
Under review as a conference paper at ICLR 2024

CODECOMPLEX: A TIME-COMPLEXITY DATASET FOR
MULTI-LANGUAGE SOURCE CODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deciding the computational complexity of algorithms is a really challenging prob-
lem, even for human algorithm experts. Theoretically, the problem of deciding
the computational complexity of a given program is undecidable due to the fa-
mous Halting problem. So, we focus on cases where there are inputs and out-
puts, and of which we can know if the code is right or wrong. We propose
our own dataset CodeComplex, which consists of 4,900 Java codes and 4,900
Python codes submitted to programming competitions by human programmers
and their complexity labels annotated by a group of algorithm experts. As far
as we are aware, the CodeComplex dataset is by far the largest code dataset
for the complexity prediction problem. Then, we present experimental results
from several baseline models using the SOTA code understanding neural models
such as CodeBERT, GraphCodeBERT, PLBART, CodeT5, CodeT5+ and UniX-
coder. We also give an analysis on the difficulties of code complexity and
why the models are good/bad on predicting the time complexity. The Code-
Complex dataset is available at https://anonymous.4open.science/
r/CodeComplex-Data and material for reproduction is available at https:
//anonymous.4open.science/r/CodeComplex-Models.

1 INTRODUCTION

Worst-case computational (algorithmic) complexity indicates the longest running time W (n) of an
algorithm for any input of size n. Programmers estimate an upper bound on the time an algorithm
needs by analyzing its worst-case time complexity. We often describe the worst-case time complex-
ity using the Big O notation using algebraic expressions. For instance, we denote the time complex-
ity of an algorithm with constant running time, regardless of input size n, by O(1). Similarly, we
denote the linear-time and quadratic-time algorithms, which require time linear or quadratic in n, by
O(n) and O(n2), respectively.

While the worst-case time complexity serves as an effective indicator of algorithm or code effi-
ciency, it is widely recognized that the problem of determining the worst-case time complexity of an
algorithm is undecidable (Turing, 1936). Consequently, alternative tractable approaches have been
explored to measure the efficiency of an algorithm or a code. These approaches include static code
analysis techniques such as cyclomatic complexity (McCabe, 1976), afferent/efferent coupling, and
the Master theorem (Bentley et al., 1980). On the other hand, researchers have also delved into
dynamic code analysis, which is based on the real-time execution of codes using various test cases
to analyze code complexity (Burnim et al., 2009; Hutter et al., 2014; Nogueira, 2012). Dynamic
code analysis can detect bugs and measure the execution time and space but requires the generation
of suitable test cases and actual code execution with these test cases.

With the rapid progress of programming comprehension models based on large-scale code datasets,
the concept of ‘AI-powered (AI-assisted) programming’ is inching toward reality. OpenAI intro-
duced GitHub Copilot, powered by Codex (Askell et al., 2021), to assist human programmers within
integrated development environments (IDEs) by automatically generating codes based on the pro-
gramming context. More recently, DeepMind introduced AlphaCode (Li et al., 2022) which gen-
erates algorithmic programs from natural language descriptions of logical problems encountered in
competitive programming. ’AI-powered (AI-assisted) programming’ has introduced new people to
the programming community. There has been a proliferation of online coding platforms where pro-

1

https://anonymous.4open.science/r/CodeComplex-Data
https://anonymous.4open.science/r/CodeComplex-Data
https://anonymous.4open.science/r/CodeComplex-Models
https://anonymous.4open.science/r/CodeComplex-Models

Under review as a conference paper at ICLR 2024

grammers log in to write programs using web-based IDE interfaces. These platforms serve various
purposes such as collaborative programming, coding interviews, programming competitions, and
notably programming education.

We expect that predicting the computational complexity of a code holds significant importance in the
education and development of effective programming. However, recent studies (Austin et al., 2021;
Jain et al., 2021) have confirmed that research into ‘genuine’ program understanding AI is still in
its early stages. If AI can really understand programs as human programmers do, it is imperative
that AI can not only memorize code patterns from training data but also comprehend how to craft
‘algorithmically efficient’ programs. We can imagine that AI can assist novice programmers in
producing efficient codes for algorithmic problems by suggesting code implementations that employ
better algorithms compared to the programmers’ current codes. Additionally, AI can guide these
programmers regarding the relative efficiency of their codes in comparison to average or optimal
implementations.

In this paper, we introduce the CodeComplex dataset, a novel time complexity benchmark dataset.
Our dataset consists of 9,800 program codes (java 4,900, python 4,900) obtained from a competitive
programming platform (Codeforces1), each of which is annotated with complexity classes by human
algorithm experts. As far as we are aware, the CodeComplex dataset is the most extensive public
dataset for code complexity prediction, particularly when compared to currently known datasets of
its kind, the CoRCoD dataset (Sikka et al., 2020) with 932 Java codes and GFG dataset (Moudgalya
et al., 2023) with 1410 C++ and 1373 Python codes.

With CodeComplex, we propose the problem of predicting the worst-case time complexity of a
program code. Using cutting-edge deep neural network models and learning algorithms, we provide
their baseline performances for code complexity prediction. Our baseline algorithms include the
classical machine learning algorithms using hand-crafted features and several state-of-the-art deep
learning (DL) algorithms such as CodeBERT, GraphCodeBERT, UnixCoder, PLBART, CodeT5,
and CodeT5+.

2 CODECOMPLEX: A DATASET OF TIME COMPLEXITY FOR SOURCE CODES

Solution codes
from CodeForces

Categorize by
algorithm type

DP

Search

BFSSort

A*Value

Analyze code
time complexity

Time
complexity
separation

𝑶𝑶(𝟏𝟏) 𝑶𝑶(𝒏𝒏𝟑𝟑) 𝑵𝑵𝑵𝑵… …

Verify code
time complexity

𝑶𝑶(𝒏𝒏𝟐𝟐)

𝑶𝑶(𝒏𝒏𝟑𝟑)

Create dataset
with metadata

Source: …
Problem: …
Time
complexity: …

Figure 1: Overall workflow of CodeComplex dataset creation.
CodeComplex is a collection of codes from competitive programming problems written in two lan-
guages: Java and Python. Our dataset originates from Codeforces, which sources its data from
the CodeContests2, a competitive programming dataset designed for machine learning applications,
developed by DeepMind. It comprises a total of 9,800 codes, with each of the Java and Python lan-
guages contributing 4,900 codes. We categorize these codes into seven distinct classes of time com-
plexity: constant (O(1)), linear (O(n)), quadratic (O(n2)), cubic (O(n3)), logarithmic (O(lnn),
O(n lnn)), and NP-hard. Each complexity class contains a minimum of 500 Java and Python codes.
Out of the 9,800 codes, our team annotated the 9,483 codes. The remaining 317 Java codes are
from the CoRCoD to prevent duplication, as we have confirmed that they also originate from the
CodeContests.

