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Abstract
Current multi-view clustering (MVC) techniques
generally focus only on the relationship between
anchors and samples, while overlooking that be-
tween anchors. Moreover, due to the lack of data
labels, the cluster order is inconsistent across
views and accordingly anchors encounter mis-
alignment, which will confuse the graph struc-
ture and disorganize cluster representation. Even
worse, it typically brings variance during form-
ing spectral embedding, degenerating the stability
of clustering results. In response to these con-
cerns, in the paper we propose a MVC approach
named DTP-SF-BVF. Concretely, we explicitly
exploit the geometric properties between anchors
via self-expression learning skill, and utilize topol-
ogy learning strategy to feed captured anchor-
anchor features into anchor-sample graph so as
to explore the manifold structure hidden within
samples more adequately. To reduce the misalign-
ment risk, we introduce a permutation mechanism
for each view to jointly rearrange anchors accord-
ing to respective view characteristics. Besides
not involving selecting the baseline view, it also
can coordinate with anchors in the unified frame-
work and thereby facilitate the learning of anchors.
Further, rather than forming spectrum and then
performing embedding partitioning, based on the
criterion that samples and clusters should be hard
assignment, we manage to construct the cluster
labels directly from original samples using the
binary strategy, not only preserving the data di-
versity but avoiding variance. Experiments on
multiple publicly available datasets confirm the
effectiveness of proposed DTP-SF-BVF method.
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1. Introduction
In recent years, multi-view clustering (MVC) is becom-
ing a research hotspot because of its ability to effectively
mine potential patterns hidden in heterogeneous data, and is
widespreadly deployed in various fields such as drug design
and finance analysis (Xu et al., 2024; Yang et al., 2023a;
Wang et al., 2023; Yu et al., 2024b; Wen et al., 2024a; Liang
et al., 2023; Li et al., 2025; Ma et al., 2024b). As a powerful
tool in MVC, anchor technique is commonly utilized to filter
noise points and decrease the computing overhead (Li et al.,
2023; Yu et al., 2025b; Zhang et al., 2025). It first selects
a small number of significant samples to represent overall
samples, and then replaces the sample-sample proximity
relationship by building up the anchor-sample relationship
(Ma et al., 2024a; Yang et al., 2022; Yu et al., 2024c). Fol-
lowing this line, a series of prominent works have been
successively proposed. For instance, Kang et al. (2020b)
regard the centroids generated by k-means on respective
view as anchors and merge multiple graphs by splicing their
left singular vectors. Xia et al. (2023) first project original
samples to perform de-correlation and then select anchors
in projection space according to the sample variance. Wang
et al. (2022a) design a hierarchical k-means model to output
anchors and construct sparse similarity using the learned
bipartite graph. Unlike them, Huang et al. (2023) leverage
three diversity levels in neighbors to construct anchors and
generate graph directly in the early-stage fusion.

Although generating pleasing clustering results from various
aspects, current methods usually focus only on the anchor-
sample proximity relationship, and fail to take into account
the anchor-anchor characteristics. This is not reasonable
since between anchors, there generally exist informative ge-
ometric features. Overlooking them will not be conductive
to constructing discriminative anchors and extracting the
intrinsic similarity among samples. Additionally, due to
the fact that clustering tasks do not involve any data labels,
anchors could be misaligned across views, leading to the
graph structure becoming chaotic. Wang et al. (2022b) pro-
vide an alignment scheme from the perspectives of feature
and structure matching, nevertheless, it requires to select the
baseline view. Also, the anchor generation, the anchor trans-
formation, and the graph construction are separated from
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Figure 1. The devised DTP-SF-BVF multi-view clustering framework. It explicitly extracts the geometric characteristics of anchor-anchor
via self-expression learning, and delivers them into the topology learning of anchor-sample so as to exploit the manifold structure among
samples more sufficiently. It introduces a learnable permutation model for each view to alleviate the anchor misalignment. Instead of
constructing spectrum and then conducting partitioning, it directly learns the cluster indicators via binary learning to avoid introducing
variance. These three sub-parts are all jointly optimized within an unified learning model so as to move towards mutual reinforcement.

each other. These limitations hinder the interaction of view
information across different levels and accordingly weaken
the distinctiveness of anchors. Furthermore, the clustering
procedure adopted by current methods is to first form spec-
trum and then conduct embedding partitioning on it, which
causes the generated clustering results containing non-zero
variance, degrading the stability and interpretability.

With these concerns in mind, we design a MVC method
termed DTP-SF-BVF in this paper, and its framework is pre-
sented in Fig. 1. To be specific, we introduce self-expression
learning mechanism to explore the geometric characteris-
tics between anchors, and integrate them into the topology
learning of anchor-sample graph so as to characterize the
manifold structure inside samples more sufficiently. Then,
we associate each view with a permutation model, which is
learnable and works jointly with the anchor generation, to re-
arrange anchors in their original dimension space according
to view-specific features. Owing to the joint-optimization
mechanism in the unified framework, consequently, it does
not involve the selection of baseline view. Further, to elimi-
nate variance, based on the criterion that one sample should
belong to only one cluster, we avoid the formation of spec-
trum and choose to directly generate cluster indicators from
original samples. When the sample belongs to its cluster,
we manage to optimize its indicator as 1 and otherwise 0. In
addition to well preserving the data diversity, this paradigm
also can skip the spectral partitioning stage and thereby al-
leviate the computing burden. The cluster indicator matrix
is shared for all views, which bridges all anchors, permuta-
tions and views. Not only does it play an important role in
gathering multi-view information at the cluster-label level,

but provides consensus structure for anchors on different
views to force them rearranging towards correct-aligning
direction. Subsequently, we give a six-step updating scheme
with linear complexity to optimize the resultant objective
loss. Experiments on multiple benchmark datasets demon-
strate that DTP-SF-BVF is effective in grouping multi-view
data and owns competitive strengths against multiple clas-
sical MVC approaches. For more clarity, we summary the
contributions of this work as below,

1. We explicitly take into account the geometric features
between anchors, and successfully integrate them into the
anchor-sample graph through topology learning to exploit
the manifold characteristics hidden within samples more
fully for better clustering.

2. We devise a joint-alignment mechanism that not only
eliminates the need for selecting the baseline view but also
coordinates well with the generation of anchors.

3. We avoid the formation of spectrum by directly learning
cluster indicators using a binary strategy, which effectively
clears the variance in clustering results, accordingly high-
lighting the stability.

4. We provide a six-step optimization scheme with linear
complexity for the loss function. Experiments validate the
effectiveness of our proposed method from multiple aspects.

2. Related Work
Based on the fact that each view data typically owns self-
unique features and consequently can compensate for the
limitations of other views, multi-view clustering aims at
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integrating information from diverse views to obtain more
comprehensive and accurate data representation, thereby
achieving superior clustering effect than single-view coun-
terparts (Liang et al., 2024a; Yu et al., 2023a; Wang et al.,
2024; Wan et al., 2024; Wen et al., 2023; Zhang et al.; Tang
& Liu, 2022a; Yu et al., 2024e; Yang et al., 2024). Anchor
technology is recently introduced into multi-view clustering
to increase the computing efficiency (Shi et al., 2021; Yu
et al., 2024d). It is intended to replace the full graph with a
small-sized anchor graph by utilizing some discriminative
landmarks. Specially, given a dataset {Xp ∈ Rdp×n}vp=1

where dp, n and v denote the dimension of data, the number
of samples and the number of views respectively, anchor
based multi-view clustering can be formulated as

min
Ψ

v∑
p=1

∥Xp −ApZp∥2F +η ∥Zp∥2F +γ ∥Zp − Z∥2F , (1)

where Ψ = {Z⊤
p 1 = 1,Zp ≥ 0,Z⊤1 = 1,Z ≥ 0,Ap ∈

Rdp×m, Zp ∈ Rm×n}vp=1, η and γ denote the anchor ma-
trix, anchor graph and regularization hyper-parameters, re-
spectively. The fusion graph Z ∈ Rm×n aims at gathering
the information from different views at the graph level. The
non-negative constraints and column sum constraints guar-
antee the learned graph to satisfy the similarity requirements.
After obtaining Z, the cluster labels can be received by first
constructing spectrum on the fusion graph Z and then con-
ducting spectral partitioning operation on the embedding.

Noticed that the final clustering results are heavily depen-
dent on the quality of Zp while Zp is related to anchor matrix
Ap, consequently, many works focus on the generation way
of anchors. For example, Chen et al. (2023b) utilize tensor
learning to investigate the low-rankness within views and
employ a dynamic anchor learning strategy to explore that
between views. Yan et al. (2022) integrate anchor learning
and feature learning together, and learn to generate anchors
separately. Given the fact that similar samples typically lie
in the same cluster and have homologous characteristics, Li
et al. (2022a) devise an alternative sampling scheme, which
is independent of initialization, to generate anchors. Liu
et al. (2024) narrow the distributions of anchors by leverag-
ing the correlation information between views to enhance
their distinction. These methods successfully construct rep-
resentative anchors from different perspectives, neverthe-
less, they generally pay only attention to the relationship
between anchors and samples when constructing anchor
graph, while overlooking the influence of geometric char-
acteristics inside anchors. This could bring about the loss
of some informative features. Anchors on different views
also could be misaligned due to the unsupervised property
of data, leading to the confusion of graph structure (Wang
et al., 2022b). Besides, the clustering results outputted by
current approaches usually contain variance when partition-
ing the spectrum, which exacerbates the instability (Zhang

et al., 2020a; Zeng et al., 2024; Chen et al., 2023a). In next
section, we will elaborate in detail on the principles of our
devised DTP-SF-BVF approach to alleviate these issues.

3. Methodology
To explore the geometric properties between anchors, in-
spired by subspace reconstruction (Zhang et al., 2020b;
Xia et al., 2022), we introduce self-expression learning
for anchors. To be specific, we utilize the paradigm
∥Ap −ApSp∥2F to explicitly extract the global structure
between anchors. Especially, due to Sp ∈ Rm×m where m
is the number of anchors, solving Sp will take O(m3) com-
puting overhead, which is almost ignorable against O(m2n)
that solving Zp takes since m is far less than n. Then, to
integrate the characteristics of anchor-anchor into anchor-
sample so as to exploit the manifold features inside samples,
we adopt the idea of point-point guidance to adjust the an-
chor graph. Specially, we utilize the element [Sp]i,j to guide
[Zp]i,t and [Zp]j,t, i, j = 1, · · · ,m, t = 1, · · ·n, which
can be formulated as

∑m
i,j=1 ∥[Zp]i,: − [Zp]j,:∥22 [Sp]i,j and

aims at restricting similar features to maintain the consis-
tency. At this point, MVC objective can be devised as

min
{Zp,Sp}v

p=1

v∑
p=1

∥Xp −ApZp∥2F + λ ∥Ap −ApSp∥2F

+ β

m∑
i,j=1

∥[Zp]i,: − [Zp]j,:∥22 [Sp]i,j

(2)

Subsequently, to eliminate the anchor misalignment issue,
one straightforward idea is to compute the space similar-
ity between anchor sets and then match anchors according
to their distance. However, multi-view data generally has
various dimensions, and accordingly anchors on different
views also have various dimensions. It is typically difficult
to directly compute the distance between anchor sets with di-
verse dimensions. Although one can project all anchors into
a common space to make them have the same dimension, it
can not guarantee the distance similarity after projecting to
be consistent with that before projecting. Additionally, deter-
mining the appropriate projection dimension needs heuristic
searching. The projecting operation also could lead to heavy
information loss. Consequently, these strategies are not that
sensible. To get rid of this dilemma, considering that the
nature of anchor misalignment is that the order of anchors
on different views is not identical, we can alleviate the mis-
alignment issue by rearranging anchors. In particular, we
associate each view with a learnable permutation matrix
Tp ∈ Rm×m to flexibly transform anchors according to the
characteristics of respective view, i.e., ∥Xp −ApTpZp∥2F .
The subsequent issue is how to make anchors rearrange to-
wards the correct corresponding direction. Next, we solve
this and the variance issue concurrently.
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Due to variance arising from the construction of spectrum,
we avoid forming spectrum, and choose to directly learn
the cluster indicators. Especially, we factorize the anchor
graph as a basic coefficient matrix and a consensus matrix,
and utilize binary learning to optimize the consensus ma-
trix. This not only makes the consensus matrix successfully
represent the cluster indicators, but also provides a common
structure for anchors on all views, inducing them rearrang-
ing towards the common structure. Further, since views
typically own different levels of importance, we introduce a
weighting variable for each view to automatically measure
its contributions. Therefore, our DTP-SF-BVF is devised as

min
Ω

v∑
p=1

{
α2

p ∥Xp −ApTpBpC∥2F +

λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤
p LsBpCC⊤)

}
s.t. α⊤1 = 1,α ≥ 0,B⊤

p Bp = Ik,T
⊤
p 1 = 1,Tp1 = 1,

Tp ∈ {0, 1}m×m,

k∑
i=1

Ci,j = 1, j = 1, 2, . . . , n,

C ∈ {0, 1}k×n,S⊤
p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0,

(3)
where Ω = {Ap ∈ Rdp×m,Bp ∈ Rm×k,Sp ∈
Rm×m,Tp ∈ Rm×m,α ∈ Rv×1,C ∈ Rk×n; p =
1, · · · , v}. The second term aims at capturing the char-
acteristics between anchors. The third term is the ma-
trix form of point-point guidance, and aims at delivering
the characteristics of anchor-anchor into anchor-sample of
the first term, where Ls ∈ Rm×m = Dp − Sp, Dp =
diag{

∑m
j=1[Sp]i,j | , i = 1, · · · ,m}. This spectrum-free

model directly outputs discrete clustering results via the
consensus cluster indicator matrix C. α plays a role in ad-
justing the importance between views. More illustrations for
the objective function please refer to Section E in Appendix.

