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Abstract

Adaptation of pretrained vision-language models such as CLIP to various down-
stream tasks have raised great interest in recent researches. Previous works have
proposed a variety of test-time adaptation (TTA) methods to achieve strong gener-
alization without any knowledge of the target domain. However, existing training-
required TTA approaches like TPT necessitate entropy minimization that involves
large computational overhead, while training-free methods like TDA overlook the
potential for information mining from the test samples themselves. In this paper,
we break down the design of existing popular training-required and training-free
TTA methods and bridge the gap between them within our framework. Specif-
ically, we maintain a light-weight key-value memory for feature retrieval from
instance-agnostic historical samples and instance-aware boosting samples. The
historical samples are filtered from the testing data stream and serve to extract use-
ful information from the target distribution, while the boosting samples are drawn
from regional bootstrapping and capture the knowledge of the test sample itself.
We theoretically justify the rationality behind our method and empirically verify
its effectiveness on both the out-of-distribution and the cross-domain datasets,
showcasing its applicability in real-world situations.

1 Introduction

Vision Language models [49, 16, 23–25, 7] have shown incredible performance in downstream vision
tasks [1], such as classification [29, 55, 54, 8], generation [20, 38, 9] and recognition [46, 47]. Among
these models, CLIP [36] has been trained with large-scale noisy image-text pairs and can generalize
well in zero-shot recognition tasks. The key idea behind CLIP is modality alignment during training
and similarity comparison during testing for classification. However, CLIP suffers from domain
shift problems during test-time inference. In the presence of out-of-distribution issues [27, 43, 12]
that commonly appear in real-world scenarios, CLIP may fail to effectively align the feature across
modalities, leading to performance degradation.

Test-time adaptation (TTA) has been widely explored in recent approaches [43, 15, 41, 17] to mitigate
misalignment issues and improve performance in downstream tasks. Current mainstream TTA meth-
ods can be divided into training-required methods and training-free methods, as depicted in Figure.
1a and Figure. 1b. Training-required approaches [43, 41, 39] adjust model parameters or learnable
prompts based on self-supervised objectives like entropy and increase the prediction confidence of
model for distribution adaptation. TPT [41] applies entropy minimization to the vision-language
model first. Furthermore, inspired by consistency regularization, TPT performs information mining
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Figure 1: (a) Existing training-required TTA methods utilize self-supervised objective like entropy minimization
for better generalization. (b) Existing training-free TTA methods perform feature retrieval on the historical
samples to adjust the model prediction. (c) Performance comparison on the Out-of-Distribution benchmark and
Cross-Datasets benchmark.

from the test sample itself by random regional cropping in a self-bootstrapping style. However,
training-required methods require gradient descent that is time-consuming with large training over-
head, which prevents them from being applied in computationally limited situations. Training-free
approaches [15, 52, 17] utilize memory networks, cache, or prototypes to store information regarding
target samples and distributions, which is then used to adaptively modify the model’s prediction. For
example, TDA [17] leverages historical samples from the test data steam to build a dynamic key-value
cache. It updates the prior knowledge encoded in CLIP through feature retrieval and output prediction
based on the similarity between the test sample and the high-quality data stored in the memory bank.
However, existing training-free approaches only consider interaction with other historical samples in
the cache and do not effectively exploit the information within the test sample itself. This limitation
prevents them from performing well especially in tasks that require fine-grained information.

Both of these approaches demonstrate excellent performance in enhancing the robustness of vision-
language models to unknown distributions. However, the connection between them remains unclear.
In this paper, we aim to answer three questions: (1) How are training-required methods like TPT and
training-free methods like TDA connected? (2) How can we combine these two methods based on
their shared nature? (3) Does vision-language models benefit from the combination of these methods?

In order to answer these questions, we first consider that the augmented images of test samples form a
regional bootstrapping distribution of the original data. By filtering out the noisy augmentations based
on mutual information with the predefined CLIP text embedding clusters, we can obtain a boosting
distribution from which high-quality samples close to the target clusters can be drawn. Based on this,
we delve into the connection between the target operations over the boosting distribution, i.e., cross-
entropy optimizations and cache classifier, which reveals the shared nature between entropy-based and
cache-based methods. Specifically, we pinpoint that with the samples derived from the bootstrapping
distribution, entropy minimization over them performs equivalently to feature retrieval from the
cache consisting of them. Motivated by this analysis, we propose a brand-new adaptation strategy,
dubbed BoostAdapter, to improve training-free adapters by incorporating the samples derived from
the boosting distribution to the memory bank. Particularly, the cache in BoostAdapter consists of
instance-agnostic historical samples filtered from the test data stream, along with instance-aware
boosting samples generated through regional bootstrapping from the sample itself. The interactions
between intra-sample and cross-sample operations make BoostAdapter effective and efficient by
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incorporating the idea of information mining from training-required methods while maintaining the
efficiency of training-free methods. Theoretical analyses and empirical results are also provided to
validate the effectiveness of BoostAdapter.

To summarize, we make the following contributions in this paper.

• We first discuss the relationship between training-required and training-free methods in test-time
adaptation and establish connections between them.

• We propose BoostAdapter, a brand new adaptation strategy in test-time adaptation of vision-
language models, which improves training-free adapters by introducing high-quality samples
from regional bootstrapping into the memory.

• We theoretically derive target domain error bound of BoostAdapter and shows that BoostAdapter
benefit from incorporating self-bootstrapping data.

• Extensive experiments conducted over two benchmark demonstrate the superior performance of
BoostAdapter under test-time adaptation settings.

2 Related Works

Vision-Language Models have shown remarkable potential in generalization by contrastive pre-
training over amounts of text-image pairs [16, 36, 24, 25] . One typical work is CLIP [36], which
benefits from the alignment of 400 million curated image-text pairs and predicts the most relevant
text description for a given image based on cosine similarity. Adapting CLIP to the downstream
applications has attracted much attention and has been widely explored in recent approaches [55, 54,
52, 26, 56, 30]. CoOp [55] introduces learnable prompts [22, 51, 50, 28] and CoCoOp [54] conditions
the text prompts on image embedding for better generalization. Maple [18] performs prompting for
both vision and language branches and improves the alignment of the embedding between modalities.
These approaches have demonstrated significant performance enhancements, but they still require few
training data from the target domain. In contrast, we focus on test-time adaptation where there is no
information about the target distribution and aim to generalize the model to any unknown scenarios.

Training-required Test-time Adaptation updates partial wights of the model like prompts [41,
39] or BN layer [43] with self-supervised objectives that benefit the downstream tasks without
requiring additional training data. Tent [43] reduces generalization error on shifted data by test-
time entropy minimization. For vision-language models, Test-time prompt tuning (TPT) [41] is a
method that dynamically optimizes prompts during the testing phase, enhancing the model’s zero-shot
generalization ability. Specifically, TPT generates multiple augmented views of the test sample and
then minimizes the entropy of the model’s output logits across them to ensure consistent prediction.
Recently, many works built upon TPT have been proposed to further enhance the performance of
vision-language models. Particularly, DiffTPT [6] leverages the power of diffusion models to generate
semantically consistent augmented images for entropy minimization. PromptAlign [39] bridges the
gap between the test sample and source distribution by aligning token statistics, including mean and
variance. Nevertheless, these approaches require gradient descent over the augmented images, which
is computationally expensive and time-consuming.

Training-free Test-time Adaptation applies cache model or prototypes to make prediction of
test samples in a non-parametric manner [15, 17, 53]. T3A [15] utilizes prototypes as downstream
classifiers and dynamically adjusts the weights. AdaNPC [53] leverages the data from the source
domain to address the issues of computation overhead and domain forgetting. For vision-language
models, TDA [17] introduces both positive cache and negative cache to obtain high-quality test
samples from the target domain. However, these methods only consider inter-sample interactions and
may fail to generalize well when the downstream tasks require fine-grained knowledge or there is
insufficient similarity across samples.

