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Abstract001

In this paper, we present an alternative ap-002
proach to language model training that empha-003
sizes data quality over sheer volume. Using the004
authoritative Encyclopaedia Britannica as cor-005
pus, we first limit the size to a 10-million-word006
dataset. We then expand the training of a spe-007
cialized model for encyclopedic content genera-008
tion with the complete 38-million-word corpus.009
Central to our approach is the use of knowl-010
edge distillation, which allowed us to train com-011
pact student models guided by larger teacher012
models, achieving high performance while sig-013
nificantly reducing model complexity. Build-014
ing on the BabyLlama architecture (Timiryasov015
and Tastet, 2023), our findings reveal that high-016
quality, curated data combined with effective017
distillation techniques can facilitate efficient018
and effective learning. This work highlights019
promising directions for resource-constrained020
applications and specialized domain modeling.021
We will release our programs and models if this022
paper is accepted.023

1 Introduction024

The development of large language models (LLMs)025

has been predominantly driven by massive datasets,026

often exceeding a trillion tokens. This approach027

follows the Chinchilla scaling law, which suggests028

an optimal ratio of 20 tokens per model parameter029

(Hoffmann et al., 2022). However, this scaling tra-030

jectory presents several critical challenges for the031

field. First, the availability of high-quality train-032

ing data has become a significant bottleneck. As033

models grow larger, finding sufficient high-quality034

data becomes increasingly difficult, often forcing035

researchers to rely on noisier sources. Second,036

current approaches demonstrate remarkably low037

sample efficiency compared to human language038

acquisition.039

These challenges point to a fundamental ques-040

tion: Can we develop more efficient training ap-041

proaches by prioritizing data quality over quan-042

tity? In this paper, we show that carefully cu- 043

rated, expert-reviewed content might enable more 044

efficient learning than the vast but heterogeneous 045

datasets currently in use. In our experiments, we 046

utilize the Encyclopaedia Britannica as our training 047

corpus, pursuing two distinct but complementary 048

research directions. 049

In the first experiments, we followed the 050

BabyLM Challenge setup (Warstadt et al., 2023), 051

which constrains models to training on just 10 mil- 052

lion words. This constraint aligns with our interest 053

in efficient learning from limited but high-quality 054

data. Our second set of experiments explores spe- 055

cialized model development using the complete En- 056

cyclopaedia Britannica corpus of 38 million words, 057

aiming at creating a model specifically tuned for 058

encyclopedic content generation. 059

2 Related Work 060

The introduction of the Transformer architecture 061

(Vaswani et al., 2017) and its pretraining with 062

BERT (Devlin et al., 2019) revolutionized the NLP 063

field. However, as they improved in performance, 064

they also increased in size and in training corpus 065

needs. BERT used 3.3B words crawled from Book- 066

Corpus and English Wikipedia. The issue became 067

bigger with newer models: RoBERTa (Liu et al., 068

2019) was trained on more than 30B words, XL- 069

Net (Yang et al., 2020) on 33B words, T5 (Raffel 070

et al., 2023) and OPT (Zhang et al., 2022) on 170B 071

and 180B words respectively, GPT-3 (Brown et al., 072

2020) on 300B words, while Chinchilla (Hoffmann 073

et al., 2022) and Llama (Touvron et al., 2023) on 074

approximately 1.4 trillion words. Another issue is 075

that while the datasets used have exploded in size, 076

they are usually not available in public and do not 077

aid reproducibility. 078

Previous works showed that high quality data 079

can improve model performance, even if they are 080

available in lower quantity. In Taylor et al. (2022), 081
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the authors demonstrated that research papers, en-082