4. Solver
We adopt the alternating optimization idea to minimize the
loss function Eq. (3).

Update Ap: The optimization w.r.t Ap in Eq. (3) can be
written as

min
Ap

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

(4)
By utilizing the derivative equal to zero, we can obtain

Ap = α2
vXpE

⊤
p

(
α2

vEpE
⊤
p + λFpF

⊤
p

)−1
, (5)

where Ep ∈ Rm×n = TpBpC, Fp ∈ Rm×m = Tp −
TpSp.

Update Tp: The optimization w.r.t Tp in Eq. (3) can be
written as

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

s.t. T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m.

(6)
Expanding the objective by trace operation, Eq. (6) can be
further equivalently transformed as

min
Tp

Tr
(
T⊤

p GpTp

(
λHp +α2

pMp − 2λS⊤
p

)
− 2α2

pT
⊤
p Jp

)
s.t. T⊤

p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m,
(7)

where Gp ∈ Rm×m = A⊤
p Ap, Hp ∈ Rm×m = SpS

⊤
p ,

Mp ∈ Rm×m = BpCC⊤B⊤
p and Jp ∈ Rm×m =

A⊤
p XpC

⊤B⊤
p . Given the characteristics of feasible region,

we can obtain the optimal Tp via traversal searching on the
one-hot vectors {ei}mi=1.

Update Bp: The optimization w.r.t Bp in Eq. (3) can be
written as

min
Bp

Tr
(
B⊤

p

(
βLs +α2

pQp

)
BpCC⊤ − 2α2

pCX⊤
p ApTpBp

)
s.t. B⊤

p Bp = Ik,
(8)

where Qp ∈ Rm×m = T⊤
p A

⊤
p ApTp. Then, we split the

feasible region into [Bp]
⊤
:,i[Bp]:,i = 1 and [Bp]

⊤
:,i[Bp]:,j =

0, i ̸= j. Further, combined with the fact that CC⊤ is a
diagonal matrix, Eq. (8) can be equivalently transformed as

min
[Bp]:,j

[Bp]
⊤
:,j

n∑
i=1

Cj,i

(
βLs +α2

pQp

)
[Bp]:,j+[

−2α2
pCX⊤

p ApTp

]
j,:

[Bp]:,j

s.t. [Bp]
⊤
:,jIm×m[Bp]:,j − 1 = 0,

[[Bp]:,1, · · · , [Bp]:,l ̸=j , · · · , [Bp]:,k]
⊤
[Bp]:,j = 0(k−1)×1.

(9)
It is a quadratically constrained quadratic programming and
can be solved by current software.

Update Sp: The optimization w.r.t Sp in Eq. (3) can be
written as

min
Sp

Tr

(
S⊤
p QpSp + 2

(
−Qp −

β

2λ
Mp

)
Sp

)
s.t. S⊤

p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0.

(10)

Noticed that the constraints can be equivalently transformed
as Ψ =

{
[Sp]

⊤
:,j1 = 1, 0 ≤ [Sp]:,j , e

⊤
j [Sp]:,j = 0, j =

1, 2, · · · ,m
}

, and therefore Eq. (10) is further converted as

min
Ψ

[Sp]
⊤
:,jQp[Sp]:,j + 2

(
−Qp −

β

2λ
Mp

)
j,:

[Sp]:,j .

(11)
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Algorithm 1 The proposed DTP-SF-BVF
Input: Multi-view data {Xp}vp=1, hyper-parameters λ, β.
Output: Discrete cluster indicator matrix C.
Initialize: {Ap,Tp,Bp,Sp}vp=1, C, α.

1: repeat
2: Update Ap via Eq. (5)
3: Update Tp via Eq. (7)
4: Update Bp via Eq. (9)
5: Update Sp via Eq. (11)
6: Update C via Eq. (14)
7: Update αp via Eq. (16)
8: until convergent

It is a quadratic programming and can be easily solved.

Update C: The optimization w.r.t C in Eq. (3) can be
written as

min
C

Tr
(
C⊤WC− ZC

)
s.t.

k∑
i=1

Ci,j = 1, j = 1, 2, . . . , n,C ∈ {0, 1}k×n,
(12)

where W ∈ Rk×k =
∑v

p=1 α
2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp +

βB⊤
p LsBp, Z ∈ Rn×k = 2

∑v
p=1 α

2
pX

⊤
p ApTpBp. The

constraints indicate that there is only one non-zero element
in each column of C, and thus we can solve C column by
column. Eq. (12) can be further transformed as

min
C:,j

C⊤
:,jWC:,j − Zj,:C:,j

s.t.
k∑

i=1

Ci,j = 1,C:,j ∈ {0, 1}k×1.
(13)

The item C⊤
:,jWC:,j means that it takes a certain diagonal

element of W, and Zj,:C:,j takes a certain element of Zj,:.
Therefore, we can determine the corresponding index of
minimum by l∗ = argminlWl,l − Zj,l, l = 1, 2, · · · , k.
Then, the value of C:,j can be obtained by

Ci,j =

{
1, i = l∗,

0, i ̸= l∗, i = 1, 2, · · · , k.
(14)

Update α: The optimization w.r.t α in Eq. (3) is

min
α

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F s.t. α⊤1 = 1,α ≥ 0.

(15)
Since the item 1

bp
= ∥Xp −ApTpBpC∥2F is a constant for

α, the optimal α can be determined via Cauchy inequality.
Thus, we have

αp =
bp∑v
p=1 bp

. (16)

Algorithm 1 summarizes the pipeline of DTP-SF-BVF.

5. Complexity Analysis
Space complexity The space complexity of DTP-SF-
BVF is mainly from optimization variables Ap, Tp, Bp,
Sp, C and α, p = 1, 2, · · · , v. According to the fact that
Ap ∈ Rdp×m, Tp ∈ Rm×m, Bp ∈ Rm×k, Sp ∈ Rm×m,
C ∈ Rk×n and α ∈ Rv×1, we have that storing them
will require O(dpm), O(m2), O(mk), O(m2), O(nk) and
O(1) memory overhead, respectively. Thus, storing all
optimization variables will take O(dm+m2v+mkv+nk)
memory overhead where d represents the data dimension
sum of all views and is independent of the sample number n.
Further, since the number of anchors m is generally greater
than or equal to the number of clusters k, we have m2v ≥
mkv. Besides, considering that m is generally much smaller
than n and is also independent of n, we have that the space
complexity of proposed DTP-SF-BVF is O(nk), which is
linearly related to the number of samples n.

Time complexity The time complexity of DTP-SF-BVF
is mainly from the updating of all optimization variables.
When updating Ap, constructing Ep and Fp will take
O(m2k + mkn) and O(m3) respectively. Constructing
the item α2

vEpE
⊤
p + λFpF

⊤
p and solving its inverse will

take O(m2n+m3) and O(m3) respectively. Thus, updating
Ap will take O(m2k+mkn+m2n+m3+dpnm+dpm

2).
When updating Tp, constructing Gp, Hp, Mp and Jp will
take O(dpm

2), O(m3), O(mkn + m2n) and O(dpmn +
mnk + m2k), respectively. Traversal searching on one-
hot vectors will take O(m!). Thus, updating Tp will take
O(dpm

2+dpmn+m3+mkn+m2n+m!). When updat-
ing Bp, constructing Qp and the item CX⊤

p ApTpBp will
take O(dpm

2) and O(kndp+kdpm+km2+k2m), respec-
tively. Performing quadratically constrained quadratic pro-
gramming will take O(m3k). Thus, updating Bp will take
O(dpm

2 + kndp + k2m+m3k). When updating Sp, due
to the construction of Qp and Mp having been completed,
it only involves the performing of quadratic programming,
which will take O(m3). When updating C, constructing W
and Z will take O(dpm

2 + dpmk + dpk
2 + km2 + k2m)

and O(ndpm+nm2 +nmk), respectively. Since the value
of C can be determined by comparing the diagonal element
of W and the row of Z, updating C will take O(dpmk +
dpk

2+ km2+ k2m+ndpm+nm2+nmk). When updat-
ing α, constructing bp will take O(dpm

2 + dpmk+ dpkn).
The value of α can be determined by Cauchy inequality,
and thus updating α will take O(dpm

2 + dpmk + dpkn).
Based on these, we have that updating all Ap, Tp, Bp, Sp,
C and α will take O(mknv+m2nv+dnm+dm2+m!v+
m3kv + knd+ k2mv + dk2). Besides, considering that m
is usually greater than or equal to k, dp is independent of n,
n is largely greater than m, we can obtain that updating all
variables will take O(m2nv+dnm+m!v+m3kv), which
is also linearly related to the number of samples n.
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6. Experiments
6.1. Experimental Setting

Datasets We evaluate the algorithm performance on the fol-
lowing 7 datasets: DERMATO, CALTE7, Cora, REU7200,
Reuters, CIF10Tra4, FasMNI4V.

Baselines We choose the following 17 classical MVC meth-
ods as the baselines to demonstrate the effectiveness of pro-
posed DTP-SF-BVF: FMR (Li et al., 2019), PMSC (Kang
et al., 2020a), AMGL (Nie et al., 2016), MSCIAS (Wang
et al., 2019), MVSC (Gao et al., 2015), MLRSSC (Brbić
& Kopriva, 2018), MPAC (Kang et al., 2019), MCLES
(Chen et al., 2020), FMCNOF (Yang et al., 2021), PFSC (Lv
et al., 2021), SFMC (Li et al., 2022a), MSGL(Kang et al.,
2022), FPMVS (Wang et al., 2022c), UOMVSC (Tang et al.,
2023), PGSC(Wu et al., 2023), OrthNTF(Li et al., 2024b),
FASTMI(Huang et al., 2023).

Parameter Setup We search the hyper-parameters λ and
β in [10−1, 100, 101, 102, 103] and [2−4, 2−2, 20, 22, 24] re-
spectively. For all competitors, we download their source
code and tune the parameters according to their provided
guidelines. Three popular metrics are employed to measure
the clustering results. For fairness, we run 20 times and
calculate the mean and variance of clustering results.

6.2. Clustering Results and Analysis

The clustering results are reported in Table 1, and from this
table we can conclude that,

1. Overall Effectiveness. Our DTP-SF-BVF consistently
beats these competitors in terms of all three metrics on
DERMATO, CALTE7, Reuters and FasMNI4V. Particularly,
it makes 6.91% improvement in Fscore than the second-best
approach on DERMATO. In other cases, such as on Cora, it
is still able to provide comparable outcomes. These indicate
that our DTP-SF-BVF is effective in partitioning multi-view
data and can achieve competitive clustering outcomes.

2. Anchor Suitability. In contrast with PMSC, AMGL,
MCLES, FMCNOF, OrthNTF, FMR, PGSC, etc, which
tackle MVC problems using tensor, kernel, latent space,
co-training or matrix factorization means, our DTP-SF-
BVF using anchor tool can produce better results than them
in most cases. For instance, on Cora, it surpasses them
in terms of NMI with 38.59%, 42.37%, 27.00%, 42.63%,
43.20%, 23.07%, 42.55%, respectively. These suggest that
our adopted anchor means is recommendable.