Remark that the CoRCoD (Sikka et al., 2020) is a previous dataset used for the code complexity
prediction problem. CoRCoD classifies Java codes into five complexity classes: O(1), O(n), O(n2),
O(lnn), and O(n lnn). However, the dataset is problematic in its imbalanced class distribution, as
illustrated in Table 1. the dataset size is relatively small for recent DL-based algorithms, consisting
of only 929 Java code samples in total. We have expanded the dataset by including two languages,

1https://codeforces.com/
2https://github.com/deepmind/code contests

2

Under review as a conference paper at ICLR 2024

Table 1: Statistical difference between CoRCoD and CodeComplex. Numbers in parentheses imply
the number of codes from CoRCoD.

Class CoRCoD CodeComplex
Java Java Python

O(1) 143 750 (+ 62) 791
O(n) 382 779 (+ 117) 853
O(n2) 200 765 (+ 48) 657
O(n3) 0 601 606
O(lnn) 54 700 (+ 18) 669
O(n lnn) 150 700 (+ 72) 796
NP-hard 0 605 528

Total 929 4900 (+ 317) 4900

Java and Python, and have considered seven complexity classes instead of five. These complexity
classes are among the most commonly encountered in algorithmic problems, and each class has
at least 500 codes. This expansion results in a total of 4,900 codes, significantly enhancing the
dataset’s suitability for research, particularly in the context of recent DL-based models presented in
Section 3.1.

2.1 ANNOTATION PROCESS

Figure 1 provides an entire process of the CodeComplex creation. Our primary goal in creating
CodeComplex is to establish a strong foundation for classifying time complexities accurately. For
this reason, we have meticulously designed a procedure to produce a robust dataset with minimal
noise and high quality, as outlined below.

Our dataset creation process begins with an examination of algorithmic problems and submitted
codes from Codeforces. Since there are diverse nature of submissions, including incorrect codes in
various programming languages such as C, C++, Java, and Python, we filter the ‘correct’ Java and
Python codes to form our statistical population. Here, a correct code refers to a code that success-
fully passes all test cases, including the hidden ones. Next, we categorize the problems based on
the problem-solving strategies, leveraging annotations from the CodeContests. Each problem in the
dataset is associated with a plausible problem-solving strategy, such as brute force, dynamic pro-
gramming, greedy, backtracking, and more, as provided in the CodeContests. Finally, we conduct
a detailed analysis of each problem, considering the input variables, used data structures, and the
workflow of the code. Based on the given variables, we annotate the code of the problem accord-
ingly, aligning it with its specific input characteristics.

Rules Our code annotation process comprises the following four key rules:

1. Consider the input size as a parameter to determine the time complexity of a code. We
measure the complexity by the largest parameter among them.

2. We take into account the packages and libraries that the code utilizes, such as hashmap,
sorting, and string-matching algorithms. The use of these packages and libraries affects the
time complexity.

3. When there are multiple test cases within a single input, consider each individual test case
as a separate unit for complexity measurement.

4. When a problem provides a fixed constant as input, we classify the case as having a constant
time complexity.

It is important to note that algorithmic problems often have various input formats and constraints
to ensure solvability in a limited time. These constraints significantly affect the actual running time
of a code, deviating from its ideal time complexity. There are scenarios where the problem itself
has a quadratic time complexity, but the provided input constraints result in linear running time.
Additionally, when faced with multiple input parameters, such as the number of inputs or their

3

Under review as a conference paper at ICLR 2024

values, we had to decide on which parameter to consider complexity measurement. Furthermore,
some code submissions leveraged the parameter constraints described in the problem to pre-compute
variables or optimize code execution for improved speed.

2.2 CODE AUGMENTATION WITH CONSISTENT TIME COMPLEXITY

Indeed, while our dataset is currently the largest of its kind, it remains relatively small when com-
pared to the extensive datasets, used in other code-related tasks (Lu et al., 2021; Niu et al., 2023), for
training large language models. This size discrepancy raises concerns about overfitting, especially
when training these substantial models. In order to mitigate this problem, we employ augmentation
techniques to strengthen the dataset’s effectiveness during the training process. We approach aug-
mentation with caution, recognizing the potential impact that the augmentation triggers to the orig-
inal code’s time complexity. Our augmentation strategy centers on implementing transformations
that modify the structure of a code without altering its semantics. These transformations encompass
conversions such as for to while statements, ternary to if statements, and in-lining functions. By
adopting these transformations, we aim to solve the problem of size discrepancy without causing
variations in code semantics that can affect the code’s computational complexity.

2.3 DEAD CODE ELIMINATION

Given that we are working with the codes submitted to a competitive programming platform rather
than well-implemented commercial codes, it is common to encounter instances, which contain meth-
ods and variables that are not accessed after the declaration. We implement a statistical analysis
approach to identify and eliminate these redundant variables and methods.

In the context of Java, which is primarily an object-oriented programming language, a code can be
interpreted in a manner that is invariant to permutations. This means that, in a structural aspect of a
Java code, the order of class or method declarations does not impact the code semantics. Conversely,
Python operates differently. While Python does not support forward declarations in the manner that
Java does, it still maintains permutation invariance with regard to function definitions. As long as the
functions are defined before any executable code is encountered, the order in which the functions
are declared does not alter the code semantics. Thus we are safe to reorder and remove the code
segments enclosed by a function, or a class if they are not referred in any part of the code.

Table 4 presents the performance of our model with pre-training objectives on codes where dead
codes have been removed. We observe the performance gain of the model trained with pre-training
objectives, using the codes after dead code elimination, is marginal on average. However, it is
noteworthy that the technique achieves the best performance on longer codes (1024,∞].

3 EXPERIMENTS

3.1 BASELINE MODELS

We benchmark CodeComplex with SOTA models and some traditional ML algorithms as follows.

ML-based (Sikka et al., 2020) methods are classic ML classification algorithms such as a decision
tree, random forest, and SVM trained with hand-crafted features such as the number of statements,
variables, methods, loops, breaks, states, and the existence of data structures (e.g., HashMap and
HashSet) and algorithms (e.g., sorting).

CodeBERT (Zhong et al., 2020) is a BERT-like pre-trained language model trained on both natural
language (NL) and programming language (PL) like Python, Java, JavaScript.

GraphCodeBERT (Guo et al., 2021) is similar to CodeBERT but leverages data flow information
for pre-training. Note that data flow is a graph that represents a relationship between variables by
analyzing where the value of each variable comes from in the entire code.

UniXCoder (Guo et al., 2022) utilizes mask attention with prefix adapters to leverage cross-
language contents like AST. Encodes AST to a sequence structure that retains all structural in-
formation from the tree.

4

Under review as a conference paper at ICLR 2024

PLBART (Ahmad et al., 2021) is a pre-trained model for program understanding and generation
that uses both encoder and decoder for pre-training.

CodeT5 (Yue Wang & Hoi, 2021), different from PLBART which only treats codes simply as
a sequence of tokens as for NL sentences, relies on code-related features for pre-training such as
identifier prediction and tagging.

CodeT5+ (Wang et al., 2023) is a flexible encoder-decoder architecture in which component mod-
ules can be flexibly combined to suit a wide range of downstream code tasks. Such flexibility is
enabled by the proposed mixture of pretraining objectives to mitigate the pretrain-finetune discrep-
ancy.