cyclopedias, lecture notes, equations, and chem-083

istry compounds give a significant boost in per-084

formance and the model’s knowledge. While the085

quality of the dataset helped, the model was still086

trained on 106 billion tokens. Later, Gunasekar087

et al. (2023) trained a model that outperforms fa-088

mous state-of-the-art models using only 7B tokens089

derived from textbooks. In this work, we explore090

how a high quality corpus of even smaller size,091

like an encyclopedia, can further diminish training092

needs, while preserving performance.093

3 Dataset094

Source Selection and Rationale. Our choice of095

the Encyclopaedia Britannica as a training corpus096

was driven by several key considerations. First, its097

content undergoes rigorous expert review, ensuring098

high accuracy and consistent quality. Second, it099

maintains a formal and standardized writing style100

on diverse topics, providing excellent examples of101

structured knowledge presentation. Third, its com-102

prehensive coverage of human knowledge makes103

it suitable for both general language learning and104

specialized content generation.105

This work uses the 10th edition from 1911, com-106

prising 29 volumes. Although there are more recent107

editions, this particular version offers distinct ad-108

vantages for our work. It is readily accessible in109

digital format, maintains consistent editorial stan-110

dards throughout its volumes, and its historical111

nature provides a well-defined temporal boundary112

for knowledge scope. In addition, its public do-113

main status facilitates unrestricted research use and114

reproducibility of our findings.115

Data Processing Pipeline. Our processing116

pipeline consists of a sequence of stages to ensure117

data quality and consistency. We scraped the indi-118

vidual articles from Wikisource, converting them119

from their original format into structured JSON120

files. This initial conversion preserves article meta-121

data – including titles, section headers, and publi-122

cation dates – while extracting the main content for123

further processing.124

The next stage involves text cleaning and stan-125

dardization through a series of regular expressions.126

Our cleaning process systematically removes spe-127

cial characters and formatting artifacts from the128

text while standardizing all punctuation and spac-129

ing patterns. We eliminate references and citations130

to maintain focus on the primary content.131

To facilitate model training, we incorporate ex- 132

plicit article boundary tokens (<s> and </s>) be- 133

tween entries. These boundary markers enable the 134

model to learn natural document boundaries, main- 135

tain coherent article generation, and prevent con- 136

tent blending between adjacent articles. These to- 137

kens also provide useful attention anchors during 138

the generation phase, helping the model structure 139

its output. 140

Dataset Organization. We created two different 141

experimental setups. We selected a 12-million- 142

word random subset of the corpus, ensuring bal- 143

anced topic coverage and maintaining the encyclo- 144

pedic style. We divided it into training (10 million 145

words) and evaluation (2 million words) sets. For 146

our encyclopedia generation track, we used the en- 147

tire corpus of approximately 38 million words split 148

into training (37 million words) and validation (1 149

million words) sets. All splits are created at article 150

boundaries. 151

Tokenization. We applied a Byte-Pair Encoding 152

(BPE) tokenizer with a vocabulary size of 16,000 153

tokens, trained exclusively on our training set. This 154

vocabulary size aligns with recent research suggest- 155

ing that moderate vocabulary sizes can be optimal 156

for specialized domains. The tokenizer is trained 157

separately for each setup. 158

The tokenized text is segmented into sequences 159

of 128 tokens. This means that longer articles 160

may span multiple sequences, while shorter arti- 161

cles might be combined within a single sequence. 162

For sequences shorter than 128 tokens, we ap- 163

ply padding with special <pad> tokens to main- 164

tain uniform input dimensions. The article bound- 165

ary tokens ensure that semantic coherence is pre- 166

served across these mechanical divisions, helping 167

the model distinguish between true article bound- 168

aries and arbitrary segmentation points. 169

4 Model Architecture and Training 170

4.1 Knowledge Distillation Framework 171

Our training methodology applies a knowledge dis- 172

tillation framework (Bucila et al., 2006; Hinton 173

et al., 2015), where an ensemble of teacher mod- 174

els guides the training of more compact student 175

models. This approach is particularly well-suited 176

to our objective of extracting maximum value from 177

a limited, high-quality dataset. Building upon 178

the foundational work of the BabyLlama authors 179

(Timiryasov and Tastet, 2023), we aim at replicat- 180
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ing their method while extending it through addi-181