3. Ample Proximity. Different from FPMVS, FASTMI,
SFMC, etc, which concentrate only on the anchor-sample
proximity relationship, DTP-SF-BVF also successfully
takes anchor-anchor characteristics into the measuring of
overall similarity and accordingly brings performance en-
hancement. Taking FASTMI as an example, DTP-SF-BVF

Table 1. Clustering result comparison (mean±std)
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC(%)

FMR 80.87(±5.92) 39.95(±0.66) 40.54(±1.98) - - - -
PMSC 80.01(±9.96) 49.92(±2.58) 28.84(±0.74) 23.57(±0.48) - - -
AMGL 22.75(±0.31) 39.84(±2.06) 14.99(±0.18) 16.78(±0.01) 17.43(±0.05) - -

MSCIAS 83.60(±3.85) 43.89(±2.15) 51.64(±2.74) 23.66(±0.42) 34.23(±0.37) - -
MVSC 55.69(±8.57) 49.86(±2.26) - - - - -

MLRSSC 67.53(±5.04) 57.26(±0.00) 31.08(±0.00) 18.62(±0.34) - - -
MPAC 81.84(±0.00) 71.64(±0.00) 40.21(±0.00) 24.79(±0.00) - - -

MCLES 46.18(±2.15) 40.47(±1.06) 32.03(±2.33) - - - -
FMCNOF 62.85(±5.32) 71.98(±5.67) 29.10(±2.74) 22.92(±2.57) - 21.62(±1.83) 41.51(±2.62)

PFSC 52.27(±4.99) 57.87(±5.43) - - - - -
SFMC 49.44(±0.00) 67.71(±0.00) 30.50(±0.00) 15.86(±0.00) 25.55(±0.00) 9.98(±0.00) -
MSGL 73.46(±0.97) - - 20.78(±0.28) 42.65(±0.21) 22.57(±0.43) -

FPMVS 78.33(±7.05) 61.47(±1.35) 37.12(±2.53) 28.01(±1.20) 51.82(±2.56) 27.12(±0.79) 52.86(±3.35)
UOMVSC 77.65(±0.00) 67.10(±0.00) 44.72(±0.00) 23.26(±0.00) 36.28(±0.00) - -

PGSC 70.08(±6.07) 52.76(±3.07) 29.19(±2.07) 28.13(±1.88) 42.47(±0.89) - -
OrthNTF 82.43(±0.00) 68.84(±0.00) 47.76(±0.00) 23.36(±0.00) 47.96(±0.00) 25.88(±0.00) 53.27(±0.00)
FASTMI 74.13(±3.36) 53.34(±2.84) 47.10(±4.07) 22.95(±0.89) 42.31(±3.17) 25.58(±0.66) 55.44(±2.25)

Ours 85.47(±0.00) 80.66(±0.00) 52.44(±0.00) 26.22(±0.00) 54.26(±0.00) 26.83(±0.00) 57.36(±0.00)

NMI(%)

FMR 79.18(±3.85) 44.81(±0.93) 20.63(±1.21) - - - -
PMSC 86.14(±4.84) 44.93(±0.81) 6.12(±0.67) 4.02(±0.55) - - -
AMGL 4.56(±0.72) 44.95(±2.07) 2.74(±0.36) 1.17(±0.00) 1.02(±0.02) - -

MSCIAS 80.74(±2.93) 28.36(±1.86) 42.16(±0.47) 5.66(±0.35) 12.98(±0.14) - -
MVSC 53.68(±9.10) 37.74(±2.22) - - - - -

MLRSSC 63.85(±4.83) 12.11(±0.00) 2.47(±0.00) 2.89(±0.75) - - -
MPAC 80.50(±0.00) 45.12(±0.00) 23.56(±0.00) 6.56(±0.00) - - -

MCLES 28.12(±1.27) 27.33(±0.74) 16.70(±2.10) - - - -
FMCNOF 51.10(±4.83) 41.78(±3.22) 5.18(±0.02) 3.21(±0.17) - 11.02(±1.13) 44.82(±2.32)

PFSC 55.85(±2.33) 39.09(±2.55) - - - - -
SFMC 38.68(±0.00) 45.10(±0.00) 7.95(±0.00) 12.82(±0.00) 12.20(±0.00) 2.90(±0.00) -
MSGL 64.40(±1.21) - - 3.66(±0.03) 20.73(±0.76) 10.69(±0.23) -

FPMVS 81.78(±5.21) 45.00(±1.10) 13.56(±1.67) 5.60(±0.66) 30.23(±3.30) 15.13(±1.16) 58.10(±3.02)
UOMVSC 88.24(±0.00) 45.07(±0.00) 21.26(±0.00) 11.17(±0.00) 19.03(±0.00) - -

PGSC 66.61(±2.84) 33.95(±3.07) 15.92(±1.08) 4.94(±0.80) 22.16(±0.42) - -
OrthNTF 52.33(±0.00) 42.12(±0.00) 39.74(±0.00) 7.43(±0.00) 28.87(±0.00) 11.58(±0.00) 58.83(±0.00)
FASTMI 81.83(±6.01) 45.05(±1.45) 31.21(±2.89) 7.67(±0.56) 29.29(±1.85) 12.85(±0.32) 59.03(±0.41)

Ours 89.97(±0.00) 45.25(±0.00) 43.70(±0.00) 6.25(±0.00) 31.87(±0.00) 15.64(±0.00) 59.21(±0.00)

Fscore(%)

FMR 76.45(±5.48) 45.29(±1.63) 27.83(±1.13) - - - -
PMSC 80.22(±8.10) 51.13(±2.49) 27.48(±0.67) 26.37(±0.63) - - -
AMGL 18.27(±0.12) 40.47(±1.57) 24.78(±0.02) 28.51(±0.00) 28.61(±0.00) - -

MSCIAS 80.90(±3.07) 42.80(±1.11) 41.84(±1.26) 21.42(±0.36) 33.94(±0.08) - -
MVSC 54.52(±9.73) 48.53(±1.96) - - - - -

MLRSSC 63.90(±4.48) 49.62(±0.00) 28.87(±0.00) 27.69(±0.41) - - -
MPAC 81.01(±0.00) 67.25(±0.00) 29.25(±0.00) 24.29(±0.00) - - -

MCLES 39.10(±1.37) 36.16(±0.62) 28.95(±0.82) - - - -
FMCNOF 56.89(±4.24) 67.43(±5.73) 29.89(±4.82) 21.29(±3.14) - 19.83(±2.77) 36.74(±3.63)

PFSC 55.46(±4.05) 62.75(±7.08) - - - - -
SFMC 42.90(±0.00) 65.50(±0.00) 30.20(±0.00) 27.69(±0.00) 34.04(±0.00) 18.13(±0.00) -
MSGL 70.39(±0.76) - - 24.59(±0.53) 37.57(±0.27) 16.37(±0.86) -

FPMVS 80.35(±6.83) 62.09(±1.21) 25.36(±1.03) 22.96(±1.16) 42.53(±1.92) 20.31(±0.56) 48.43(±2.66)
UOMVSC 79.17(±0.00) 67.85(±0.00) 33.12(±0.00) 28.47(±0.00) 35.23(±0.00) - -

PGSC 69.15(±5.23) 55.84(±4.70) 29.29(±1.46) 24.88(±0.32) 38.57(±0.85) - -
OrthNTF 78.43(±0.00) 65.63(±0.00) 37.52(±0.00) 24.77(±0.00) 39.68(±0.00) 16.74(±0.00) 47.67(±0.00)
FASTMI 76.98(±5.19) 56.39(±2.93) 35.19(±2.36) 25.94(±1.21) 39.20(±1.81) 14.35(±0.29) 50.21(±1.25)

Ours 87.92(±0.00) 78.12(±0.00) 41.12(±0.00) 28.55(±0.00) 44.84(±0.00) 20.64(±0.00) 51.37(±0.00)

outperforms it on all of these seven datasets and three met-
rics, which reveals that our double-track proximity strategy
can help extract representations more sufficiently.

4. Reliable Stability. The results outputted by our DTP-
SF-BVF are all not with variance. This mainly benefits
from avoiding the generation of spectrum. Not only does
the spectrum-free property enhance the result stability, but
allows the labels to be directly derived from original data,
well maintaining the diversity. Despite zero-variance for
methods like MPAC, SFMC and OrthNTF, the low-rank con-
straint could damage potential graph structure, accordingly
weakening their performance.

5. Broader Applicability. Some methods like PMSC, PFSC,
MFLVC, AMGL, UOMVSC, MCLES, PGSC, etc, can not
work with large-sized CIF10Tra4 and FasMNI4V due to
the intensive complexities or self-limitations, while our pro-
posed DTP-SF-BVF operates normally with its lower com-
plexities and meanwhile can produce superior clustering
outcomes. So, DTP-SF-BVF enjoys broader applicability.

Due to the space limit, more conclusions are presented in
the Section H of Appendix.
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Figure 2. The running time comparison on seven public benchmark datasets.

To further exhibit the advantages of proposed DTP-SF-BVF,
we also compare it with several popular deep learning com-
petitors, ADAGAE (Li et al., 2022b), DEMVC (Xu et al.,
2021a), MFLVC (Xu et al., 2022) and DSMVC (Tang &
Liu, 2022b). Comparison results are summarized in Table 2.

Table 2. Comparison with deep learning based competitors
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC(%)

ADAGAE 67.88(±0.99) 42.20(±0.94) 23.45(±0.29) 19.43(±1.76) - - -
DEMVC 40.50(±0.88) 54.41(±1.76) 30.54(±1.64) 24.58(±1.84) 53.05(±0.91) 26.75(±1.16) 51.28(±0.95)
MFLVC 80.73(±0.47) 43.42(±0.26) 31.02(±0.82) 25.42(±1.47) - - -
DSMVC 72.35(±0.96) 41.66(±1.30) 28.88(±0.93) 25.04(±0.47) 53.66(±0.82) 21.28(±0.99) 55.33(±0.58)

Ours 85.47(±0.00) 80.66(±0.00) 52.44(±0.00) 26.22(±0.00) 54.26(±0.00) 26.83(±0.00) 57.36(±0.00)

NMI(%)

ADAGAE 78.47(±0.36) 39.28(±0.19) 5.23(±0.68) 3.22(±0.27) - - -
DEMVC 31.03(±0.11) 16.70(±0.64) 6.34(±0.30) 4.84(±0.90) 34.21(±0.35) 16.18(±0.90) 59.74(±0.91)
MFLVC 81.23(±0.10) 58.74(±0.15) 12.97(±0.14) 3.25(±0.90) - - -
DSMVC 76.15(±0.14) 36.68(±0.18) 8.14(±0.55) 4.36(±0.41) 35.43(±0.10) 8.82(±0.46) 55.33(±0.97)

Ours 89.97(±0.00) 45.25(±0.00) 43.70(±0.00) 6.25(±0.00) 31.87(±0.00) 15.64(±0.00) 59.21(±0.00)

Fscore(%)

ADAGAE 67.74(±0.79) 50.51(±0.41) 23.68(±0.14) 19.61(±1.23) - - -
DEMVC 41.80(±1.04) 50.60(±1.59) 27.66(±1.52) 22.69(±1.14) 56.39(±1.68) 23.68(±1.57) 48.39(±0.66)
MFLVC 73.92(±1.63) 52.68(±1.43) 32.41(±1.05) 25.13(±0.67) - - -
DSMVC 73.79(±1.89) 51.00(±1.28) 30.14(±1.12) 25.01(±0.22) 56.85(±1.54) 21.01(±1.85) 55.03(±1.86)

Ours 87.92(±0.00) 78.12(±0.00) 41.12(±0.00) 28.55(±0.00) 44.84(±0.00) 20.64(±0.00) 51.37(±0.00)

6. Competitive Ability. Against these competitors adopt-
ing deep learning technique to tackle MVC problems, we
can produce preferable results in most cases, such as on
DERMATO and Cora as well as REU7200. This illustrates
that even comparing deep learning methods, our devised
DTP-SF-BVF still provides competitive clustering results.