3.2 EXPERIMENTAL SETUP

Hyperparameters For training all Transformer-based models, we use the AdamW opti-
mizer (Loshchilov & Hutter, 2019) along with a learning rate scheduler that includes a warm-up
phase with a linear decay. During the fine-tuning pre-trained code understanding models, we set the
base learning rate to 2 · 10−6 and use a weight decay of 1 · 10−2. We train all models for 15 epochs
and utilize a batch size of 6.

Code Data Preprocessing Our initial step involves filtering comments and eliminating import
and package statements that appear on the top of the code using a regular expression, as these
statements do not influence the complexity of the code. We utilize javalang parser3 and Python
builtin module ast to transform the code into its AST and extract hierarchical information for each
respective language.

Subsequently, for training DL models, we employ the byte-pair encoding (BPE) tokenizer of
RoBERTa (Liu et al., 2019) to tokenize the code.

Dataset Split We divide the CodeComplex into training and test datasets using two distinct man-
ners, random split and problem split. The random split, as the name implies, involves randomly
allocating the data in a 4:1 ratio for both Java and Python. As a result, the training and test datasets
comprise 3,920 and 980 codes, respectively.

In the case of the problem split, we also randomly split the data in a similar ratio but ensure that
the training and test datasets do not share any common problems. In other words, instead of ran-
domly selecting codes, we randomly select problems and assign the entire codes associated with the
chosen problems to the test dataset until it constitutes approximately 1/5 of the total 4,900 codes.
This approach is based on the premise that codes solving the same problem tend to exhibit similar
code structures and give a false attribute. When employing the problem split, we conduct five-fold
validation and calculate the average accuracy from these iterations. This is because the prediction
accuracy is often highly sensitive to the choice of problems.

3.3 EXPERIMENTAL RESULTS

Table 2 shows the experimental results of the baselines. The results show that splitting the dataset
with different strategies significantly affects the prediction performance. While the classical ML
methods based on the hand-crafted features show the worst performance on both random split and
problem split, pre-trained models for program languages show a greater performance difference on
random split and problem split exhibit much better performance on the random split. This implies
that the models learn the similarity of codes for the same problem instead of the operational seman-
tics of codes for complexity prediction.

ML vs DL for Complexity Prediction It can be clearly seen that ML methods perform poorly on
both splits. It should be noted that the complexity prediction accuracy is much lower in our result
than the result reported by Sikka et al. (2020). The first reason is that the CodeComplex dataset
has more classes (7) than the CoRCoD dataset (5). Second, we speculate that the training and test
sets have a soft overlap in the experiments as we confirm that there were duplicated codes in the

3https://github.com/c2nes/javalang

5

Under review as a conference paper at ICLR 2024

Table 2: Complexity prediction performance on different dataset splits.

Method Random Problem
Java Python Java Python

Decision Tree 50.6% 48.5% 46.9% 43.7%
Random Forest 54.4% 50.3% 45.3% 45.5%
SVM 38.1% 33.2% 24.7% 20.4%

CodeBERT 73.5% 70.4% 61.4% 52.0%
GraphCodeBERT 82.4% 77.1% 57.2% 57.8%
UniXCoder 82.5% 81.3% 57.9% 55.8%

PLBART 86.3% 74.4% 63.8% 55.4%
CodeT5 79.3% 65.9% 60.2% 49.8%
CodeT5+ 83.3% 75.4% 57.4% 50.0%

Table 3: Complexity prediction accuracy of classification methods for each complexity class.

Category Method O(1) O(n) O(n2) O(n3) O(lnn) O(n lnn) NP-hard

ML-based
Decision Tree 71.8% 15.4% 76.1% 30.5% 50.5% 58.8% 22.2%
Random Forest 68.1% 18.0% 38.4% 25.0% 48.6% 68.0% 67.9%
SVM 42.6% 17.6% 13.1% 6.0% 27.1% 24.9% 77.0%

Encoder
(Java)

CodeBERT 85.5% 60.0% 20.0% 33.3% 69.1% 71.7% 83.9%
GraphCodeBERT 97.4% 53.3% 32.7% 34.0% 52.8% 77.7% 84.9%
UniXCoder 58.7% 53.67 8.96 33.2 67.4 67.7 55.6

Encoder
(Python)

CodeBERT 66.9% 64.4% 44.5% 34.9% 41.6% 64.8% 26.9%
GraphCodeBERT 67.0% 56.5% 50.0% 50.2% 64.9% 67.8% 33.7%
UniXCoder 58.7% 62.2% 48.3 44.0 64.9 64.1 38.4

Enc-Dec
(Java)

PLBART 86.4% 53.3% 37.8% 33.5% 58.5% 76.5% 87.5%
CodeT5 80.5% 42.7% 43.4% 29.4% 65.8% 72.8% 85.1%
CodeT5+ 89.7% 49.3% 15.5% 24.2% 64.8% 75.5% 86.4%

Enc-Dec
(Python)

PLBART 70.1% 63.9% 47.8% 40.6% 59.5% 61.3% 25.9%
CodeT5 65.0% 44.5% 39.0% 37.1% 57.3% 58.5% 40.3%
CodeT5+ 62.2% 55.6% 24.7% 29.6% 70.3% 65.5% 27.1%

929 codes of the CoRCoD dataset. We find that 50 codes from 929 codes have exactly equivalent
codes and two codes have ‘almost equivalent’ codes (which become exactly equivalent after filtering
comments) within the dataset.

While ML methods do not perform well even on a random split, DL models perform robustly on
a random split (around 80% accuracy). Due to a certain amount of problem overlap in random
split, DL models make use of specific token names consistently used for the same problem and
structural similarities for predicting the same complexity class with the code seen during the training.
The performance boost compared to the case of problem split comes from the fact that DL models
successfully exploit the token names from raw codes.

Model structure effectiveness on code understanding Looking at the results of table 3 shows us
that DL models we have invested in have trouble in classifying the cubic time complexity (O(n3)).
In our experiments, the cubic time complexity is predicted as the quadratic time complexity (O(n2))
often. We tend to think this is due to the code flow where the quadratic part is outlined to a function,
and the main function only consists of a linear loop. The models seem to fail at linking the function
name to its declaration. PLBART seems to be better in linking usage to definition since PLBART is
pre-trained to understand program syntax and logical flow.