3 Methodology

3.1 Preliminary

Problem setting. We begin by introducing the basic notations in test-time adaptation. We consider
binary classification for simplicity and the theory can be easily extended to multi-classifications
settings. Let pt(x, y) denotes the joint distribution of image and labels in the target distribution, and
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Figure 2: Connection between cross-entropy optimization and cache classifier over well-clustered samples with
a frozen feature encoder. With optimization of cross-entropy, samples will pull the classifier weights closer of the
same class while pushing them away from different class weights. Since the feature space is well-clustered, the
classifier weights will ultimately converge near the feature center of the samples. Finally, the optimal classifier
achieved through cross-entropy minimization will exhibit similar behavior with the cache classifier.

we simply assume that samples {(xi, yi)}ni=1 are drawn i.i.d. from the distribution with yi represents
the one-hot label.
Definition 1. (Classification error.) Given f as a binary classification function. The error incurred
by hypothesis f ∈ H : X → {0, 1} under the distribution pt(x, y) can be defined as

ϵ(f) = Ept(x,y)[f(x) ̸= y] = Ept(x,y)[|f(x)− y|], (1)

the last equality holds in a binary classification setting.
Definition 2. (Excess error.) Given the Bayes classifier under distribution pt(x): f∗(x) = I{f(x) ≥
1/2} and the optimal classfier f∗, the excess error of f is defined as

E(f) = ϵ(f)− ϵ(f∗) = 2Ex∼pt(x)

[∣∣∣∣f(x)− 1

2

∣∣∣∣ I{f(x) ̸= f∗(x)}
]

(2)

CLIP classifier Let g be the image encoder of CLIP, C be the feature dimension, N denotes the
number of categories, wi ∈ RC represents the ith text embedding cluster. Considering normalized
embedding w and g(x), we can derive a simplified version of the output of CLIP for class i:

Zi = wT
i g(x). (3)

And we denote the output logits as p(x) = [Z1, Z2, ..., ZN ] ∈ RN .

Cache classifier Given an unseen sample x, encoder g with dimensional C, cache size K and
number of categories N , the cache classfier conduct feature retrieval based on the similarity with the
data {(xi, yi)}ki=1 in the cache. The predictions based on Tip-Adapter [52] are as follows:

pcache(x) = A
(
g(x)GT

cache

)
Y, (4)

where A(z) = αexp(−β(1−z)) denotes a scaling function with a weighting factor α and a smoothing
scalar β, Gcache ∈ RK×C represents the feature of K samples {xi}Ki=1 in the cache and Y ∈ RK×N

is the corresponding labels {yi}Ki=1. Considering the number of samples in class yi, We can also
derive a simplified version of Eq.(4) as follows, by ignoring the scaling function and adopting an
instance-wise computation style:

pcache(x) =

k∑
i=1

αi

[
g(xi)

T g(x)
]
yi, (5)

where αi =
1

nyi
for class balance or αi =

1∑k
j=1[g(xj)T g(x)]

for normalization across all the samples.

3.2 A Closer Look at Entropy-based and Cache-based Methods

We start with analyzing the filtering operation of augmentated images in TPT. Pseudo-labels tends to
be noisy in the test time, and entropy can serve as a confidence metric to identify trustworthy samples
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Figure 3: Overall architecture of BoostAdapter. BoostAdapter leverages knowledge from the target domain
and employs self-bootstrapping with historical and boosting samples in the boosting cache, respectively.

among augmented views [43, 41, 33]. These high-quality samples can be considered drawn i.i.d.
from the so-called boosting distribution as defined below.
Definition 3. (Boosting Distribution.) Given a test sample from target distribution x ∼ pt(x), let
H(·) be the entropy measuring function and Aug(·) be the regional augmentation. By filtering noisy
samples based on thresthould τ , we have the following property of boosting distribution pb(x):

x̂ ∼ pb(x) → {x̂ = Aug(x) ∧H(p(x)) ≤ τ} (6)

We also terms the samples from the boosting distribution as boosting samples. Then we can connect
entropy-based methods and cache classfier by the following proposition:
Proposition 1. (Informal) Given n samples {(xi, yi)}ni=1 with a freeze encoder g that effectively
performing feature clustering with respect to labels, the gradient descent optimization direction of
the classifier’s weights based on cross-entropy generally tends towards making predictions using the
cache classifier with class balance weights defined in 5 on these samples.

An intuitive illustration of Proposition 1 is depicted in Figure 2, where the weights of optimal classfier
behave like the feature centers across different classes with of the well-clusterd samples. Revisiting
the entropy-based method TPT, when provided with high-quality boosting samples with low entropy
drawn from the boosting distribution, the objective function of entropy minimization optimizes in
a manner similar to conducting cross-entropy optimization over the pseudo-labels. According to
Proposition 1, TPT performs similarly to the cache-based methods with a cache comprising the same
boosting samples from the boosting distribution.

3.3 Boosting your Training-free Adapters

Existing cache-based methods store historical test samples only as useful information for prediction.
In light of the analysis above, we can integrate the idea behind TPT into these training-free adapters
by incorporating boosting samples into the memory bank. In particular, each sample can participate
in both inter-sample and intra-sample interactions with the instance-agnostic historical samples and
the instance-aware boosting samples in the cache, respectively.

Specifically, with kt selected historical samples and kb selected boosting samples to comprise the
cache, we extend the classifier defined in Eq.(4) and formulate our BoostAdapter as follows:

pboost(x) = A
(
g(x)G̃T

cache

)
Ỹ , (7)

where A is the same scaling function defined in Eq.(4), G̃cache ∈ R(kt+kb)×C denotes the features
of the combination of both the historical and boosting samples, and Ỹ ∈ R(kt+kb)×N is the label.
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Since we do not have access to the labels of the test samples, we generate one-hot pseudo-labels for
them using argmax operations. However, these pseudo-labels tend to be noisy in the target domain.
Therefore, we apply filtering based on entropy thresholds on the test data stream following [41] to
obtain trustworthy historical samples. We employ a similar operation to select boosting samples
from multiple augmented views of the current sample. In practice, we dynamically adapt the entropy
thresholds τ for each test sample, with a fixed percentile p. The cache continuously updates with
lower entropy historical samples from the test data stream, while the current test sample augments the
cache with self-boosting samples and forms an independent cache that only affects its own prediction.
Additionally, to maintain diversity while considering the relevance to each test sample, we set a
maximum shot capacity for each class k in the cache. This means that samples in the cache will be
replaced by a lower-entropy historical sample or boosting sample when necessary.

An important issue is whether introducing boosting samples brings improvements to the training-
free adapters. We will first make some necessary assumptions and then theoretically verify the
effectiveness in reducing target error by incorporating samples from the boosting distribution.

Assumption 1. (Strong Density Condition) For any test sample x0 in the target distribution x0 ∼
pt(x) and the boosting distribution pb(x0), given positive lower bound m and upper bound M ,
positive scaling constant ct and cb, the radius bound R > 0, and B(x, r) = {x′ :∥ x′ − x ∥≤ r} is
the ball centered on x with radius r. We assume pt(x) and pb(x0) are absolutely continuous with
respect to the Lebesgue measure in Rd. For r ∈ (0, R], we assume

λ[pt(x) ∩ B(x0, r)] ≥ ctλ[B(x0, r)]

λ[pb(x0) ∩ B(x0, r)] ≥ cbλ[B(x0, r)]

m <
dpt(x)

dλ
< M ;m <

dpb(x)

dλ
< M,

(8)

where λ is the Lebesgue measure in Euclidean space.

Assumption 2. (L-Lipschitz Condition) Let f be the classification function and L be a positive
constant. For all feasible x, x′ we have |f(x)− f(x′)| ≤ L ∥ x− x′ ∥.

Assumption 3. (Low Noise Condition). Let β,Cβ be positive constants and we assume pt(x) satisfies
Px∼pt(x)

(∣∣f(x)− 1
2

∣∣ < t
)
≤ Cβt

β for all t > 0.

Remark Assumption 1 intuitively ensures that for any test sample, there is a surrounding neighbor-
hood with a significant presence of samples from the target domain and the boosting distribution.
More importantly, for a specific sample x0, boosting samples x ∼ pb(x0) should be closer to x0 than
other samples x ∼ pt(x) from the target domain, i.e., generally, we have ct ≤ cb. Assumption 2 and
3 describe the smoothness of functions and imply a high level of confidence in predictions around the
threshold, respectively.