Then, we also conduct comparison with some alignment
methods, FMVACC(Wang et al., 2022b), 3AMVC (Ma
et al., 2024a) and AEVC (Liu et al., 2024) to illustrate
the strength of our proposed baseline-view-free alignment
strategy. Comparison results are presented in Table 3.

7. Flexible Alignment. Against FMVACC, 3AMVC and
AEVC that require firstly selecting baseline view and then
performs alignment, our results are more desirable in most
cases. For example on CALTE7, we receive 27.32%, 6.84%,
37.11% improvement than FMVACC respectively. This
is primarily because our joint-alignment property, besides
not involving baseline view, also can coordinate with the
generation of anchors, more flexibly transforming anchors.

Table 3. Comparison with alignment competitors
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC(%)

FMVACC 74.13(±3.36) 53.34(±2.84) 47.10(±4.07) 22.95(±0.89) 42.31(±3.17) 25.58(±0.66) 55.44(±2.25)
3AMVC 62.60(±5.50) 38.17(±3.58) 44.73(±3.74) 33.31(±1.19) 49.56(±2.45) 26.38(±0.93) 57.24(±2.26)
AEVC 91.82(±3.78) 44.61(±4.31) 39.68(±1.36) 29.85(±0.02) 50.88(±0.24) 27.56(±1.11) 54.89(±0.63)
Ours 85.47(±0.00) 80.66(±0.00) 52.44(±0.00) 26.22(±0.00) 54.26(±0.00) 26.83(±0.00) 57.36(±0.00)

NMI(%)

FMVACC 80.78(±4.44) 38.41(±2.92) 33.50(±2.56) 9.94(±1.54) 28.50(±2.29) 12.86(±0.67) 57.82(±0.93)
3AMVC 57.43(±3.28) 41.45(±4.42) 26.63(±3.37) 11.68(±2.11) 31.03(±1.66) 14.02(±0.71) 58.61(±1.62)
AEVC 86.62(±1.95) 49.15(±0.86) 17.79(±0.67) 6.44(±0.02) 24.47(±0.06) 13.32(±0.50) 53.55(±0.34)
Ours 89.97(±0.00) 45.25(±0.00) 43.70(±0.00) 6.25(±0.00) 31.87(±0.00) 15.64(±0.00) 59.21(±0.00)

Fscore(%)

FMVACC 80.15(±7.13) 41.01(±4.20) 38.20(±1.89) 23.79(±0.77) 43.86(±2.61) 17.07(±0.35) 48.78(±1.94)
3AMVC 56.16(±4.80) 38.28(±3.01) 32.61(±2.53) 27.58(±1.50) 41.13(±1.30) 17.40(±0.40) 47.61(±1.62)
AEVC 87.94(±3.70) 46.16(±1.37) 26.57(±1.24) 22.19(±0.01) 36.19(±0.63) 17.15(±0.27) 45.99(±0.53)
Ours 87.92(±0.00) 78.12(±0.00) 41.12(±0.00) 28.55(±0.00) 44.84(±0.00) 20.64(±0.00) 51.37(±0.00)

6.3. Running Time Comparison

To illustrate the efficiency of DTP-SF-BVF, we count the
running time of each algorithm, and report the comparison
results in Fig. 2. From this figure, we can draw that,

1. MVSC, PFSC, PGSC and MCLES consume significantly
more time than others. This is mainly caused by the sub-
space strategy they employed, which typically requires con-
structing large-sized similarity and needs at least cubic com-
putational overhead.

2. MPAC, PMSC, FMR, MLRSSC, etc, take more time
than us, which is mainly because MPAC and PMSC gather
multi-view representations at the partition level, and FMR
and MLRSSC utilize the kernel dependence measure to do
data reconstruction.

3. FPMVS, FMVACC, MSGL and SFMC operate slower
than us. Possible reasons are that the connection compo-
nent constraints and feature matching constraints conducted
on anchor graph induce a large proportion of additional
calculating expenditure.

4. FMCNOF and FASTMI enjoy slightly faster running
speed, the reasons of which could be that FMCNOF de-
couples dense optimization matrices by sparse factorization
skills and FASTMI generates base clusterings via fast parti-
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tioning on the view-sharing graph.

5. AMGL, MSCIAS, UOMVSC and OrthNTF are generally
faster than PMSC, MVSC, PGSC, MPAC, PFSC, etc, possi-
bly because the former ones alleviate the computing burden
of spectral partitioning and graph mergence via low-rank
approximation or non-negative factorization.

6. All algorithms can normally work on DERMATO and
CALTE7, while with the increase of sample size, PFSC,
FMR, MCLES, PMSC, MPAC, MSGL, etc, are gradually
ineffective, which is mainly due to the limitations of their
innate computing requirement or memory cost.

6.4. Ablation Study

Table 4. The effectiveness of double-track proximity strategy
Metric Abla. DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC SLA 71.51 49.05 30.35 16.75 47.05 26.69 52.15
DTP 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI SLA 83.97 40.21 6.02 2.53 23.19 15.48 58.13
DTP 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore SLA 73.79 51.25 30.42 28.54 43.04 17.70 46.77
DTP 87.92 78.12 41.12 28.55 44.84 20.64 51.37

To validate the effectiveness of double-track proximity
(DTP), we organize relevant ablation (Abla.) experiments
and present the comparison results in Table 4 where SLA
denotes the clustering results of considering only anchor-
sample relation. (We omit the variance items since they are
all zero.) As seen, our DTP is coherently better than SLA,
which well illustrates that the devised DTP strategy can help
achieve superior results.

Table 5. The effectiveness of spectrum-free strategy
Metric Abla. DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC CS 81.33(±1.82) 74.74(±1.73) 48.27(±1.07) 23.46(±0.79) 55.78(±1.62) 22.64(±1.07) 55.03(±0.92)
SF 85.47(±0.00) 80.66(±0.00) 52.44(±0.00) 26.22(±0.00) 54.26(±0.00) 26.83(±0.00) 57.36(±0.00)

NMI CS 84.32(±1.32) 40.63(±1.89) 40.02(±2.31) 6.02(±0.68) 26.23(±1.37) 12.22(±0.97) 60.14(±0.36)
SF 89.97(±0.00) 45.25(±0.00) 43.70(±0.00) 6.25(±0.00) 31.87(±0.00) 15.64(±0.00) 59.21(±0.00)

Fscore CS 79.67(±2.07) 71.37(±1.13) 35.92(±1.96) 22.82(±1.02) 41.03(±0.93) 19.26(±1.63) 46.86(±0.87)
SF 87.92(±0.00) 78.12(±0.00) 41.12(±0.00) 28.55(±0.00) 44.84(±0.00) 20.64(±0.00) 51.37(±0.00)

Time(s) CS 0.83 9.81 11.53 51.24 892.17 2003.72 3850.35
SF 0.20 3.53 4.07 15.73 330.21 746.76 1193.83

Table 5 summarizes the ablation results about the spectrum-
free (SF) strategy, where CS denotes the clustering results
containing spectrum as previous methods do. Evidently, in
addition to owning the ability to generate preferable and
stable clustering results, our SF also enjoys less time con-
suming. This gives evidence that the designed SF is more
suitable for MVC problems.

In the paper we adopt a baseline-view-free (BVF) strategy
to decrease the anchor misalignment risk. To demonstrate
its effectiveness, we report the ablation results in Table 6,
where UA denotes the clustering results without involving
alignment. According to this table, it is easy to discover
that BVF makes more favorable clustering results than UA,
which well suggests that our BVF is functional.

Table 6. The effectiveness of baseline-view-free strategy
Metric Abla DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC UA 80.73 76.59 31.65 16.67 45.29 25.91 53.68
BVF 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI UA 82.53 39.55 35.41 3.32 24.77 15.30 56.47
BVF 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore UA 79.47 72.23 30.69 21.14 42.59 17.90 47.41
BVF 87.92 78.12 41.12 28.55 44.84 20.64 51.37

To further show the merits of baseline-view-free strategy,
we organize the experiments involving baseline view (BV).
The comparison results are reported in Table 7. Evidently,
our strategy indeed brings performance improvement. More
in-depth analysis please refer to Section J in Appendix.

Table 7. Comparison between baseline-view-free strategy and BV
Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC(%)

BV 72.37 62.43 45.78 22.87 44.36 22.98 51.22
Ours 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI(%)

BV 71.97 41.24 34.76 5.78 27.31 15.73 52.73
Ours 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore(%)

BV 70.38 59.32 33.47 25.46 39.84 17.96 46.31
Ours 87.92 78.12 41.12 28.55 44.84 20.64 51.37

More ablation studies are placed into Section I of Appendix.

7. Limitations
DTP-SF-BVF contains hyper-parameters λ and β, which
requires additional efforts for fine-tuning. Consequently,
designing a non-parametric version can further boost its
practicality. Besides, we adopt the square weighting scheme
with linear constraints to measure the contributions between
views. Some other ingenious view schemes could be deeply
investigated in the future so as to further increase the results.

8. Conclusion
In this work, we introduce double-track proximity, which
concurrently considers anchor-sample and anchor-anchor
characteristics, to more fully extract multi-view representa-
tions for better clustering. To reduce the mismatching risk,
we adopt a joint-alignment mechanism that does not involve
the selection of baseline view and also can coordinate with
the anchor generation. Furthermore, we avoid forming spec-
trum and directly generate cluster indicators via a binary
learning strategy, which not only effectively eliminates the
variance but well preserves original diversity. For the re-
sulting optimization problem, we provide a solution with
linear complexities. Experiments on multiple public bench-
mark datasets verify the effectiveness of DTP-SF-BVF. In
future work, we will extend our DTP-SF-BVF method to
non-parametric scenarios to further enhance its practicality.
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A. Notations
For more clarity, we summary the utilized symbols and their corresponding meaning, as shown in Table 8.

Table 8. The description of symbols used in this article

Symbol Meaning

n the number of samples
m the number of anchors
v the number of views
k the number of clusters
dp the data dimension on view p

Xp ∈ Rdp×n the data matrix on view p

Ap ∈ Rdp×m the anchor matrix on view p

Tp ∈ Rm×m the permutation matrix on view p

Bp ∈ Rm×k the basic coefficient matrix on view p

C ∈ Rk×n the cluster indicator matrix
Sp ∈ Rm×m the anchor self-expression matrix on view p

Dp ∈ Rm×m the degree matrix of Sp on view p

α ∈ Rv×1 the view weighting vector
Zp ∈ Rm×n the anchor graph on view p

Ls ∈ Rm×m the Laplacian matrix about Sp

Ep ∈ Rm×n TpBpC

Fp ∈ Rm×m Tp −TpSp

Gp ∈ Rm×m A⊤
p Ap

Hp ∈ Rm×m SpS
⊤
p

Mp ∈ Rm×m BpCC⊤B⊤
p

Jp ∈ Rm×m A⊤
p XpC

⊤B⊤
p

Qp ∈ Rm×m T⊤
p A

⊤
p ApTp

Z ∈ Rn×k 2
∑v

p=1 α
2
pX

⊤
p ApTpBp

W ∈ Rk×k
∑v

p=1 α
2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp

B. Brief Introduction of Seventeen Comparison Methods
To demonstrate the strong points of the proposed DTP-SF-BVF, we select seventeen remarkable MVC methods as the
baselines. Their brief introduction is as follows,

1. FMR (Li et al., 2019): This method utilizes kernel dependence measure instead of projecting original samples to
enhance the correlation between different views, and highlights the comprehensiveness of potential representations
through subspace reconstruction.

2. PMSC (Kang et al., 2020a): This method merges view information in the level of partition spaces via ensemble
learning, and integrates consensus clustering and graph generation to maintain the consistence among views.

3. AMGL (Nie et al., 2016): This method assigns a group of weights for all graphs to increase the diversity automatically,
and reformulates conventional spectral partitioning procedure into a convex problem so as to generate the optimal
solution.
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4. MSCIAS (Wang et al., 2019): This method maximizes the dependence between intact points by constructing
an informative affinity matrix, and avoids view information imbalance by guiding intactness-aware relationship
construction using HSIC criterion.

5. MVSC (Gao et al., 2015): This method conducts subspace clustering action on each view concurrently to explore
specific characteristics, and employs an indicator matrix that is shared for all the views to preserve the cluster
consistence.

6. MLRSSC (Brbić & Kopriva, 2018): This method generates a common similarity matrix with low-rank and sparsity
properties to learn joint subspace representations, and utilizes the kernel extension skill to optimize the objective in
Hilbert space.