6

Under review as a conference paper at ICLR 2024

Table 4: Prediction performance on different code lengths

Method (0, 256] (256, 512] (512, 1024] (1024, ∞]
Decision Tree 57.2% 45.6% 40.0% 38.2%
Random Forest 62.3% 46.8% 40.6% 26.4%
SVM 48.9% 18.1% 18.1% 16.6%

CodeBERT(Java) 72.4% 62.8% 60.7% 48.0%
CodeBERT(Python) 56.9% 46.9% 37.5% 22.8%
GraphCodeBERT(Java) 74.6% 61.7% 49.8% 39.4%
GraphCodeBERT(Python) 60.3% 57.8% 44.1% 30.8%
UniXCoder(Java) 58.6% 54.4% 43.2% 31.2%
UniXCoder(Python) 58.6% 54.4% 43.2% 31.2%

PLBART(Java) 74.3% 65.1% 62.5% 52.8%
PLBART(Python) 60.6% 49.4% 39.9% 23.2%
CodeT5(Java) 69.5% 56.5% 52.4% 42.4%
CodeT5(Python) 53.6% 48.1% 36.5% 19.5%
CodeT5+(Java) 72.8% 63.5% 53.0% 44.4%
CodeT5+(Python) 56.4% 42.4% 30.7% 29.8%

Relationship between Code Length and Accuracy Table 4 shows the prediction performance of
models on codes of different lengths. We partition the codes in the test set into four groups according
to the length of sequences processed by the javalang and pythons built-in tokenizer and calculate
the prediction accuracy for each group. We can confirm the clear tendency that the prediction per-
formance degrades as the length of code increases in every model. In fact, after applying dead code
elimination(unreachable or unused codes), results were improved across every model. Also, models
like CodeT5 have been pre-trained to a token length of 256 which makes the situation worse. As we
have argued before, linking functions to their definitions seems to be crucial, and longer code leads
to increasing difficulty.

Error Case Analysis Table 3 and Fig. 2 show the type of errors model more frequently makes.
We can see that the model is easily confused on polynomial-time algorithms including O(n), O(n2)
and O(n3). Our model makes many mispredictions for O(n) codes by predicting other classes
uniformly except O(2n) and is also frequently confused between quadratic and cubic algorithms.

Fig. 3 shows two failure cases where our model fails to predict the correct complexity class of
codes. Fig. 3a is the case where our model predicts quadratic time complexity for the code with
linear time complexity. At a glance, the code actually seems to be in O(n2) due to the nested for
loops. However, the number of iterations is actually controlled by an integer variable k. Another
example in Fig. 3b is also interesting. Our model predicts the complexity class as O(n2) but the
actual complexity is O(n3) because the method inside the nested for loops named lowestCost
runs in linear time in the size of the input. From these error cases, we can deduce that our model
focuses on the computational structure of a code rather than merely the token distribution of a code.

4 RELATED WORK

Analyzing Time Complexity of Programs McCabe (1976) introduced a metric for quantitatively
measuring program complexity known as cyclomatic complexity. In essence, cyclomatic complexity
quantifies the number of linearly dependent paths in a program. Bentley et al. (1980) introduced the
Master theorem, which is a valuable tool for analyzing the time complexity of divide-and-conquer
algorithms. Its analysis is based on expressing the algorithm’s time complexity as a recurrence
relation and providing methods to solve this relation.

In a more recent study, Sikka et al. (2020) focused on machine learning-based methods for code
complexity prediction. They released a novel code dataset containing 929 Java codes, each an-
notated with runtime complexities and proposed baselines of machine learning-based models with

7

Under review as a conference paper at ICLR 2024

Figure 2: Confusion matrices for the predictions on problem split with CodeBERT

hand-engineered features. Their approach involved extracting various features from the code such as
counts of loops, methods, variables, jumps, breaks, switches and the presence of specific data struc-
tures or algorithms such as priority queue, hash map, hash set, and sorting functions. Subsequently,
they applied machine-learning classification algorithms, including K-means, random forest, deci-
sion tree, SVM and more, to make predictions based on these features. Additionally, they also
reported similar performance results by embedding the graph structure of a program’s AST with a
neural graph embedding framework, graph2vec (Narayanan et al., 2017). Prenner & Robbes (2021)
analyzed the performance of the pre-trained programming language understanding model such as
CodeBERT (Feng et al., 2020) for predicting code complexity. They presented the experimental
results that the pre-trained model can be a promising solution to the problem.

Most recently, Moudgalya et al. (2023) approached the question of analyzing time and space com-
plexity by the utilization of language models. They used codes scraped from GeeksForGeeks and
CoRCoD alongside our preceding dataset which consists of 3,803 Java codes. They showed that
pre-trained language models such as GraphCodeBERT can be fine-tuned to predict time and space
complexity using such datasets.

Programming Language Understanding Models There have been numerous studies on pre-
training methods for understanding programming languages. Feng et al. (2020) proposed Code-
BERT, which is a RoBERTa-based model pre-trained on multiple programming languages with
masked language modeling (MLM) and replaced token prediction (RTD) objectives. Guo et al.
(2021) introduced GraphCodeBERT which is strengthened from CodeBERT by incorporating data
flow information in the pre-training stage. Jiang et al. (2021) introduced TreeBERT, a tree-based
pre-trained model that focuses on utilizing the extracted tree structure by encoding an AST as a set
of composition paths. TreeBERT is trained by two novel objectives called tree-masked language
modeling (TMLM) and node order prediction (NOP). Rozière et al. (2021) investigated another pro-
gramming language-oriented pre-training objective called DOBF, which is based on deobfuscation
of identifier names in source code. Note that we do not use TreeBERT and DOBF as our baseline as
they are mainly for code generation tasks not for the classification task.

Recently, Ahmad et al. (2021) proposed PLBART (Program and Language BART), which learns the
interaction between program codes and natural language descriptions by leveraging the idea of de-
noising autoencoder that uses a bidirectional encoder and an auto-regressing decoder. Yue Wang &
Hoi (2021) introduced CodeT5, which leverages the code-specific characteristics in the pre-training
stage by employing the new objectives such as masked random token prediction, masked identifier
prediction, and identifier prediction objectives.

8

Under review as a conference paper at ICLR 2024

1 int n = nextInt();
2 int k = nextInt();
3 int[] a = new int[n];
4 for (int i = 0; i < n; i++) {
5 a[i] = nextInt();
6 }
7 Set<Integer> set = new

HashSet<Integer>();
8 for (int i = 0; i < a.length;

i++) {
9 set.add(a[i]);

10 if (set.size() == k) {
11 Set<Integer> set2 = new

HashSet<Integer>();
12 for (int j = i; j >= 0;

j--) {
13 set2.add(a[j]);
14 if (set2.size() ==

k) {
15 out.print((j + 1)

+ " " + (i +
1));

16 out.close();
17 return;
18 }
19 }
20 }
21 }

(a) A code snippet from a program whose complexity
is predicted as O(n2) by our model while the actual
complexity is in O(n).

1 public static void
main(String[] args){

2 for (int i = 0; i < n;
i++) {

3 for (int j = 0; j < m;
j++) {

4 if (steps % 2 != 0) {
5 out.print(-1 + "

");
6 } else {
7 out.print(2 *

lowestCost(i,
j, steps / 2)
+ " ");

8 }
9 }

10 }
11 }
12 private long lowestCost(int

i, int j, int distance) {
13 long minDist =

Long.MAX_VALUE;
14 if (i > 0)
15 minDist =

Math.min(minDist,
distI[i - 1][j] +
lowestCost(i - 1,
j, distance - 1));

16 ...
17 return minDist;
18 }

(b) A code snippet from a program whose complexity
is predicted as O(n2) by our model while the actual
complexity is in O(n3).