Proposition 2. (Historical Cache reduce Emperical Risk) Given f as the training-free classfier
consisting of historical samples only defined by Eq.(4). Let nt to be the number of confident previously
predicted samples in the target domain and kt as the number of historical samples in the cache, with
assumptions 1-3, the following results hold with high-probability for large enough kt and nt.

E(f) ≤ O

((
1

kt

)1/4

+

(
kt
ctnt

)1/d
)1+β

(9)

Proposition 3. (Historical Cache benefits from Boosting Samples) Let nt to be all confident
previously predicted samples in the target domain and nb be the number of boosting samples that are
drawn from the boosting distribution. Given kt and kb to be the number of historical samples and the
number of boosting samples to be selected as the nearest neighbors stored in the cache, respectively.
Let wti and wbi be the weights defined in Eq.(5) of the historical samples and boosting samples. We
have the following bound for the empirical risk of the cache classfier defined in 7.

E(f) ≤ O

((
1

kt + kb

)1/4

+

kt∑
i=1

wti

(
kt
ctnt

)1/d

+

kb∑
i=1

wbi

(
kb
cbnb

)1/d
)1+β

. (10)
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Table 1: Full results on the OOD benchmark with ViT-B/16 backbone. We report top-1 accuracy
and “Average" is calculated by taking the mean accuracy across all four OOD datasets.

Imagenet-V2 Imagenet-Sketch Imagenet-A Imagenet-R Average

CLIP [36] 60.86 46.09 47.87 73.98 57.20
CLIP+TPT [41] 64.35 47.94 54.77 77.06 60.81
CoOp [55] 64.20 47.99 49.71 75.21 59.28
CoOp+TPT [41] 66.83 49.29 57.95 77.27 62.84
Co-CoOp [54] 64.07 48.75 50.63 76.18 59.91
Co-CoOp+TPT [41] 64.85 48.27 58.47 78.65 62.61
Maple [18] 64.07 49.15 50.90 76.98 60.28
Maple + TPT [41] 64.87 48.16 58.08 78.12 62.31
PromptAlign [39] 65.29 50.23 59.37 79.33 63.55
DiffTPT [6] 65.10 46.80 55.68 75.00 60.52
TDA [17] 64.67 50.54 60.11 80.24 63.89

BoostAdapter 65.51 51.28 64.53 80.95 65.57

Table 2: Full results on the Cross-Domain Benchmark with ViT-B/16 backbone. We report top-1
accuracy and “Average" is calculated by taking the mean accuracy across all ten datasets. The error
bound is ±0.17.
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CLIP [36] 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.58
CLIP+TPT [41] 94.16 87.79 66.87 68.98 84.67 24.78 65.50 47.75 42.44 68.04 65.10
CoOp [55] 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp [54] 93.79 90.46 64.90 70.85 83.97 22.29 66.89 45.45 39.23 68.44 64.63
MaPLe [18] 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
MaPLe+TPT [41] 93.59 90.72 66.50 72.37 86.64 24.70 67.54 45.87 47.80 69.19 66.50
DiffTPT [6] 92.49 88.22 67.01 70.10 87.23 25.60 65.74 47.00 43.13 62.67 65.47
PromptAlign [39] 94.01 90.76 68.50 72.39 86.65 24.80 67.54 47.24 47.86 69.47 66.92
TDA [17] 94.24 88.63 67.28 71.42 86.14 23.91 67.62 47.40 58.00 70.66 67.53

BoostAdapter 94.77 89.51 69.30 71.66 87.17 27.45 68.09 45.69 61.22 71.93 68.68

Remark Proposition 2 provides a guarantee of the effectiveness of selecting kt out of nt historical
samples to comprise the cache. The empirical risk is quite small when nt → ∞ since the cache
captures the full information of the target domain. Proposition 3 demonstrates that the historical
cache can further reduce empirical risk by incorporating kb boosting samples.

4 Experiments

4.1 Experimental Setup

Datasets Following the setting in TPT [41], we conduct experiments on both Out-of-Distribution
(OOD) benchmark and Cross-Domain benchmark. The OOD benchmark evaluates the model’s
robustness to natural distribution shifts on 4 ImageNet [4] Variants, including ImageNetV2 [37],
ImageNet-Sketch [44], ImageNet-A [14] and ImageNet-R [13]. We evaluate the transferring per-
formance on 11 datasets in the Cross-Domain benchmark: Aircraft [31], Caltech101 [5], Cars [19],
DTD [3], EuroSAT [11], Flower102 [32], Food101 [2], Pets [34], SUN397 [48],and UCF101 [42].
We follow the split in [55] and report the top-1 accuracy. The error bound are also provided.

Implementation details We utilize a pre-trained ViT-B/16 of CLIP as the foundation model. In
test-time adaptation, the batch size is set to be 1. We search for the optimal shot capacity to balance
diversity and relevance of samples. For boosting samples, we utilize random crop and then random
horizontal flip as augmentations. Moreover, we empirically set the entropy threshold percentile to
p = 0.1 and filter 64 augmented views based on random cropping to obtain the boosting samples. and
filter 64 augmented views to obtain the boosting samples. The top-1 accuracy and the error bound is
reported on the test sets. All our experiments are conducted with a Nvidia 3090 24GB GPU.
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Figure 4: Ablation studies of (a) number of augmented views to generate boosting samples (b)
different adaptation methods and (c) total shot capacity of the cache.

Table 3: Ablation study on historical samples
and boosting samples on the OOD benchmark
with ViT-B/16 backbone. We report top-1 accu-
racy and the error bound is ±0.12.

-V2 -Sketch -A -R Average

CLIP 60.86 46.09 47.87 73.98 57.20
Historical Samples 64.93 50.23 63.80 80.43 64.85
Boosting Samples 65.40 50.59 64.40 80.96 65.34

BoostAdapter 65.51 51.28 64.53 80.95 65.57

Table 4: Full results on the OOD benchmark
with RN-50 backbone. We report top-1 accu-
racy and the error bound is ±0.06.

-V2 -Sketch -A -R Average

CLIP [36] 51.41 33.37 21.83 56.15 40.69
TPT [41] 54.70 35.09 26.67 59.11 43.89
CALIP [10] 53.70 35.61 23.96 60.81 43.52
CoOp [55] 55.40 34.67 23.06 56.60 42.43
CoCoOp [54] 55.72 34.48 23.32 57.74 42.82
DiffTPT [6] 55.80 37.10 31.06 58.80 45.69
TDA [17] 55.54 38.12 30.29 62.58 46.63

BoostAdapter 56.14 38.87 35.12 62.66 48.20

4.2 Out-of-Distribution Generalization

To verify the robustness of BoostAdapter, we evaluate our method on the OOD benchmark, in
comparison with existing training-require methods including CoOp [55], CoCoOp [54], TPT [41],
DiffTPT [6], Maple [18] and PromptAlign [39], as well as training-free method TDA [17]. As can be
seen from Table 8, the most striking observation emerging from the comparison is that BoostAdapter
significantly outperforms other baselines on average and improves the generalization ability of the
model. For training-free methods such as TPT, DiffTPT and PromptAlign, BoostAdapter achieves
superior performance while saving on optimization computation overhead. For training-free methods
like TDA, BoostAdapter gains consistent performance improvements with the introduction of the
boosting samples. Notably, BoostAdapter surpasses TDA by 4.42% on ImageNet-A and 0.84% on
ImageNet-V2, respectively. This enhancement indicates the effectiveness of self-bootstrapping when
historical samples may not provide sufficient useful information.

4.3 Cross-Domain Transfer

We further highlight our improvements in the transfer ability of CLIP on the Cross-Domain benchmark
and present the results in Table 2. Compared with existing training-required and training-free methods,
BoostAdapter achieves state-of-the-art performance on 7 out of 10 tasks, surpassing the strongest
baselines by an average of 1.15%. With diverse classes at test time, regional boosting enables
BoostAdapter to adaptively extract knowledge that makes classes distinct from each other in a
multi-scale manner. Notably, for datasets requiring fine-grained information for classification such as
Aircraft, the improvement of BoostAdapter is most significant.