7. MPAC (Kang et al., 2019): This method aligns each partition alternatively using a permutation matrix to formulate
agreement cluster indicator, and performs graph learning and data partitioning jointly in one common framework to
facilitate each other.

8. MCLES (Chen et al., 2020): This method tries to capture global structure by exploring embedding representations
in latent space, and concurrently learns the cluster labels and similarity matrix without requiring subsequent spectral
grouping procedure.

9. FMCNOF (Yang et al., 2021): This method integrates matrix factorization skill and bipartite graph construction
together to improve the computational overhead, and embeds the factor matrix into cluster matrix to avoid extra
k-means operation.

10. PFSC (Lv et al., 2021): This method finds a common partition by collaboratively learning multiple basic partitions
to improve the robustness to noise, and jointly performs basic partition generation and unified graph learning to achieve
mutual co-evolution.

11. SFMC (Li et al., 2022a): This method coalesces view-specific costs to seek for a joint graph that is compatible
among views, and indicates clusters straightforwardly by employing connectivity constraint on the joint graph.

12. MSGL (Kang et al., 2022): This method discriminates landmarks by building a dictionary matrix to decrease the
cost of graph generation, and discovers a graph with explicit components to preserve the data manifold.

13. FPMVS (Wang et al., 2022c): This method designs a group of space-guided projection matrices to alleviate the
dimension inconsistency in common space, and determines the contribution of each individual view to the unified
graph in a learnable manner.

14. UOMVSC (Tang et al., 2023): This method unifies the spectral embedding and spectral discretization via one-pass
strategy to alleviate the information loss caused by the two-step process, and approximates the rank of affinity graph
through the inner product of embedding matrices.

15. PGSC (Wu et al., 2023): This method exploits the connectivity and sparsity of each similarity graph to achieve
the pure graph with a block-diagonal structure, and assigns labels directly by enforcing it including corresponding
connection components.

16. OrthNTF (Li et al., 2024b): This method establishes an orthogonal non-negative tensor factorization scheme to
directly consider the cross-correlation between views, and extracts complementary information hidden in multi-view
samples through tensor regularization.

17. FASTMI (Huang et al., 2023): This method achieves multi-stage mergence by building view-wise relations using
random view grouping, and utilizes a graph partitioning mechanism to generate basic clusterings for each view group.

To further demonstrate the advantages of DTP-SF-BVF, we also compare it with several deep learning based competitors.
Their introduction is as follows,

1. ADAGAE (Li et al., 2022b): This method utilizes a graph auto-encoder to extract the potential high-level
information behind data and the non-euclidean structure, and avoids the collapse by building the connections between
sub-clusters before they become thoroughly random in the latent space.
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2. DEMVC (Xu et al., 2021a): This method generates the embedded feature representations by deep auto-encoders, and
adopts the auxiliary distribution generated by k-means to refine the deep auto-encoders and clustering soft assignments
for all views.

3. MFLVC (Xu et al., 2022): This method jointly realizes view-specific reconstruction objective and semantic
consistency objectives by learning diverse levels of representations in a fusion-free way, and utilizes the common
semantics to generate the clustering labels.

4. DSMVC (Tang & Liu, 2022b): This method concurrently exploits complementary information and discards the
meaningless noise by automatically selecting features to reduce the risk of clustering performance degradation caused
by view increase.

We also compare DTP-SF-BVF with popular alignment methods, and their introduction is as follows,

1. FMVACC (Wang et al., 2022b): This method utilizes feature information and structure information of the bipartite
graph generated by fixed anchors to build the matching relationship, and regards the first view of each dataset as the
baseline view.

2. 3AMVC (Ma et al., 2024a): This method gets rid of prior knowledge by identifying and selecting discriminative
anchors within a single view using hierarchical searching, and takes the view exhibiting the highest anchor graph
quality as the baseline view.

3. AEVC (Liu et al., 2024): This method narrows the spatial distribution of anchors on similar views by leveraging the
inter-view correlations to enhance the expression ability of anchors, and treats the view concatenated by column as the
baseline view.

C. Brief Introduction of Seven Public Datasets
In experiments, we evaluate the algorithm performance on seven public multi-view datasets, and their brief introduction is
as follows,

1. DERMATO: This is a skin image dataset and consists of 358 samples. It contains 2 views and 6 clusters. The feature
dimensions on each view are 12 and 22 respectively.

2. CALTE7: This is an object image dataset and consists of 1474 samples. It contains 6 views and 7 clusters. The feature
dimensions on each view are 48, 40, 254, 1984, 512 and 928, respectively.

3. Cora: This citation network dataset has 2708 samples, and includes 4 views and 7 clusters. The feature dimensions on
each view are 2708, 1433, 2708 and 2708, respectively.

4. REU7200: This document dataset has 7200 samples, and includes 5 views and 6 clusters. The feature dimensions on
each view are 4819, 4810, 4892, 4858 and 4777, respectively.

5. Reuters: This is a news article dataset with 18758 samples, and involves 5 views and 6 clusters. The feature dimensions
on each view are 21531, 24892, 34251, 15506 and 11547, respectively.

6. CIF10Tra4: This is a color image dataset with 50000 samples, and involves 4 views and 10 clusters. The feature
dimensions on each view are 944, 576, 512 and 640, respectively.

7. FasMNI4V: This is a fashion product image dataset with 70000 samples, and involves 4 views and 10 clusters. The
feature dimensions on each view are 512, 576, 640 and 944, respectively.

D. Other Related Work
To effectively tackle MVC tasks, Chen et al. (2022) utilize the algebraic property to learn a group of orthogonal bases
for anchors while preserving the scalability, Qiang et al. (2021) iteratively partition original data into two balanced parts
using k-means++ to output informative anchors, Zhang et al. (2023) integrate anchor selection into the generation of anchor
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graph in which the number of connection components is the same as that of clusters to explicitly explore cluster structure,
Li et al. (2024c) devise a pre-defined prior matrix for view-wise anchors to regularize their order and utilize a graph
matching model to handle unpaired data, Yu et al. (2023b) combine membership learning and the construction of anchors to
decrease the disagreement between views, and improve the clearness of cluster grouping via trace norm regularizer, Lao
et al. (2024) choose to jointly construct multiple sets of anchors for basic clusterings so as to form discriminative subspace
representations.

Orthogonal to them, Xu et al. (2021b) optimize a view-common variable and view-specific variables by introducing
variational auto encoder into MVC to regulate consecutive visual characteristics of multiple views, Cui et al. (2024) highlight
consistent representations from the perspective of information theory and decrease the view redundancy by minimizing the
representation lower bound, Zhang et al. (2022) reach to the balance between complementarity and consistency by encoding
view information using an adversarial strategy and utilize a parameter-free loss to complete the formation of structured
representations while avoiding over-fitting, Fu et al. (2024) excavate potential structure distributions among samples in a
generative manner and utilize anchor graphs to guide the learning process by generating structured spectral embedding using
graph convolution network. By virtue of tensor tool, Li et al. (2024a) orthogonally project anchor graph into a potential
label space to explore the cluster distribution and alleviate the loss of spatial structure information caused by projection
transformation via tensor regularization. Long et al. (2024) form an embedding tensor by stacking embedding features of
all views together to simultaneously explore the inter-view and intra-view correlations, and utilize the uniformity between
semantics by employing an unified constraint to guarantee the smoothness of embedding.

To enhance the block structure of anchor graph, Qin et al. (2022) integrate multiple similarity matrices into one by introducing
semi-supervised information and concurrently perform self-mapping and backward encoding via reconstruction. Nie et al.
(2024) conduct number limitations on each cluster by combining min-cut and size constraints to enhance the flexibility
and decrease the parameter sensitivity, and decompose lower constraints and upper constraints respectively via augmented
Lagrangian multiplier strategy. Wen et al. (2024b) enhance the robustness by reducing the negative impact of noisy features
and redundant information using feature weighting constraints, and utilize graph-embedded learning to maintain the structure
characteristics. Huang et al. (2022) construct various metrics by randomizing exponential similarity in metric subspace
rather than original space to improve the diversification of similarity matrices, and probe into the spatial characteristics of
clusters via entropy criteria. Zeng et al. (2023) capture unified semantics by eliminating the discrepancy across views using
the semantically-invariant distribution hidden within views, and alleviate the impact of defective instances via distribution
transformation skills. The approaches, such as (Lu et al., 2024; Yu et al.; Sun et al., 2024; Yu et al., 2024a; Xu et al., 2021a;
Yang et al., 2023b; Yu et al., 2025a; Liang et al., 2024b), have been also studied.

E. More Illustrations for the Objective Function
For the methodology, we here provide more details to explain the reasons for the design of each component.

First of all, to exploit the geometric characteristics between anchors, inspired by the concept of subspace reconstruction, we
introduce self-expression learning for anchors. Specially, we utilize the paradigm ∥Ap −ApSp∥2F to explicitly extract the
global structure between anchors.

After obtaining the anchor-anchor characteristic Sp ∈ Rm×m, we need to integrate that into anchor-sample so as to exploit
the manifold features inside samples. To this end, we adopt the idea of point-point guidance to adjust the anchor graph. Note
that the rows of anchor graph Zp ∈ Rm×n correspond to anchors, and thus we utilize the element [Sp]i,j to guide [Zp]i,t and
[Zp]j,t, t = 1, · · ·n, which can be formulated as

∑m
i,j=1 ∥[Zp]i,: − [Zp]j,:∥22 [Sp]i,j and aims at restricting similar features

to maintain the consistency.

Then, to alleviate the anchor misalignment, considering that the nature of misalignment is that the order of anchors on
different views is not identical, we alleviate the misalignment issue by rearranging anchors. Particularly, we associate each
view with a learnable permutation matrix Tp to freely transform anchors in the original dimension space according to the
characteristics of respective view. In addition to not involving selecting the baseline view, our mechanism also can coordinate
with anchors in the unified framework and thereby facilitates the learning of anchors. Correspondingly, the anchor matrix
Ap is reformulated as ApTp. The self-expression term ∥Ap −ApSp∥2F and the reconstruction term ∥Xp −ApZp∥2F are
reformulated as ∥ApTp −ApTpSp∥2F and ∥Xp −ApTpZp∥2F , respectively.

Subsequently, considering that the variance arises from the construction of spectrum, we avoid forming spectrum
and choose to directly learn the cluster indicators. In particular, we factorize the anchor graph as a basic coeffi-
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cient matrix Bp and a consensus matrix C, and utilize binary learning to optimize the consensus matrix. Therefore,
we have that the term ∥Xp −ApTpZp∥2F is reformulated as ∥Xp −ApTpBpC∥2F . The point-point guidance term∑m

i,j=1 ∥[Zp]i,: − [Zp]j,:∥22 [Sp]i,j is reformulated as
∑m

i,j=1 ∥[BpC]i,: − [BpC]j,:∥22 [Sp]i,j , which can be equivalently
transformed as the matrix trace form of Tr(B⊤

p LsBpCC⊤). Ls = Dp − Sp, Dp = diag{
∑m

j=1[Sp]i,j | , i = 1, · · · ,m}.
This paradigm not only makes the consensus matrix C successfully represent the cluster indicators, but also provides a
common structure for anchors on all views, inducing them rearranging towards the corresponding matching relationship.

At the last, due to views generally having different levels of importance, we assign a weighting variable to each
view to adaptively adjust its contributions. Accordingly, the term ∥Xp −ApTpBpC∥2F is further reformulated as
α2

p ∥Xp −ApTpBpC∥2F .

Based on the above analysis, we have that the objective is formulated as
∑v

p=1 α
2
p ∥Xp −ApTpBpC∥2F +

λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤
p LsBpCC⊤).

The first item in Eq. (3) aims at building the similarity via minimizing the reconstruction error. The second item represents
the self-expression affinity of aligned anchors. The third item plays a role in feeding anchor-anchor characteristics into
anchor-sample.

Further, for the feasible region, the constraints {α⊤1 = 1,α ≥ 0} aim at doing normalization and meanwhile avoid trivial
solutions. {B⊤

p Bp = Ik} aims at learning discriminative basic coefficients. {T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m}

aims at rearranging anchors and meanwhile guarantees not to change the values of anchors. {
∑k

i=1 Ci,j = 1, j =
1, 2, . . . , n,C ∈ {0, 1}k×n} guarantees that there is only one non-zero element in each column, i.e., one sample belongs
to only one cluster. {S⊤

p 1 = 1,Sp ≥ 0,
∑m

i=1[Sp]i,i = 0} guarantees expressing oneself through other anchors while
avoiding using oneself to express oneself.