tional experiments to further explore its potential.182

Teacher Models. We utilize two teacher models183

with complementary architectures to achieve robust184

knowledge distillation.185

The first teacher is a GPT-2 model with 24 layers186

and 16 attention heads, featuring an embedding di-187

mension of 1536 and an intermediate dimension of188

6144. With approximately 705 million parameters,189

this model offers substantial capacity to capture in-190

tricate patterns. It was trained for six epochs using191

a batch size of 256 and a maximum learning rate192

of 2.5 × 10−4. A cosine learning rate scheduler193

with 300 warm-up steps was employed to ensure194

smooth optimization.195

The second teacher is a Llama model compris-196

ing 24 layers and 8 attention heads. It has a hidden197

dimension of 1024 and an intermediate dimension198

of 3072, totaling roughly 360 million parameters.199

This model strikes a balance between computa-200

tional efficiency and representational power. Train-201

ing was conducted for four epochs with a batch size202

of 128 and a maximum learning rate of 3× 10−4,203

again utilizing a cosine learning rate scheduler with204

300 warm-up steps.205

We pretrained both models exclusively on our206

encyclopedia corpus to align their knowledge with207

the target domain. During training, we computed208

the validation loss after each epoch using a smaller209

random subset of the evaluation set (8192 samples).210

Distillation Process. The distillation process211

leverages both hard targets from the training data212

and soft targets generated by the teacher models.213

The soft targets, which are probability distributions214

over the output classes, encapsulate relational in-215

formation between classes learned by the teacher216

models. To enhance this knowledge transfer, we217

divided the logits by a temperature value T with218

T = 2.219

The student models are trained to optimize a220

combined loss function that aligns their outputs221

with both the hard targets (ground truth labels)222

and the soft targets (teacher predictions). The loss223

function is defined as: L = αLCE + (1 − α)LKL.224

Here, LCE is the cross-entropy loss between the225

student’s predictions and the true labels, while LKL226

represents the Kullback-Leibler (KL) divergence227

between the student’s and teacher’s softened proba-228

bility distributions.229

We set α = 0.5 to balance the two objectives. By230

combining these two losses, our approach encour-231

ages the student models to benefit from the com- 232

plementary strengths of the teacher models while 233

retaining alignment with the original task objec- 234

tives. This dual alignment is critical for producing 235

an effective student model. 236

4.2 Student Models 237

In both the BabyLM Challenge and the encyclope- 238

dia generation tasks, we employed a unified student 239

model architecture designed to balance the model 240

capacity with the constraints of available training 241

data. We trained the architecture from scratch using 242

a distillation loss. Both tasks used identical model 243

configurations and training strategies to maintain 244

consistency across the domains. 245

The student model is based on a Llama architec- 246

ture with 16 transformer layers, each containing 8 247

attention heads. It features a hidden dimension of 248

512 and an intermediate dimension of 1024, result- 249

ing in approximately 58 million parameters. We 250

trained it with a batch size of 32 and a maximum 251

learning rate of 2.5 × 10−4. We employed a co- 252

sine learning rate schedule with 200 warm-up steps. 253

We applied regularization techniques, including 254

dropout and weight decay, to prevent overfitting. 255

Additionally, we used gradient clipping to main- 256

tain stable training dynamics. In total, the training 257

process took about 12 hours on one A-100 Nvidia 258

GPU. 259

5 Experimental Results 260

To evaluate our models, we primarily used the 261

Benchmark of Linguistic Minimal Pairs (BLiMP) 262

(Warstadt et al., 2020), a zero-shot evaluation suite 263

designed to test a language model’s ability to han- 264

dle linguistic phenomena such as syntax, seman- 265

tics, and morphosyntax. BLiMP contains 67,000 266

minimal sentence pairs across 67 tasks. Models 267

are scored based on their ability to assign higher 268

probabilities to grammatically correct sentences 269

than to ungrammatical ones. Additionally, we used 270

the BLiMP Supplemental benchmark, an extension 271

with more diverse and challenging tasks. 272

For the evaluation, we used the BabyLM 273

pipeline, which outputs the average scores across 274

the tasks for each benchmark. We compared our 275

BabyLM Challenge student model, trained on 10 276

million words, against baseline models provided 277

by the Challenge organizers: OPT (125M parame- 278

ters), RoBERTa (125M parameters), and T5 (222M 279

parameters). These baselines were trained on a cu- 280
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Model BLiMP BLiMP
Suppl.

OPT125M 62.6 54.7
RoBERTa125M 69.5 47.5
T5222M 58.8 43.9
GPT-2705M 64.5 49.3
LLama360M 62.8 48.2
student58M 64.7 47.6
student58M+GPT−Jteacher 64.6 47.1
studentFULL58M+38Mdataset 66.4 50.3

Table 1: Results on the BLiMP benchmarks.

Model BLiMP BLiMP
Suppl.