4.4 Ablation Study

Historical Samples and Boosting Samples. To demonstrate the effect of historical and boosting
samples, we introduce two variants of BoostAdapter that utilize only historical samples or only
boosting samples, respectively. Additionally, we provide the zero-shot results of CLIP for comparison.
As shown in Table 3, CLIP significantly benefits from both historical samples and boosting samples,
resulting in notable improvements in performance. The consistent improvement of BoostAdapter
compared to the variant that utilizes only historical samples further confirms the effectiveness of
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Table 5: Full results on the Cross-Domain Benchmark with RN-50 backbone. We report top-1
accuracy and “Average" is calculated by taking the mean accuracy across all ten datasets. The error
bound is ±0.05.
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CLIP [36] 85.88 83.57 55.70 61.75 73.97 15.66 58.8 40.37 23.69 58.84 55.82
CLIP + TPT [41] 87.02 84.49 58.46 62.69 74.88 17.58 61.46 40.84 28.33 60.82 57.66
CALIP [10] 87.71 86.21 56.27 66.38 77.42 17.76 58.59 42.39 38.90 61.72 59.34
DiffTPT [6] 86.89 83.40 60.71 63.53 79.21 17.60 62.72 40.72 41.04 62.67 59.85
CuPL [35] 89.29 84.84 57.28 65.44 76.94 19.59 62.55 48.64 38.38 58.97 60.19
TDA [17] 89.70 86.18 57.78 68.74 77.75 17.61 62.53 43.74 42.11 64.18 61.03

BoostAdapter 88.48 85.75 59.67 68.25 78.78 18.93 62.83 43.85 44.40 64.42 61.54

Table 6: Comparisons with baselines on ImageNet-C at severity level 5 regarding accuracy (%).
Noise Blur Weather Digital

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
CLIP-ViT-B/16 15.15 16.28 15.26 25.83 16.87 26.34 24.43 34.56 33.01 39.10 57.78 18.45 14.71 35.62 35.81 27.28
TDA 17.50 18.59 18.12 59.12 19.02 28.25 26.24 37.30 35.30 41.57 59.04 21.06 17.61 37.78 37.26 31.58
BoostAdapter 17.53 18.89 18.39 59.70 19.07 28.62 27.33 38.21 36.13 42.31 59.63 21.22 18.23 39.25 38.07 32.17

incorporating boosting samples into the training-free adapters. See Section E in the Appendix for
more results.

Number of Augmented Views for Boosting Samples. We augment the testing samples and filter
them by mutual information with the CLIP text embedding to obtain the boosting samples. We
vary the number of augmented views and investigate the performance of BoostAdapter on UCF101
in Figure 4a. With a larger number of augmented views, the performance improves due to more
bootstrapping information of the test sample, which is consistent with the conclusions of TPT [41] and
PromptAlign [39]. However, the computational overhead also increases with more augmented views,
and selecting 64 augmented views is a fair trade-off between boosting performance and efficiency.

Adaptation Methods. Training-required methods use entropy as a self-supervised objective, whereas
training-free methods classify samples based on feature retrieval. We compare the performance of
these two adaptation methods under the constraints of historical samples only, boosting samples only,
or both, and present the results on Flower102 in Fig. 4b. Entropy minimization requires gradient
descent and model optimization, resulting in high training costs and relatively lower performance
across all three settings. In contrast, the training-free methods based on feature retrieval offer
significant performance improvements with lower computational overhead. Additionally, both
adaptation methods benefit from combining historical samples and boosting samples, consistent with
the conclusions in Table 3.

Total shot capacity. BoostAdapter maintains low-entropy samples per class in the cache, and Figure
4c studies the influence of different total shot capacities containing historical samples and boosting
samples of each class on Aircraft. As can be observed from the results, when the cache capacity is
small, the low-entropy samples maintained by BoostAdapter do not necessarily provide a benefit for
classification compared to CLIP. As the shot capacity increases, BoostAdapter will achieve the best
balance of diversity and relevance, and a larger capacity does not guarantee better performance.

Versatility. To demonstrate the versatility of BoostAdapter, we apply it to the RN-50 backbone and
present the results in Tables 4 and 5. The improvement is consistent and on average, BoostAdapter
outperforms TDA by 1.57% on the OOD benchmark and 0.49% on the Cross-Domain benchmark.

4.5 Discussions

Generalization on Corruption Datasets To further evaluate the generalization ability of Boost-
Adapter in new test-time scenarios, we compare BoostAdapter with baseline methods on the Imagenet-
C dataset at the highest severity level 5. The key observation from Table 6 is that BoostAdapter
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Table 7: Efficiency analysis. We evaluate different methods on a single NVIDIA 3090 24GB GPU
and report the frames per second (fps) and memory cost (GB).

Augmentation Views Inference Speed (fps) Memory (GB) OOD Results Cross-Domain Results

CLIP - - 82.3 0.7 57.20 63.58
TPT Augmix 64 0.29 4.5 60.81 65.10
DiffTPT Diffusion 64 0.10 14.4 60.52 66.92
TDA Augmix 64 11.89 1.2 63.89 67.53

BoostAdapter Rand. Crop & Rand. Horiz. Flip 64 11.23 1.2 65.57 68.68

Table 8: Unification of more training-required
methods. BoostAdapter benefits from different
training-required methods.

-V -S -A -R Average

CLIP-ViT-B/16 60.86 46.09 47.87 73.98 57.20
TDA 64.67 50.54 60.11 80.24 63.89
BoostAdapter 65.51 51.28 64.53 80.95 65.57
BoostAdapter+ TSD 65.49 51.50 64.37 81.15 65.63
BoostAdapter+ DEYO 65.71 51.52 64.65 81.43 65.83

Metal nail

Test Sample Boosting Sample

Snail

Test Sample Boosting Sample

Crutch Microphone

Figure 5: Qualitative results. The model predictions
are provided below the images. Boosting samples with
low entropy improves information extraction from the
test sample and helps the model to distinguish better.

consistently outperforms TDA across all 15 corruption types, highlighting its practical applicability in
real-world situations. The superior performance of BoostAdapter stems from its capability to capture
the knowledge of the test sample even under severe corruption. This is achieved with the help of the
boosting samples, which effectively filter out noisy parts while retaining useful information.

Efficiency Analysis BoostAdapter requires augmentation over the test samples, which may slightly
affect the inference speed during testing. We conduct an efficiency analysis of BoostAdapter in
comparison with existing Test Time Augmentation (TTA) methods and provide the results in Table 7.
BoostAdapter is slightly slower than the cache-based method TDA, yet still significantly faster than
training-required methods. The memory cost of BoostAdapter is also comparable to other baselines.

Unification of Training-required and Training-free Methods. From the unified perspective, we
can also enhance training-free adapters with additional training-required methods. Here we take TSD
[45] and DEYO [21] as the showcase. Specifically, in the BoostAdapter+DEYO variant, we filter
out augmented views with a PLPD lower than 0.2. For the BoostAdapter TSD variant, we discard
augmented views that have different cache predictions and CLIP predictions to ensure consistency
of the boosting samples. When equipping BoostAdapter with the technique of TSD and DEYO, we
observe further improvement and find that training-free adapters can benefit from various boosting
techniques of training-required methods.

Qualitative Results The qualitative results are provided in Figure. 5. By incorporating samples
with low entropy from regional bootstrapping, the model is enhanced to more effectively capture the
fine-grained information of the test samples, thereby improving the overall performance.

5 Conclusions

In this work, we present an insightful analysis of existing training-required and training-free TTA
methods to bridge the gap between them. In particular, we improve training-free adapters by incorpo-
rating self-boosting samples into the memory bank inspired by the idea of regional bootstrapping from
entropy-based methods. The cache in our method, containing instance-agnostic historical samples
and instance-aware boosting samples, is capable of performing knowledge mining on both the target
domain and the testing sample itself. We also derive error bounds in the test-time adaptation setting
and show that this cache benefits from both historical samples and boosting samples. Extensive
experiments on the two benchmarks demonstrate the effectiveness of our method.

Despite the promising performance of our method, it also has some limitations. It requires slightly
more computation overhead than existing training-free adapters due to the multiple augmentation
of the test samples, as discussed in Appendix. One future direction is to develop a more efficient
augmentation method to obtain boosting samples, rather than merely randomly cropping and then
filtering over the test samples.
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Appendix

A Dataset and Licenses

Table 9 presents the statistics and details of datasets used in the paper. We also provide the corre-
sponding license information of the datasets and source code.