F. The Influence of Anchor Number
In experiments, we set the number of anchors to be equal to the number of clusters. The reasons are as follows.

When updating the variable Tp, the objective function is Tr
(
T⊤

p GpTp

(
λHp +α2

pMp − 2λS⊤
p

)
− 2α2

pT
⊤
p Jp

)
, which is

the form of A⊤BAC+A⊤D. Besides, the feasible region {T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m} is discrete. These

cause this optimization problem being hard to solve. To this end, we adopt traversal searching on one-hot vectors to obtain
the optimal solution. The traversal searching operation takes O(m!) computing overhead where m is the number of anchors.
Too large m will induce intensive time cost. Therefore, in all experiments, we set m to the number of anchors k. More
genius solving schemes could be further investigated in the future.

G. Derivation Details
In this section, we provide a more detailed derivation procedure about the minimization of the loss function Eq. (3).

Update Ap: When updating Ap, Eq. (3) equivalently becomes

min
Ap

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F . (17)

Due to the independence of views, anchor sets on different views are also independent of each other. Accordingly, we can
equivalently transform Eq. (17) as

min
Ap

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F .

This is an unconstrained optimization problem, and according to the derivative value of zero, we can obtain

α2
v (ApTpBpC−Xp)

(
C⊤B⊤

p T
⊤
p

)
+ λ (ApTp −ApTpSp)

(
T⊤

p − S⊤
p T

⊤
p

)
= 0

⇒ α2
vApEpE

⊤
p −α2

vXpE
⊤
p + λApFpF

⊤
p = 0

⇒ Ap

(
α2

vEpE
⊤
p + λFpF

⊤
p

)
= α2

vXpE
⊤
p ,

(18)
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where Ep ∈ Rm×n = TpBpC, Fp ∈ Rm×m = Tp −TpSp. Tp is a permutation matrix, and thus is invertible. Further,
according to the property of permutation matrix that its inverse is equal to its transposition, i.e., T−1

p = T⊤
p , we have

that T−1
p is also a permutation matrix, and consequently can be seen as a series of elementary transformation operations.

Based on the fact that elementary transformation does not change the rank of matrix, we have rank(T−1
p Fp) = rank(Fp).

Additionally, rank(T−1
p Fp) = rank(I− Sp). Since Sp is an anchor self-expression matrix and its diagonal elements are

zero, we have rank(I− Sp) = m. That is, its rank is full. Thus, we have rank(Fp) = m. It is full rank and accordingly
is invertible. So, FpF

⊤
p is also invertible. Further, the eigenvalue of FpF

⊤
p is greater than 0, the eigenvalue of EpE

⊤
p

is greater than or equal to 0, and thus the eigenvalue of (α2
vEpE

⊤
p + λFpF

⊤
p ) is greater than 0. Consequently, the item

α2
vEpE

⊤
p + λFpF

⊤
p is invertible. Based on th above analysis, we can get that Ap = α2

vXpE
⊤
p

(
α2

vEpE
⊤
p + λFpF

⊤
p

)−1
.

Update Tp: When updating Tp, Eq. (3) equivalently becomes

min
Tp

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

s.t. T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m.

(19)

Due to Tp being performed on respective view, we can separately optimize each Tp. Thus, Eq. (19) can be equivalently
written as

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

s.t. T⊤
p 1 = 1,Tp1 = 1,Tp ∈ {0, 1}m×m.

After expanding the objective using the trace operation and deleting irrelevant items, we can get

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

⇒ min
Tp

Tr
(
α2

pApTpBpCC⊤B⊤
p T

⊤
p A

⊤
p − 2α2

pA
⊤
p XpC

⊤B⊤
p T

⊤
p + λApTpT

⊤
p A

⊤
p +

λApTpSpS
⊤
p T

⊤
p A

⊤
p − 2λApTpS

⊤
p T

⊤
p A

⊤
p

)
.

(20)

According to the fact that Tp is a permutation matrix, we have TpT
⊤
p = I. Additionally, considering that

∑k
i=1 Ci,j =

1, j ∈ {1, 2, . . . , n},C ∈ {0, 1}k×n, we have that CC⊤ is a diagonal matrix, and its diagonal elements are
∑n

j=1 Ci,j ,
i = 1, 2, · · · k. Further, combined with Bp being orthogonal, we can obtain Tr

(
BpCC⊤B⊤

p

)
= Tr

(
CC⊤) =∑i,j Ci,j .

Based on these analysis, we can get

min
Tp

α2
p ∥Xp −ApTpBpC∥2F + λ ∥ApTp −ApTpSp∥2F

⇒ min
Tp

Tr
(
−2α2

pT
⊤
p A

⊤
p XpC

⊤B⊤
p + λT⊤

p A
⊤
p ApTpSpS

⊤
p +

α2
pT

⊤
p A

⊤
p ApTpBpCC⊤B⊤

p − 2λT⊤
p A

⊤
p ApTpS

⊤
p

)
⇒ min

Tp

Tr
(
λT⊤

p GpTpHp +α2
pT

⊤
p GpTpMp − 2λT⊤

p GpTpS
⊤
p − 2α2

pT
⊤
p Jp

)
⇒ min

Tp

Tr
(
T⊤

p GpTp

(
λHp +α2

pMp

)
− 2λT⊤

p GpTpS
⊤
p − 2α2

pT
⊤
p Jp

)
,

(21)

where Gp ∈ Rm×m = A⊤
p Ap, Hp ∈ Rm×m = SpS

⊤
p , Mp ∈ Rm×m = BpCC⊤B⊤

p , Jp ∈ Rm×m = A⊤
p XpC

⊤B⊤
p .

Combined with the feasible region in Eq. (19), we can determine the optimal solution of Tp via traversal searching using
[e1, e2, · · · , ei, · · · , em] where ei is the one-hot vector. Kindly note that the size of Tp is m×m and m is generally small,
performing traversal searching on Tp will not incur significant computing costs.

Update Bp: When updating Bp, Eq. (3) equivalently becomes

min
Bp

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t. B⊤
p Bp = Ik.

(22)
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Since the basic coefficient matrices {Bp}vp=1 on different views are independent of each other, we can equivalently transform
Eq. (22) as

min
Bp

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t. B⊤
p Bp = Ik.

(23)

Expanding the objective and then deleting irrelevant items, we can obtain

min
Bp

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

⇒ min
Bp

Tr
(
α2

pApTpBpCC⊤B⊤
p T

⊤
p A

⊤
p − 2α2

pT
⊤
p A

⊤
p XpC

⊤B⊤
p + βB⊤

p LsBpCC⊤) (24)

Since CC⊤ is diagonal and Bp is orthogonal, we can further have

min
Bp

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

⇒ min
Bp

Tr
(
βB⊤

p LsBpCC⊤ +α2
pB

⊤
p QpBpCC⊤ − 2α2

pT
⊤
p A

⊤
p XpC

⊤B⊤
p

)
⇒ min

Bp

Tr
(
B⊤

p

(
βLs +α2

pQp

)
BpCC⊤ − 2α2

pCX⊤
p ApTpBp

)
,

(25)

where Qp ∈ Rm×m = T⊤
p A

⊤
p ApTp.

Considering that the feasible region B⊤
p Bp = Ik can be equivalently divided into [Bp]

⊤
:,j [Bp]:,j = 1 and [Bp]

⊤
:,j [Bp]:,i =

0, i = 1, 2, · · · , k, i ̸= j, j = 1, 2, · · · , k, we can solve Bp column by column. Thus, we have

min
Bp

Tr
(
B⊤

p

(
βLs +α2

pQp

)
BpCC⊤ − 2α2

pCX⊤
p ApTpBp

)
⇒ min

[Bp]:,j
[B⊤

p ]j,:
(
βLs +α2

pQp

)
Bp[CC⊤]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j

⇒ min
[Bp]:,j

[Bp]
⊤
:,j

n∑
i=1

Cj,i

(
βLs +α2

pQp

)
[Bp]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j ,

(26)

where the objective is quadratic. Besides, the constraint [Bp]
⊤
:,j [Bp]:,j = 1 can be equivalently writ-

ten as [Bp]
⊤
:,jIm×m[Bp]:,j − 1 = 0. [Bp]

⊤
:,j [Bp]:,i = 0, i = 1, 2, · · · , k, i ̸= j can be written as

[[Bp]:,1, [Bp]:,2, · · · , [Bp]:,j−1, [Bp]:,j+1, · · · , [Bp]:,k]
⊤
[Bp]:,j = 0(k−1)×1. Apparently, the constraints are also quadratic.

Consequently, the optimization problem about Bp can be equivalently transformed as

min
[Bp]:,j

[Bp]
⊤
:,j

n∑
i=1

Cj,i

(
βLs +α2

pQp

)
[Bp]:,j +

[
−2α2

pCX⊤
p ApTp

]
j,:

[Bp]:,j

s.t. [Bp]
⊤
:,jIm×m[Bp]:,j − 1 = 0,

[[Bp]:,1, [Bp]:,2, · · · , [Bp]:,j−1, [Bp]:,j+1, · · · , [Bp]:,k]
⊤
[Bp]:,j = 0(k−1)×1.

This is a QCQP optimization problem, and can be solved in O(m3) computing complexity.

Update Sp: When updating Sp, Eq. (3) equivalently becomes

min
Sp

λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤
p LsBpCC⊤)

s.t. S⊤
p 1 = 1,Sp ≥ 0,

m∑
i=1

[Sp]i,i = 0.
(27)
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Expanding the objective, we have

min
Sp

λ ∥ApTp −ApTpSp∥2F + β Tr(B⊤
p LsBpCC⊤)

⇒ min
Sp

Tr
(
λApTpSpS

⊤
p T

⊤
p A

⊤
p − 2λApTpS

⊤
p T

⊤
p A

⊤
p

+λApTpT
⊤
p A

⊤
p + βB⊤

p DpBpCC⊤ − βB⊤
p SpBpCC⊤)

⇒ min
Sp

Tr
(
λApTpSpS

⊤
p T

⊤
p A

⊤
p − 2λApTpS

⊤
p T

⊤
p A

⊤
p − βB⊤

p SpBpCC⊤)
⇒ min

Sp

Tr
(
λS⊤

p T
⊤
p A

⊤
p ApTpSp − 2λT⊤

p A
⊤
p ApTpSp − βBpCC⊤B⊤

p Sp

)
⇒ min

Sp

Tr
(
λS⊤

p QpSp − 2λQpSp − βMpSp

)
⇒ min

Sp

Tr

(
S⊤
p QpSp + 2

(
−Qp −

β

2λ
Mp

)
Sp

)
,

(28)

where Qp ∈ Rm×m = T⊤
p A

⊤
p ApTp, Mp ∈ Rm×m = BpCC⊤B⊤

p .

Noticed that the feasible region is for each column of Sp, consequently, we can equivalently rewrite the constraints in the
form of columns. That is, we can transform S⊤

p 1 = 1,Sp ≥ 0,
∑m

i=1[Sp]i,i = 0 as [Sp]
⊤
:,j1 = 1, [Sp]:,j ≥ 0, [Sp]j,j =

0, j = 1, 2, · · · ,m. Further, we can transform [Sp]j,j = 0, j = 1, 2, · · · ,m as e⊤j [Sp]:,j = 0, j = 1, 2, · · · ,m, where ej is
the one-hot vector.

Based on these, for the objective function, we can further have

min
Sp

Tr

(
S⊤
p QpSp + 2

(
−Qp −

β

2λ
Mp

)
Sp

)
⇒ min

[Sp]:,j

1

2
[Sp]

⊤
:,jQp[Sp]:,j +

(
−Qp −

β

2λ
Mp

)
j,:

[Sp]:,j .

(29)

Therefore, the optimization problem about Sp can be equivalently written as

min
[Sp]:,j

1

2
[Sp]

⊤
:,jQp[Sp]:,j +

(
−Qp −

β

2λ
Mp

)
j,:

[Sp]:,j

s.t. [Sp]
⊤
:,j1 = 1, 0 ≤ [Sp]:,j , e

⊤
j [Sp]:,j = 0, j = 1, 2, · · · ,m,

(30)

which is a QP problem, and can be solved within O(m2) computing complexity.