Figure 3: Failure examples of the most frequent mispredictions discovered from a confusion matrix.

5 CONCLUSION

We present CodeComplex, a multi-language benchmark dataset for classifying code running time.
We showcase the usage of pre-trained SOTA models and classical algorithms for predicting the
computational complexity with CodeComplex. The results show that improvements could be made,
and that AI can indeed be a future companion on coding. CodeComplex is the biggest dataset of
its kind, and we used precautious steps in producing the dataset. We hope CodeComplex to bring a
spark in this field. For future work

REPRODUCIBILITY

For reproducing the results of our paper, please refer to the models and data link in the abstract.
The material contains data and models along with data preprocessing and the splitting method by
problem into five-fold splits for verifying the generalization of our model to unseen problems.

REFERENCES

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for pro-
gram understanding and generation. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2655–2668, 2021.

9

Under review as a conference paper at ICLR 2024

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Benjamin Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom B. Brown,
Jack Clark, Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a
laboratory for alignment. CoRR, abs/2112.00861, 2021.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021.

Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general method for solving divide-and-
conquer recurrences. SIGACT News, 12(3):36–44, 1980.

Jacob Burnim, Sudeep Juvekar, and Koushik Sen. WISE: automated test generation for worst-case
complexity. In 31st International Conference on Software Engineering, ICSE 2009, pp. 463–473.
IEEE, 2009.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming
and natural languages. In Findings of the Association for Computational Linguistics: EMNLP
2020, volume EMNLP 2020 of Findings of ACL, pp. 1536–1547. Association for Computational
Linguistics, 2020.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code
representations with data flow. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event. OpenReview.net, 2021.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. UniXcoder: Unified
cross-modal pre-training for code representation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7212–7225, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
499. URL https://aclanthology.org/2022.acl-long.499.

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram K. Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis.
CoRR, abs/2112.02969, 2021.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu. Treebert: A tree-based pre-trained
model for programming language. In Proceedings of the Thirty-Seventh Conference on Uncer-
tainty in Artificial Intelligence, UAI 2021, volume 161 of Proceedings of Machine Learning Re-
search, pp. 54–63. AUAI Press, 2021.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

10

https://aclanthology.org/2022.acl-long.499

Under review as a conference paper at ICLR 2024

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. In Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, 2021.

T. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2(04):308–320,
1976.

Kaushik Moudgalya, Ankit Ramakrishnan, Vamsikrishna Chemudupati, and Xing Han Lu. Tasty:
A transformer based approach to space and time complexity, 2023.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. CoRR,
abs/1707.05005, 2017.

Changan Niu, Chuanyi Li, Vincent Ng, and Bin Luo. CrossCodeBench: Benchmarking cross-task
generalization of source code models. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, pp. 537–549. IEEE, 2023.

Ana Filipa Nogueira. Predicting software complexity by means of evolutionary testing. In
IEEE/ACM International Conference on Automated Software Engineering, ASE’12, pp. 402–405.
ACM, 2012.

Julian Aron Aron Prenner and Romain Robbes. Making the most of small software engineering
datasets with modern machine learning. IEEE Transactions on Software Engineering, 2021.

Baptiste Rozière, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. DOBF: A deob-
fuscation pre-training objective for programming languages. CoRR, abs/2102.07492, 2021.

Jagriti Sikka, Kushal Satya, Yaman Kumar, Shagun Uppal, Rajiv Ratn Shah, and Roger Zimmer-
mann. Learning based methods for code runtime complexity prediction. In Advances in Infor-
mation Retrieval - 42nd European Conference on IR Research, ECIR 2020, Proceedings, Part I,
volume 12035 of Lecture Notes in Computer Science, pp. 313–325. Springer, 2020.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 2(42):230–265, 1936.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023.

Shafiq Joty Yue Wang, Weishi Wang and Steven C.H. Hoi. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, pp.
8696–8708, 2021.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan Duan, Ming Zhou, Ming Gong, Linjun Shou,
Daxin Jiang, Jiahai Wang, and Jian Yin. Logicalfactchecker: Leveraging logical operations for
fact checking with graph module network. In Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2020, pp. 6053–6065. Association for Computational
Linguistics, 2020.

A OVERVIEW ON CODECOMPLEX DATASET

Our dataset construction process owes much to the recently released dataset called the CodeCon-
tests4, a competitive programming dataset for machine learning by DeepMind. We constructed a
dataset with the codes from the CodeContests dataset that are again sourced from the coding com-
petition platform Codeforces. Our dataset contains 4,120 codes in seven complexity classes, where

4https://github.com/deepmind/code contests

11

Under review as a conference paper at ICLR 2024

there are new 500 Java source codes annotated with each complexity class. The seven complexity
classes are constant (O(1)), linear (O(n)), quadratic (O(n2)), cubic (O(n3)), O(lnn), O(n lnn),
and NP-hard. We also re-use 317 Java codes from CoRCoD as we confirmed that they also belong
to the CodeContests dataset as the other 3803 codes during the dataset creation process.

For constructing the dataset, we asked twelve human annotators who have more than five years of
programming experience and algorithmic expertise to inspect the codes manually and classify them
into one of the seven complexity classes. Once each human annotator reported the initial result,
we collected the annotation results and inspected them once again by assigning the initial result to
two different annotators other than the initial annotator. Finally, we have collected 3803 complexity
annotated codes in which there are 500 codes for each complexity class.

First, we selected several problems that are expected to belong to one of the considered complexity
classes and submitted codes for the problems from Codeforces. The submitted codes contain both
correct and incorrect solutions, and they are implemented in various programming languages such
as C, C++, Java, and Python. We sorted out only the correct Java codes for our dataset construction.

In the second step, before delving into the time complexity of problems, we divide the problems by
the problem-solving strategy such as sorting, DP (dynamic programming), divide-and-conquer, DFS
(depth-first search), BFS (breadth-first search), A*, and so on. This is because it is helpful to know
the type of problem-solving strategy used to solve the problem for human annotators to analyze the
time complexity, and problems solved by the same strategy tend to have similar time complexity.

Third, we uniformly assign problems and correct codes for the problems to human annotators and let
them carefully examine the problem-code pairs to label the time complexity of the codes. Notice that
there can be solutions with different time complexities for a problem depending on how to actually
implement the solutions. We, therefore, provide a specific guideline that contains instructions and
precautions to annotators so that human annotators can assign correct and consistent labels to the
assigned codes.

After the initial annotation process, we collect the results and assign them to different annotators
to carefully cross-check the correctness of the initial annotation results. Primarily, we instruct the
annotators again to carefully verify the results in accordance with the precautions provided in the
annotation guideline.

A.1 FURTHER DETAILS ON CODECOMPLEX DATASET CONSTRUCTION

We gathered 128,000,000 submissions of Codeforces, where 4,086,507 codes are implemented in
Java language. After discarding the incorrect codes (that do not pass all the test cases), there are
2,034,925 codes and 7,843 problems. Then the problems are split with their tags (e.g. sorting, dfs,
greedy, etc) and given to the annotators with the guidelines in Section A.2. We were able to gather
around 500 problems and 15,000 codes for the seven complexity classes.