Datasets. Below are the datasets used in this paper that have known license information: The
following datasets used in this paper are under the MIT License: ImageNet-A [14], ImageNet-V2 [37],
ImageNet-R [13], ImageNet-Sketch [44], EuroSAT [11], Food101 [2].
The following datasets used in this paper are under the CC BY-SA 4.0 License: Oxford-Pets [34],
Caltech101 [5].
The following datasets used in this paper are for research purposes only: DTD [3], StanfordCars [19],
SUN397 [48], FGVC-Aircraft [31], Flower102 [34], UCF101 [42].

Source code. We use the implementation of existing baseline methods for reporting their results in
this paper. Below are their license information: Source code used in this paper that are under the MIT
License: CLIP [36], PromptAlign [39] and TDA [17].

Dataset Description Classes Test Size

Out-of-Distribution Benchmark

ImageNet-V2 New Validation Sets of ImageNet 1,000 10,000
ImageNet-S Sketch Images 1,000 50,000
ImageNet-A Natural Adversarial Examples 200 7,500
ImageNet-R Rendition Extension of ImageNet 200 30,000

Cross-Domain Benchmark

Aircraft Aircraft Model Classification 100 3,333
Caltech101 Natural Image Classification 100 2,465
Cars Cars Classification 196 8,041
DTD Describable Textures Dataset 47 1,692
EuroSAT Satellite Images 10 8,100
Flowers102 Flowers Classification 102 2,463
Food101 Food Classification 101 30,300
Pets Pets Classification 37 3,669
SUN397 Scene Categorization Benchmark 397 19,850
UCF101 Action Recognition Dataset 101 3,783

Table 9: Datasets statistics.

B Broader Impacts

In this paper, we focus on bridging the gap between training-required and training-free methods to
improve the generalization ability of vision-language models. We also theoretically derive the error
bound of incorporating boosting samples into the historical cache. We hope that our work will inspire
the community to explore test-time adaptation in an effective and efficient way.

C Theoretical Proof

C.1 Cross-entropy Optimization behaves like Cache Classifier over well-clustered Samples
(Proof of Proposition 1)

Given well-clustered samples in the feature space and the classifier defined in Eq.(3), we first derive
the distance between the weights of the classifier and the optimal weights and then establish the
connection between the optimal weights with the features center of the samples.
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Suppose the classifier function f over samples is convex and differentiable, and also L-smooth. Let
the distance between initial weight w(0) and optimal weight w∗ to be D = ||w(0)−w∗||. GD updates
by w(t+1) = wt − f∗

t ∇f(wt) with step size f∗
t = 1

L , and then GD enjoys the following convergence
guarantee:

||w − w∗|| ≤
2L
∥∥w(0) − w⋆

∥∥2
T − 1

= O
(
LD2

T

)
. (11)

We then showcase the relationship between w∗ and the features center µi of class i, i = 1, 2, ..., N .
Since we optimize on well-clustered samples, we consider the scenarios of perfect clusters, where
samples in the class i will be encoded into the same point µi by the encoder g, and these points
should be farthest enough between each other. Given n samples {(xk, yk)}nk=1, with the number of
samples in class i to be ni, the cross-entropy loss function L can be written as:

L = −
n∑

i=1

logP (y = yk|xk) (12)

Substitute the sample g(xk) = µi from class i, we derive the probability P (y = i|xk) using the
softmax function from Eq.(3) is:

P (y = i|xk) =
exp(wT

i µi)∑N
j=1 exp(w

T
j µi)

. (13)

Thus, the cross-entropy loss for a sample (xk, yk = i) is:

Lk = − log

(
exp(wT

i µi)∑N
j=1 exp(w

T
j µi)

)
. (14)

For all samples, the total loss is:

L = −
N∑
i=1

ni log

(
exp(wT

i µi)∑N
j=1 exp(w

T
j µi)

)
. (15)

The gradient of the loss with respect to wi can be simplified as:

∂L

∂wi
= −µini + µi

N∑
k=1

nk
exp(wT

i µk)∑N
j=1 exp(w

T
j µk)

. (16)

When converges to the optimal weight, we have the condition of fixed point ∂L
∂w∗

i
= 0. And we have

−µini + µi

N∑
k=1

nk
exp((w∗

i )
Tµk)∑N

j=1 exp((w
∗
j )

Tµk)
= 0. (17)

Thus, we have
N∑

k=1

nk
exp((w∗

i )
Tµk)∑N

j=1 exp((w
∗
j )

Tµk)
= ni. (18)

Given a well-clustered samples, we could have exp((w∗
i )

Tµk) ≫ exp((w∗
j )

Tµk) for a specific
i when w∗

i is near µk. Then since the equality in Eq.(18) will hold for each class and for class
i = 1, 2, ..., N we have

w∗
i → µi. (19)

Combining Eq.(11) and Eq.(18), with iteration steps T , we show that the weight of classfier will
finally converge to the feature center of each class:

||w − µ|| ≤ ||w − w∗||+ ||w∗ − µ|| ≤ O
(
LD2

T

)
. (20)
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And we have the output logits of the optimal weights with the encoder g:

pcross(x) = [µT
1 g(x), µ

T
2 g(x), ..., µ

T
Ng(x)] (21)

Next we discess the behavior of the cache classifier over these samples. Given the number of well-
clustered samples in class i to be ni, the output logits of the cache classifier defined in Eq.(5) using
samples {(xk, yk)}nk=1 can be described as follows:

pcache(x) =

n∑
k=1

1

nyi

[g(xk)
T g(x)]yk

=

N∑
i=1

ni

ni
[µT

i g(x)]yi

= [µT
1 g(x), µ

T
2 g(x), ..., µ

T
Ng(x)] (22)

Combining Eq.(21) and Eq.(22), we draw the conclusion that cross-entropy optimization behaves
like cache classifier over well-clustered samples.

C.2 Historical Cache reduce Empirical Risk (Proof of Proposition 2)

We follow the proofs in [53] and extend the conclusion to boosting samples.

C.2.1 Additional Definitions and Assumptions

Definition 4. (Wasserstein-distance and the dual form). Wasserstein distance measures the distance
between two probability distributions on a given metric space. It is defined using the concept of
optimal transport. For two distributions P,Q, The ρ-th Wasserstein distance is defined as

Wp(P,Q) =

(
inf

γ∈Π(P,Q)

∫
X×X

d(x, y)pdγ(x, y)

)1/p

(23)

Here, Π(P,Q) denotes the set of all couplings (or transport plans) γ of P and Q, i.e., joint distributions
on X ×X with marginals P and Q.The idea is to find the optimal way to transport the mass from
one distribution to the other with the minimal cost, where the cost is given by the p-th power of the
distance.

The first Wasserstein distance, W1(P,Q) ,often referred to as the Earth-Mover Distance(EMD), has a
particularly elegant dual representation. The dual form of W1 leverages the Kantorovich-Rubinstein
duality and can be expressed as:

W1(P,Q) = sup
∥f∥Lip≤1

(∫
X

f dP−
∫
X

f dQ
)

(24)

Here, the supremum is taken over all 1-Lipschitz functions f ,which are functions satisfying |f(x)−
f(y)| ≤ d(x, y) for all x, y ∈ X .This representation shows that W1 can be seen as the maximum
difference in expected values of a 1-Lipschitz function over the two distributions. In the following part,
Wasserstein distance represents the first Wasserstein distance for simplicity and we utilize W (·, ·)
instead of W1(·, ·).

Given the definition of the Wasserstein distance, we have the following proposition that derive the
empirical risk on the target domain according to Theorem 1 from [40].