Update C: When updating C, Eq. (3) equivalently becomes

min
C

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

s.t.
k∑

i=1

Ci,j = 1, j = 1, 2, . . . , n,C ∈ {0, 1}k×n.

(31)

For the objective function, we have

min
C

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F + β Tr(B⊤

p LsBpCC⊤)

⇒ min
C

Tr

(
C⊤

v∑
p=1

α2
pB

⊤
p T

⊤
p A

⊤
p ApTpBpC− 2

v∑
p=1

α2
pX

⊤
p ApTpBpC+ βC⊤

v∑
p=1

B⊤
p LsBpC

)

⇒ min
C

Tr

(
C⊤

(
v∑

p=1

α2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp

)
C− 2

v∑
p=1

α2
pX

⊤
p ApTpBpC

)
⇒ min

C
Tr
(
C⊤WC− ZC

)
,

(32)

20



From Spectrum-free towards Baseline-view-free: Double-track Proximity Driven Multi-view Clustering

where W ∈ Rk×k =
∑v

p=1 α
2
pB

⊤
p T

⊤
p A

⊤
p ApTpBp + βB⊤

p LsBp, Z ∈ Rn×k = 2
∑v

p=1 α
2
pX

⊤
p ApTpBp.

The constraints mean that there is only one non-zero element in each column of C, and consequently we can optimize C by
column. We can get

min
C

Tr
(
C⊤WC− ZC

)
⇒ min

C:,j

C⊤
:,jWC:,j − Zj,:C:,j . (33)

Further, the item C⊤
:,jWC:,j indicates that it takes a diagonal element of W, and Zj,:C:,j indicates that it takes a element

of Zj,:. Thus, we can determine the corresponding index of minimum by

l∗ = argmin
l

Wl,l − Zj,l, l = 1, 2, · · · , k. (34)

Then, the value of C:,j can be determined by assigning Cl∗,j as 1 while assigning other elements of C:,j as 0.

Update α: When updating α, Eq. (3) equivalently becomes

min
α

v∑
p=1

α2
p ∥Xp −ApTpBpC∥2F

s.t. α⊤1 = 1,α ≥ 0.

Considering that the term 1
bp

= ∥Xp −ApTpBpC∥2F is a constant with respect to α, we can solve α using Cauchy

inequality. Specially, we can get that the optimal solution is αp =
bp∑v

p=1 bp
.

H. More Conclusions for Table 1
1. On CALTE7, MFLVC receives better clustering results in NMI, probably because it achieves reconstruction and

consistency by learning features at multiple levels rather than at single level for each view, and utilizes the consensus
semantics shared in all views and semantic labels to decrease the view-private unfavorable influence.

2. FPMVS achieves 0.29% increasement in terms of ACC on CIF10Tra4, and possible reasons are that it employs a group
of projectors to maintain the anchor dimension consistency and extracts consensus multi-view isomeric features by
utilizing an unified graph structure with cluster distribution constraints.

3. On Cora in Fscore, MSCIAS slightly surpasses us with 0.72%, which is mainly because it enforces encoded similarity
to maximally depend on the potential intact-samples through HSIC criterion and utilizes the local connectivity of intact
space to eliminate outliers and enhance the distinguishability of similarity.

4. For SFMC, it makes preferable results on REU7200 in NMI, main reasons of which could be that it integrates
connectivity constraint into the learning of joint graph to reflect cluster distribution and adaptively adjusts the graph
contributions on different views in self-supervised weighting way.

5. PMSC, AMGL and MLRSSC express inferior performance in certain scenarios, the reasons of which could be
that PMSC reaches the consensus clustering under the premise of the basic partition realizing the ground truth and
meanwhile equally treats every view, the factors generated by the cluster indicator with orthogonal constraints in
AMGL impair the discriminability of some graphs, and MLRSSC linearly combines the generated representation
matrices and only utilizes truncation operation to determine the penalty parameters.

I. Other Ablation Studies
In the paper, rather than treating views equally, we adopt a square weighting scheme to adaptively combine views together.
To validate the effectiveness of this strategy, we conduct the comparison experiments with equal view weighting (EVW).
The results are summarized in Table 9, where AVW denotes the clustering results based on our adaptive view weighting.
Obviously, AVW receives more desirable results than EVW in most cases, which suggests that the adaptive view weighting
strategy is recommendable. Additionally, we also plot the learned view weights, as shown in Fig. 3. It can be seen that it
indeed assigns different weights to measure the contribution between views.
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Table 9. The effectiveness of view weighting

Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC EVW 84.59 76.73 44.94 16.82 47.84 25.26 52.69
AVW 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI EVW 89.44 42.88 33.06 3.60 29.54 15.20 56.84
AVW 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore EVW 86.59 71.80 35.36 28.77 42.32 18.03 46.90
AVW 87.92 78.12 41.12 28.55 44.84 20.64 51.37
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Figure 3. The learned view weights on seven public datasets.

Besides, unlike current techniques generating anchors via random sampling or heuristic searching, which leads to anchors
being separated from subsequent procedures like graph learning and spectrum construction, we integrate anchors into
objective optimization framework to make them able to interact with other parts and thereby facilitate each other. To
investigate its effectiveness, we organize corresponding ablation experiments and present the comparison results in Table 10,
where HS denotes the clustering results based on anchors generated by heuristic searching while LA denotes the results
based on our anchor learning. It is easy to observe that LA outperforms HS with noticeable margins, which illustrates that
the anchor learning strategy is functional and can provide more pleasing clustering results.

Table 10. The effectiveness of learnable anchor
Metric Ablation DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC HS 65.64 64.59 30.24 16.68 27.20 24.08 47.21
LA 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI HS 69.84 37.95 33.54 1.06 1.43 12.98 47.07
LA 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore HS 69.33 61.54 30.40 24.43 35.25 18.03 41.43
LA 87.92 78.12 41.12 28.55 44.84 20.64 51.37
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J. More Illustrations for Table 7
The selection of baseline view not only brings complicated solving procedure but also affects the clustering performance.
If the baseline view is not well selected, the graph structure will be inaccurately fused. Unlike this, we do not require
the baseline view, and can automatically rearrange anchors according to respective view characteristics. Besides, we also
can coordinate with anchors in the unified framework and thereby facilitate the learning of anchors, which makes view
information interact across different levels.

K. The Effectiveness of Anchor Self-expression
The self-expression affinity learning is utilized to construct the sample-sample affinity with full size in subspace clustering.
Inspired by this, we explicitly extract the global structure between anchors via self-expression learning, and meanwhile
feed that into anchor-sample so as to better exploit the manifold characteristics hidden within samples. (Kindly note that
in this work, we did not calculate the sample-sample relations through self-expression learning.) In addition to this, our
work also designs a joint-alignment mechanism which does not involve the selection of the baseline view and meanwhile
can cooperate with the learning of anchors. Moreover, a solving scheme with linear complexity enables our framework to
effectively tackle MVC tasks.

Anchor self-expression learning can help extract the geometric characteristics between anchors, and meanwhile facilities the
learning of anchors owing to the joint-optimization mechanism. To validate this point, we organize four groups of comparison
experiments, i.e., No self-expression + No leanring (NSNL), No self-expression + Having learning (NSHL), Having self-
expression + No learning (HSNL), Having self-expression + Having learning (HSHL, i.e., Ours). The comparison results
are reported in Table 11.

Table 11. The effectiveness of anchor self-expression

Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC(%)

NSNL 60.42 43.88 27.96 14.33 25.32 19.73 41.27
NSHL 71.51 49.05 30.35 16.75 47.05 26.69 52.15
HSNL 65.64 64.59 30.24 16.68 27.20 24.08 47.21
HSHL 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI(%)

NSNL 64.37 35.68 5.88 1.01 1.38 12.57 44.79
NSHL 83.97 40.21 6.02 2.53 23.19 15.48 58.13
HSNL 69.84 37.95 33.54 1.06 1.43 12.98 47.07
HSHL 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore(%)

NSNL 63.76 48.43 28.79 23.42 33.87 16.86 37.64
NSHL 73.79 51.25 30.42 28.54 43.04 17.70 46.77
HSNL 69.33 61.54 30.40 24.43 35.25 18.03 41.43
HSHL 87.92 78.12 41.12 28.55 44.84 20.64 51.37

As seen, HSNL is consistently preferable than NSNL, and HSHL is consistently preferable than NSHL. These demonstrate
that the anchor self-expression can facilitate the clustering performance improvement. Additionally, NSHL is consistently
preferable than NSNL, and HSHL is consistently preferable than HSNL. These illustrate that the anchor learning can help
increase the clustering results. Therefore, we can conclude that the anchor self-expression learning can enhance the quality
of anchors to increase the clustering results.

L. The Effectiveness of View-specific Anchors
The works based on feature space fusion or shared representations usually extract a group of unified anchors rather than
multiple groups of view-specific anchors to construct the similarity relationship. Although avoiding alignment, this paradigm

23



From Spectrum-free towards Baseline-view-free: Double-track Proximity Driven Multi-view Clustering

could not effectively exploit complementary information between views due to the unified anchors being shared for all views.
To further illustrate this point, we organize the comparison experiments between unified anchors (UA) and view-specific
anchors (VSA, i.e., ours). The results are presented in Table 12.

Table 12. The effectiveness of view-specific anchors

Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

ACC(%)

UA 81.23 71.33 49.73 24.97 48.46 22.36 53.38
VSA 85.47 80.66 52.44 26.22 54.26 26.83 57.36

NMI(%)

UA 82.76 42.26 39.87 6.03 29.89 13.43 51.97
VSA 89.97 45.25 43.70 6.25 31.87 15.64 59.21

Fscore(%)

UA 80.64 69.72 42.28 25.21 46.13 19.58 52.21
VSA 87.92 78.12 41.12 28.55 44.84 20.64 51.37

As seen, our results are more preferable than the counterparts adopting unified anchors, the reason of which could be that
the view-exclusive complementary representation information (view-specific (aligned) anchors contain) outweighs the
view-common consensus representation information (unified anchors contain).

Table 13. Single-view experimental results in ACC

Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

FMR 66.50(±5.19) 21.59(±0.49) 24.08(±0.38) - - - -
PMSC 64.83(±8.99) 38.18(±1.81) 27.93(±0.86) 19.24(±0.53) - - -
AMGL 22.09(±0.16) 39.72(±1.35) 14.67(±0.17) 17.00(±0.05) 20.32(±0.27) - -

MSCIAS 64.35(±8.27) 40.63(±2.93) 30.88(±1.30) 19.25(±0.93) 25.38(±1.44) - -
MVSC 57.08(±9.81) 45.54(±2.03) - - - - -

MLRSSC 31.01(±0.00) 50.14(±0.00) 30.21(±0.00) 16.92(±0.00) - - -
MPAC 61.14(±0.00) 41.72(±0.00) 32.48(±0.00) 18.40(±0.00) - - -

MCLES 64.47(±4.27) 46.33(±2.58) 30.47(±1.32) - - - -
FMCNOF 52.51(±4.93) 48.51(±4.22) 24.34(±2.43) 18.67(±2.38) - 19.55(±1.86) 31.52(±2.21)
ADAGAE - - - - - - -

PFSC 63.80(±6.28) 50.62(±4.77) - - - - -
SFMC 65.88(±0.00) 50.24(±0.00) 30.17(±0.00) 15.75(±0.00) 20.53(±0.00) 22.08(±0.00) -
MSGL 29.61(±1.03) - - 17.99(±0.88) 23.83(±0.64) 21.48(±0.57) -

DEMVC - - - - - - -
FPMVS 68.46(±7.24) 49.88(±2.19) 32.05(±1.91) 19.55(±0.19) 22.90(±2.15) 22.37(±0.62) 51.97(±3.26)
3AMVC - - - - - - -
MFLVC - - - - - - -

UOMVSC 66.26(±0.00) 38.84(±0.00) 30.45(±0.00) 19.29(±0.00) 26.28(±0.00) - -
PGSC 64.94(±7.61) 36.37(±4.52) 31.27(±2.43) 18.07(±0.74) 22.15(±0.62) - -

DSMVC - - - - - - -
AEVC - - - - - - -

OrthNTF - - - - - - -
FMVACC - - - - - - -
FASTMI 64.58(±4.53) 37.46(±1.93) 34.52(±1.21) 21.73(±0.91) 21.79(±2.80) 23.21(±1.05) 53.12(±4.21)