As the complexity of codes for the same problem can vary depending on the implemented algo-
rithms, it is obvious that the codes we inspect also have various complexity classes. However,
we only target seven complexity classes that are the most frequently used complexity classes for
algorithmic problems. Accordingly, there were some codes we inspected which belong to other
complexity classes such as O(n5) or O(ln lnn). We inspected around 800 problems and found out
that the complexity classes of approximately 15% of the problems belong outside the chosen com-
plexity classes. Although it is still possible that one might implement codes with complexity class
that falls into the seven complexity classes, we simply rule out the problems from our dataset to ease
the annotation process.

During this process, we found out that many codes are not optimal for the given problem and some
codes are too difficult to analyze due to their complex code structure. Moreover, there are many
codes with a number of methods that are never used, mainly because the codes come from a coding
competition platform and participants prefer just to include the methods that are frequently used in
problem-solving regardless of the actual usage of the methods.

Our dataset, the CodeComplex dataset is constructed from the code instances from the Codeforces
platform which are recently revealed from AlphaCode. As Codeforces is a coding competition plat-
form, our dataset consists of codes that implement various algorithms that are designed to solve

12

Under review as a conference paper at ICLR 2024

algorithmically challenging problems. Our dataset offers a larger number of source codes with a
broader category of complexity classes compared to the sole existing complexity prediction bench-
mark dataset, CoRCoD dataset (Sikka et al., 2020). In the section below, we share the detailed
guidelines provided to human annotators for the precise code complexity annotation process.

A.2 GUIDELINE OF PRODUCTION

1. Check the variables that are described in the algorithm problems. Each algorithm imple-
mentation can have many variable instances and we only consider the variables that are
given as inputs from the problems for calculating the time complexity.

* For convenience, we use n and m in the guideline to denote the input variable and |n| and
|m| to denote the size of n and m.

2. Considering the input variable from the prior step, follow the below instructions for each
input type and calculate the time complexity.
(a) When only a number n is given as an input, calculate the time complexity proportional

to n. Do the same thing when there are two or more variables. For instance, when
only n is given as an input, the variable used to denote the time complexity of a code
is n.

(b) When a number n and m numeric instances are given as inputs, calculate the time
complexity proportional to the one with higher complexity. For instance, when m =
n2, we compute the complexity of a code with m. If the implemented algorithm runs
in O(n2) = O(m), it belongs to the linear complexity class.

(c) If the input is given as constant values, the complexity of a given code also belongs
to the constant class. For instance, if an algorithm problem states that exactly 3 nu-
meric values are given as inputs, the solution code only uses the constant number of
operations. Therefore, the code belongs to the constant class.

3. Consider the case where the code utilizes the input constraints of the problem. When the
input is given by n ≤ a, the code can use the fixed value a in the problem instead of using
n. Mark these codes as unsuitable.

4. Consider the built-in library that the implemented algorithm is using (e.g. HashMap, sort,
etc.) to calculate the time complexity of an entire code. For instance, given n numeric
instances as inputs, when an implemented algorithm uses O(n) iterations of built-in sort
algorithm for n numeric instances, the time complexity for the algorithm is O(n2 lnn).

5. When the code has unreachable codes, only consider the reachable code.
6. Mark the item that does not belong to any of the 7 complexity classes.

B FAILURE CASES

• Listing 1 exhibits a failure example where our model predicts O(2n) for a code with
O(lnn) complexity. We suspect that the primary reason is the usage of bitwise operators.
When we filter the codes that use any bitwise operator at least once from our CodeComplex
dataset, about 56% of the codes belong to the class O(2n), which implies NP-hardness. We
find that many implementations for NP-hard problems rely on bitwise operators as they can
efficiently manage the backtracking process by manipulating bit-level flags.

Listing 1: A failure example of our model (GT: O(lnn), Prediction: O(2n)).
1 public class mad {
2 public static void main(String[] args) {
3 Scanner sc = new Scanner(System.in);
4 int cura = 0, curb = 0;
5 int ver;
6 System.out.println("? 0 0");
7 System.out.flush();
8 ver = sc.nextInt();
9 for (int i = 29; i >= 0; i--) {

10 System.out.println("? " + (cura + (1 << i)) + " " + curb);

13

Under review as a conference paper at ICLR 2024

11 System.out.flush();
12 int temp1 = sc.nextInt();
13 System.out.println("? " + cura + " " + (curb + (1 << i)));
14 System.out.flush();
15 int temp2 = sc.nextInt();
16 if (temp1 != temp2) {
17 if (temp2 == 1) {
18 cura += (1 << i);
19 curb += (1 << i);
20 }
21 } else {
22 if (ver == 1) cura += (1 << i);
23 if (ver == -1) curb += (1 << i);
24 ver = temp1;
25 }
26 }
27 System.out.println("! " + cura + " " + curb);
28 }
29 }

• Listing 2 demonstrates the case when our model predicts constant time complexity O(1) for
a code that runs in O(n) time. We suspect that our model may have ignored the existence
of the check method which actually determines the O(n) time complexity or considered
the argument of check as constant.

Listing 2: A failure example of our model (GT: O(n), Prediction: O(1)).
1 public class abc {
2 public static int check(StringBuilder s) {
3 int countRemove = 0;
4 if (!s.toString().contains("xxx")) return countRemove;
5 else {
6 for (int i = 1; i < s.length() - 1; i++) {
7 if (s.charAt(i - 1) == ’x’ && s.charAt(i) == ’x’ &&

s.charAt(i + 1) == ’x’) {
8 countRemove++;
9 }

10 }
11 return countRemove;
12 }
13 }
14

15 public static void main(String[] args) {
16 Scanner sc = new Scanner(System.in);
17 int n = sc.nextInt();
18 String s = sc.next();
19 StringBuilder sb = new StringBuilder("");
20 sb.append(s);
21 System.out.println(check(sb));
22 }
23 }

• Listing 3 shows the case where our model predicts the quadratic time complexity O(n2)
when the ground-truth label is O(n lnn). We guess that our model simply translates the
nested for loops into the quadratic time complexity. However, the outer loop is to repeat
each test case and therefore should be ignored. Then, the O(n lnn) complexity can be
determined by the sort function used right before the nested loops.

Listing 3: A failure example of our model (GT: O(n lnn), Prediction: O(n2)).
1 ppublic class round111A {

14

Under review as a conference paper at ICLR 2024

2 public static void main(String[] args) {
3 Scanner sc = new Scanner(System.in);
4 int n = sc.nextInt();
5 int[] coins = new int[n];
6 for (int i = 0; i < n; ++i) coins[i] = sc.nextInt();
7 Arrays.sort(coins);
8 int ans = (int) 1e9;
9 for (int i = 1; i <= n; ++i) {

10 int sum1 = 0;
11 int c = 0;
12 int j = n - 1;
13 for (j = n - 1; j >= 0 && c < i; --j, ++c) {
14 sum1 += coins[j];
15 }
16 int sum2 = 0;
17 for (int k = 0; k <= j; ++k) sum2 += coins[k];
18 if (sum1 > sum2) {
19 System.out.println(i);
20 return;
21 }
22 }
23 }
24 }

• Listing 4 shows the case when our model is confused exponential complexity O(2n) with
quadratic complexity O(n2). The code actually runs in exponential time in the worst-case
but our model simply returns quadratic time complexity as it does not take into account the
recursive nature of the method solve.

