Kyoung Mu Lee. Cadyq: Content-aware dynamic quantization
 600 for image super-resolution. In *Proceedings of the European Conference on Computer Vision*
 601 (*ECCV*), 2022.

602 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 603 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *Proceedings of the*
 604 *International Conference on Learning Representations (ICLR)*. OpenReview.net, 2022.

605

606 Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from trans-
 607 formed self-exemplars. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 608 *Recognition (CVPR)*, pp. 5197–5206, 2015.

609 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 610 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 611 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE/CVF Conference on Com-
 612 puter Vision and Pattern Recognition (CVPR)*, pp. 2704–2713, 2018a. doi: 10.1109/CVPR.2018.
 613 00286.

614 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 615 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 616 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE/CVF Conference on Com-
 617 puter Vision and Pattern Recognition (CVPR)*, 2018b.

618

619 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings*
 620 *of the 3rd International Conference on Learning Representations (ICLR)*, 2015.

621 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
 622 Acosta, Alykhan Aitken, Alykhan Tejani, Zehan Totz, Ziyou Wang, and Wenzhe Shi. Photo-
 623 realistic single image super-resolution using a generative adversarial network. In *Proceedings of*
 624 *the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4681–4690, July
 625 2017.

626 Shaokai Li, Xin Dong, and Wei Wang. Brecq: Pushing the limit of post-training quantization by
 627 block reconstruction. In *Proceedings of the International Conference on Learning Representa-
 628 tions (ICLR)*, 2021.

629

630 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
 631 Image restoration using swin transformer. *arXiv preprint arXiv:2108.10257*, 2021.

632 Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep resid-
 633 ual networks for single image super-resolution. In *Proceedings of the IEEE Conference on Com-
 634 puter Vision and Pattern Recognition (CVPR) Workshops*, July 2017.

635

636 Kai Liu, Haotong Qin, Yong Guo, Xin Yuan, Linghe Kong, Guihai Chen, and Yulun Zhang. 2dquant:
 637 Low-bit post-training quantization for image super-resolution. *arXiv preprint arXiv:2406.06649*,
 638 2024.

639 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In *Pro-
 640 ceedings of the 5th International Conference on Learning Representations (ICLR)*, 2017.

641

642 David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
 643 natural images and its application to evaluating segmentation algorithms and measuring ecological
 644 statistics. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp.
 645 416–423, 2001.

646 Yusuke Matsui, Kiyoharu Ito, Yusuke Aramaki, Ayaka Fujimoto, Takahiro Ogawa, Toshihiko Ya-
 647 masaki, and Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. *Multime-
 dia Tools and Applications*, 76(20):21811–21838, 2017.

648 Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve
 649 low-precision network accuracy. In *Proceedings of the International Conference on Learning
 650 Representations (ICLR)*, 2018.

651

652 Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
 653 through weight equalization and bias correction. In *Proceedings of the IEEE International Con-
 654 ference on Computer Vision (ICCV)*, pp. 1325–1334, 2019.

655

656 Yury Nahshan, Adrian Bulat, Markus Nagel, Chaim Baskin, Yasmin Labib, Shady Mourad, Rinon
 657 Gal, Paulius Micikevicius, and Daniel Soudry. Loss aware post-training quantization. In *Pro-
 658 ceedings of Machine Learning and Systems (MLSys)*, 2020.

659

660 Radu Timofte, Eirikur Agustsson, Luc Van Gool, et al. Ntire 2017 challenge on single image super-
 661 resolution: Methods and results. In *Proceedings of the IEEE Conference on Computer Vision and
 Pattern Recognition (CVPR) Workshops*, pp. 114–125, 2017.

662

663 Zhijun Tu, Jie Hu, Hanting Chen, and Yunhe Wang. Toward accurate post-training quantization for
 664 image super resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition (CVPR)*, pp. 5856–5865, June 2023.

665

666 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 667 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
 668 mation Processing Systems (NeurIPS)*, 2017.

669

670 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 671 from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–
 672 612, 2004.

673

674 Zhuguanyu Wu, Shihe Wang, Jiayi Zhang, Jiaxin Chen, and Yunhong Wang. Fima-q: Post-training
 675 quantization for vision transformers by fisher information matrix approximation. In *Proceedings
 676 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14891–
 677 14900, 2025a.

678

679 Zhuguanyu Wu, Jiayi Zhang, Jiaxin Chen, Jinyang Guo, Di Huang, and Yunhong Wang. Aphq-vit:
 680 Post-training quantization with average perturbation hessian based reconstruction for vision trans-
 681 formers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 682 nition (CVPR)*, pp. 9686–9695, 2025b.

683

684 Hongzhou Xu, Yuhang Yue, Xiaolin Hu, Li Yuan, Hanting Chen, and Yong Liu. Mamb-
 685 baquant: Quantizing the mamba family with variance aligned rotation methods. *arXiv preprint
 686 arXiv:2501.13484*, 2025.

687

688 Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
 689 representations. In *Proceedings of the International Conference on Curves and Surfaces*, pp.
 690 711–730. Springer, 2010.

691

692 Leheng Zhang, Yawei Li, Xingyu Zhou, Xiaorui Zhao, and Shuhang Gu. Transcending the limit
 693 of local window: Advanced super-resolution transformer with adaptive token dictionary. In *Pro-
 694 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 695 2856–2865, 2024.

696

697 Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
 698 resolution using very deep residual channel attention networks. In *Proceedings of the European
 699 Conference on Computer Vision (ECCV)*, pp. 286–301. Springer, 2018a.

700

701 Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image
 702 super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 703 2472–2481, 2018b. doi: 10.1109/CVPR.2018.00262.