Ours 66.76(±0.00) 52.04(±0.00) 35.78(±0.00) 20.06(±0.00) 28.03(±0.00) 25.73(±0.00) 56.92(±0.00)

M. The Effectiveness of Single View Scenarios
Except for multi-view scenarios, sometimes we also may encounter the datasets containing only one view. To validate the
ability to tackle single view scenarios, we conduct clustering operation on one view rather than on all views of datasets
mentioned earlier. The experimental results are summarized in Table 13, 14 and 15. From these tables, we can draw
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Table 14. Single-view experimental results in NMI

Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

FMR 76.63(±3.98) 1.38(±0.18) 5.12(±0.17) - - - -
PMSC 80.21(±5.10) 34.04(±0.71) 6.12(±0.83) 1.43(±0.12) - - -
AMGL 3.07(±0.24) 34.34(±1.28) 0.83(±0.02) 0.72(±0.09) 0.89(±0.03) - -

MSCIAS 75.79(±4.77) 35.42(±1.66) 9.45(±0.46) 1.69(±0.27) 1.22(±0.17) - -
MVSC 52.19(±11.98) 25.22(±1.25) - - - - -

MLRSSC 0.54(±0.00) 0.73(±0.00) 0.48(±0.00) 0.56(±0.00) - - -
MPAC 77.69(±0.00) 29.88(±0.00) 9.30(±0.00) 1.29(±0.00) - - -

MCLES 78.19(±3.49) 27.64(±1.87) 8.47(±0.93) - - - -
FMCNOF 42.62(±4.32) 9.42(±1.23) 4.58(±0.79) 1.11(±0.17) - 9.36(±2.32) 32.07(±3.26)
ADAGAE - - - - - - -

PFSC 76.00(±2.45) 32.47(±1.85) - - - - -
SFMC 62.77(±0.00) 27.46(±0.00) 6.01(±0.00) 2.37(±0.00) 1.44(±0.00) 9.44(±0.00) -
MSGL 10.33(±0.74) - - 1.15(±0.08) 1.02(±0.06) 7.64(±0.68) -

DEMVC - - - - - - -
FPMVS 77.14(±5.56) 34.02(±1.85) 9.28(±1.64) 2.44(±0.24) 11.73(±3.38) 10.99(±0.82) 53.71(±2.18)
3AMVC - - - - - - -
MFLVC - - - - - - -

UOMVSC 77.83(±0.00) 28.86(±0.00) 8.95(±0.00) 2.83(±0.00) 9.45(±0.00) - -
PGSC 69.96(±4.66) 22.46(±2.37) 1.43(±0.32) 2.03(±0.26) 0.92(±0.08) - -

DSMVC - - - - - - -
AEVC - - - - - - -

OrthNTF - - - - - - -
FMVACC - - - - - - -
FASTMI 78.85(±2.10) 32.49(±1.29) 9.77(±2.13) 3.03(±0.66) 10.12(±1.58) 13.48(±0.64) 58.14(±1.73)

Ours 80.52(±0.00) 36.59(±0.00) 10.04(±0.00) 2.50(±0.00) 1.37(±0.00) 15.09(±0.00) 61.44(±0.00)

Table 15. Single-view experimental results in Fscore

Dataset DERMATO CALTE7 Cora REU7200 Reuters CIF10Tra4 FasMNI4V

FMR 66.40(±4.64) 22.72(±0.15) 19.09(±0.23) - - - -
PMSC 68.06(±8.46) 37.68(±1.18) 27.42(±2.21) 21.34(±1.02) - - -
AMGL 19.17(±0.28) 37.52(±0.89) 24.77(±0.11) 22.53(±0.00) 28.53(±0.21) - -

MSCIAS 67.19(±8.74) 40.65(±3.12) 23.41(±1.52) 21.07(±0.41) 30.72(±0.77) - -
MVSC 55.63(±10.99) 44.64(±2.87) - - - - -

MLRSSC 33.39(±0.00) 50.64(±0.00) 30.40(±0.00) 23.21(±0.01) - - -
MPAC 70.02(±0.00) 41.65(±0.00) 26.10(±0.00) 21.94(±0.00) - - -

MCLES 67.27(±4.69) 48.97(±2.84) 30.34(±1.73) - - - -
FMCNOF 46.98(±3.78) 46.35(±4.21) 20.05(±2.23) 21.68(±2.79) - 17.00(±1.17) 26.54(±1.89)
ADAGAE - - - - - - -

PFSC 68.99(±4.95) 48.47(±3.26) - - - - -
SFMC 60.29(±0.00) 47.32(±0.00) 30.35(±0.00) 20.64(±0.00) 29.04(±0.00) 15.28(±0.00) -
MSGL 31.90(±0.97) - - 22.48(±0.37) 28.97(±0.24) 16.14(±0.32) -

DEMVC - - - - - - -
FPMVS 68.31(±6.97) 49.97(±2.50) 26.33(±0.70) 20.33(±1.15) 31.80(±1.64) 17.54(±0.35) 45.93(±2.06)
3AMVC - - - - - - -
MFLVC - - - - - - -

UOMVSC 67.90(±0.00) 38.64(±0.00) 24.19(±0.00) 22.78(±0.00) 31.91(±0.00) - -
PGSC 63.05(±6.85) 37.62(±4.23) 25.01(±3.77) 22.53(±1.24) 32.42(±1.53) - -

DSMVC - - - - - - -
AEVC - - - - - - -

OrthNTF - - - - - - -
FMVACC - - - - - - -
FASTMI 69.65(±4.79) 39.57(±1.24) 31.67(±1.50) 19.24(±1.49) 30.45(±0.71) 15.35(±0.69) 45.68(±2.35)

Ours 69.70(±0.00) 50.41(±0.00) 32.40(±0.00) 25.26(±0.00) 35.02(±0.00) 17.86(±0.00) 49.77(±0.00)

that ADAGE, DEMVC, 3AMVC, MELVC, DSMVC, AEVC, OrthNTF and FMVACC are powerless against single view
scenarios, which is mainly because they generally need utilize the information of other views to help optimize. FMR, PMSC,
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AMGL, MSCIAS, MVSC, etc, are able to work properly with single view scenarios, nevertheless, they generally produce
inferior clustering results in most situations. By comparison, besides being able to operate properly on single view scenarios,
our DTP-SF-BVF also can generate desirable results. Accordingly, our DTP-SF-BVF enjoys wider serviceability.

Table 16. The effectiveness of view information gathering

Dataset Metric Clustering Results

V1 V2 V3 V4 V5 V6 Ours

DERMATO
ACC 60.06 66.76 85.47
NMI 56.66 80.52 89.97

Fscore 49.99 69.70 87.92

CALTE7
ACC 35.01 52.04 48.71 53.87 39.42 46.40 80.66
NMI 17.84 36.59 34.14 48.75 41.74 39.98 45.25

Fscore 33.35 50.41 47.41 53.85 48.15 47.42 78.12

Cora
ACC 30.24 35.78 30.17 29.73 52.44
NMI 10.22 10.04 12.24 11.49 43.70

Fscore 30.39 32.40 30.36 29.91 41.12

REU7200
ACC 21.24 20.06 24.06 19.61 20.83 26.22
NMI 1.27 2.50 4.81 1.39 1.40 6.25

Fscore 23.67 25.26 25.41 27.01 24.90 28.55

Reuters
ACC 46.65 28.03 27.24 27.80 47.62 54.26
NMI 23.47 1.37 1.10 1.06 20.83 31.87

Fscore 42.71 35.02 35.24 35.16 43.67 44.84

CIF10Tra4
ACC 21.89 25.73 23.25 22.05 26.83
NMI 10.01 15.09 12.35 12.50 15.64

Fscore 16.46 17.86 15.87 16.34 20.64

FasMNI4V
ACC 41.76 56.92 46.71 52.32 57.36
NMI 49.81 61.44 53.26 54.86 59.21

Fscore 37.26 49.77 42.80 45.04 51.37

N. The Effectiveness of View Information Gathering
Compared to single view datasets, multi-view data can provide more comprehensive and detailed descriptions for the
same instance and thereby facilitates more accurate representations for better clustering. To validate the effectiveness
of DTP-SF-BVF in gathering the information from multiple views, on the basic of Section M, we conduct clustering
individually on each view of multi-view datasets mentioned earlier and compare the generated single-view clustering results
and multi-view clustering results, as shown in Table 16, where V1 ∼ V6 denote the results based on view 1 ∼ 6 respectively
and ‘Ours’ denotes the results based on all views. As seen, multi-view clustering results outperform single-view counterparts
with remarkable margins in most cases, which highlights that our DTP-SF-BVF is able to effectively gather multi-view
information for preferable clustering. The reason of some sub-optimal results could be that the quality of certain views is
relatively poor and disorganize the cluster structure.

O. Time Overhead Proportion
To further dissect the performance of the proposed DTP-SF-BVF, we count the time overhead proportion of each optimization
variable, as shown in Fig. 4. From these figures, we can observe that on CALTE7 and Cora datasets, Bp and Tp occupy
most of the overall optimization time, which is mainly because the number of clusters is slightly larger and accordingly the
traversal searching and QCQP searching consume relatively more time than other parts. On REU7200 and Reuters, the time
overhead of C and α holds a dominant position, possibly because the higher data dimension exacerbates the computing
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Figure 4. The time consumption ratio of different optimization variables.
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Figure 5. Changes in the loss function.

burden of W, Z and the coefficient bp. When dealing with CIF10Tra4 and FasMNI4V, the time overhead of updating Tp

and C is larger than that of other variables. Possible reasons are that the cluster number and the feature dimension on
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(a) CALTE7 (b) Cora (c) REU7200

(d) Reuters (e) CIF10Tra4 (f) FasMNI4V

Figure 6. Sensitivity of the parameters λ and β in terms of ACC.

(a) CALTE7 (b) Cora (c) REU7200

(d) Reuters (e) CIF10Tra4 (f) FasMNI4V

Figure 7. Sensitivity of the parameters λ and β in terms of NMI.

these two datasets are relatively larger and accordingly induces much time overhead. Especially, Tp takes the most time
expenditures, which is mainly due to the searching on a set of one-hot vectors. Although the time consumption proportion
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between optimization variables is diverse in different cases, combined with Fig. 2 we have that the overall time consumption
of our DTP-SF-BVF is competitive.

P. Convergence
In addition to owing linear complexities, our DTP-SF-BVF is also convergent. To demonstrate this point, we plot the
changes in loss function with respective to the number of iterations, as shown in Fig. 5. One can observe that the function
loss is monotonically reducing after iterations and gradually reaches to a steady state, which gives evidence that the proposed
DTP-SF-BVF is convergent.

Q. Sensitivity
In our DTP-SF-BVF method, there involve hyper-parameters λ and β. We conduct fine tuning for them in
[10−1, 100, · · · , 103] and [2−4, 2−2, · · · , 24] respectively. To investigate the sensitivity of hyper-parameters λ and β,
we plot the clustering results under each parameter combination, as shown in Fig. 6, 7 and 8. It is easy to see that with given
β, the clustering results are not dramatically changed in most cases. So, we can conclude that the proposed DTP-SF-BVF is
not fairly sensitive to λ. Moreover, combined with Table 1, we have that within a broad range of parameters, the generated
clustering results are still comparable. Thus, we can summarize that the proposed DTP-SF-BVF is somewhat robust to
hyper-parameters.

(a) CALTE7 (b) Cora (c) REU7200

(d) Reuters (e) CIF10Tra4 (f) FasMNI4V

Figure 8. Sensitivity of the parameters λ and β in terms of Fscore.

R. Potential Improvement Directions
In this work, we generate anchors via learning strategy, nevertheless, we do not explicitly consider the spatial distribution of
anchors. Given the fact that the role of anchors aims at approximately characterizing the overall samples, generating the
anchors that are with similar distributions to original data could further enhance the clustering performance. Besides, it needs
to perform searching on one-hot vectors when updating the permutation model, which could bring additional computing
overhead, and thus designing other talented solutions will further accelerate its running speed.

In addition to these, the tensor Schatten p-norm is usually regarded as a good means to exploit the complementary information
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between views. Our model at present dose not involve the Schatten p-norm, and adopts the shared cluster indicator matrix to
capture view complementary information. Including the Schatten p-norm could help further enhance the clustering ability of
our model in the future.
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