Listing 4: A failure example of our model (GT: O(2n), Prediction: O(n2)).
1 public class D {
2 static int n, KA, A;
3 static int[] b;
4 static int[] l;
5 static double ans = 0;
6

7 public static void main(String[] args) throws IOException {
8 Scanner in = new Scanner(System.in);
9 n = in.nextInt();

10 KA = in.nextInt();
11 A = in.nextInt();
12 b = new int[n];
13 l = new int[n];
14 for (int i = 0; i < l.length; i++) {
15 b[i] = in.nextInt();
16 l[i] = in.nextInt();
17 }
18 dp = new double[n + 2][n + 2][n * 9999 + 2];
19 go(0, KA);
20 System.out.printf("%.6f\n", ans);
21 }
22

23 public static void go(int at, int k) {
24 if (at == n) {
25 ans = Math.max(ans, solve(0, 0, 0));
26 return;
27 }
28 for (int i = 0; i <= k; i++) {
29 if (l[at] + i * 10 <= 100) {
30 l[at] += i * 10;
31 go(at + 1, k - i);
32 l[at] -= i * 10;

15

Under review as a conference paper at ICLR 2024

33 }
34 }
35 }
36

37 static double dp[][][];
38

39 public static double solve(int at, int ok, int B) {
40 if (at == n) {
41 if (ok > n / 2) {
42 return 1;
43 } else {
44 return (A * 1.0) / (A * 1.0 + B);
45 }
46 }
47 double ret = ((l[at]) / 100.0) * solve(at + 1, ok + 1, B) +

(1.0 - ((l[at]) / 100.0)) * solve(at + 1, ok, B + b[at]);
48 return ret;
49 }
50

51 }

• Listing 5 shows the case when our model predicts O(lnn) for a code with O(n2) com-
plexity. It is easily seen that the inversions function determines the quadratic time
complexity by the nested for loops. We suspect that somehow our model does not take
into account the inversions function in the complexity prediction and instead focuses
on the modulo (%) operator to draw the wrong conclusion that the complexity is in O(lnn).

Listing 5: A failure example of our model (GT: O(n2), Prediction: O(lnn)).
1 public class maestro {
2 public static long inversions(long[] arr) {
3 long x = 0;
4 int n = arr.length;
5 for (int i = n - 2; i >= 0; i--) {
6 for (int j = i + 1; j < n; j++) {
7 if (arr[i] > arr[j]) {
8 x++;
9 }

10 }
11 }
12 return x;
13 }
14

15 public static void main(String[] args) {
16 Scanner sc = new Scanner(System.in);
17 int n = sc.nextInt();
18 long[] arr = new long[n];
19 for (int i = 0; i < n; i++) arr[i] = sc.nextLong();
20 long m = sc.nextLong();
21 long x = inversions(arr) % 2;
22 for (int i = 0; i < m; i++) {
23 int l = sc.nextInt() - 1;
24 int r = sc.nextInt() - 1;
25 if ((r - l + 1) % 4 > 1) x = (x + 1) % 2;
26 if (x == 1) System.out.println("odd");
27 else System.out.println("even");
28 }
29 }
30 }

16

Under review as a conference paper at ICLR 2024

C FURTHER DETAILS ON DEAD CODE ELIMINATION

In a broad sense, the dead code includes redundant code, unreachable code, oxbow code, and so
on. We only focus on eliminating unreachable codes, mainly methods and classes that are declared
but used nowhere in the code. In order to find such dead codes, we first parse a Java code into an
AST and discover methods and classes that do not exist in any method call, class declaration, and
arguments of methods. Once we discover such unused methods and classes, we remove the codes
corresponding to the declarations of these methods and classes.

Listings 6 and 7 show a running example of the dead code elimination process. From the code in
Listing 6, we can obtain the code in Listing 7 by applying the dead code elimination. It is readily seen
that the number of lines decreases from 211 to 101 by the elimination process. In fact, our model
predicts O(lnn) and O(1) for the complexity of the code before and after dead code elimination,
respectively, while the actual complexity of the code is O(1).

Listing 6: An example code containing many dead codes such as unused methods and variables.
1 public class Main {
2 static long mod = ((long) 1e9) + 7;
3

4 public static int gcd(int a, int b) {
5 if (b == 0) return a;
6 else return gcd(b, a % b);
7 }
8

9 public static long pow_mod(long x, long y) {
10 long res = 1;
11 x = x % mod;
12 while (y > 0) {
13 if ((y & 1) == 1) res = (res * x) % mod;
14 y = y >> 1;
15 x = (x * x) % mod;
16 }
17 return res;
18 }
19

20 public static int lower_bound(int[] arr, int val) {
21 int lo = 0;
22 int hi = arr.length - 1;
23 while (lo < hi) {
24 int mid = lo + ((hi - lo + 1) / 2);
25 if (arr[mid] == val) {
26 return mid;
27 } else if (arr[mid] > val) {
28 hi = mid - 1;
29 } else lo = mid;
30 }
31 if (arr[lo] <= val) return lo;
32 else return -1;
33 }
34

35 public static int upper_bound(int[] arr, int val) {
36 int lo = 0;
37 int hi = arr.length - 1;
38 while (lo < hi) {
39 int mid = lo + ((hi - lo) / 2);
40 if (arr[mid] == val) {
41 return mid;
42 } else if (arr[mid] > val) {
43 hi = mid;
44 ;
45 } else lo = mid + 1;
46 }
47 if (arr[lo] >= val) return lo;

17

Under review as a conference paper at ICLR 2024

48 else return -1;
49 }
50

51 public static void main(String[] args) throws java.lang.Exception {
52 Reader sn = new Reader();
53 Print p = new Print();
54 int n = sn.nextInt();
55 while ((n--) > 0) {
56 int a = sn.nextInt();
57 int b = sn.nextInt();
58 int small = Math.min(a, b);
59 int large = Math.max(a, b);
60 long steps = 0;
61 while (small != 0) {
62 steps += (long) (large / small);
63 int large1 = small;
64 small = large % small;
65 large = large1;
66 }
67 p.printLine(Long.toString(steps));
68 }
69 p.close();
70 }
71 }
72

73 class Pair implements Comparable<Pair> {
74 int val;
75 int in;
76

77 Pair(int a, int b) {
78 val = a;
79 in = b;
80 }
81

82 @Override
83 public int compareTo(Pair o) {
84 if (val == o.val) return Integer.compare(in, o.in);
85 else return Integer.compare(val, o.val);
86 }
87 }
88