OPT125M 0.50 0.43
RoBERTa125M 0.55 0.38
T5222M 0.26 0.19
GPT-2705M 0.09 0.06
LLama360M 0.17 0.13
student58M 1.11 0.82
student58M+GPT−Jteacher 1.11 0.81
studentFULL58M+38Mdataset 1.14 0.86

Table 2: Scores scaled by the number of parameters.

rated 10-million-word dataset composed of child-281

directed speech, storybooks, simple Wikipedia, and282

transcribed speech.283

We also compared the results of two teacher con-284

figurations: GPT2/Llama with GPT-J/Llama. The285

difference between GPT-J and GPT-2 is that GPT-J286

employs rotary positional embeddings, while GPT-287

2 uses trainable positional embeddings. We trained288

the student model on the 10-million word Ency-289

clopaedia dataset. Table 1 shows the raw results,290

while Table 2 shows the relative performance of291

each model scaled by the number of its parameters.292

Our BabyLM Challenge student model achieves293

a performance comparable to those of the base-294

lines, outperforming OPT and T5 on the BLiMP295

benchmark and T5 on the Supplemental bench-296

mark, while slightly trailing RoBERTa and OPT.297

Notably, despite having less than half the parame-298

ters of these baselines, the student model achieves299

competitive results, highlighting its efficiency.300

When compared to the teacher models, the stu-301

dent outperforms both GPT-2 and Llama on BLiMP,302

although it slightly underperforms on the Supple-303

mental benchmark. Considering that the teachers304

have 12x and 6x more parameters than the student,305

this underscores the effectiveness of knowledge306

distillation in transferring knowledge efficiently.307

The student model trained with GPT-J slightly308

underperformed compared to the GPT-2 teacher. 309

This suggests that GPT-2’s trainable positional em- 310

beddings provide a distinct advantage during dis- 311

tillation. Lastly, the student model trained on the 312

full 38-million word Encyclopedia dataset shows a 313

2–3% improvement on both benchmarks, demon- 314

strating the benefit of additional high-quality train- 315

ing data. 316

When we observe Table 2 with the relative per- 317

formance, it is evident that our model significantly 318

outperforms the other models, having more than 319

double the score of the second ranked model. 320

We finally give two examples of generation: 321

Prompt: "<s> Italy is" 322
Generated: Italy is divided into two 323

great parts , the north and the south 324
, and the central and south -west; 325
while the south , including the 326
greater part of the peninsula , and 327
the south , the eastern and the 328
northern parts , are separated by the 329
great plain of Italy. The whole of 330

the western and western part of the 331
peninsula , except the peninsula of 332
the Mediterranean , is a very fertile 333
plain , and in some places has been 334

made the capital of the kingdom of 335
Italy. The whole of northern Italy 336
is traversed by the main line of the 337
Italian railway. 338

339
Prompt: "<s> London was" 340
Generated: London was the capital of the 341

district of the East Anglian 342
kingdom of North Wales , the chief 343
town of which was Beverley. It was 344
the seat of the royal family of the 345
earls of South Wales , who held it in 346
the time of Edward I. It was a 347

royal burgh of barony , and held the 348
manor of Fordun in the time of 349
Edward I. 350

While the model hallucinates sometimes, in both 351

cases, it manages to capture the context of the 352

prompt (country and town) and generate content. 353

Further approaches would finetune the model for 354

question-answering or use a RAG system to pro- 355

duce more accurate results. 356

6 Conclusion 357

Our two experimental setups highlight the poten- 358

tial of training highly effective language models on 359

smaller, high-quality datasets. Knowledge distil- 360

lation significantly reduced the number of model 361

parameters while maintaining performance. This 362

generation model shows that curated data and 363

teacher-student training frameworks can offset lim- 364

ited dataset sizes. 365
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Limitations366

Large language models may generate factual errors367

or show bias. We observed them in the form of368

hallucinations. This bias may also come from the369

corpus we used for training, the Encyclopaedia370

Britannica, that includes old fashioned viewpoints371

and outdated information. Many scientific theories372

have also evolved since it was published.373

Our evaluation is also limited and a comprehen-374

sive study would include more benchmarks and375

more models.376

Ethics Statement377

We identified a few potential risks including:378

1. The LLMs may generate misleading content379

or hallucinate;380

2. The dataset we used for training includes bi-381

ases and outdated information that in some382

cases may generate disrespectful or disparag-383

ing content;384
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