Proposition 4. Given two distributions P,Q, denote f∗ = argminf∈H(ϵP (f) + ϵQ(f)) and ξ =

ϵP (f
∗) + ϵQ(f

∗). Assume all hypotheses h are L-Lipschitz continuous, the risk of hypothesis f̂ is
then bounded by

ϵQ(f̂) ≤ ξ + ϵP (f̂) + 2LW(P,Q). (25)
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C.2.2 Distance between the Ball Distribution with the Target Distribution

When using the cache classifier with historical samples, a large number of samples that are not similar
enough from the target domain will be filtered and the selected samples with high weight are all close
to the target data. Thus we extend the conclusion in [53] to the distance between the ball distribution
with the target distribution. Considering a test sample from the target distribution xt ∈ pt(x) and
a distribution consisting of ball center of all the test samples Ω :=

⋃
xt∈pt(x)

B(xt, r), informally,
according to Eq.(23), we have the distance between the ball distribution with the target distribution as
follows:

W(Ω, pt(x)) = inf
γ∈Π[Ω,pt(x)]

∫∫
∥ xt − xball ∥ dγ(xt, xball), (26)

where for each xball ∈ Ω, we can find at least one xt ∈ pt(x) such that ∥ xball − xt ∥≤ r, the
overall distance will then be bounded by r. Specifically, we can choose a density function γ∗ where
γ∗(xball, xt) > 0 only if ∥ xball − xt ∥≤ r otherwise 0, then we have

W(Ω, pt(x)) = inf
γ∈Π[Ω,pt(x)]

∫∫
∥ xball − xt ∥ dγ(xball, xt)

≤
∫∫

∥ xball − xt ∥ γ∗(xball, xt)dxballxt ≤ r. (27)

However, there is no guarantee that each data xt ∈ pt(x) can find a neighbor B(xt, r) with
|B(xt, r)| > 0 with all the small r. We then provide the probability that the set of neighbors
B(xt, r) of each xt ∈ pt(x) is not measuring zero with respect to the radius r.

As defined in the cache classfier Eq.(5), we denote kt is the number of historical samples we
select in the cache and nt is the total number of data from the historical stream. With the strong
density assumption, given the coefficient bound m and M , for any xt ∈ pt(x), r < R, according to
Assumption 1, we have

|x̂t ∈ pt(x) ∧ x̂t ∈ B(xt, r)| =
∫
B(xt,r)∩pt(x)

dpt(x)

dλ
(x̂t)dx̂t

≥ mλ(B(xt, r) ∩ pt(x))

≥ mctπdr
d, (28)

where πd = λ(B(0, 1)) is the volume of the d dimension unit ball and λ is the Lebesgue measure of a
set in a Euclidean space. Set r0 = ( 2k

mctπdnt
)1/d, with a additional assumption that we utilize a small

kt compared to nt so that kt

nt
<

ctmπdr
d
µ

2 , we have r0 < R. Then for any xt ∈ pt(x), according to
Eq.(28), we have

|x̂t ∈ pt(x) ∧ x̂t ∈ B(xt, r0)| ≥ mctπdr
d
0 >

2kt
nt

. (29)

Since x̂t ∈ pt(x) are independently drawn from the target distribution, let I(·) to be the Indicator
funciton and Snt(xt) =

∑nt

i=1 I(x̂t ∈ B(xt, r0)) denote the number of data x̂t ∈ pt(x) that fall into
B(xt, r0), then Snt

(xt) follows the Binomial distribution. Let W ∼ Binomial(nt,
2k
nt
), according

to the Chernoff inequality, we have

P (Snt
(xt) < kt) ≤ P (W < kt)

= P (W − E[W ] < −kt)

≤ exp(−k2t /2E[W ])

= exp(−kt/4), (30)

where the second inequality holds since Sn(x) has a larger mean than W . With a large kt, the
probability that Sn(x) < kt is small for any xt ∈ pt(x). Denoting x̂t

(i) as the ith nearest sample to
xt among B(xt, r0) in the cache, we have for any xt ∈ pt(x)
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P (∥ x̂t
(kt) − xt ∥≤ r0) = P (Sn(xt) ≥ kt) ≥ 1− exp(−kt/4) (31)

Combine Eq.(31) with the assumption that the distribution pt(x) is finite with cardinality ℵpt
and the

desired probability part is shown by union bound.

⋂
xt∈pt(x)

P (∥ x̂t
(kt) − xt ∥≤ r0)) =

⋂
xt∈pt(x)

P (Sn(x) ≥ kt)

= 1−
⋃

xt∈pt(x)

P (Sn(x) < kt)

≥ 1− ℵpt
exp

(
−kt

4

)
= 1− exp

(
−kt

4
+ logℵpt

)
. (32)

And then we have the following proposition.
Proposition 5. Given the target domain distributions pt(x) that is finite with cardinality ℵpt

, and
Ω :=

⋃
x∈pt(x)

B(x, r), where B(x, r) = {x′ :∥ x′ − x ∥≤ r} denotes a ball centered on x with
radius r. Denote f∗ = argminf∈H(ϵt(f)+ϵΩ(f)) and ξ = ϵt(f

∗)+ϵΩ(f
∗). Assume all hypotheses

h are L-Lipschitz continuous, the risk of hypothesis f̂ on the unseen target domain is then bounded
by

ϵt(f̂) ≤ κ+ ϵΩ(f̂) + 2L

(
2kt

mctπdnt

)1/d

. (33)

with probability 1− exp(−kt

4 + logℵpt
)

C.2.3 Excess Error Bound of Cache Classifier

Let si to be the softmax probability softmax(pcache) for class i in the the cache classifier from
Eq.(5), we can simplify the classifier as f̂cache = I{s1 ≥ 1

2} on the binary classification setting.

Then f̂cache(xt) ̸= f∗(xt) implies that
∣∣∣f̂cache(xt)− f∗(xt)

∣∣∣ ≥ ∣∣f∗(xt)− 1
2

∣∣. We then bridge the
gap between the excess error and the classify error as follows:

Et(f̂) = 2Ext∼pt(x)

[∣∣∣∣f∗(xt)−
1

2

∣∣∣∣ I{∣∣∣f̂cache(xt)− f∗(xt)
∣∣∣ ≥ ∣∣∣∣f∗(xt)−

1

2

∣∣∣∣}] . (34)

We want to bound supxt

∣∣∣f̂cache(xt)− f∗(xt)
∣∣∣ ≤ t, combining with the marginal assumption in

Assumption 3 and the fact that

E [Z · I{Z ≤ t}] ≤ tP (Z ≤ t), (35)

where Z =
∣∣f∗(xt)− 1

2

∣∣, so we have Et(f̂) ≤ Cβt
β+1. To bound

∣∣∣f̂cache(xt)− f∗(xt)
∣∣∣, we denote

(x̂t
(i), ŷt

(i)) as the ith nearest data and the corresponding labels to xt in B(xt, r0). The result of the
cache classfier with normalized weight will be

f̂cache(xt) =

kt∑
i=1

1∑kt

j=1

[
g
(
x̂t

(j)
)T

g(x)

] [g (x̂t
(i)
)T

g(x)

]
ŷt

(i) (36)

=

kt∑
i=1

wiŷt
(i), (37)

where wi =
g(x̂t

(i))
T
g(x)∑kt

j=1

[
g(x̂t

(j))
T
g(x)

] is the normalized weight and
∑kt

i=1 wi = 1. Based on the assump-

tions and notions above, we have for any xt ∈ pt(x)
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∣∣∣f̂cache(xt)− f∗(xt)
∣∣∣ = ∣∣∣∣∣

kt∑
i=1

wiŷt
(i) − f∗(xt)

∣∣∣∣∣
≤

∣∣∣∣∣
kt∑
i=1

wiŷt
(i) −

kt∑
i=1

wif
∗
(
x̂t

(i)
)∣∣∣∣∣+

∣∣∣∣∣
kt∑
i=1

wif
∗
(
x̂t

(i)
)
− f∗(xt)

∣∣∣∣∣
≤

∣∣∣∣∣
kt∑
i=1

wiŷt
(i) −

kt∑
i=1

f∗
(
x̂t

(i)
)∣∣∣∣∣︸ ︷︷ ︸

1

+

kt∑
i=1

wi

∣∣∣f∗
(
x̂t

(i)
)
− f∗(xt)

∣∣∣︸ ︷︷ ︸
2

,

(38)

where 2 is easy to bound. According to the assumption that f∗ is C-Smoothness, we have
kt∑
i=1

wi

∣∣∣f∗
(
x̂t

(i)
)
− f∗(xt)

∣∣∣ ≤ kt∑
i=1

wiC· ∥ x̂t
(i) − xt ∥≤ C· ∥ x̂t

(kt) − xt ∥ (39)