89 class Reader {
90 final private int BUFFER_SIZE = 1 << 16;
91 private DataInputStream din;
92 private byte[] buffer;
93 private int bufferPointer, bytesRead;
94

95 public boolean isSpaceChar(int c) {
96 return c == ’ ’ || c == ’\n’ || c == ’\r’ || c == ’\t’ || c ==

-1;
97 }
98

99 public Reader() {
100 din = new DataInputStream(System.in);
101 buffer = new byte[BUFFER_SIZE];
102 bufferPointer = bytesRead = 0;
103 }
104

105 public Reader(String file_name) throws IOException {
106 din = new DataInputStream(new FileInputStream(file_name));
107 buffer = new byte[BUFFER_SIZE];
108 bufferPointer = bytesRead = 0;
109 }
110

111 public String readLine() throws IOException {

18

Under review as a conference paper at ICLR 2024

112 byte[] buf = new byte[64];
113 int cnt = 0, c;
114 while ((c = read()) != -1) {
115 if (c == ’\n’) break;
116 buf[cnt++] = (byte) c;
117 }
118 return new String(buf, 0, cnt);
119 }
120

121 public String readWord() throws IOException {
122 int c = read();
123 while (isSpaceChar(c)) c = read();
124 StringBuilder res = new StringBuilder();
125 do {
126 res.appendCodePoint(c);
127 c = read();
128 } while (!isSpaceChar(c));
129 return res.toString();
130 }
131

132 public int nextInt() throws IOException {
133 int ret = 0;
134 byte c = read();
135 while (c <= ’ ’) c = read();
136 boolean neg = (c == ’-’);
137 if (neg) c = read();
138 do {
139 ret = ret * 10 + c - ’0’;
140 } while ((c = read()) >= ’0’ && c <= ’9’);
141 if (neg) return -ret;
142 return ret;
143 }
144

145 public long nextLong() throws IOException {
146 long ret = 0;
147 byte c = read();
148 while (c <= ’ ’) c = read();
149 boolean neg = (c == ’-’);
150 if (neg) c = read();
151 do {
152 ret = ret * 10 + c - ’0’;
153 } while ((c = read()) >= ’0’ && c <= ’9’);
154 if (neg) return -ret;
155 return ret;
156 }
157

158 public double nextDouble() throws IOException {
159 double ret = 0, div = 1;
160 byte c = read();
161 while (c <= ’ ’) c = read();
162 boolean neg = (c == ’-’);
163 if (neg) c = read();
164 do {
165 ret = ret * 10 + c - ’0’;
166 } while ((c = read()) >= ’0’ && c <= ’9’);
167 if (c == ’.’) {
168 while ((c = read()) >= ’0’ && c <= ’9’) {
169 ret += (c - ’0’) / (div *= 10);
170 }
171 }
172 if (neg) return -ret;
173 return ret;
174 }
175

176 private void fillBuffer() throws IOException {

19

Under review as a conference paper at ICLR 2024

177 bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
178 if (bytesRead == -1) buffer[0] = -1;
179 }
180

181 private byte read() throws IOException {
182 if (bufferPointer == bytesRead) fillBuffer();
183 return buffer[bufferPointer++];
184 }
185

186 public void close() throws IOException {
187 if (din == null) return;
188 din.close();
189 }
190 }
191

192 class Print {
193 private final BufferedWriter bw;
194

195 public Print() {
196 bw = new BufferedWriter(new OutputStreamWriter(System.out));
197 }
198

199 public void print(String str) throws IOException {
200 bw.append(str);
201 }
202

203 public void printLine(String str) throws IOException {
204 print(str);
205 bw.append("\n");
206 }
207

208 public void close() throws IOException {
209 bw.close();
210 }
211 }

Listing 7: A code obtained from Listing 7 by eliminating dead codes.
1 public class Main {
2 static long mod = ((long) 1e9 + 7);
3

4 public static int gcd(int a, int b) {
5 if ((b == 0)) return a;
6 else return gcd(b, (a % b));
7 }
8

9 public static void main(String[] args) throws java.lang.Exception {
10 Reader sn = new Reader();
11 Print p = new Print();
12 int n = sn.nextInt();
13 while ((n > 0)) {
14 int a = sn.nextInt();
15 int b = sn.nextInt();
16 int small = Math.min(a, b);
17 int large = Math.max(a, b);
18 long steps = 0;
19 while ((small != 0)) {
20 steps += (long) (large / small);
21 int large1 = small;
22 small = (large % small);
23 large = large1;
24 }
25 p.printLine(Long.toString(steps));
26 }

20

Under review as a conference paper at ICLR 2024

27 p.close();
28 }
29 }
30

31 class Reader {
32 final private int BUFFER_SIZE = (1 << 16);
33 private DataInputStream din;
34 private byte[] buffer;
35 private int bufferPointer, bytesRead;
36

37 public boolean isSpaceChar(int c) {
38 return (((((c == ’ ’) || (c == ’\n’)) || (c == ’\r’)) || (c ==

’\t’)) || (c == -1));
39 }
40

41 public Reader() {
42 din = new DataInputStream(System.in);
43 buffer = new byte[BUFFER_SIZE];
44 bufferPointer = bytesRead = 0;
45 }
46

47 public Reader(String file_name) throws IOException {
48 din = new DataInputStream(new FileInputStream(file_name));
49 buffer = new byte[BUFFER_SIZE];
50 bufferPointer = bytesRead = 0;
51 }
52

53 public int nextInt() throws IOException {
54 int ret = 0;
55 byte c = read();
56 while ((c <= ’ ’)) c = read();
57 boolean neg = (c == ’-’);
58 if (neg) c = read();
59 do {
60 ret = (((ret * 10) + c) - ’0’);
61 } while ((((c = read()) >= ’0’) && (c <= ’9’)));
62 if (neg) return -ret;
63 return ret;
64 }
65

66 private void fillBuffer() throws IOException {
67 bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
68 if ((bytesRead == -1)) buffer[0] = -1;
69 }
70

71 private byte read() throws IOException {
72 if ((bufferPointer == bytesRead)) fillBuffer();
73 return buffer[bufferPointer++];
74 }
75

76 public void close() throws IOException {
77 if ((din == null)) return;
78 din.close();
79 }
80 }
81

82 class Print {
83 final private BufferedWriter bw;
84

85 public Print() {
86 bw = new BufferedWriter(new OutputStreamWriter(System.out));
87 }
88

89 public void print(String str) throws IOException {
90 bw.append(str);

21

Under review as a conference paper at ICLR 2024

91 }
92

93 public void printLine(String str) throws IOException {
94 print(str);
95 bw.append("\n");
96 }
97

98 public void close() throws IOException {
99 bw.close();

100 }
101 }

22

	Introduction
	CodeComplex: A Dataset of Time Complexity for Source Codes
	Annotation Process
	Code Augmentation with Consistent Time Complexity
	Dead Code Elimination

	Experiments
	Baseline Models
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion
	Overview on CodeComplex Dataset
	Further Details on CodeComplex Dataset Construction
	Guideline of Production

	Failure Cases
	Further Details on Dead Code Elimination