According to Eq.(31), with probability at least 1 − exp(−kt/4), 2 ≤ C
(

2kt

mctπdnt

)1/d
. Note

that We store the target sample into the cache only when its prediction confidence is large enough.
Therefore, it is natural to assume that:

EY |X

[
ŷt

(i)
]
= f∗(x

(i)
t ). (40)

Then we use the Hoeffding inequality to obtain the upper bound of 1

PX,Y

(∣∣∣∣∣
kt∑
i=1

wiŷt
(i) −

kt∑
i=1

f∗(x̂t
(i))

∣∣∣∣∣ > ϵ

)

= EX

[
PY |X

(∣∣∣∣∣
kt∑
i=1

wiŷt
(i) −

kt∑
i=1

f∗(x̂t
(i))

∣∣∣∣∣ > ϵ

)]

≤ 2 exp(− 2ϵ2∑kt

i=1 w
2
i

)

≈ 2 exp(−2ηktϵ
2). (41)

We simplify the bound by assuming that the weights in the target domain are evenly distributed in
the subset of all samples with respect to a specific class controlled by coefficient η, according to
Assumption 1 and Proposition 4. That is, we have

∑kt

i=1 w
2
i ≈

∑ηkt

i=1 (
1

ηkt
)
2
= 1

ηkt
.

Set ϵ = (1/kt)
1/4, we have, with probability, at least 1− 3 exp(−2η

√
kt), 1 ≤ (1/kt)

1/4, 2 ≤

C
(

2kt

mctπdnt

)1/d
, and then

∣∣∣f̂cache(xt)− f∗(xt)
∣∣∣ ≤ (1/kt)

1/4 + C
(

2kt

mctπdnt

)1/d
. According to

Eq.(31) and Eq.(35), the excess error is bounded by

Et(f̂) ≤ 2Cβ

((
1

kt

)1/4

+ C

(
2kt

mctπdnt

)1/d
)1+β

≈

((
1

kt

)1/4

+ C1

(
kt
ctnt

)1/d
)1+β

, (42)

with constant C1. When appropriately choosing kt = O(log nt), we have

min{1− 2 exp(−2η
√
kt), 1− exp(−kt/4)}

≥ 1− 2 exp(−2η
√

kt)− exp(−kt/4)

≥ 1− 3 exp(−2η
√

kt)

= 1− 3 exp(−O(1)
√
log nt)

(43)
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where the third line is because kt/4 > 2η
√
kt for large enough kt. Namely, with probability at least

1− 3 exp(−
√
log nt)

O(1), the following bound holds true.

Et(f̂) ≤ O

((
1

log nt

)1/4

+

(
log nt

ctnt

)1/d
)1+β

, (44)

C.3 Historical Cache benefits from Boosting Samples (Proof of Proposition 3)

To study the effect of the boosting samples, we consider the cache classfier containing both kt
historical samples {x̂t

(i), ŷt
(i)}kt

i=1 and kb boosting samples {x̂b
(i), ŷb

(i)}kb
i=1 as the nearest data to

xt in B(xt, r0). With the normalized weights wti =
g(x̂t

(i))
T
g(x)∑kt

j=1

[
g(x̂t

(j))
T
g(x)

]
+
∑kb

j=1

[
g(x̂b

(j))
T
g(x)

] and

wbi =
g(x̂b

(i))
T
g(x)∑kt

j=1

[
g(x̂t

(j))
T
g(x)

]
+
∑kb

j=1

[
g(x̂b

(j))
T
g(x)

] , the prediction result of the cache classifier will be

f̂cache(xt) =
∑kt

i=1 wtiŷt
(i) +

∑kb

i=1 wbiy
(i)
b . Then we have:

∣∣∣f̂cache(xt)− f∗(xt)
∣∣∣

=

∣∣∣∣∣
kt∑
i=1

wtiŷt
(i) −

kt∑
i=1

wtif
∗(xt) +

kb∑
i=1

wbiy
(i)
u −

kb∑
i=1

wbif
∗(xt)

∣∣∣∣∣
≤

∣∣∣∣∣
[

kt∑
i=1

wtiŷt
(i) −

kt∑
i=1

wtif
∗(x̂t

(i))

]
+

[
kt∑
i=1

wtif
∗(x̂t

(i))−
kt∑
i=1

wtif
∗(xt)

]

+

[
kb∑
i=1

wbiy
(i)
u −

kb∑
i=1

wbif
∗
(
x(i)
u

)]
+

[
kb∑
i=1

wbif
∗
(
x(i)
u

)
−

kb∑
i=1

wbif
∗(xt)

] ∣∣∣∣∣
≤

∣∣∣∣∣
kt∑
i=1

wtiŷt
(i) +

kb∑
i=1

wbiy
(i)
u −

kt∑
i=1

wtif
∗(x̂t

(i))−
kb∑
i=1

wbif
∗
(
x(i)
u

)∣∣∣∣∣︸ ︷︷ ︸
1

+

kt∑
i=1

wti

∣∣∣f∗(x̂t
(i))− f∗(xt)

∣∣∣︸ ︷︷ ︸
2

+

kb∑
i=1

wbi

∣∣∣f∗
(
x(i)
u

)
− f∗(xt)

∣∣∣︸ ︷︷ ︸
3

Similar to Eq.(40), we have the following assumption on the boosting distribution:

EY |X

[
ŷb

(i)
]
= f∗(x

(i)
b ). (45)

According to Eq.(41), we have

PX,Y

(∣∣∣∣∣
kt∑
i=1

wtiŷt
(i) +

kb∑
i=1

wbiy
(i)
b −

kt∑
i=1

wtif
∗(x̂t

(i))−
kb∑
i=1

wbif
∗
(
x
(i)
b

)∣∣∣∣∣
)

= EX

[
PY |X

(∣∣∣∣∣
kt∑
i=1

wtiŷt
(i) +

kb∑
i=1

wbiy
(i)
b −

kt∑
i=1

wtif
∗(x̂t

(i))−
kb∑
i=1

wbif
∗
(
x
(i)
b

)∣∣∣∣∣
)]

≤ 2 exp(−2η(kt + kb)ϵ
2)

(46)
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Set ϵ = (1/(kt + kb))
1/4, we have, with probability, at least 1 − 3 exp(−2η

√
(kt + kb)), 1 ≤

(1/(kt + kb))
1/4. Then, according to Eq.(39), we have

kt∑
i=1

wti

∣∣∣f∗
(
x̂t

(i)
)
− f∗(xt)

∣∣∣ ≤ kt∑
i=1

wtiC· ∥ x̂t
(i) − xt ∥≤ StC· ∥ x̂t

(kt) − xt ∥ (47)

and
kb∑
i=1

wbi

∣∣∣f∗
(
x̂b

(i)
)
− f∗(xt)

∣∣∣ ≤ kb∑
i=1

wbiC· ∥ x̂b
(i) − xt ∥≤ SbC· ∥ x̂b

(kb) − xt ∥ . (48)

where St =
∑kt

i=1 wti, Sb =
∑kb

i=1 wbi are the sum of weights of historical samples and boosting
samples, respectively, and we have St + Sb = 1.

Then we have the following results in similar:

2 ≤ StC

(
2kt

mctπdnt

)1/d

; 3 ≤ SbC

(
2kb

mcbπdnb

)1/d

(49)

Finally, the excess error under the covariate shift setting can be bounded by

Et(f̂) ≤ 2Cβ

(
(

1

kt + kb
)1/4 + StC

(
2kt

mctπdnt

)1/d

+ SbC

(
2kb

mcbπdnb

)1/d
)1+β

≈

((
1

kt + kb

)1/4

+ C1St

(
kt
ctnt

)1/d

+ C1Sb

(
kb
cbnb

)1/d
)1+β

=

((
1

kt + kb

)1/4

+ C1

kt∑
i=1

wti

(
kt
ctnt

)1/d

+ C1

kb∑
i=1

wbi

(
kb
cbnb

)1/d
)1+β

(50)

Compared Eq.(50) to Eq.(42) and St + Sb = 1, it is easy to verify that

(St + Sb)C

(
2(kt + kb)

mctπdnt

)1/d

− StC

(
2kt

mctπdnt

)1/d

− SbC

(
2kb

mcbπdnb

)1/d

≥ SbC

(
2kt

mctπdnt

)1/d

− SbC

(
2kb

mcbπdnb

)1/d
(51)

In general, the boosting distribution is more close to the test sample than the target distribution and
we have cb > ct. Thus the difference in Eq.(51) is then larger than 0, namely incorporating boosting
samples into the memory bank, the excess error can be further reduced.

D More Experiments

Independent Cache for Boosting Samples. In BoostAdater, due to the cost of augmentation, the
number of boosting samples is relatively smaller than the number of historical samples. Therefore,
we use a joint cache for storing both historical and boosting samples to facilitate intra-sample and
inter-sample interactions. Table 10 and Table 11 study the influence of using an independent cache
for the boosting samples. As can be observed from the results, BoostAdapter suffers from slight
performance degradation due to the independent cache.

Table 10: Independent cache for boosting samples on the OOD benchmark.
Imagenet-V2 Imagenet-Sketch Imagenet-A Imagenet-R Average

Independent Cache 65.37 50.62 64.56 80.96 65.38

Joint Cache 65.51 51.28 64.53 80.95 65.57
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Table 11: Independent cache for boosting sample on the Cross-Domain Benchmark.
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Independent Cache 94.69 88.88 69.19 71.94 86.99 26.76 67.64 44.21 61.20 69.63 68.11
Joint Cache 94.77 89.51 69.30 71.66 87.17 27.45 68.09 45.69 61.22 71.93 68.68

Different Augmentation for Boosting Samples. We make use of random crop followed by random
horizontal flip as augmentations for generating boosting samples. Additionally, we further explore
the influences of different augmentations applied to the randomly cropped images. The comparison
methods include: (i) Random Brighness: Randomly set the brighness of image from 50% to 150%.
(ii) Random Auto Contrast: Apply auto contrast over image with probability p = 0.5. (iii) Random
Rotate: Randomly rotate the image from -45 degree to 45 degree. (iv) Random Vertical Flip: Apply
vertical flip over image with probability p = 0.5. (v) Random Horizontal Flip (BoostAdapter): Apply
horizontal flip over image with probability p = 0.5. The results are presented in Table 12 and Table
13. The results indicate that random horizontal flipping outperforms other augmentation methods,
primarily because the images generated from horizontal flips are closer to the original distribution
when training CLIP.

Table 12: Comparison of different augmentations on the OOD benchmark . Default settings are
marked in gray .

Imagenet-V2 Imagenet-Sketch Imagenet-A Imagenet-R Average

Random Brightness 65.10 51.24 62.10 81.03 64.87
Random Auto Contrast 65.50 50.79 64.33 80.57 65.30
Random Rotate 61.14 47.67 60.83 78.15 61.95
Random Vertical Flip 63.39 49.67 60.77 78.55 63.10

Random Horizontal Flip 65.51 51.28 64.53 80.95 65.57

Table 13: Comparison of different augmentations on the Cross-Domain Benchmark. Default
settings are marked in gray .
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Random Brightness 94.60 89.70 69.28 71.70 86.88 26.67 68.24 45.57 61.63 71.45 68.57
Random Auto Contrast 94.48 89.67 69.33 71.90 87.24 27.39 68.16 45.51 61.67 71.77 68.71
Random Rotate 94.52 89.59 67.74 71.30 85.91 24.27 67.56 45.45 60.72 70.66 67.77
Random Vertical Flip 94.89 89.53 68.75 72.19 86.78 24.99 67.72 45.27 61.56 70.82 68.25
Random Horizontal Flip 94.77 89.51 69.30 71.66 87.17 27.45 68.09 45.69 61.22 71.93 68.68

E Additional Ablation Results

Historical Samples and Boosting Samples. We provide more ablation results of the historical and
boosting samples on the Cross-Dataset benchmark in Table 14. The observation is consistent with the
results in Table 3, showing that CLIP gains improvements from both historical and boosting samples.
Furthermore, when applied to various downstream tasks, the importance of regional bootstrapping
becomes more significant, as indicated by the gap between BoostAdapter and the variant that uses
boosting samples only.

Number of Augmented Views for Boosting Samples. The complete results on the number of
augmented views are presented in Table 15 and Table 16. With more augmented views, BoostAdapter
is able to better extract the fine-grained information from the original test sample, achieving improved
performance.
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Table 14: Ablation study on historical samples and boosting sample on the Cross-Domain
Benchmark.
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CLIP 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.58
Historical Samples 94.16 89.42 66.87 72.11 85.93 24.69 67.24 44.80 61.85 69.81 67.69
Boosting Samples 94.32 88.64 68.38 71.54 87.12 27.30 67.42 44.68 45.93 69.34 66.47
BoostAdapter 94.77 89.51 69.30 71.66 87.17 27.45 68.09 45.69 61.22 71.93 68.68

Table 15: Results of different views on the OOD benchmark. Default settings are marked in gray .

Imagenet-V2 Imagenet-Sketch Imagenet-A Imagenet-R Average

16 Views 79.41 49.01 62.08 63.68 63.54
32 Views 80.32 50.73 63.22 64.91 64.80
64 Views 80.95 51.28 64.53 65.51 65.57
128 Views 80.95 51.91 64.06 65.27 65.55

Table 16: Results of different views on the Cross-Domain Benchmark. Default settings are marked
in gray .
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16 Views 93.95 89.62 68.06 71.62 86.76 25.71 67.33 45.39 62.07 70.97 68.15
32 Views 94.48 89.59 69.07 71.54 87.01 27.18 67.97 45.45 61.22 71.56 68.51
64 Views 94.77 89.51 69.3 71.66 87.17 27.45 68.09 45.69 61.22 71.93 68.68
128 Views 94.77 89.62 69.15 71.34 87.28 27.15 68.15 45.86 61.19 71.87 68.64

Fixed shot capacity. We search the optimal total shot capicity in BoostAdapter. We also find that
fixing the cache size to be 3 can generalize well in different task settings, as shown in Table 17 and
Table 18.

F More Qualitative Results

More qualitative results are provided in Fig. 6.
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Table 17: Results of fixed shot capacity on the OOD benchmark.
Imagenet-V2 Imagenet-Sketch Imagenet-A Imagenet-R Average

CLIP 60.86 46.09 47.87 73.98 57.20
CLIP+TPT 64.35 47.94 54.77 77.06 60.81
PromptAlign 65.29 50.23 59.37 79.33 63.55
TDA 64.67 50.54 60.11 80.24 63.89

BoostAdapter-Fixed 65.13 50.66 63.96 80.44 65.05
BoostAdapter-Search 65.03 50.66 64.27 80.64 65.15

Table 18: Results of fixed shot capacity on the Cross-Domain Benchmark.
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CLIP 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.58
CLIP+TPT 94.16 87.79 66.87 68.98 84.67 24.78 65.50 47.75 42.44 68.04 65.10
PromptAlign 94.01 90.76 68.50 72.39 86.65 24.80 67.54 47.24 47.86 69.47 66.92
TDA 94.24 88.63 67.28 71.42 86.14 23.91 67.62 47.40 58.00 70.66 67.53

BoostAdapter-Fixed 94.77 88.85 69.30 71.66 87.17 27.00 67.64 44.33 61.22 69.73 68.17
BoostAdapter-Search 94.77 89.51 69.30 71.66 87.17 27.45 68.09 45.69 61.22 71.93 68.68

A380

Test Sample Boosting Sample

777-200

Test Sample Boosting Sample

Industrial Buildings Highway or Road

Aircraft EuroSAT

Test Sample Boosting Sample

mitten cottontail rabbit

ImagNet-A
Figure 6: More qualitative results on ImagNet-A, Aircraft and EuroSAT.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction reflect the main idea
described in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation and the discussion about computational overhead can be found
in the Section 5. These assumptions are reasonable in domain adaptation and parameter
analysis is conduct in the ablation studies in Section 4.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The theoretical proof of the proposition used in the paper can be found in
Section C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the implementation details in Section 4.1 for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will open source the code once accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the implementation details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:We provide the error bound along with the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information about compute resources in the implementation
details in Section 4.1.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide discussions of broader impacts in Section B in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We mention the licenses of existing assets in the Section A in Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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